Properties

Label 704.2.s.d.607.1
Level $704$
Weight $2$
Character 704.607
Analytic conductor $5.621$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,2,Mod(95,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.95");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.s (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 607.1
Root \(-0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 704.607
Dual form 704.2.s.d.479.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.11803 - 1.53884i) q^{3} +(-1.17557 + 0.381966i) q^{5} +(-3.07768 - 2.23607i) q^{7} +(1.19098 - 3.66547i) q^{9} +(-2.80902 - 1.76336i) q^{11} +(-1.90211 + 2.61803i) q^{15} +(3.35410 - 1.08981i) q^{17} +(-2.07295 - 2.85317i) q^{19} -9.95959 q^{21} -6.00000i q^{23} +(-2.80902 + 2.04087i) q^{25} +(-0.690983 - 2.12663i) q^{27} +(-4.25325 - 3.09017i) q^{29} +(6.88191 + 2.23607i) q^{31} +(-8.66312 + 0.587785i) q^{33} +(4.47214 + 1.45309i) q^{35} +(2.17963 - 3.00000i) q^{37} +(3.35410 + 4.61653i) q^{41} -12.7598i q^{43} +4.76393i q^{45} +(5.70634 + 7.85410i) q^{47} +(2.30902 + 7.10642i) q^{49} +(5.42705 - 7.46969i) q^{51} +(-3.07768 - 1.00000i) q^{53} +(3.97574 + 1.00000i) q^{55} +(-8.78115 - 2.85317i) q^{57} +(8.39919 + 6.10237i) q^{59} +(3.52671 + 10.8541i) q^{61} +(-11.8617 + 8.61803i) q^{63} -14.5623 q^{67} +(-9.23305 - 12.7082i) q^{69} +(11.4127 - 3.70820i) q^{71} +(-0.590170 + 0.812299i) q^{73} +(-2.80902 + 8.64527i) q^{75} +(4.70228 + 11.7082i) q^{77} +(1.45309 - 4.47214i) q^{79} +(4.61803 + 3.35520i) q^{81} +(-0.427051 + 0.138757i) q^{83} +(-3.52671 + 2.56231i) q^{85} -13.7638 q^{87} +1.85410 q^{89} +(18.0171 - 5.85410i) q^{93} +(3.52671 + 2.56231i) q^{95} +(2.57295 - 7.91872i) q^{97} +(-9.80902 + 8.19624i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 14 q^{9} - 18 q^{11} - 30 q^{19} - 18 q^{25} - 10 q^{27} - 38 q^{33} + 14 q^{49} + 30 q^{51} - 30 q^{57} + 18 q^{59} - 36 q^{67} + 40 q^{73} - 18 q^{75} + 28 q^{81} + 10 q^{83} - 12 q^{89}+ \cdots - 74 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.11803 1.53884i 1.22285 0.888451i 0.226514 0.974008i \(-0.427267\pi\)
0.996333 + 0.0855571i \(0.0272670\pi\)
\(4\) 0 0
\(5\) −1.17557 + 0.381966i −0.525731 + 0.170820i −0.559845 0.828598i \(-0.689139\pi\)
0.0341136 + 0.999418i \(0.489139\pi\)
\(6\) 0 0
\(7\) −3.07768 2.23607i −1.16326 0.845154i −0.173069 0.984910i \(-0.555368\pi\)
−0.990186 + 0.139755i \(0.955368\pi\)
\(8\) 0 0
\(9\) 1.19098 3.66547i 0.396994 1.22182i
\(10\) 0 0
\(11\) −2.80902 1.76336i −0.846950 0.531672i
\(12\) 0 0
\(13\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(14\) 0 0
\(15\) −1.90211 + 2.61803i −0.491123 + 0.675973i
\(16\) 0 0
\(17\) 3.35410 1.08981i 0.813489 0.264319i 0.127414 0.991850i \(-0.459332\pi\)
0.686075 + 0.727531i \(0.259332\pi\)
\(18\) 0 0
\(19\) −2.07295 2.85317i −0.475567 0.654562i 0.502078 0.864822i \(-0.332569\pi\)
−0.977645 + 0.210260i \(0.932569\pi\)
\(20\) 0 0
\(21\) −9.95959 −2.17336
\(22\) 0 0
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) −2.80902 + 2.04087i −0.561803 + 0.408174i
\(26\) 0 0
\(27\) −0.690983 2.12663i −0.132980 0.409270i
\(28\) 0 0
\(29\) −4.25325 3.09017i −0.789809 0.573830i 0.118097 0.993002i \(-0.462320\pi\)
−0.907907 + 0.419172i \(0.862320\pi\)
\(30\) 0 0
\(31\) 6.88191 + 2.23607i 1.23603 + 0.401610i 0.852894 0.522083i \(-0.174845\pi\)
0.383133 + 0.923693i \(0.374845\pi\)
\(32\) 0 0
\(33\) −8.66312 + 0.587785i −1.50806 + 0.102320i
\(34\) 0 0
\(35\) 4.47214 + 1.45309i 0.755929 + 0.245616i
\(36\) 0 0
\(37\) 2.17963 3.00000i 0.358329 0.493197i −0.591354 0.806412i \(-0.701406\pi\)
0.949682 + 0.313215i \(0.101406\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.35410 + 4.61653i 0.523823 + 0.720980i 0.986173 0.165717i \(-0.0529938\pi\)
−0.462351 + 0.886697i \(0.652994\pi\)
\(42\) 0 0
\(43\) 12.7598i 1.94585i −0.231131 0.972923i \(-0.574242\pi\)
0.231131 0.972923i \(-0.425758\pi\)
\(44\) 0 0
\(45\) 4.76393i 0.710165i
\(46\) 0 0
\(47\) 5.70634 + 7.85410i 0.832355 + 1.14564i 0.987480 + 0.157744i \(0.0504220\pi\)
−0.155125 + 0.987895i \(0.549578\pi\)
\(48\) 0 0
\(49\) 2.30902 + 7.10642i 0.329860 + 1.01520i
\(50\) 0 0
\(51\) 5.42705 7.46969i 0.759939 1.04597i
\(52\) 0 0
\(53\) −3.07768 1.00000i −0.422752 0.137361i 0.0899119 0.995950i \(-0.471341\pi\)
−0.512664 + 0.858589i \(0.671341\pi\)
\(54\) 0 0
\(55\) 3.97574 + 1.00000i 0.536089 + 0.134840i
\(56\) 0 0
\(57\) −8.78115 2.85317i −1.16309 0.377912i
\(58\) 0 0
\(59\) 8.39919 + 6.10237i 1.09348 + 0.794460i 0.979984 0.199078i \(-0.0637947\pi\)
0.113497 + 0.993538i \(0.463795\pi\)
\(60\) 0 0
\(61\) 3.52671 + 10.8541i 0.451549 + 1.38973i 0.875139 + 0.483871i \(0.160770\pi\)
−0.423590 + 0.905854i \(0.639230\pi\)
\(62\) 0 0
\(63\) −11.8617 + 8.61803i −1.49443 + 1.08577i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −14.5623 −1.77907 −0.889534 0.456868i \(-0.848971\pi\)
−0.889534 + 0.456868i \(0.848971\pi\)
\(68\) 0 0
\(69\) −9.23305 12.7082i −1.11153 1.52989i
\(70\) 0 0
\(71\) 11.4127 3.70820i 1.35444 0.440083i 0.460254 0.887787i \(-0.347758\pi\)
0.894182 + 0.447704i \(0.147758\pi\)
\(72\) 0 0
\(73\) −0.590170 + 0.812299i −0.0690742 + 0.0950724i −0.842156 0.539233i \(-0.818714\pi\)
0.773082 + 0.634306i \(0.218714\pi\)
\(74\) 0 0
\(75\) −2.80902 + 8.64527i −0.324357 + 0.998269i
\(76\) 0 0
\(77\) 4.70228 + 11.7082i 0.535875 + 1.33427i
\(78\) 0 0
\(79\) 1.45309 4.47214i 0.163485 0.503155i −0.835437 0.549587i \(-0.814785\pi\)
0.998921 + 0.0464322i \(0.0147852\pi\)
\(80\) 0 0
\(81\) 4.61803 + 3.35520i 0.513115 + 0.372800i
\(82\) 0 0
\(83\) −0.427051 + 0.138757i −0.0468749 + 0.0152306i −0.332361 0.943152i \(-0.607845\pi\)
0.285486 + 0.958383i \(0.407845\pi\)
\(84\) 0 0
\(85\) −3.52671 + 2.56231i −0.382526 + 0.277921i
\(86\) 0 0
\(87\) −13.7638 −1.47564
\(88\) 0 0
\(89\) 1.85410 0.196534 0.0982672 0.995160i \(-0.468670\pi\)
0.0982672 + 0.995160i \(0.468670\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 18.0171 5.85410i 1.86828 0.607042i
\(94\) 0 0
\(95\) 3.52671 + 2.56231i 0.361833 + 0.262887i
\(96\) 0 0
\(97\) 2.57295 7.91872i 0.261243 0.804024i −0.731292 0.682065i \(-0.761082\pi\)
0.992535 0.121960i \(-0.0389178\pi\)
\(98\) 0 0
\(99\) −9.80902 + 8.19624i −0.985843 + 0.823753i
\(100\) 0 0
\(101\) 5.42882 16.7082i 0.540188 1.66253i −0.191975 0.981400i \(-0.561489\pi\)
0.732164 0.681129i \(-0.238511\pi\)
\(102\) 0 0
\(103\) 0.726543 1.00000i 0.0715884 0.0985329i −0.771721 0.635961i \(-0.780604\pi\)
0.843310 + 0.537428i \(0.180604\pi\)
\(104\) 0 0
\(105\) 11.7082 3.80423i 1.14260 0.371254i
\(106\) 0 0
\(107\) 2.50000 + 3.44095i 0.241684 + 0.332650i 0.912577 0.408904i \(-0.134089\pi\)
−0.670893 + 0.741554i \(0.734089\pi\)
\(108\) 0 0
\(109\) −11.4127 −1.09314 −0.546568 0.837415i \(-0.684066\pi\)
−0.546568 + 0.837415i \(0.684066\pi\)
\(110\) 0 0
\(111\) 9.70820i 0.921462i
\(112\) 0 0
\(113\) 3.92705 2.85317i 0.369426 0.268404i −0.387547 0.921850i \(-0.626677\pi\)
0.756973 + 0.653446i \(0.226677\pi\)
\(114\) 0 0
\(115\) 2.29180 + 7.05342i 0.213711 + 0.657735i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.7598 4.14590i −1.16969 0.380054i
\(120\) 0 0
\(121\) 4.78115 + 9.90659i 0.434650 + 0.900599i
\(122\) 0 0
\(123\) 14.2082 + 4.61653i 1.28111 + 0.416258i
\(124\) 0 0
\(125\) 6.15537 8.47214i 0.550553 0.757771i
\(126\) 0 0
\(127\) −5.70634 17.5623i −0.506356 1.55840i −0.798479 0.602022i \(-0.794362\pi\)
0.292124 0.956381i \(-0.405638\pi\)
\(128\) 0 0
\(129\) −19.6353 27.0256i −1.72879 2.37947i
\(130\) 0 0
\(131\) 6.43288i 0.562043i −0.959701 0.281022i \(-0.909327\pi\)
0.959701 0.281022i \(-0.0906733\pi\)
\(132\) 0 0
\(133\) 13.4164i 1.16335i
\(134\) 0 0
\(135\) 1.62460 + 2.23607i 0.139823 + 0.192450i
\(136\) 0 0
\(137\) −1.71885 5.29007i −0.146851 0.451961i 0.850393 0.526147i \(-0.176364\pi\)
−0.997244 + 0.0741865i \(0.976364\pi\)
\(138\) 0 0
\(139\) −2.56231 + 3.52671i −0.217332 + 0.299132i −0.903737 0.428087i \(-0.859188\pi\)
0.686405 + 0.727219i \(0.259188\pi\)
\(140\) 0 0
\(141\) 24.1724 + 7.85410i 2.03569 + 0.661435i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.18034 + 2.00811i 0.513249 + 0.166765i
\(146\) 0 0
\(147\) 15.8262 + 11.4984i 1.30533 + 0.948375i
\(148\) 0 0
\(149\) 2.62866 + 8.09017i 0.215348 + 0.662773i 0.999129 + 0.0417351i \(0.0132885\pi\)
−0.783781 + 0.621037i \(0.786711\pi\)
\(150\) 0 0
\(151\) −7.33094 + 5.32624i −0.596583 + 0.433443i −0.844664 0.535296i \(-0.820200\pi\)
0.248081 + 0.968739i \(0.420200\pi\)
\(152\) 0 0
\(153\) 13.5923i 1.09887i
\(154\) 0 0
\(155\) −8.94427 −0.718421
\(156\) 0 0
\(157\) 10.5801 + 14.5623i 0.844387 + 1.16220i 0.985072 + 0.172144i \(0.0550695\pi\)
−0.140685 + 0.990054i \(0.544931\pi\)
\(158\) 0 0
\(159\) −8.05748 + 2.61803i −0.639000 + 0.207624i
\(160\) 0 0
\(161\) −13.4164 + 18.4661i −1.05736 + 1.45533i
\(162\) 0 0
\(163\) −5.20820 + 16.0292i −0.407938 + 1.25550i 0.510479 + 0.859890i \(0.329468\pi\)
−0.918417 + 0.395614i \(0.870532\pi\)
\(164\) 0 0
\(165\) 9.95959 4.00000i 0.775353 0.311400i
\(166\) 0 0
\(167\) −1.34708 + 4.14590i −0.104240 + 0.320819i −0.989551 0.144180i \(-0.953945\pi\)
0.885311 + 0.464999i \(0.153945\pi\)
\(168\) 0 0
\(169\) 10.5172 + 7.64121i 0.809017 + 0.587785i
\(170\) 0 0
\(171\) −12.9271 + 4.20025i −0.988556 + 0.321201i
\(172\) 0 0
\(173\) 17.2905 12.5623i 1.31457 0.955094i 0.314592 0.949227i \(-0.398132\pi\)
0.999983 0.00586742i \(-0.00186767\pi\)
\(174\) 0 0
\(175\) 13.2088 0.998491
\(176\) 0 0
\(177\) 27.1803 2.04300
\(178\) 0 0
\(179\) 7.92705 5.75934i 0.592496 0.430473i −0.250712 0.968062i \(-0.580665\pi\)
0.843207 + 0.537589i \(0.180665\pi\)
\(180\) 0 0
\(181\) −11.4127 + 3.70820i −0.848298 + 0.275629i −0.700733 0.713424i \(-0.747144\pi\)
−0.147565 + 0.989052i \(0.547144\pi\)
\(182\) 0 0
\(183\) 24.1724 + 17.5623i 1.78688 + 1.29824i
\(184\) 0 0
\(185\) −1.41641 + 4.35926i −0.104136 + 0.320499i
\(186\) 0 0
\(187\) −11.3435 2.85317i −0.829516 0.208644i
\(188\) 0 0
\(189\) −2.62866 + 8.09017i −0.191207 + 0.588473i
\(190\) 0 0
\(191\) 12.7598 17.5623i 0.923264 1.27076i −0.0391657 0.999233i \(-0.512470\pi\)
0.962430 0.271531i \(-0.0875300\pi\)
\(192\) 0 0
\(193\) −7.23607 + 2.35114i −0.520864 + 0.169239i −0.557637 0.830085i \(-0.688292\pi\)
0.0367736 + 0.999324i \(0.488292\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.3107 −0.877103 −0.438552 0.898706i \(-0.644508\pi\)
−0.438552 + 0.898706i \(0.644508\pi\)
\(198\) 0 0
\(199\) 5.52786i 0.391860i 0.980618 + 0.195930i \(0.0627725\pi\)
−0.980618 + 0.195930i \(0.937227\pi\)
\(200\) 0 0
\(201\) −30.8435 + 22.4091i −2.17553 + 1.58061i
\(202\) 0 0
\(203\) 6.18034 + 19.0211i 0.433775 + 1.33502i
\(204\) 0 0
\(205\) −5.70634 4.14590i −0.398548 0.289562i
\(206\) 0 0
\(207\) −21.9928 7.14590i −1.52861 0.496674i
\(208\) 0 0
\(209\) 0.791796 + 11.6699i 0.0547697 + 0.807227i
\(210\) 0 0
\(211\) −1.28115 0.416272i −0.0881982 0.0286573i 0.264586 0.964362i \(-0.414765\pi\)
−0.352784 + 0.935705i \(0.614765\pi\)
\(212\) 0 0
\(213\) 18.4661 25.4164i 1.26528 1.74150i
\(214\) 0 0
\(215\) 4.87380 + 15.0000i 0.332390 + 1.02299i
\(216\) 0 0
\(217\) −16.1803 22.2703i −1.09839 1.51181i
\(218\) 0 0
\(219\) 2.62866i 0.177628i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.73466 + 3.76393i 0.183126 + 0.252052i 0.890704 0.454584i \(-0.150212\pi\)
−0.707578 + 0.706636i \(0.750212\pi\)
\(224\) 0 0
\(225\) 4.13525 + 12.7270i 0.275684 + 0.848467i
\(226\) 0 0
\(227\) −3.12868 + 4.30625i −0.207658 + 0.285816i −0.900124 0.435634i \(-0.856524\pi\)
0.692466 + 0.721450i \(0.256524\pi\)
\(228\) 0 0
\(229\) −7.05342 2.29180i −0.466103 0.151446i 0.0665439 0.997783i \(-0.478803\pi\)
−0.532647 + 0.846337i \(0.678803\pi\)
\(230\) 0 0
\(231\) 27.9767 + 17.5623i 1.84073 + 1.15551i
\(232\) 0 0
\(233\) 18.8435 + 6.12261i 1.23448 + 0.401106i 0.852334 0.522998i \(-0.175186\pi\)
0.382142 + 0.924104i \(0.375186\pi\)
\(234\) 0 0
\(235\) −9.70820 7.05342i −0.633293 0.460115i
\(236\) 0 0
\(237\) −3.80423 11.7082i −0.247111 0.760530i
\(238\) 0 0
\(239\) −11.4127 + 8.29180i −0.738225 + 0.536352i −0.892155 0.451730i \(-0.850807\pi\)
0.153930 + 0.988082i \(0.450807\pi\)
\(240\) 0 0
\(241\) 2.97168i 0.191423i 0.995409 + 0.0957114i \(0.0305126\pi\)
−0.995409 + 0.0957114i \(0.969487\pi\)
\(242\) 0 0
\(243\) 21.6525 1.38901
\(244\) 0 0
\(245\) −5.42882 7.47214i −0.346835 0.477377i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −0.690983 + 0.951057i −0.0437893 + 0.0602708i
\(250\) 0 0
\(251\) 4.47214 13.7638i 0.282279 0.868765i −0.704922 0.709284i \(-0.749018\pi\)
0.987201 0.159480i \(-0.0509818\pi\)
\(252\) 0 0
\(253\) −10.5801 + 16.8541i −0.665167 + 1.05961i
\(254\) 0 0
\(255\) −3.52671 + 10.8541i −0.220851 + 0.679710i
\(256\) 0 0
\(257\) −17.2082 12.5025i −1.07342 0.779884i −0.0968947 0.995295i \(-0.530891\pi\)
−0.976524 + 0.215411i \(0.930891\pi\)
\(258\) 0 0
\(259\) −13.4164 + 4.35926i −0.833655 + 0.270871i
\(260\) 0 0
\(261\) −16.3925 + 11.9098i −1.01467 + 0.737200i
\(262\) 0 0
\(263\) −15.7719 −0.972539 −0.486270 0.873809i \(-0.661643\pi\)
−0.486270 + 0.873809i \(0.661643\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) 3.92705 2.85317i 0.240332 0.174611i
\(268\) 0 0
\(269\) 10.6861 3.47214i 0.651545 0.211700i 0.0354499 0.999371i \(-0.488714\pi\)
0.616095 + 0.787672i \(0.288714\pi\)
\(270\) 0 0
\(271\) 12.7598 + 9.27051i 0.775100 + 0.563143i 0.903505 0.428579i \(-0.140985\pi\)
−0.128404 + 0.991722i \(0.540985\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.4894 0.779543i 0.692834 0.0470082i
\(276\) 0 0
\(277\) 2.17963 6.70820i 0.130961 0.403057i −0.863979 0.503528i \(-0.832035\pi\)
0.994940 + 0.100471i \(0.0320350\pi\)
\(278\) 0 0
\(279\) 16.3925 22.5623i 0.981392 1.35077i
\(280\) 0 0
\(281\) 5.42705 1.76336i 0.323751 0.105193i −0.142633 0.989776i \(-0.545557\pi\)
0.466383 + 0.884583i \(0.345557\pi\)
\(282\) 0 0
\(283\) −2.56231 3.52671i −0.152313 0.209641i 0.726041 0.687651i \(-0.241358\pi\)
−0.878354 + 0.478010i \(0.841358\pi\)
\(284\) 0 0
\(285\) 11.4127 0.676029
\(286\) 0 0
\(287\) 21.7082i 1.28139i
\(288\) 0 0
\(289\) −3.69098 + 2.68166i −0.217117 + 0.157744i
\(290\) 0 0
\(291\) −6.73607 20.7315i −0.394875 1.21530i
\(292\) 0 0
\(293\) 17.2905 + 12.5623i 1.01012 + 0.733898i 0.964235 0.265049i \(-0.0853881\pi\)
0.0458886 + 0.998947i \(0.485388\pi\)
\(294\) 0 0
\(295\) −12.2047 3.96556i −0.710587 0.230884i
\(296\) 0 0
\(297\) −1.80902 + 7.19218i −0.104970 + 0.417333i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −28.5317 + 39.2705i −1.64454 + 2.26351i
\(302\) 0 0
\(303\) −14.2128 43.7426i −0.816507 2.51295i
\(304\) 0 0
\(305\) −8.29180 11.4127i −0.474787 0.653488i
\(306\) 0 0
\(307\) 21.4783i 1.22583i −0.790149 0.612915i \(-0.789997\pi\)
0.790149 0.612915i \(-0.210003\pi\)
\(308\) 0 0
\(309\) 3.23607i 0.184093i
\(310\) 0 0
\(311\) 2.17963 + 3.00000i 0.123595 + 0.170114i 0.866331 0.499470i \(-0.166472\pi\)
−0.742736 + 0.669585i \(0.766472\pi\)
\(312\) 0 0
\(313\) 0.208204 + 0.640786i 0.0117684 + 0.0362194i 0.956768 0.290851i \(-0.0939385\pi\)
−0.945000 + 0.327071i \(0.893938\pi\)
\(314\) 0 0
\(315\) 10.6525 14.6619i 0.600199 0.826103i
\(316\) 0 0
\(317\) −8.61251 2.79837i −0.483727 0.157172i 0.0569940 0.998375i \(-0.481848\pi\)
−0.540721 + 0.841202i \(0.681848\pi\)
\(318\) 0 0
\(319\) 6.49839 + 16.1803i 0.363840 + 0.905925i
\(320\) 0 0
\(321\) 10.5902 + 3.44095i 0.591086 + 0.192055i
\(322\) 0 0
\(323\) −10.0623 7.31069i −0.559882 0.406778i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −24.1724 + 17.5623i −1.33674 + 0.971198i
\(328\) 0 0
\(329\) 36.9322i 2.03614i
\(330\) 0 0
\(331\) −16.1459 −0.887459 −0.443729 0.896161i \(-0.646345\pi\)
−0.443729 + 0.896161i \(0.646345\pi\)
\(332\) 0 0
\(333\) −8.40051 11.5623i −0.460345 0.633610i
\(334\) 0 0
\(335\) 17.1190 5.56231i 0.935312 0.303901i
\(336\) 0 0
\(337\) 6.21885 8.55951i 0.338762 0.466266i −0.605317 0.795984i \(-0.706954\pi\)
0.944079 + 0.329718i \(0.106954\pi\)
\(338\) 0 0
\(339\) 3.92705 12.0862i 0.213288 0.656433i
\(340\) 0 0
\(341\) −15.3884 18.4164i −0.833330 0.997304i
\(342\) 0 0
\(343\) 0.555029 1.70820i 0.0299688 0.0922343i
\(344\) 0 0
\(345\) 15.7082 + 11.4127i 0.845701 + 0.614438i
\(346\) 0 0
\(347\) 26.2426 8.52675i 1.40878 0.457740i 0.496760 0.867888i \(-0.334523\pi\)
0.912019 + 0.410148i \(0.134523\pi\)
\(348\) 0 0
\(349\) −9.23305 + 6.70820i −0.494234 + 0.359082i −0.806810 0.590811i \(-0.798808\pi\)
0.312576 + 0.949893i \(0.398808\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.8541 0.897053 0.448527 0.893769i \(-0.351949\pi\)
0.448527 + 0.893769i \(0.351949\pi\)
\(354\) 0 0
\(355\) −12.0000 + 8.71851i −0.636894 + 0.462730i
\(356\) 0 0
\(357\) −33.4055 + 10.8541i −1.76801 + 0.574460i
\(358\) 0 0
\(359\) −26.3521 19.1459i −1.39081 1.01048i −0.995776 0.0918149i \(-0.970733\pi\)
−0.395033 0.918667i \(-0.629267\pi\)
\(360\) 0 0
\(361\) 2.02786 6.24112i 0.106730 0.328480i
\(362\) 0 0
\(363\) 25.3713 + 13.6251i 1.33165 + 0.715130i
\(364\) 0 0
\(365\) 0.383516 1.18034i 0.0200741 0.0617818i
\(366\) 0 0
\(367\) −16.5640 + 22.7984i −0.864633 + 1.19007i 0.115812 + 0.993271i \(0.463053\pi\)
−0.980445 + 0.196794i \(0.936947\pi\)
\(368\) 0 0
\(369\) 20.9164 6.79615i 1.08886 0.353794i
\(370\) 0 0
\(371\) 7.23607 + 9.95959i 0.375678 + 0.517076i
\(372\) 0 0
\(373\) 27.1846 1.40757 0.703783 0.710415i \(-0.251493\pi\)
0.703783 + 0.710415i \(0.251493\pi\)
\(374\) 0 0
\(375\) 27.4164i 1.41578i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −4.71885 14.5231i −0.242391 0.746002i −0.996055 0.0887422i \(-0.971715\pi\)
0.753664 0.657260i \(-0.228285\pi\)
\(380\) 0 0
\(381\) −39.1118 28.4164i −2.00376 1.45582i
\(382\) 0 0
\(383\) −14.9394 4.85410i −0.763367 0.248033i −0.0986440 0.995123i \(-0.531451\pi\)
−0.664723 + 0.747090i \(0.731451\pi\)
\(384\) 0 0
\(385\) −10.0000 11.9677i −0.509647 0.609931i
\(386\) 0 0
\(387\) −46.7705 15.1967i −2.37748 0.772490i
\(388\) 0 0
\(389\) −1.28157 + 1.76393i −0.0649783 + 0.0894349i −0.840269 0.542169i \(-0.817603\pi\)
0.775291 + 0.631604i \(0.217603\pi\)
\(390\) 0 0
\(391\) −6.53888 20.1246i −0.330686 1.01775i
\(392\) 0 0
\(393\) −9.89919 13.6251i −0.499348 0.687293i
\(394\) 0 0
\(395\) 5.81234i 0.292451i
\(396\) 0 0
\(397\) 18.0000i 0.903394i −0.892171 0.451697i \(-0.850819\pi\)
0.892171 0.451697i \(-0.149181\pi\)
\(398\) 0 0
\(399\) 20.6457 + 28.4164i 1.03358 + 1.42260i
\(400\) 0 0
\(401\) 5.42705 + 16.7027i 0.271014 + 0.834095i 0.990247 + 0.139326i \(0.0444936\pi\)
−0.719233 + 0.694769i \(0.755506\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −6.71040 2.18034i −0.333442 0.108342i
\(406\) 0 0
\(407\) −11.4127 + 4.58359i −0.565705 + 0.227200i
\(408\) 0 0
\(409\) −30.6525 9.95959i −1.51567 0.492470i −0.571126 0.820862i \(-0.693493\pi\)
−0.944541 + 0.328392i \(0.893493\pi\)
\(410\) 0 0
\(411\) −11.7812 8.55951i −0.581121 0.422209i
\(412\) 0 0
\(413\) −12.2047 37.5623i −0.600556 1.84832i
\(414\) 0 0
\(415\) 0.449028 0.326238i 0.0220419 0.0160144i
\(416\) 0 0
\(417\) 11.4127i 0.558881i
\(418\) 0 0
\(419\) 16.5066 0.806399 0.403200 0.915112i \(-0.367898\pi\)
0.403200 + 0.915112i \(0.367898\pi\)
\(420\) 0 0
\(421\) 7.05342 + 9.70820i 0.343763 + 0.473149i 0.945536 0.325518i \(-0.105539\pi\)
−0.601773 + 0.798667i \(0.705539\pi\)
\(422\) 0 0
\(423\) 35.5851 11.5623i 1.73021 0.562179i
\(424\) 0 0
\(425\) −7.19756 + 9.90659i −0.349133 + 0.480540i
\(426\) 0 0
\(427\) 13.4164 41.2915i 0.649265 1.99823i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.23305 + 28.4164i −0.444740 + 1.36877i 0.438028 + 0.898961i \(0.355677\pi\)
−0.882768 + 0.469809i \(0.844323\pi\)
\(432\) 0 0
\(433\) 6.07295 + 4.41226i 0.291847 + 0.212039i 0.724068 0.689728i \(-0.242270\pi\)
−0.432221 + 0.901768i \(0.642270\pi\)
\(434\) 0 0
\(435\) 16.1803 5.25731i 0.775788 0.252069i
\(436\) 0 0
\(437\) −17.1190 + 12.4377i −0.818914 + 0.594976i
\(438\) 0 0
\(439\) −36.3772 −1.73619 −0.868094 0.496400i \(-0.834655\pi\)
−0.868094 + 0.496400i \(0.834655\pi\)
\(440\) 0 0
\(441\) 28.7984 1.37135
\(442\) 0 0
\(443\) −16.8262 + 12.2250i −0.799439 + 0.580826i −0.910749 0.412959i \(-0.864495\pi\)
0.111311 + 0.993786i \(0.464495\pi\)
\(444\) 0 0
\(445\) −2.17963 + 0.708204i −0.103324 + 0.0335721i
\(446\) 0 0
\(447\) 18.0171 + 13.0902i 0.852178 + 0.619144i
\(448\) 0 0
\(449\) 3.08359 9.49032i 0.145524 0.447876i −0.851554 0.524266i \(-0.824340\pi\)
0.997078 + 0.0763905i \(0.0243396\pi\)
\(450\) 0 0
\(451\) −1.28115 18.8824i −0.0603271 0.889136i
\(452\) 0 0
\(453\) −7.33094 + 22.5623i −0.344437 + 1.06007i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.7877 9.02878i 1.29986 0.422349i 0.424324 0.905510i \(-0.360512\pi\)
0.875531 + 0.483162i \(0.160512\pi\)
\(458\) 0 0
\(459\) −4.63525 6.37988i −0.216355 0.297787i
\(460\) 0 0
\(461\) 7.05342 0.328511 0.164255 0.986418i \(-0.447478\pi\)
0.164255 + 0.986418i \(0.447478\pi\)
\(462\) 0 0
\(463\) 13.2361i 0.615132i −0.951527 0.307566i \(-0.900485\pi\)
0.951527 0.307566i \(-0.0995145\pi\)
\(464\) 0 0
\(465\) −18.9443 + 13.7638i −0.878520 + 0.638282i
\(466\) 0 0
\(467\) 0.291796 + 0.898056i 0.0135027 + 0.0415571i 0.957581 0.288165i \(-0.0930451\pi\)
−0.944078 + 0.329722i \(0.893045\pi\)
\(468\) 0 0
\(469\) 44.8182 + 32.5623i 2.06951 + 1.50359i
\(470\) 0 0
\(471\) 44.8182 + 14.5623i 2.06511 + 0.670996i
\(472\) 0 0
\(473\) −22.5000 + 35.8424i −1.03455 + 1.64803i
\(474\) 0 0
\(475\) 11.6459 + 3.78398i 0.534350 + 0.173621i
\(476\) 0 0
\(477\) −7.33094 + 10.0902i −0.335661 + 0.461997i
\(478\) 0 0
\(479\) 10.0656 + 30.9787i 0.459909 + 1.41545i 0.865274 + 0.501299i \(0.167144\pi\)
−0.405365 + 0.914155i \(0.632856\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 59.7576i 2.71906i
\(484\) 0 0
\(485\) 10.2918i 0.467326i
\(486\) 0 0
\(487\) 7.67396 + 10.5623i 0.347741 + 0.478624i 0.946682 0.322169i \(-0.104412\pi\)
−0.598942 + 0.800793i \(0.704412\pi\)
\(488\) 0 0
\(489\) 13.6353 + 41.9650i 0.616608 + 1.89772i
\(490\) 0 0
\(491\) −14.2082 + 19.5559i −0.641207 + 0.882546i −0.998679 0.0513778i \(-0.983639\pi\)
0.357472 + 0.933924i \(0.383639\pi\)
\(492\) 0 0
\(493\) −17.6336 5.72949i −0.794175 0.258043i
\(494\) 0 0
\(495\) 8.40051 13.3820i 0.377575 0.601475i
\(496\) 0 0
\(497\) −43.4164 14.1068i −1.94749 0.632779i
\(498\) 0 0
\(499\) −19.0623 13.8496i −0.853346 0.619992i 0.0727206 0.997352i \(-0.476832\pi\)
−0.926067 + 0.377360i \(0.876832\pi\)
\(500\) 0 0
\(501\) 3.52671 + 10.8541i 0.157562 + 0.484926i
\(502\) 0 0
\(503\) −9.23305 + 6.70820i −0.411681 + 0.299104i −0.774282 0.632841i \(-0.781889\pi\)
0.362601 + 0.931945i \(0.381889\pi\)
\(504\) 0 0
\(505\) 21.7153i 0.966318i
\(506\) 0 0
\(507\) 34.0344 1.51152
\(508\) 0 0
\(509\) 20.9232 + 28.7984i 0.927406 + 1.27647i 0.960863 + 0.277025i \(0.0893486\pi\)
−0.0334562 + 0.999440i \(0.510651\pi\)
\(510\) 0 0
\(511\) 3.63271 1.18034i 0.160702 0.0522152i
\(512\) 0 0
\(513\) −4.63525 + 6.37988i −0.204652 + 0.281679i
\(514\) 0 0
\(515\) −0.472136 + 1.45309i −0.0208048 + 0.0640306i
\(516\) 0 0
\(517\) −2.17963 32.1246i −0.0958599 1.41284i
\(518\) 0 0
\(519\) 17.2905 53.2148i 0.758970 2.33587i
\(520\) 0 0
\(521\) −19.6353 14.2658i −0.860236 0.624998i 0.0677131 0.997705i \(-0.478430\pi\)
−0.927949 + 0.372707i \(0.878430\pi\)
\(522\) 0 0
\(523\) −23.4787 + 7.62870i −1.02665 + 0.333580i −0.773466 0.633838i \(-0.781479\pi\)
−0.253187 + 0.967417i \(0.581479\pi\)
\(524\) 0 0
\(525\) 27.9767 20.3262i 1.22100 0.887110i
\(526\) 0 0
\(527\) 25.5195 1.11165
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 32.3713 23.5191i 1.40480 1.02064i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −4.25325 3.09017i −0.183884 0.133600i
\(536\) 0 0
\(537\) 7.92705 24.3970i 0.342077 1.05281i
\(538\) 0 0
\(539\) 6.04508 24.0337i 0.260380 1.03520i
\(540\) 0 0
\(541\) −10.0656 + 30.9787i −0.432754 + 1.33188i 0.462617 + 0.886558i \(0.346910\pi\)
−0.895371 + 0.445321i \(0.853090\pi\)
\(542\) 0 0
\(543\) −18.4661 + 25.4164i −0.792456 + 1.09072i
\(544\) 0 0
\(545\) 13.4164 4.35926i 0.574696 0.186730i
\(546\) 0 0
\(547\) −10.3647 14.2658i −0.443164 0.609964i 0.527747 0.849402i \(-0.323037\pi\)
−0.970912 + 0.239438i \(0.923037\pi\)
\(548\) 0 0
\(549\) 43.9856 1.87726
\(550\) 0 0
\(551\) 18.5410i 0.789874i
\(552\) 0 0
\(553\) −14.4721 + 10.5146i −0.615418 + 0.447127i
\(554\) 0 0
\(555\) 3.70820 + 11.4127i 0.157404 + 0.484441i
\(556\) 0 0
\(557\) −10.2371 7.43769i −0.433760 0.315145i 0.349390 0.936977i \(-0.386389\pi\)
−0.783151 + 0.621832i \(0.786389\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −28.4164 + 11.4127i −1.19974 + 0.481844i
\(562\) 0 0
\(563\) 22.9894 + 7.46969i 0.968886 + 0.314810i 0.750366 0.661022i \(-0.229877\pi\)
0.218520 + 0.975833i \(0.429877\pi\)
\(564\) 0 0
\(565\) −3.52671 + 4.85410i −0.148370 + 0.204214i
\(566\) 0 0
\(567\) −6.71040 20.6525i −0.281810 0.867322i
\(568\) 0 0
\(569\) 3.05166 + 4.20025i 0.127932 + 0.176084i 0.868178 0.496252i \(-0.165291\pi\)
−0.740246 + 0.672336i \(0.765291\pi\)
\(570\) 0 0
\(571\) 32.5729i 1.36314i 0.731755 + 0.681568i \(0.238702\pi\)
−0.731755 + 0.681568i \(0.761298\pi\)
\(572\) 0 0
\(573\) 56.8328i 2.37422i
\(574\) 0 0
\(575\) 12.2452 + 16.8541i 0.510661 + 0.702865i
\(576\) 0 0
\(577\) −6.02786 18.5519i −0.250943 0.772324i −0.994602 0.103764i \(-0.966911\pi\)
0.743659 0.668560i \(-0.233089\pi\)
\(578\) 0 0
\(579\) −11.7082 + 16.1150i −0.486576 + 0.669715i
\(580\) 0 0
\(581\) 1.62460 + 0.527864i 0.0673997 + 0.0218995i
\(582\) 0 0
\(583\) 6.88191 + 8.23607i 0.285020 + 0.341103i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.6353 15.7189i −0.892983 0.648790i 0.0436714 0.999046i \(-0.486095\pi\)
−0.936654 + 0.350256i \(0.886095\pi\)
\(588\) 0 0
\(589\) −7.88597 24.2705i −0.324936 1.00005i
\(590\) 0 0
\(591\) −26.0746 + 18.9443i −1.07256 + 0.779263i
\(592\) 0 0
\(593\) 26.3521i 1.08215i −0.840974 0.541075i \(-0.818018\pi\)
0.840974 0.541075i \(-0.181982\pi\)
\(594\) 0 0
\(595\) 16.5836 0.679861
\(596\) 0 0
\(597\) 8.50651 + 11.7082i 0.348148 + 0.479185i
\(598\) 0 0
\(599\) −5.70634 + 1.85410i −0.233155 + 0.0757566i −0.423264 0.906006i \(-0.639116\pi\)
0.190109 + 0.981763i \(0.439116\pi\)
\(600\) 0 0
\(601\) −1.11803 + 1.53884i −0.0456056 + 0.0627707i −0.831211 0.555957i \(-0.812352\pi\)
0.785605 + 0.618728i \(0.212352\pi\)
\(602\) 0 0
\(603\) −17.3435 + 53.3777i −0.706280 + 2.17371i
\(604\) 0 0
\(605\) −9.40456 9.81966i −0.382350 0.399226i
\(606\) 0 0
\(607\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(608\) 0 0
\(609\) 42.3607 + 30.7768i 1.71654 + 1.24714i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 26.3521 19.1459i 1.06435 0.773296i 0.0894618 0.995990i \(-0.471485\pi\)
0.974888 + 0.222695i \(0.0714853\pi\)
\(614\) 0 0
\(615\) −18.4661 −0.744625
\(616\) 0 0
\(617\) 14.5623 0.586256 0.293128 0.956073i \(-0.405304\pi\)
0.293128 + 0.956073i \(0.405304\pi\)
\(618\) 0 0
\(619\) −19.6353 + 14.2658i −0.789208 + 0.573393i −0.907728 0.419559i \(-0.862185\pi\)
0.118521 + 0.992952i \(0.462185\pi\)
\(620\) 0 0
\(621\) −12.7598 + 4.14590i −0.512032 + 0.166369i
\(622\) 0 0
\(623\) −5.70634 4.14590i −0.228620 0.166102i
\(624\) 0 0
\(625\) 1.36475 4.20025i 0.0545898 0.168010i
\(626\) 0 0
\(627\) 19.6353 + 23.4989i 0.784157 + 0.938456i
\(628\) 0 0
\(629\) 4.04125 12.4377i 0.161135 0.495923i
\(630\) 0 0
\(631\) 13.8293 19.0344i 0.550537 0.757749i −0.439548 0.898219i \(-0.644861\pi\)
0.990085 + 0.140470i \(0.0448613\pi\)
\(632\) 0 0
\(633\) −3.35410 + 1.08981i −0.133314 + 0.0433162i
\(634\) 0 0
\(635\) 13.4164 + 18.4661i 0.532414 + 0.732805i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 46.2492i 1.82959i
\(640\) 0 0
\(641\) 20.9164 15.1967i 0.826148 0.600232i −0.0923186 0.995730i \(-0.529428\pi\)
0.918467 + 0.395498i \(0.129428\pi\)
\(642\) 0 0
\(643\) 3.57295 + 10.9964i 0.140903 + 0.433656i 0.996461 0.0840509i \(-0.0267858\pi\)
−0.855558 + 0.517707i \(0.826786\pi\)
\(644\) 0 0
\(645\) 33.4055 + 24.2705i 1.31534 + 0.955650i
\(646\) 0 0
\(647\) −1.34708 0.437694i −0.0529593 0.0172075i 0.282418 0.959292i \(-0.408864\pi\)
−0.335377 + 0.942084i \(0.608864\pi\)
\(648\) 0 0
\(649\) −12.8328 31.9524i −0.503732 1.25424i
\(650\) 0 0
\(651\) −68.5410 22.2703i −2.68633 0.872843i
\(652\) 0 0
\(653\) −9.02105 + 12.4164i −0.353021 + 0.485892i −0.948188 0.317711i \(-0.897086\pi\)
0.595167 + 0.803602i \(0.297086\pi\)
\(654\) 0 0
\(655\) 2.45714 + 7.56231i 0.0960085 + 0.295484i
\(656\) 0 0
\(657\) 2.27458 + 3.13068i 0.0887396 + 0.122140i
\(658\) 0 0
\(659\) 28.1482i 1.09650i 0.836315 + 0.548249i \(0.184705\pi\)
−0.836315 + 0.548249i \(0.815295\pi\)
\(660\) 0 0
\(661\) 13.4164i 0.521838i 0.965361 + 0.260919i \(0.0840255\pi\)
−0.965361 + 0.260919i \(0.915974\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.12461 15.7719i −0.198724 0.611609i
\(666\) 0 0
\(667\) −18.5410 + 25.5195i −0.717911 + 0.988120i
\(668\) 0 0
\(669\) 11.5842 + 3.76393i 0.447871 + 0.145522i
\(670\) 0 0
\(671\) 9.23305 36.7082i 0.356438 1.41710i
\(672\) 0 0
\(673\) 42.2984 + 13.7436i 1.63048 + 0.529776i 0.974382 0.224898i \(-0.0722049\pi\)
0.656100 + 0.754674i \(0.272205\pi\)
\(674\) 0 0
\(675\) 6.28115 + 4.56352i 0.241762 + 0.175650i
\(676\) 0 0
\(677\) 7.95148 + 24.4721i 0.305600 + 0.940541i 0.979453 + 0.201675i \(0.0646384\pi\)
−0.673852 + 0.738866i \(0.735362\pi\)
\(678\) 0 0
\(679\) −25.6255 + 18.6180i −0.983417 + 0.714495i
\(680\) 0 0
\(681\) 13.9353i 0.534003i
\(682\) 0 0
\(683\) 30.4721 1.16598 0.582992 0.812478i \(-0.301882\pi\)
0.582992 + 0.812478i \(0.301882\pi\)
\(684\) 0 0
\(685\) 4.04125 + 5.56231i 0.154408 + 0.212525i
\(686\) 0 0
\(687\) −18.4661 + 6.00000i −0.704526 + 0.228914i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 5.91641 18.2088i 0.225071 0.692697i −0.773214 0.634146i \(-0.781352\pi\)
0.998284 0.0585510i \(-0.0186480\pi\)
\(692\) 0 0
\(693\) 48.5164 3.29180i 1.84299 0.125045i
\(694\) 0 0
\(695\) 1.66509 5.12461i 0.0631604 0.194388i
\(696\) 0 0
\(697\) 16.2812 + 11.8290i 0.616693 + 0.448053i
\(698\) 0 0
\(699\) 49.3328 16.0292i 1.86594 0.606280i
\(700\) 0 0
\(701\) 11.4127 8.29180i 0.431051 0.313177i −0.351018 0.936369i \(-0.614164\pi\)
0.782069 + 0.623192i \(0.214164\pi\)
\(702\) 0 0
\(703\) −13.0778 −0.493237
\(704\) 0 0
\(705\) −31.4164 −1.18321
\(706\) 0 0
\(707\) −54.0689 + 39.2833i −2.03347 + 1.47740i
\(708\) 0 0
\(709\) 20.6457 6.70820i 0.775367 0.251932i 0.105506 0.994419i \(-0.466354\pi\)
0.669861 + 0.742487i \(0.266354\pi\)
\(710\) 0 0
\(711\) −14.6619 10.6525i −0.549863 0.399499i
\(712\) 0 0
\(713\) 13.4164 41.2915i 0.502448 1.54638i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −11.4127 + 35.1246i −0.426214 + 1.31175i
\(718\) 0 0
\(719\) 3.52671 4.85410i 0.131524 0.181027i −0.738176 0.674609i \(-0.764312\pi\)
0.869700 + 0.493581i \(0.164312\pi\)
\(720\) 0 0
\(721\) −4.47214 + 1.45309i −0.166551 + 0.0541157i
\(722\) 0 0
\(723\) 4.57295 + 6.29412i 0.170070 + 0.234081i
\(724\) 0 0
\(725\) 18.2541 0.677940
\(726\) 0 0
\(727\) 8.00000i 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 0 0
\(729\) 32.0066 23.2541i 1.18543 0.861264i
\(730\) 0 0
\(731\) −13.9058 42.7975i −0.514323 1.58292i
\(732\) 0 0
\(733\) 7.88597 + 5.72949i 0.291275 + 0.211624i 0.723820 0.689989i \(-0.242384\pi\)
−0.432545 + 0.901612i \(0.642384\pi\)
\(734\) 0 0
\(735\) −22.9969 7.47214i −0.848252 0.275614i
\(736\) 0 0
\(737\) 40.9058 + 25.6785i 1.50678 + 0.945881i
\(738\) 0 0
\(739\) 25.0623 + 8.14324i 0.921932 + 0.299554i 0.731259 0.682100i \(-0.238933\pi\)
0.190673 + 0.981654i \(0.438933\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.70634 + 17.5623i 0.209345 + 0.644299i 0.999507 + 0.0314000i \(0.00999657\pi\)
−0.790162 + 0.612899i \(0.790003\pi\)
\(744\) 0 0
\(745\) −6.18034 8.50651i −0.226430 0.311654i
\(746\) 0 0
\(747\) 1.73060i 0.0633193i
\(748\) 0 0
\(749\) 16.1803i 0.591217i
\(750\) 0 0
\(751\) −12.9313 17.7984i −0.471869 0.649472i 0.505048 0.863091i \(-0.331475\pi\)
−0.976917 + 0.213619i \(0.931475\pi\)
\(752\) 0 0
\(753\) −11.7082 36.0341i −0.426671 1.31316i
\(754\) 0 0
\(755\) 6.58359 9.06154i 0.239601 0.329783i
\(756\) 0 0
\(757\) −11.4127 3.70820i −0.414801 0.134777i 0.0941792 0.995555i \(-0.469977\pi\)
−0.508980 + 0.860778i \(0.669977\pi\)
\(758\) 0 0
\(759\) 3.52671 + 51.9787i 0.128012 + 1.88671i
\(760\) 0 0
\(761\) 16.7705 + 5.44907i 0.607931 + 0.197529i 0.596774 0.802409i \(-0.296449\pi\)
0.0111562 + 0.999938i \(0.496449\pi\)
\(762\) 0 0
\(763\) 35.1246 + 25.5195i 1.27160 + 0.923869i
\(764\) 0 0
\(765\) 5.19180 + 15.9787i 0.187710 + 0.577712i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 27.5276i 0.992672i −0.868130 0.496336i \(-0.834678\pi\)
0.868130 0.496336i \(-0.165322\pi\)
\(770\) 0 0
\(771\) −55.6869 −2.00552
\(772\) 0 0
\(773\) −1.96763 2.70820i −0.0707706 0.0974073i 0.772164 0.635423i \(-0.219174\pi\)
−0.842935 + 0.538016i \(0.819174\pi\)
\(774\) 0 0
\(775\) −23.8949 + 7.76393i −0.858331 + 0.278889i
\(776\) 0 0
\(777\) −21.7082 + 29.8788i −0.778777 + 1.07190i
\(778\) 0 0
\(779\) 6.21885 19.1396i 0.222813 0.685749i
\(780\) 0 0
\(781\) −38.5973 9.70820i −1.38112 0.347387i
\(782\) 0 0
\(783\) −3.63271 + 11.1803i −0.129823 + 0.399553i
\(784\) 0 0
\(785\) −18.0000 13.0778i −0.642448 0.466765i
\(786\) 0 0
\(787\) 25.0623 8.14324i 0.893375 0.290275i 0.173875 0.984768i \(-0.444371\pi\)
0.719500 + 0.694493i \(0.244371\pi\)
\(788\) 0 0
\(789\) −33.4055 + 24.2705i −1.18927 + 0.864053i
\(790\) 0 0
\(791\) −18.4661 −0.656579
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 8.47214 6.15537i 0.300476 0.218308i
\(796\) 0 0
\(797\) 47.0633 15.2918i 1.66707 0.541663i 0.684733 0.728794i \(-0.259919\pi\)
0.982335 + 0.187131i \(0.0599188\pi\)
\(798\) 0 0
\(799\) 27.6992 + 20.1246i 0.979926 + 0.711958i
\(800\) 0 0
\(801\) 2.20820 6.79615i 0.0780230 0.240130i
\(802\) 0 0
\(803\) 3.09017 1.24108i 0.109050 0.0437969i
\(804\) 0 0
\(805\) 8.71851 26.8328i 0.307287 0.945732i
\(806\) 0 0
\(807\) 17.2905 23.7984i 0.608656 0.837742i
\(808\) 0 0
\(809\) −38.4787 + 12.5025i −1.35284 + 0.439564i −0.893646 0.448772i \(-0.851861\pi\)
−0.459193 + 0.888336i \(0.651861\pi\)
\(810\) 0 0
\(811\) 26.0410 + 35.8424i 0.914424 + 1.25860i 0.965633 + 0.259909i \(0.0836924\pi\)
−0.0512094 + 0.998688i \(0.516308\pi\)
\(812\) 0 0
\(813\) 41.2915 1.44815
\(814\) 0 0
\(815\) 20.8328i 0.729742i
\(816\) 0 0
\(817\) −36.4058 + 26.4503i −1.27368 + 0.925380i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.2371 + 7.43769i 0.357278 + 0.259577i 0.751916 0.659259i \(-0.229130\pi\)
−0.394638 + 0.918837i \(0.629130\pi\)
\(822\) 0 0
\(823\) 38.2138 + 12.4164i 1.33205 + 0.432809i 0.886616 0.462507i \(-0.153050\pi\)
0.445433 + 0.895315i \(0.353050\pi\)
\(824\) 0 0
\(825\) 23.1353 19.3314i 0.805466 0.673033i
\(826\) 0 0
\(827\) 26.2426 + 8.52675i 0.912546 + 0.296504i 0.727406 0.686208i \(-0.240726\pi\)
0.185141 + 0.982712i \(0.440726\pi\)
\(828\) 0 0
\(829\) −12.7598 + 17.5623i −0.443165 + 0.609964i −0.970912 0.239438i \(-0.923037\pi\)
0.527747 + 0.849402i \(0.323037\pi\)
\(830\) 0 0
\(831\) −5.70634 17.5623i −0.197951 0.609230i
\(832\) 0 0
\(833\) 15.4894 + 21.3193i 0.536674 + 0.738669i
\(834\) 0 0
\(835\) 5.38834i 0.186471i
\(836\) 0 0
\(837\) 16.1803i 0.559274i
\(838\) 0 0
\(839\) −10.8981 15.0000i −0.376246 0.517858i 0.578340 0.815796i \(-0.303701\pi\)
−0.954585 + 0.297939i \(0.903701\pi\)
\(840\) 0 0
\(841\) −0.420473 1.29408i −0.0144991 0.0446236i
\(842\) 0 0
\(843\) 8.78115 12.0862i 0.302439 0.416272i
\(844\) 0 0
\(845\) −15.2824 4.96556i −0.525731 0.170820i
\(846\) 0 0
\(847\) 7.43694 41.1803i 0.255536 1.41497i
\(848\) 0 0
\(849\) −10.8541 3.52671i −0.372512 0.121036i
\(850\) 0 0
\(851\) −18.0000 13.0778i −0.617032 0.448300i
\(852\) 0 0
\(853\) −2.17963 6.70820i −0.0746290 0.229685i 0.906783 0.421598i \(-0.138531\pi\)
−0.981412 + 0.191914i \(0.938531\pi\)
\(854\) 0 0
\(855\) 13.5923 9.87539i 0.464847 0.337731i
\(856\) 0 0
\(857\) 39.9444i 1.36447i 0.731131 + 0.682237i \(0.238993\pi\)
−0.731131 + 0.682237i \(0.761007\pi\)
\(858\) 0 0
\(859\) −19.1459 −0.653250 −0.326625 0.945154i \(-0.605911\pi\)
−0.326625 + 0.945154i \(0.605911\pi\)
\(860\) 0 0
\(861\) −33.4055 45.9787i −1.13846 1.56695i
\(862\) 0 0
\(863\) 23.3399 7.58359i 0.794499 0.258148i 0.116480 0.993193i \(-0.462839\pi\)
0.678019 + 0.735045i \(0.262839\pi\)
\(864\) 0 0
\(865\) −15.5279 + 21.3723i −0.527963 + 0.726679i
\(866\) 0 0
\(867\) −3.69098 + 11.3597i −0.125352 + 0.385795i
\(868\) 0 0
\(869\) −11.9677 + 10.0000i −0.405977 + 0.339227i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −25.9615 18.8621i −0.878663 0.638386i
\(874\) 0 0
\(875\) −37.8885 + 12.3107i −1.28087 + 0.416179i
\(876\) 0 0
\(877\) −18.4661 + 13.4164i −0.623556 + 0.453040i −0.854162 0.520007i \(-0.825929\pi\)
0.230606 + 0.973047i \(0.425929\pi\)
\(878\) 0 0
\(879\) 55.9533 1.88726
\(880\) 0 0
\(881\) 5.56231 0.187399 0.0936994 0.995601i \(-0.470131\pi\)
0.0936994 + 0.995601i \(0.470131\pi\)
\(882\) 0 0
\(883\) −5.64590 + 4.10199i −0.190000 + 0.138043i −0.678719 0.734399i \(-0.737464\pi\)
0.488719 + 0.872441i \(0.337464\pi\)
\(884\) 0 0
\(885\) −31.9524 + 10.3820i −1.07407 + 0.348986i
\(886\) 0 0
\(887\) 33.4055 + 24.2705i 1.12165 + 0.814924i 0.984458 0.175621i \(-0.0561933\pi\)
0.137189 + 0.990545i \(0.456193\pi\)
\(888\) 0 0
\(889\) −21.7082 + 66.8110i −0.728070 + 2.24077i
\(890\) 0 0
\(891\) −7.05573 17.5680i −0.236376 0.588552i
\(892\) 0 0
\(893\) 10.5801 32.5623i 0.354051 1.08966i
\(894\) 0 0
\(895\) −7.11894 + 9.79837i −0.237960 + 0.327524i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −22.3607 30.7768i −0.745770 1.02646i
\(900\) 0 0
\(901\) −11.4127 −0.380211
\(902\) 0 0
\(903\) 127.082i 4.22903i
\(904\) 0 0
\(905\) 12.0000 8.71851i 0.398893 0.289813i
\(906\) 0 0
\(907\) 3.79180 + 11.6699i 0.125905 + 0.387494i 0.994065 0.108790i \(-0.0346975\pi\)
−0.868160 + 0.496284i \(0.834697\pi\)
\(908\) 0 0
\(909\) −54.7778 39.7984i −1.81686 1.32003i
\(910\) 0 0
\(911\) −49.1774 15.9787i −1.62932 0.529398i −0.655206 0.755451i \(-0.727418\pi\)
−0.974115 + 0.226052i \(0.927418\pi\)
\(912\) 0 0
\(913\) 1.44427 + 0.363271i 0.0477984 + 0.0120225i
\(914\) 0 0
\(915\) −35.1246 11.4127i −1.16118 0.377292i
\(916\) 0 0
\(917\) −14.3844 + 19.7984i −0.475013 + 0.653800i
\(918\) 0 0
\(919\) 4.97980 + 15.3262i 0.164268 + 0.505566i 0.998982 0.0451188i \(-0.0143666\pi\)
−0.834713 + 0.550685i \(0.814367\pi\)
\(920\) 0 0
\(921\) −33.0517 45.4917i −1.08909 1.49900i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 12.8754i 0.423340i
\(926\) 0 0
\(927\) −2.80017 3.85410i −0.0919696 0.126585i
\(928\) 0 0
\(929\) 14.2082 + 43.7284i 0.466156 + 1.43468i 0.857523 + 0.514446i \(0.172002\pi\)
−0.391367 + 0.920235i \(0.627998\pi\)
\(930\) 0 0
\(931\) 15.4894 21.3193i 0.507643 0.698711i
\(932\) 0 0
\(933\) 9.23305 + 3.00000i 0.302277 + 0.0982156i
\(934\) 0 0
\(935\) 14.4248 0.978714i 0.471743 0.0320074i
\(936\) 0 0
\(937\) 17.2984 + 5.62058i 0.565113 + 0.183616i 0.577621 0.816305i \(-0.303981\pi\)
−0.0125074 + 0.999922i \(0.503981\pi\)
\(938\) 0 0
\(939\) 1.42705 + 1.03681i 0.0465700 + 0.0338351i
\(940\) 0 0
\(941\) 8.40051 + 25.8541i 0.273849 + 0.842820i 0.989522 + 0.144384i \(0.0461201\pi\)
−0.715673 + 0.698435i \(0.753880\pi\)
\(942\) 0 0
\(943\) 27.6992 20.1246i 0.902008 0.655348i
\(944\) 0 0
\(945\) 10.5146i 0.342041i
\(946\) 0 0
\(947\) −3.90983 −0.127052 −0.0635262 0.997980i \(-0.520235\pi\)
−0.0635262 + 0.997980i \(0.520235\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −22.5478 + 7.32624i −0.731164 + 0.237570i
\(952\) 0 0
\(953\) 4.93769 6.79615i 0.159948 0.220149i −0.721520 0.692394i \(-0.756556\pi\)
0.881467 + 0.472245i \(0.156556\pi\)
\(954\) 0 0
\(955\) −8.29180 + 25.5195i −0.268316 + 0.825792i
\(956\) 0 0
\(957\) 38.6628 + 24.2705i 1.24979 + 0.784554i
\(958\) 0 0
\(959\) −6.53888 + 20.1246i −0.211152 + 0.649858i
\(960\) 0 0
\(961\) 17.2812 + 12.5555i 0.557457 + 0.405016i
\(962\) 0 0
\(963\) 15.5902 5.06555i 0.502386 0.163235i
\(964\) 0 0
\(965\) 7.60845 5.52786i 0.244925 0.177948i
\(966\) 0 0
\(967\) 40.9484 1.31681 0.658406 0.752663i \(-0.271231\pi\)
0.658406 + 0.752663i \(0.271231\pi\)
\(968\) 0 0
\(969\) −32.5623 −1.04605
\(970\) 0 0
\(971\) 32.6525 23.7234i 1.04787 0.761321i 0.0760620 0.997103i \(-0.475765\pi\)
0.971806 + 0.235783i \(0.0757653\pi\)
\(972\) 0 0
\(973\) 15.7719 5.12461i 0.505625 0.164288i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.85410 + 24.1724i −0.251275 + 0.773345i 0.743266 + 0.668996i \(0.233276\pi\)
−0.994541 + 0.104349i \(0.966724\pi\)
\(978\) 0 0
\(979\) −5.20820 3.26944i −0.166455 0.104492i
\(980\) 0 0
\(981\) −13.5923 + 41.8328i −0.433969 + 1.33562i
\(982\) 0 0
\(983\) 21.1603 29.1246i 0.674908 0.928931i −0.324951 0.945731i \(-0.605348\pi\)
0.999859 + 0.0168000i \(0.00534785\pi\)
\(984\) 0 0
\(985\) 14.4721 4.70228i 0.461121 0.149827i
\(986\) 0 0
\(987\) −56.8328 78.2237i −1.80901 2.48989i
\(988\) 0 0
\(989\) −76.5586 −2.43442
\(990\) 0 0
\(991\) 2.36068i 0.0749895i −0.999297 0.0374947i \(-0.988062\pi\)
0.999297 0.0374947i \(-0.0119377\pi\)
\(992\) 0 0
\(993\) −34.1976 + 24.8460i −1.08523 + 0.788463i
\(994\) 0 0
\(995\) −2.11146 6.49839i −0.0669377 0.206013i
\(996\) 0 0
\(997\) −12.7598 9.27051i −0.404106 0.293600i 0.367106 0.930179i \(-0.380349\pi\)
−0.771211 + 0.636579i \(0.780349\pi\)
\(998\) 0 0
\(999\) −7.88597 2.56231i −0.249501 0.0810678i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.s.d.607.1 yes 8
4.3 odd 2 704.2.s.a.607.1 yes 8
8.3 odd 2 inner 704.2.s.d.607.2 yes 8
8.5 even 2 704.2.s.a.607.2 yes 8
11.6 odd 10 inner 704.2.s.d.479.2 yes 8
44.39 even 10 704.2.s.a.479.2 yes 8
88.61 odd 10 704.2.s.a.479.1 8
88.83 even 10 inner 704.2.s.d.479.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
704.2.s.a.479.1 8 88.61 odd 10
704.2.s.a.479.2 yes 8 44.39 even 10
704.2.s.a.607.1 yes 8 4.3 odd 2
704.2.s.a.607.2 yes 8 8.5 even 2
704.2.s.d.479.1 yes 8 88.83 even 10 inner
704.2.s.d.479.2 yes 8 11.6 odd 10 inner
704.2.s.d.607.1 yes 8 1.1 even 1 trivial
704.2.s.d.607.2 yes 8 8.3 odd 2 inner