Properties

Label 720.2.bm.g.109.9
Level $720$
Weight $2$
Character 720.109
Analytic conductor $5.749$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(109,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bm (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.9
Character \(\chi\) \(=\) 720.109
Dual form 720.2.bm.g.469.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.903873 - 1.08766i) q^{2} +(-0.366025 - 1.96622i) q^{4} +(-1.32403 + 1.80193i) q^{5} -3.06349 q^{7} +(-2.46943 - 1.37910i) q^{8} +(0.763129 + 3.06882i) q^{10} +(-0.686732 + 0.686732i) q^{11} +(-1.12131 + 1.12131i) q^{13} +(-2.76901 + 3.33205i) q^{14} +(-3.73205 + 1.43937i) q^{16} +4.85810i q^{17} +(2.73205 + 2.73205i) q^{19} +(4.02761 + 1.94379i) q^{20} +(0.126215 + 1.36765i) q^{22} -3.34641 q^{23} +(-1.49387 - 4.77162i) q^{25} +(0.206087 + 2.23314i) q^{26} +(1.12131 + 6.02350i) q^{28} +(5.00215 + 5.00215i) q^{29} -7.83592 q^{31} +(-1.80775 + 5.36023i) q^{32} +(5.28398 + 4.39111i) q^{34} +(4.05616 - 5.52018i) q^{35} +(-6.35168 - 6.35168i) q^{37} +(5.44098 - 0.502125i) q^{38} +(5.75465 - 2.62375i) q^{40} +10.8286i q^{41} +(-7.14481 - 7.14481i) q^{43} +(1.60163 + 1.09891i) q^{44} +(-3.02473 + 3.63977i) q^{46} +1.22487i q^{47} +2.38496 q^{49} +(-6.54019 - 2.68812i) q^{50} +(2.61518 + 1.79432i) q^{52} +(-6.05342 - 6.05342i) q^{53} +(-0.328183 - 2.14670i) q^{55} +(7.56507 + 4.22486i) q^{56} +(9.96196 - 0.919346i) q^{58} +(2.97509 - 2.97509i) q^{59} +(-0.971033 - 0.971033i) q^{61} +(-7.08268 + 8.52284i) q^{62} +(4.19615 + 6.81119i) q^{64} +(-0.535866 - 3.50518i) q^{65} +(4.97793 - 4.97793i) q^{67} +(9.55211 - 1.77819i) q^{68} +(-2.33784 - 9.40128i) q^{70} -9.70256i q^{71} +9.05926 q^{73} +(-12.6496 + 1.16738i) q^{74} +(4.37182 - 6.37182i) q^{76} +(2.10380 - 2.10380i) q^{77} +9.49307 q^{79} +(2.34772 - 8.63066i) q^{80} +(11.7779 + 9.78772i) q^{82} +(-2.47138 + 2.47138i) q^{83} +(-8.75394 - 6.43230i) q^{85} +(-14.2292 + 1.31315i) q^{86} +(2.64291 - 0.748762i) q^{88} +3.75237i q^{89} +(3.43513 - 3.43513i) q^{91} +(1.22487 + 6.57977i) q^{92} +(1.33225 + 1.10713i) q^{94} +(-8.54028 + 1.30562i) q^{95} -1.58626i q^{97} +(2.15570 - 2.59404i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} - 24 q^{10} - 64 q^{16} + 32 q^{19} + 32 q^{31} - 72 q^{40} - 32 q^{46} + 128 q^{49} - 32 q^{64} - 104 q^{70} - 32 q^{76} + 224 q^{79} - 48 q^{85} - 32 q^{91} - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.903873 1.08766i 0.639135 0.769095i
\(3\) 0 0
\(4\) −0.366025 1.96622i −0.183013 0.983111i
\(5\) −1.32403 + 1.80193i −0.592126 + 0.805845i
\(6\) 0 0
\(7\) −3.06349 −1.15789 −0.578945 0.815367i \(-0.696535\pi\)
−0.578945 + 0.815367i \(0.696535\pi\)
\(8\) −2.46943 1.37910i −0.873075 0.487586i
\(9\) 0 0
\(10\) 0.763129 + 3.06882i 0.241323 + 0.970445i
\(11\) −0.686732 + 0.686732i −0.207058 + 0.207058i −0.803016 0.595958i \(-0.796772\pi\)
0.595958 + 0.803016i \(0.296772\pi\)
\(12\) 0 0
\(13\) −1.12131 + 1.12131i −0.310997 + 0.310997i −0.845296 0.534299i \(-0.820576\pi\)
0.534299 + 0.845296i \(0.320576\pi\)
\(14\) −2.76901 + 3.33205i −0.740048 + 0.890527i
\(15\) 0 0
\(16\) −3.73205 + 1.43937i −0.933013 + 0.359843i
\(17\) 4.85810i 1.17826i 0.808037 + 0.589132i \(0.200530\pi\)
−0.808037 + 0.589132i \(0.799470\pi\)
\(18\) 0 0
\(19\) 2.73205 + 2.73205i 0.626775 + 0.626775i 0.947255 0.320480i \(-0.103844\pi\)
−0.320480 + 0.947255i \(0.603844\pi\)
\(20\) 4.02761 + 1.94379i 0.900602 + 0.434645i
\(21\) 0 0
\(22\) 0.126215 + 1.36765i 0.0269091 + 0.291585i
\(23\) −3.34641 −0.697774 −0.348887 0.937165i \(-0.613440\pi\)
−0.348887 + 0.937165i \(0.613440\pi\)
\(24\) 0 0
\(25\) −1.49387 4.77162i −0.298774 0.954324i
\(26\) 0.206087 + 2.23314i 0.0404170 + 0.437955i
\(27\) 0 0
\(28\) 1.12131 + 6.02350i 0.211909 + 1.13833i
\(29\) 5.00215 + 5.00215i 0.928875 + 0.928875i 0.997633 0.0687581i \(-0.0219037\pi\)
−0.0687581 + 0.997633i \(0.521904\pi\)
\(30\) 0 0
\(31\) −7.83592 −1.40737 −0.703686 0.710511i \(-0.748464\pi\)
−0.703686 + 0.710511i \(0.748464\pi\)
\(32\) −1.80775 + 5.36023i −0.319568 + 0.947564i
\(33\) 0 0
\(34\) 5.28398 + 4.39111i 0.906196 + 0.753069i
\(35\) 4.05616 5.52018i 0.685617 0.933080i
\(36\) 0 0
\(37\) −6.35168 6.35168i −1.04421 1.04421i −0.998976 0.0452332i \(-0.985597\pi\)
−0.0452332 0.998976i \(-0.514403\pi\)
\(38\) 5.44098 0.502125i 0.882644 0.0814554i
\(39\) 0 0
\(40\) 5.75465 2.62375i 0.909890 0.414851i
\(41\) 10.8286i 1.69115i 0.533857 + 0.845575i \(0.320742\pi\)
−0.533857 + 0.845575i \(0.679258\pi\)
\(42\) 0 0
\(43\) −7.14481 7.14481i −1.08957 1.08957i −0.995572 0.0940013i \(-0.970034\pi\)
−0.0940013 0.995572i \(-0.529966\pi\)
\(44\) 1.60163 + 1.09891i 0.241455 + 0.165666i
\(45\) 0 0
\(46\) −3.02473 + 3.63977i −0.445972 + 0.536654i
\(47\) 1.22487i 0.178666i 0.996002 + 0.0893328i \(0.0284735\pi\)
−0.996002 + 0.0893328i \(0.971527\pi\)
\(48\) 0 0
\(49\) 2.38496 0.340709
\(50\) −6.54019 2.68812i −0.924922 0.380157i
\(51\) 0 0
\(52\) 2.61518 + 1.79432i 0.362661 + 0.248828i
\(53\) −6.05342 6.05342i −0.831501 0.831501i 0.156221 0.987722i \(-0.450069\pi\)
−0.987722 + 0.156221i \(0.950069\pi\)
\(54\) 0 0
\(55\) −0.328183 2.14670i −0.0442522 0.289461i
\(56\) 7.56507 + 4.22486i 1.01092 + 0.564571i
\(57\) 0 0
\(58\) 9.96196 0.919346i 1.30807 0.120716i
\(59\) 2.97509 2.97509i 0.387324 0.387324i −0.486408 0.873732i \(-0.661693\pi\)
0.873732 + 0.486408i \(0.161693\pi\)
\(60\) 0 0
\(61\) −0.971033 0.971033i −0.124328 0.124328i 0.642205 0.766533i \(-0.278020\pi\)
−0.766533 + 0.642205i \(0.778020\pi\)
\(62\) −7.08268 + 8.52284i −0.899501 + 1.08240i
\(63\) 0 0
\(64\) 4.19615 + 6.81119i 0.524519 + 0.851399i
\(65\) −0.535866 3.50518i −0.0664660 0.434765i
\(66\) 0 0
\(67\) 4.97793 4.97793i 0.608152 0.608152i −0.334311 0.942463i \(-0.608504\pi\)
0.942463 + 0.334311i \(0.108504\pi\)
\(68\) 9.55211 1.77819i 1.15836 0.215637i
\(69\) 0 0
\(70\) −2.33784 9.40128i −0.279425 1.12367i
\(71\) 9.70256i 1.15148i −0.817632 0.575741i \(-0.804714\pi\)
0.817632 0.575741i \(-0.195286\pi\)
\(72\) 0 0
\(73\) 9.05926 1.06031 0.530153 0.847902i \(-0.322135\pi\)
0.530153 + 0.847902i \(0.322135\pi\)
\(74\) −12.6496 + 1.16738i −1.47049 + 0.135705i
\(75\) 0 0
\(76\) 4.37182 6.37182i 0.501482 0.730897i
\(77\) 2.10380 2.10380i 0.239750 0.239750i
\(78\) 0 0
\(79\) 9.49307 1.06805 0.534027 0.845468i \(-0.320678\pi\)
0.534027 + 0.845468i \(0.320678\pi\)
\(80\) 2.34772 8.63066i 0.262483 0.964937i
\(81\) 0 0
\(82\) 11.7779 + 9.78772i 1.30065 + 1.08087i
\(83\) −2.47138 + 2.47138i −0.271269 + 0.271269i −0.829611 0.558342i \(-0.811438\pi\)
0.558342 + 0.829611i \(0.311438\pi\)
\(84\) 0 0
\(85\) −8.75394 6.43230i −0.949498 0.697680i
\(86\) −14.2292 + 1.31315i −1.53437 + 0.141600i
\(87\) 0 0
\(88\) 2.64291 0.748762i 0.281735 0.0798183i
\(89\) 3.75237i 0.397751i 0.980025 + 0.198875i \(0.0637289\pi\)
−0.980025 + 0.198875i \(0.936271\pi\)
\(90\) 0 0
\(91\) 3.43513 3.43513i 0.360100 0.360100i
\(92\) 1.22487 + 6.57977i 0.127701 + 0.685989i
\(93\) 0 0
\(94\) 1.33225 + 1.10713i 0.137411 + 0.114191i
\(95\) −8.54028 + 1.30562i −0.876214 + 0.133954i
\(96\) 0 0
\(97\) 1.58626i 0.161061i −0.996752 0.0805303i \(-0.974339\pi\)
0.996752 0.0805303i \(-0.0256614\pi\)
\(98\) 2.15570 2.59404i 0.217759 0.262037i
\(99\) 0 0
\(100\) −8.83527 + 4.68381i −0.883527 + 0.468381i
\(101\) −0.626415 + 0.626415i −0.0623306 + 0.0623306i −0.737585 0.675254i \(-0.764034\pi\)
0.675254 + 0.737585i \(0.264034\pi\)
\(102\) 0 0
\(103\) −13.5242 −1.33258 −0.666290 0.745692i \(-0.732119\pi\)
−0.666290 + 0.745692i \(0.732119\pi\)
\(104\) 4.31541 1.22260i 0.423161 0.119886i
\(105\) 0 0
\(106\) −12.0556 + 1.11256i −1.17094 + 0.108061i
\(107\) 9.19102 + 9.19102i 0.888529 + 0.888529i 0.994382 0.105852i \(-0.0337571\pi\)
−0.105852 + 0.994382i \(0.533757\pi\)
\(108\) 0 0
\(109\) 4.70732 + 4.70732i 0.450880 + 0.450880i 0.895646 0.444767i \(-0.146713\pi\)
−0.444767 + 0.895646i \(0.646713\pi\)
\(110\) −2.63152 1.58339i −0.250906 0.150970i
\(111\) 0 0
\(112\) 11.4331 4.40951i 1.08033 0.416659i
\(113\) 2.18774i 0.205806i 0.994691 + 0.102903i \(0.0328131\pi\)
−0.994691 + 0.102903i \(0.967187\pi\)
\(114\) 0 0
\(115\) 4.43076 6.02997i 0.413170 0.562298i
\(116\) 8.00441 11.6662i 0.743191 1.08318i
\(117\) 0 0
\(118\) −0.546793 5.92501i −0.0503364 0.545441i
\(119\) 14.8827i 1.36430i
\(120\) 0 0
\(121\) 10.0568i 0.914254i
\(122\) −1.93385 + 0.178467i −0.175082 + 0.0161576i
\(123\) 0 0
\(124\) 2.86814 + 15.4071i 0.257567 + 1.38360i
\(125\) 10.5760 + 3.62595i 0.945949 + 0.324315i
\(126\) 0 0
\(127\) 11.3776i 1.00960i 0.863236 + 0.504801i \(0.168434\pi\)
−0.863236 + 0.504801i \(0.831566\pi\)
\(128\) 11.2011 + 1.59245i 0.990045 + 0.140754i
\(129\) 0 0
\(130\) −4.29682 2.58540i −0.376856 0.226755i
\(131\) −14.1055 14.1055i −1.23240 1.23240i −0.963039 0.269361i \(-0.913188\pi\)
−0.269361 0.963039i \(-0.586812\pi\)
\(132\) 0 0
\(133\) −8.36961 8.36961i −0.725737 0.725737i
\(134\) −0.914897 9.91374i −0.0790350 0.856417i
\(135\) 0 0
\(136\) 6.69982 11.9967i 0.574505 1.02871i
\(137\) −6.86660 −0.586653 −0.293327 0.956012i \(-0.594762\pi\)
−0.293327 + 0.956012i \(0.594762\pi\)
\(138\) 0 0
\(139\) −1.05441 + 1.05441i −0.0894340 + 0.0894340i −0.750408 0.660974i \(-0.770143\pi\)
0.660974 + 0.750408i \(0.270143\pi\)
\(140\) −12.3385 5.95479i −1.04280 0.503272i
\(141\) 0 0
\(142\) −10.5531 8.76989i −0.885599 0.735953i
\(143\) 1.54009i 0.128788i
\(144\) 0 0
\(145\) −15.6365 + 2.39048i −1.29854 + 0.198519i
\(146\) 8.18842 9.85343i 0.677679 0.815475i
\(147\) 0 0
\(148\) −10.1639 + 14.8137i −0.835470 + 1.21768i
\(149\) −5.82649 + 5.82649i −0.477325 + 0.477325i −0.904275 0.426950i \(-0.859588\pi\)
0.426950 + 0.904275i \(0.359588\pi\)
\(150\) 0 0
\(151\) 11.1154i 0.904562i −0.891875 0.452281i \(-0.850610\pi\)
0.891875 0.452281i \(-0.149390\pi\)
\(152\) −2.97883 10.5144i −0.241615 0.852829i
\(153\) 0 0
\(154\) −0.386657 4.18979i −0.0311577 0.337623i
\(155\) 10.3750 14.1197i 0.833342 1.13412i
\(156\) 0 0
\(157\) −7.93794 + 7.93794i −0.633517 + 0.633517i −0.948948 0.315432i \(-0.897851\pi\)
0.315432 + 0.948948i \(0.397851\pi\)
\(158\) 8.58053 10.3253i 0.682631 0.821434i
\(159\) 0 0
\(160\) −7.26521 10.3545i −0.574365 0.818599i
\(161\) 10.2517 0.807945
\(162\) 0 0
\(163\) 12.7791 12.7791i 1.00094 1.00094i 0.000937724 1.00000i \(-0.499702\pi\)
1.00000 0.000937724i \(-0.000298487\pi\)
\(164\) 21.2915 3.96356i 1.66259 0.309502i
\(165\) 0 0
\(166\) 0.454215 + 4.92184i 0.0352539 + 0.382009i
\(167\) 2.69519 0.208560 0.104280 0.994548i \(-0.466746\pi\)
0.104280 + 0.994548i \(0.466746\pi\)
\(168\) 0 0
\(169\) 10.4853i 0.806562i
\(170\) −14.9086 + 3.70736i −1.14344 + 0.284342i
\(171\) 0 0
\(172\) −11.4331 + 16.6635i −0.871765 + 1.27058i
\(173\) −15.2031 + 15.2031i −1.15587 + 1.15587i −0.170512 + 0.985356i \(0.554542\pi\)
−0.985356 + 0.170512i \(0.945458\pi\)
\(174\) 0 0
\(175\) 4.57645 + 14.6178i 0.345947 + 1.10500i
\(176\) 1.57446 3.55138i 0.118679 0.267696i
\(177\) 0 0
\(178\) 4.08132 + 3.39167i 0.305908 + 0.254217i
\(179\) −6.72747 6.72747i −0.502835 0.502835i 0.409483 0.912318i \(-0.365709\pi\)
−0.912318 + 0.409483i \(0.865709\pi\)
\(180\) 0 0
\(181\) 9.45095 9.45095i 0.702484 0.702484i −0.262459 0.964943i \(-0.584534\pi\)
0.964943 + 0.262459i \(0.0845335\pi\)
\(182\) −0.631345 6.84120i −0.0467984 0.507103i
\(183\) 0 0
\(184\) 8.26371 + 4.61504i 0.609209 + 0.340225i
\(185\) 19.8551 3.03541i 1.45978 0.223168i
\(186\) 0 0
\(187\) −3.33622 3.33622i −0.243968 0.243968i
\(188\) 2.40836 0.448333i 0.175648 0.0326981i
\(189\) 0 0
\(190\) −6.29925 + 10.4691i −0.456996 + 0.759506i
\(191\) 19.2784 1.39493 0.697467 0.716617i \(-0.254310\pi\)
0.697467 + 0.716617i \(0.254310\pi\)
\(192\) 0 0
\(193\) 19.7269i 1.41998i 0.704213 + 0.709988i \(0.251300\pi\)
−0.704213 + 0.709988i \(0.748700\pi\)
\(194\) −1.72532 1.43378i −0.123871 0.102939i
\(195\) 0 0
\(196\) −0.872957 4.68936i −0.0623541 0.334955i
\(197\) 13.7682 + 13.7682i 0.980945 + 0.980945i 0.999822 0.0188769i \(-0.00600906\pi\)
−0.0188769 + 0.999822i \(0.506009\pi\)
\(198\) 0 0
\(199\) 16.3633i 1.15997i 0.814628 + 0.579983i \(0.196941\pi\)
−0.814628 + 0.579983i \(0.803059\pi\)
\(200\) −2.89155 + 13.8434i −0.204464 + 0.978874i
\(201\) 0 0
\(202\) 0.115129 + 1.24753i 0.00810046 + 0.0877759i
\(203\) −15.3240 15.3240i −1.07554 1.07554i
\(204\) 0 0
\(205\) −19.5124 14.3375i −1.36280 1.00137i
\(206\) −12.2242 + 14.7098i −0.851699 + 1.02488i
\(207\) 0 0
\(208\) 2.57081 5.79879i 0.178254 0.402074i
\(209\) −3.75237 −0.259557
\(210\) 0 0
\(211\) −18.0900 18.0900i −1.24537 1.24537i −0.957743 0.287624i \(-0.907135\pi\)
−0.287624 0.957743i \(-0.592865\pi\)
\(212\) −9.68665 + 14.1181i −0.665282 + 0.969632i
\(213\) 0 0
\(214\) 18.3043 1.68922i 1.25125 0.115473i
\(215\) 22.3344 3.41444i 1.52319 0.232863i
\(216\) 0 0
\(217\) 24.0052 1.62958
\(218\) 9.37481 0.865161i 0.634942 0.0585961i
\(219\) 0 0
\(220\) −4.10076 + 1.43103i −0.276473 + 0.0964798i
\(221\) −5.44746 5.44746i −0.366436 0.366436i
\(222\) 0 0
\(223\) 21.8384i 1.46241i 0.682160 + 0.731203i \(0.261041\pi\)
−0.682160 + 0.731203i \(0.738959\pi\)
\(224\) 5.53801 16.4210i 0.370024 1.09717i
\(225\) 0 0
\(226\) 2.37953 + 1.97744i 0.158284 + 0.131538i
\(227\) −1.08500 + 1.08500i −0.0720141 + 0.0720141i −0.742196 0.670182i \(-0.766216\pi\)
0.670182 + 0.742196i \(0.266216\pi\)
\(228\) 0 0
\(229\) 4.22088 4.22088i 0.278924 0.278924i −0.553756 0.832679i \(-0.686806\pi\)
0.832679 + 0.553756i \(0.186806\pi\)
\(230\) −2.55374 10.2695i −0.168389 0.677151i
\(231\) 0 0
\(232\) −5.45397 19.2509i −0.358071 1.26388i
\(233\) −24.3929 −1.59803 −0.799016 0.601309i \(-0.794646\pi\)
−0.799016 + 0.601309i \(0.794646\pi\)
\(234\) 0 0
\(235\) −2.20712 1.62177i −0.143977 0.105793i
\(236\) −6.93865 4.76073i −0.451668 0.309897i
\(237\) 0 0
\(238\) −16.1874 13.4521i −1.04927 0.871971i
\(239\) −17.6297 −1.14037 −0.570184 0.821517i \(-0.693128\pi\)
−0.570184 + 0.821517i \(0.693128\pi\)
\(240\) 0 0
\(241\) 14.3151 0.922118 0.461059 0.887369i \(-0.347470\pi\)
0.461059 + 0.887369i \(0.347470\pi\)
\(242\) 10.9384 + 9.09007i 0.703148 + 0.584332i
\(243\) 0 0
\(244\) −1.55384 + 2.26469i −0.0994746 + 0.144982i
\(245\) −3.15777 + 4.29752i −0.201743 + 0.274559i
\(246\) 0 0
\(247\) −6.12698 −0.389850
\(248\) 19.3502 + 10.8065i 1.22874 + 0.686216i
\(249\) 0 0
\(250\) 13.5032 8.22577i 0.854018 0.520243i
\(251\) −5.26345 + 5.26345i −0.332226 + 0.332226i −0.853431 0.521205i \(-0.825483\pi\)
0.521205 + 0.853431i \(0.325483\pi\)
\(252\) 0 0
\(253\) 2.29808 2.29808i 0.144479 0.144479i
\(254\) 12.3750 + 10.2839i 0.776480 + 0.645272i
\(255\) 0 0
\(256\) 11.8564 10.7436i 0.741025 0.671477i
\(257\) 12.8006i 0.798481i −0.916846 0.399240i \(-0.869274\pi\)
0.916846 0.399240i \(-0.130726\pi\)
\(258\) 0 0
\(259\) 19.4583 + 19.4583i 1.20908 + 1.20908i
\(260\) −6.69583 + 2.33662i −0.415257 + 0.144911i
\(261\) 0 0
\(262\) −28.0916 + 2.59245i −1.73550 + 0.160162i
\(263\) −9.54951 −0.588848 −0.294424 0.955675i \(-0.595128\pi\)
−0.294424 + 0.955675i \(0.595128\pi\)
\(264\) 0 0
\(265\) 18.9227 2.89287i 1.16241 0.177708i
\(266\) −16.6684 + 1.53825i −1.02200 + 0.0943164i
\(267\) 0 0
\(268\) −11.6098 7.96567i −0.709180 0.486581i
\(269\) 5.82649 + 5.82649i 0.355248 + 0.355248i 0.862058 0.506810i \(-0.169175\pi\)
−0.506810 + 0.862058i \(0.669175\pi\)
\(270\) 0 0
\(271\) −13.9433 −0.846996 −0.423498 0.905897i \(-0.639198\pi\)
−0.423498 + 0.905897i \(0.639198\pi\)
\(272\) −6.99263 18.1307i −0.423990 1.09933i
\(273\) 0 0
\(274\) −6.20654 + 7.46856i −0.374951 + 0.451192i
\(275\) 4.30271 + 2.25094i 0.259463 + 0.135737i
\(276\) 0 0
\(277\) −7.24829 7.24829i −0.435508 0.435508i 0.454989 0.890497i \(-0.349643\pi\)
−0.890497 + 0.454989i \(0.849643\pi\)
\(278\) 0.193791 + 2.09990i 0.0116228 + 0.125944i
\(279\) 0 0
\(280\) −17.6293 + 8.03782i −1.05355 + 0.480351i
\(281\) 19.0031i 1.13363i 0.823844 + 0.566816i \(0.191825\pi\)
−0.823844 + 0.566816i \(0.808175\pi\)
\(282\) 0 0
\(283\) 11.6098 + 11.6098i 0.690129 + 0.690129i 0.962260 0.272131i \(-0.0877284\pi\)
−0.272131 + 0.962260i \(0.587728\pi\)
\(284\) −19.0774 + 3.55138i −1.13203 + 0.210736i
\(285\) 0 0
\(286\) −1.67510 1.39204i −0.0990505 0.0823132i
\(287\) 33.1734i 1.95816i
\(288\) 0 0
\(289\) −6.60117 −0.388304
\(290\) −11.5334 + 19.1680i −0.677264 + 1.12558i
\(291\) 0 0
\(292\) −3.31592 17.8125i −0.194049 1.04240i
\(293\) −1.14684 1.14684i −0.0669994 0.0669994i 0.672813 0.739812i \(-0.265086\pi\)
−0.739812 + 0.672813i \(0.765086\pi\)
\(294\) 0 0
\(295\) 1.42177 + 9.30002i 0.0827787 + 0.541468i
\(296\) 6.92540 + 24.4446i 0.402531 + 1.42082i
\(297\) 0 0
\(298\) 1.07085 + 11.6037i 0.0620329 + 0.672183i
\(299\) 3.75237 3.75237i 0.217005 0.217005i
\(300\) 0 0
\(301\) 21.8880 + 21.8880i 1.26161 + 1.26161i
\(302\) −12.0899 10.0470i −0.695694 0.578138i
\(303\) 0 0
\(304\) −14.1286 6.26371i −0.810330 0.359248i
\(305\) 3.03541 0.464048i 0.173807 0.0265713i
\(306\) 0 0
\(307\) 21.0730 21.0730i 1.20270 1.20270i 0.229355 0.973343i \(-0.426338\pi\)
0.973343 0.229355i \(-0.0736616\pi\)
\(308\) −4.90657 3.36649i −0.279578 0.191823i
\(309\) 0 0
\(310\) −5.97982 24.0470i −0.339631 1.36578i
\(311\) 0.549117i 0.0311376i −0.999879 0.0155688i \(-0.995044\pi\)
0.999879 0.0155688i \(-0.00495590\pi\)
\(312\) 0 0
\(313\) 24.2122 1.36855 0.684277 0.729222i \(-0.260118\pi\)
0.684277 + 0.729222i \(0.260118\pi\)
\(314\) 1.45892 + 15.8087i 0.0823315 + 0.892137i
\(315\) 0 0
\(316\) −3.47470 18.6655i −0.195467 1.05001i
\(317\) 21.3168 21.3168i 1.19727 1.19727i 0.222287 0.974981i \(-0.428648\pi\)
0.974981 0.222287i \(-0.0713523\pi\)
\(318\) 0 0
\(319\) −6.87027 −0.384661
\(320\) −17.8291 1.45710i −0.996677 0.0814541i
\(321\) 0 0
\(322\) 9.26622 11.1504i 0.516386 0.621386i
\(323\) −13.2726 + 13.2726i −0.738506 + 0.738506i
\(324\) 0 0
\(325\) 7.02558 + 3.67539i 0.389709 + 0.203874i
\(326\) −2.34868 25.4501i −0.130081 1.40955i
\(327\) 0 0
\(328\) 14.9338 26.7406i 0.824581 1.47650i
\(329\) 3.75237i 0.206875i
\(330\) 0 0
\(331\) −19.4552 + 19.4552i −1.06935 + 1.06935i −0.0719456 + 0.997409i \(0.522921\pi\)
−0.997409 + 0.0719456i \(0.977079\pi\)
\(332\) 5.76386 + 3.95469i 0.316333 + 0.217042i
\(333\) 0 0
\(334\) 2.43611 2.93146i 0.133298 0.160403i
\(335\) 2.37891 + 15.5608i 0.129974 + 0.850178i
\(336\) 0 0
\(337\) 31.7739i 1.73084i 0.501050 + 0.865418i \(0.332947\pi\)
−0.501050 + 0.865418i \(0.667053\pi\)
\(338\) 11.4045 + 9.47739i 0.620322 + 0.515502i
\(339\) 0 0
\(340\) −9.44315 + 19.5666i −0.512127 + 1.06115i
\(341\) 5.38118 5.38118i 0.291407 0.291407i
\(342\) 0 0
\(343\) 14.1381 0.763386
\(344\) 7.79017 + 27.4970i 0.420018 + 1.48254i
\(345\) 0 0
\(346\) 2.79418 + 30.2775i 0.150216 + 1.62773i
\(347\) 8.26752 + 8.26752i 0.443824 + 0.443824i 0.893295 0.449471i \(-0.148388\pi\)
−0.449471 + 0.893295i \(0.648388\pi\)
\(348\) 0 0
\(349\) −8.22088 8.22088i −0.440054 0.440054i 0.451976 0.892030i \(-0.350719\pi\)
−0.892030 + 0.451976i \(0.850719\pi\)
\(350\) 20.0358 + 8.23501i 1.07096 + 0.440180i
\(351\) 0 0
\(352\) −2.43960 4.92248i −0.130031 0.262369i
\(353\) 11.4485i 0.609344i −0.952457 0.304672i \(-0.901453\pi\)
0.952457 0.304672i \(-0.0985468\pi\)
\(354\) 0 0
\(355\) 17.4833 + 12.8465i 0.927916 + 0.681823i
\(356\) 7.37800 1.37346i 0.391033 0.0727935i
\(357\) 0 0
\(358\) −13.3980 + 1.23644i −0.708106 + 0.0653481i
\(359\) 32.5124i 1.71594i 0.513700 + 0.857970i \(0.328275\pi\)
−0.513700 + 0.857970i \(0.671725\pi\)
\(360\) 0 0
\(361\) 4.07180i 0.214305i
\(362\) −1.73699 18.8219i −0.0912944 0.989259i
\(363\) 0 0
\(364\) −8.01158 5.49689i −0.419921 0.288115i
\(365\) −11.9948 + 16.3241i −0.627835 + 0.854443i
\(366\) 0 0
\(367\) 23.3286i 1.21774i 0.793269 + 0.608871i \(0.208377\pi\)
−0.793269 + 0.608871i \(0.791623\pi\)
\(368\) 12.4890 4.81673i 0.651032 0.251089i
\(369\) 0 0
\(370\) 14.6450 24.3393i 0.761356 1.26534i
\(371\) 18.5446 + 18.5446i 0.962786 + 0.962786i
\(372\) 0 0
\(373\) −9.28396 9.28396i −0.480705 0.480705i 0.424652 0.905357i \(-0.360397\pi\)
−0.905357 + 0.424652i \(0.860397\pi\)
\(374\) −6.64420 + 0.613164i −0.343563 + 0.0317060i
\(375\) 0 0
\(376\) 1.68922 3.02473i 0.0871149 0.155988i
\(377\) −11.2180 −0.577754
\(378\) 0 0
\(379\) 12.9398 12.9398i 0.664672 0.664672i −0.291806 0.956478i \(-0.594256\pi\)
0.956478 + 0.291806i \(0.0942560\pi\)
\(380\) 5.69310 + 16.3142i 0.292050 + 0.836900i
\(381\) 0 0
\(382\) 17.4252 20.9684i 0.891551 1.07284i
\(383\) 37.7317i 1.92800i 0.265902 + 0.964000i \(0.414330\pi\)
−0.265902 + 0.964000i \(0.585670\pi\)
\(384\) 0 0
\(385\) 1.00539 + 6.57638i 0.0512392 + 0.335163i
\(386\) 21.4563 + 17.8307i 1.09210 + 0.907557i
\(387\) 0 0
\(388\) −3.11894 + 0.580613i −0.158340 + 0.0294761i
\(389\) −2.30161 + 2.30161i −0.116696 + 0.116696i −0.763043 0.646347i \(-0.776296\pi\)
0.646347 + 0.763043i \(0.276296\pi\)
\(390\) 0 0
\(391\) 16.2572i 0.822161i
\(392\) −5.88949 3.28911i −0.297464 0.166125i
\(393\) 0 0
\(394\) 27.4199 2.53047i 1.38140 0.127483i
\(395\) −12.5691 + 17.1058i −0.632422 + 0.860686i
\(396\) 0 0
\(397\) 7.99340 7.99340i 0.401177 0.401177i −0.477471 0.878648i \(-0.658446\pi\)
0.878648 + 0.477471i \(0.158446\pi\)
\(398\) 17.7978 + 14.7904i 0.892124 + 0.741375i
\(399\) 0 0
\(400\) 12.4433 + 15.6577i 0.622167 + 0.782885i
\(401\) −8.17450 −0.408215 −0.204108 0.978948i \(-0.565429\pi\)
−0.204108 + 0.978948i \(0.565429\pi\)
\(402\) 0 0
\(403\) 8.78653 8.78653i 0.437688 0.437688i
\(404\) 1.46095 + 1.00239i 0.0726852 + 0.0498706i
\(405\) 0 0
\(406\) −30.5184 + 2.81641i −1.51460 + 0.139776i
\(407\) 8.72380 0.432423
\(408\) 0 0
\(409\) 18.5294i 0.916219i −0.888896 0.458109i \(-0.848527\pi\)
0.888896 0.458109i \(-0.151473\pi\)
\(410\) −33.2311 + 8.26365i −1.64117 + 0.408113i
\(411\) 0 0
\(412\) 4.95021 + 26.5916i 0.243879 + 1.31007i
\(413\) −9.11416 + 9.11416i −0.448479 + 0.448479i
\(414\) 0 0
\(415\) −1.18105 7.72542i −0.0579754 0.379226i
\(416\) −3.98345 8.03756i −0.195305 0.394074i
\(417\) 0 0
\(418\) −3.39167 + 4.08132i −0.165892 + 0.199624i
\(419\) 9.01583 + 9.01583i 0.440452 + 0.440452i 0.892164 0.451712i \(-0.149186\pi\)
−0.451712 + 0.892164i \(0.649186\pi\)
\(420\) 0 0
\(421\) −14.8274 + 14.8274i −0.722645 + 0.722645i −0.969143 0.246498i \(-0.920720\pi\)
0.246498 + 0.969143i \(0.420720\pi\)
\(422\) −36.0269 + 3.32477i −1.75376 + 0.161847i
\(423\) 0 0
\(424\) 6.60020 + 23.2968i 0.320534 + 1.13139i
\(425\) 23.1810 7.25736i 1.12444 0.352034i
\(426\) 0 0
\(427\) 2.97475 + 2.97475i 0.143958 + 0.143958i
\(428\) 14.7074 21.4357i 0.710910 1.03613i
\(429\) 0 0
\(430\) 16.4737 27.3785i 0.794432 1.32031i
\(431\) −17.0806 −0.822742 −0.411371 0.911468i \(-0.634950\pi\)
−0.411371 + 0.911468i \(0.634950\pi\)
\(432\) 0 0
\(433\) 18.3255i 0.880666i −0.897834 0.440333i \(-0.854860\pi\)
0.897834 0.440333i \(-0.145140\pi\)
\(434\) 21.6977 26.1096i 1.04152 1.25330i
\(435\) 0 0
\(436\) 7.53264 10.9786i 0.360748 0.525781i
\(437\) −9.14255 9.14255i −0.437348 0.437348i
\(438\) 0 0
\(439\) 13.7865i 0.657992i −0.944331 0.328996i \(-0.893290\pi\)
0.944331 0.328996i \(-0.106710\pi\)
\(440\) −2.15009 + 5.75371i −0.102502 + 0.274297i
\(441\) 0 0
\(442\) −10.8488 + 1.00119i −0.516026 + 0.0476218i
\(443\) −3.17106 3.17106i −0.150662 0.150662i 0.627752 0.778413i \(-0.283975\pi\)
−0.778413 + 0.627752i \(0.783975\pi\)
\(444\) 0 0
\(445\) −6.76150 4.96827i −0.320526 0.235519i
\(446\) 23.7528 + 19.7391i 1.12473 + 0.934675i
\(447\) 0 0
\(448\) −12.8549 20.8660i −0.607335 0.985826i
\(449\) 6.43302 0.303593 0.151796 0.988412i \(-0.451494\pi\)
0.151796 + 0.988412i \(0.451494\pi\)
\(450\) 0 0
\(451\) −7.43638 7.43638i −0.350165 0.350165i
\(452\) 4.30159 0.800770i 0.202330 0.0376651i
\(453\) 0 0
\(454\) 0.199413 + 2.16082i 0.00935891 + 0.101412i
\(455\) 1.64162 + 10.7381i 0.0769603 + 0.503409i
\(456\) 0 0
\(457\) 18.3255 0.857230 0.428615 0.903487i \(-0.359002\pi\)
0.428615 + 0.903487i \(0.359002\pi\)
\(458\) −0.775757 8.40604i −0.0362488 0.392788i
\(459\) 0 0
\(460\) −13.4780 6.50472i −0.628416 0.303284i
\(461\) −6.00759 6.00759i −0.279801 0.279801i 0.553228 0.833030i \(-0.313396\pi\)
−0.833030 + 0.553228i \(0.813396\pi\)
\(462\) 0 0
\(463\) 21.1820i 0.984411i 0.870479 + 0.492206i \(0.163809\pi\)
−0.870479 + 0.492206i \(0.836191\pi\)
\(464\) −25.8682 11.4683i −1.20090 0.532403i
\(465\) 0 0
\(466\) −22.0481 + 26.5313i −1.02136 + 1.22904i
\(467\) −7.65179 + 7.65179i −0.354083 + 0.354083i −0.861626 0.507544i \(-0.830554\pi\)
0.507544 + 0.861626i \(0.330554\pi\)
\(468\) 0 0
\(469\) −15.2498 + 15.2498i −0.704173 + 0.704173i
\(470\) −3.75890 + 0.934734i −0.173385 + 0.0431161i
\(471\) 0 0
\(472\) −11.4497 + 3.24382i −0.527017 + 0.149309i
\(473\) 9.81314 0.451209
\(474\) 0 0
\(475\) 8.95499 17.1176i 0.410883 0.785411i
\(476\) −29.2628 + 5.44746i −1.34126 + 0.249684i
\(477\) 0 0
\(478\) −15.9350 + 19.1752i −0.728850 + 0.877051i
\(479\) 33.0615 1.51062 0.755310 0.655368i \(-0.227486\pi\)
0.755310 + 0.655368i \(0.227486\pi\)
\(480\) 0 0
\(481\) 14.2445 0.649492
\(482\) 12.9391 15.5700i 0.589358 0.709196i
\(483\) 0 0
\(484\) 19.7739 3.68104i 0.898813 0.167320i
\(485\) 2.85833 + 2.10027i 0.129790 + 0.0953682i
\(486\) 0 0
\(487\) −8.05361 −0.364944 −0.182472 0.983211i \(-0.558410\pi\)
−0.182472 + 0.983211i \(0.558410\pi\)
\(488\) 1.05874 + 3.73705i 0.0479270 + 0.169168i
\(489\) 0 0
\(490\) 1.82004 + 7.31901i 0.0822208 + 0.330639i
\(491\) −13.2811 + 13.2811i −0.599368 + 0.599368i −0.940145 0.340776i \(-0.889310\pi\)
0.340776 + 0.940145i \(0.389310\pi\)
\(492\) 0 0
\(493\) −24.3009 + 24.3009i −1.09446 + 1.09446i
\(494\) −5.53801 + 6.66409i −0.249167 + 0.299832i
\(495\) 0 0
\(496\) 29.2440 11.2788i 1.31310 0.506434i
\(497\) 29.7237i 1.33329i
\(498\) 0 0
\(499\) −2.65363 2.65363i −0.118793 0.118793i 0.645211 0.764004i \(-0.276769\pi\)
−0.764004 + 0.645211i \(0.776769\pi\)
\(500\) 3.25832 22.1220i 0.145717 0.989326i
\(501\) 0 0
\(502\) 0.967372 + 10.4824i 0.0431759 + 0.467851i
\(503\) −39.3687 −1.75536 −0.877682 0.479243i \(-0.840911\pi\)
−0.877682 + 0.479243i \(0.840911\pi\)
\(504\) 0 0
\(505\) −0.299358 1.95815i −0.0133213 0.0871365i
\(506\) −0.422366 4.57672i −0.0187765 0.203460i
\(507\) 0 0
\(508\) 22.3710 4.16451i 0.992551 0.184770i
\(509\) −17.4596 17.4596i −0.773883 0.773883i 0.204900 0.978783i \(-0.434313\pi\)
−0.978783 + 0.204900i \(0.934313\pi\)
\(510\) 0 0
\(511\) −27.7529 −1.22772
\(512\) −0.968769 22.6067i −0.0428139 0.999083i
\(513\) 0 0
\(514\) −13.9228 11.5701i −0.614107 0.510337i
\(515\) 17.9065 24.3696i 0.789056 1.07385i
\(516\) 0 0
\(517\) −0.841157 0.841157i −0.0369941 0.0369941i
\(518\) 38.7519 3.57625i 1.70266 0.157131i
\(519\) 0 0
\(520\) −3.51072 + 9.39481i −0.153955 + 0.411990i
\(521\) 40.0835i 1.75609i −0.478580 0.878044i \(-0.658848\pi\)
0.478580 0.878044i \(-0.341152\pi\)
\(522\) 0 0
\(523\) −2.82324 2.82324i −0.123452 0.123452i 0.642682 0.766133i \(-0.277822\pi\)
−0.766133 + 0.642682i \(0.777822\pi\)
\(524\) −22.5715 + 32.8974i −0.986041 + 1.43713i
\(525\) 0 0
\(526\) −8.63155 + 10.3867i −0.376353 + 0.452880i
\(527\) 38.0677i 1.65826i
\(528\) 0 0
\(529\) −11.8016 −0.513112
\(530\) 13.9573 23.1964i 0.606266 1.00759i
\(531\) 0 0
\(532\) −13.3930 + 19.5200i −0.580661 + 0.846299i
\(533\) −12.1423 12.1423i −0.525942 0.525942i
\(534\) 0 0
\(535\) −28.7307 + 4.39230i −1.24214 + 0.189896i
\(536\) −19.1577 + 5.42757i −0.827488 + 0.234435i
\(537\) 0 0
\(538\) 11.6037 1.07085i 0.500270 0.0461678i
\(539\) −1.63783 + 1.63783i −0.0705464 + 0.0705464i
\(540\) 0 0
\(541\) 25.3653 + 25.3653i 1.09054 + 1.09054i 0.995471 + 0.0950685i \(0.0303070\pi\)
0.0950685 + 0.995471i \(0.469693\pi\)
\(542\) −12.6030 + 15.1656i −0.541345 + 0.651420i
\(543\) 0 0
\(544\) −26.0405 8.78222i −1.11648 0.376535i
\(545\) −14.7149 + 2.24959i −0.630317 + 0.0963617i
\(546\) 0 0
\(547\) −17.1007 + 17.1007i −0.731172 + 0.731172i −0.970852 0.239680i \(-0.922958\pi\)
0.239680 + 0.970852i \(0.422958\pi\)
\(548\) 2.51335 + 13.5013i 0.107365 + 0.576745i
\(549\) 0 0
\(550\) 6.33737 2.64534i 0.270226 0.112798i
\(551\) 27.3322i 1.16439i
\(552\) 0 0
\(553\) −29.0819 −1.23669
\(554\) −14.4352 + 1.33217i −0.613295 + 0.0565983i
\(555\) 0 0
\(556\) 2.45915 + 1.68726i 0.104291 + 0.0715559i
\(557\) 31.4151 31.4151i 1.33110 1.33110i 0.426713 0.904387i \(-0.359671\pi\)
0.904387 0.426713i \(-0.140329\pi\)
\(558\) 0 0
\(559\) 16.0232 0.677708
\(560\) −7.19221 + 26.4399i −0.303926 + 1.11729i
\(561\) 0 0
\(562\) 20.6690 + 17.1764i 0.871870 + 0.724544i
\(563\) 11.5009 11.5009i 0.484705 0.484705i −0.421926 0.906630i \(-0.638646\pi\)
0.906630 + 0.421926i \(0.138646\pi\)
\(564\) 0 0
\(565\) −3.94215 2.89665i −0.165848 0.121863i
\(566\) 23.1213 2.13376i 0.971860 0.0896888i
\(567\) 0 0
\(568\) −13.3808 + 23.9598i −0.561447 + 1.00533i
\(569\) 17.3279i 0.726425i −0.931706 0.363213i \(-0.881680\pi\)
0.931706 0.363213i \(-0.118320\pi\)
\(570\) 0 0
\(571\) 9.28844 9.28844i 0.388709 0.388709i −0.485518 0.874227i \(-0.661369\pi\)
0.874227 + 0.485518i \(0.161369\pi\)
\(572\) −3.02815 + 0.563710i −0.126613 + 0.0235699i
\(573\) 0 0
\(574\) −36.0815 29.9846i −1.50601 1.25153i
\(575\) 4.99909 + 15.9678i 0.208476 + 0.665902i
\(576\) 0 0
\(577\) 16.3475i 0.680554i −0.940325 0.340277i \(-0.889479\pi\)
0.940325 0.340277i \(-0.110521\pi\)
\(578\) −5.96663 + 7.17986i −0.248179 + 0.298643i
\(579\) 0 0
\(580\) 10.4236 + 29.8698i 0.432815 + 1.24028i
\(581\) 7.57104 7.57104i 0.314099 0.314099i
\(582\) 0 0
\(583\) 8.31415 0.344337
\(584\) −22.3712 12.4936i −0.925726 0.516991i
\(585\) 0 0
\(586\) −2.28398 + 0.210779i −0.0943505 + 0.00870720i
\(587\) 23.8984 + 23.8984i 0.986395 + 0.986395i 0.999909 0.0135141i \(-0.00430182\pi\)
−0.0135141 + 0.999909i \(0.504302\pi\)
\(588\) 0 0
\(589\) −21.4081 21.4081i −0.882106 0.882106i
\(590\) 11.4004 + 6.85963i 0.469347 + 0.282407i
\(591\) 0 0
\(592\) 32.8472 + 14.5623i 1.35001 + 0.598509i
\(593\) 14.7736i 0.606681i 0.952882 + 0.303340i \(0.0981019\pi\)
−0.952882 + 0.303340i \(0.901898\pi\)
\(594\) 0 0
\(595\) 26.8176 + 19.7053i 1.09941 + 0.807837i
\(596\) 13.5888 + 9.32353i 0.556620 + 0.381907i
\(597\) 0 0
\(598\) −0.689650 7.47299i −0.0282019 0.305593i
\(599\) 15.0697i 0.615730i −0.951430 0.307865i \(-0.900386\pi\)
0.951430 0.307865i \(-0.0996145\pi\)
\(600\) 0 0
\(601\) 37.1294i 1.51454i 0.653102 + 0.757270i \(0.273467\pi\)
−0.653102 + 0.757270i \(0.726533\pi\)
\(602\) 43.5909 4.02281i 1.77663 0.163958i
\(603\) 0 0
\(604\) −21.8554 + 4.06854i −0.889285 + 0.165546i
\(605\) −18.1216 13.3155i −0.736748 0.541354i
\(606\) 0 0
\(607\) 18.3385i 0.744335i −0.928166 0.372168i \(-0.878615\pi\)
0.928166 0.372168i \(-0.121385\pi\)
\(608\) −19.5833 + 9.70556i −0.794207 + 0.393612i
\(609\) 0 0
\(610\) 2.23890 3.72095i 0.0906503 0.150657i
\(611\) −1.37346 1.37346i −0.0555644 0.0555644i
\(612\) 0 0
\(613\) −19.3507 19.3507i −0.781569 0.781569i 0.198527 0.980096i \(-0.436384\pi\)
−0.980096 + 0.198527i \(0.936384\pi\)
\(614\) −3.87301 41.9676i −0.156302 1.69367i
\(615\) 0 0
\(616\) −8.09652 + 2.29382i −0.326218 + 0.0924208i
\(617\) −24.3361 −0.979736 −0.489868 0.871797i \(-0.662955\pi\)
−0.489868 + 0.871797i \(0.662955\pi\)
\(618\) 0 0
\(619\) −9.73868 + 9.73868i −0.391430 + 0.391430i −0.875197 0.483767i \(-0.839268\pi\)
0.483767 + 0.875197i \(0.339268\pi\)
\(620\) −31.5600 15.2314i −1.26748 0.611708i
\(621\) 0 0
\(622\) −0.597255 0.496332i −0.0239477 0.0199011i
\(623\) 11.4954i 0.460552i
\(624\) 0 0
\(625\) −20.5367 + 14.2563i −0.821469 + 0.570253i
\(626\) 21.8848 26.3347i 0.874691 1.05255i
\(627\) 0 0
\(628\) 18.5132 + 12.7023i 0.738759 + 0.506875i
\(629\) 30.8571 30.8571i 1.23035 1.23035i
\(630\) 0 0
\(631\) 12.0931i 0.481419i −0.970597 0.240709i \(-0.922620\pi\)
0.970597 0.240709i \(-0.0773801\pi\)
\(632\) −23.4425 13.0919i −0.932491 0.520768i
\(633\) 0 0
\(634\) −3.91782 42.4531i −0.155596 1.68603i
\(635\) −20.5017 15.0644i −0.813583 0.597812i
\(636\) 0 0
\(637\) −2.67429 + 2.67429i −0.105959 + 0.105959i
\(638\) −6.20985 + 7.47254i −0.245850 + 0.295841i
\(639\) 0 0
\(640\) −17.7001 + 18.0750i −0.699657 + 0.714479i
\(641\) −23.0912 −0.912048 −0.456024 0.889968i \(-0.650727\pi\)
−0.456024 + 0.889968i \(0.650727\pi\)
\(642\) 0 0
\(643\) −4.46496 + 4.46496i −0.176081 + 0.176081i −0.789645 0.613564i \(-0.789735\pi\)
0.613564 + 0.789645i \(0.289735\pi\)
\(644\) −3.75237 20.1571i −0.147864 0.794300i
\(645\) 0 0
\(646\) 2.43937 + 26.4329i 0.0959759 + 1.03999i
\(647\) −32.2496 −1.26786 −0.633931 0.773390i \(-0.718560\pi\)
−0.633931 + 0.773390i \(0.718560\pi\)
\(648\) 0 0
\(649\) 4.08618i 0.160397i
\(650\) 10.3478 4.31938i 0.405875 0.169420i
\(651\) 0 0
\(652\) −29.8040 20.4491i −1.16722 0.800848i
\(653\) −10.2610 + 10.2610i −0.401544 + 0.401544i −0.878777 0.477233i \(-0.841640\pi\)
0.477233 + 0.878777i \(0.341640\pi\)
\(654\) 0 0
\(655\) 44.0931 6.74087i 1.72286 0.263388i
\(656\) −15.5865 40.4130i −0.608549 1.57786i
\(657\) 0 0
\(658\) −4.08132 3.39167i −0.159106 0.132221i
\(659\) 25.1815 + 25.1815i 0.980932 + 0.980932i 0.999822 0.0188900i \(-0.00601323\pi\)
−0.0188900 + 0.999822i \(0.506013\pi\)
\(660\) 0 0
\(661\) 18.5425 18.5425i 0.721221 0.721221i −0.247633 0.968854i \(-0.579653\pi\)
0.968854 + 0.247633i \(0.0796528\pi\)
\(662\) 3.57568 + 38.7457i 0.138973 + 1.50590i
\(663\) 0 0
\(664\) 9.51117 2.69461i 0.369105 0.104571i
\(665\) 26.1630 3.99976i 1.01456 0.155104i
\(666\) 0 0
\(667\) −16.7392 16.7392i −0.648145 0.648145i
\(668\) −0.986509 5.29934i −0.0381692 0.205038i
\(669\) 0 0
\(670\) 19.0752 + 11.4776i 0.736938 + 0.443417i
\(671\) 1.33368 0.0514861
\(672\) 0 0
\(673\) 4.27830i 0.164916i −0.996595 0.0824581i \(-0.973723\pi\)
0.996595 0.0824581i \(-0.0262771\pi\)
\(674\) 34.5594 + 28.7196i 1.33118 + 1.10624i
\(675\) 0 0
\(676\) 20.6164 3.83789i 0.792940 0.147611i
\(677\) 20.2120 + 20.2120i 0.776811 + 0.776811i 0.979287 0.202476i \(-0.0648988\pi\)
−0.202476 + 0.979287i \(0.564899\pi\)
\(678\) 0 0
\(679\) 4.85950i 0.186490i
\(680\) 12.7464 + 27.9567i 0.488803 + 1.07209i
\(681\) 0 0
\(682\) −0.989008 10.7168i −0.0378711 0.410368i
\(683\) −19.6208 19.6208i −0.750767 0.750767i 0.223855 0.974622i \(-0.428136\pi\)
−0.974622 + 0.223855i \(0.928136\pi\)
\(684\) 0 0
\(685\) 9.09162 12.3731i 0.347373 0.472752i
\(686\) 12.7791 15.3775i 0.487907 0.587116i
\(687\) 0 0
\(688\) 36.9488 + 16.3807i 1.40866 + 0.624510i
\(689\) 13.5756 0.517188
\(690\) 0 0
\(691\) −26.5622 26.5622i −1.01047 1.01047i −0.999945 0.0105277i \(-0.996649\pi\)
−0.0105277 0.999945i \(-0.503351\pi\)
\(692\) 35.4573 + 24.3279i 1.34788 + 0.924807i
\(693\) 0 0
\(694\) 16.4651 1.51949i 0.625006 0.0576791i
\(695\) −0.503893 3.29605i −0.0191138 0.125026i
\(696\) 0 0
\(697\) −52.6067 −1.99262
\(698\) −16.3722 + 1.51092i −0.619697 + 0.0571891i
\(699\) 0 0
\(700\) 27.0667 14.3488i 1.02303 0.542333i
\(701\) 6.02748 + 6.02748i 0.227655 + 0.227655i 0.811712 0.584057i \(-0.198536\pi\)
−0.584057 + 0.811712i \(0.698536\pi\)
\(702\) 0 0
\(703\) 34.7062i 1.30897i
\(704\) −7.55910 1.79583i −0.284894 0.0676829i
\(705\) 0 0
\(706\) −12.4521 10.3480i −0.468643 0.389453i
\(707\) 1.91902 1.91902i 0.0721720 0.0721720i
\(708\) 0 0
\(709\) 25.4722 25.4722i 0.956627 0.956627i −0.0424707 0.999098i \(-0.513523\pi\)
0.999098 + 0.0424707i \(0.0135229\pi\)
\(710\) 29.7754 7.40431i 1.11745 0.277879i
\(711\) 0 0
\(712\) 5.17491 9.26622i 0.193938 0.347266i
\(713\) 26.2222 0.982028
\(714\) 0 0
\(715\) 2.77512 + 2.03913i 0.103784 + 0.0762590i
\(716\) −10.7653 + 15.6901i −0.402317 + 0.586367i
\(717\) 0 0
\(718\) 35.3626 + 29.3871i 1.31972 + 1.09672i
\(719\) −19.5138 −0.727743 −0.363871 0.931449i \(-0.618545\pi\)
−0.363871 + 0.931449i \(0.618545\pi\)
\(720\) 0 0
\(721\) 41.4313 1.54298
\(722\) −4.42875 3.68039i −0.164821 0.136970i
\(723\) 0 0
\(724\) −22.0420 15.1234i −0.819183 0.562056i
\(725\) 16.3958 31.3409i 0.608925 1.16397i
\(726\) 0 0
\(727\) 17.5046 0.649210 0.324605 0.945850i \(-0.394769\pi\)
0.324605 + 0.945850i \(0.394769\pi\)
\(728\) −13.2202 + 3.74542i −0.489974 + 0.138814i
\(729\) 0 0
\(730\) 6.91339 + 27.8012i 0.255876 + 1.02897i
\(731\) 34.7102 34.7102i 1.28380 1.28380i
\(732\) 0 0
\(733\) 27.1600 27.1600i 1.00318 1.00318i 0.00318373 0.999995i \(-0.498987\pi\)
0.999995 0.00318373i \(-0.00101341\pi\)
\(734\) 25.3737 + 21.0861i 0.936559 + 0.778302i
\(735\) 0 0
\(736\) 6.04946 17.9375i 0.222986 0.661185i
\(737\) 6.83702i 0.251845i
\(738\) 0 0
\(739\) −23.2042 23.2042i −0.853581 0.853581i 0.136992 0.990572i \(-0.456257\pi\)
−0.990572 + 0.136992i \(0.956257\pi\)
\(740\) −13.2358 37.9285i −0.486556 1.39428i
\(741\) 0 0
\(742\) 36.9322 3.40831i 1.35582 0.125123i
\(743\) 34.8880 1.27992 0.639958 0.768410i \(-0.278952\pi\)
0.639958 + 0.768410i \(0.278952\pi\)
\(744\) 0 0
\(745\) −2.78443 18.2134i −0.102014 0.667287i
\(746\) −18.4894 + 1.70630i −0.676943 + 0.0624722i
\(747\) 0 0
\(748\) −5.33860 + 7.78088i −0.195199 + 0.284497i
\(749\) −28.1566 28.1566i −1.02882 1.02882i
\(750\) 0 0
\(751\) −10.7811 −0.393407 −0.196704 0.980463i \(-0.563024\pi\)
−0.196704 + 0.980463i \(0.563024\pi\)
\(752\) −1.76305 4.57128i −0.0642916 0.166697i
\(753\) 0 0
\(754\) −10.1396 + 12.2014i −0.369263 + 0.444348i
\(755\) 20.0292 + 14.7172i 0.728937 + 0.535615i
\(756\) 0 0
\(757\) −5.00566 5.00566i −0.181934 0.181934i 0.610264 0.792198i \(-0.291063\pi\)
−0.792198 + 0.610264i \(0.791063\pi\)
\(758\) −2.37821 25.7701i −0.0863804 0.936011i
\(759\) 0 0
\(760\) 22.8902 + 8.55378i 0.830315 + 0.310278i
\(761\) 46.5987i 1.68920i −0.535398 0.844600i \(-0.679838\pi\)
0.535398 0.844600i \(-0.320162\pi\)
\(762\) 0 0
\(763\) −14.4208 14.4208i −0.522069 0.522069i
\(764\) −7.05637 37.9055i −0.255291 1.37137i
\(765\) 0 0
\(766\) 41.0394 + 34.1047i 1.48281 + 1.23225i
\(767\) 6.67203i 0.240913i
\(768\) 0 0
\(769\) −28.9989 −1.04573 −0.522863 0.852417i \(-0.675136\pi\)
−0.522863 + 0.852417i \(0.675136\pi\)
\(770\) 8.06163 + 4.85070i 0.290521 + 0.174807i
\(771\) 0 0
\(772\) 38.7875 7.22056i 1.39599 0.259874i
\(773\) −20.7786 20.7786i −0.747354 0.747354i 0.226628 0.973981i \(-0.427230\pi\)
−0.973981 + 0.226628i \(0.927230\pi\)
\(774\) 0 0
\(775\) 11.7058 + 37.3900i 0.420486 + 1.34309i
\(776\) −2.18762 + 3.91716i −0.0785310 + 0.140618i
\(777\) 0 0
\(778\) 0.423014 + 4.58375i 0.0151658 + 0.164335i
\(779\) −29.5844 + 29.5844i −1.05997 + 1.05997i
\(780\) 0 0
\(781\) 6.66306 + 6.66306i 0.238423 + 0.238423i
\(782\) −17.6824 14.6944i −0.632320 0.525472i
\(783\) 0 0
\(784\) −8.90080 + 3.43285i −0.317886 + 0.122602i
\(785\) −3.79347 24.8137i −0.135395 0.885638i
\(786\) 0 0
\(787\) −6.25819 + 6.25819i −0.223080 + 0.223080i −0.809794 0.586714i \(-0.800421\pi\)
0.586714 + 0.809794i \(0.300421\pi\)
\(788\) 22.0318 32.1109i 0.784852 1.14390i
\(789\) 0 0
\(790\) 7.24444 + 29.1325i 0.257746 + 1.03649i
\(791\) 6.70213i 0.238300i
\(792\) 0 0
\(793\) 2.17767 0.0773312
\(794\) −1.46911 15.9192i −0.0521367 0.564950i
\(795\) 0 0
\(796\) 32.1739 5.98940i 1.14038 0.212289i
\(797\) 12.0418 12.0418i 0.426542 0.426542i −0.460906 0.887449i \(-0.652476\pi\)
0.887449 + 0.460906i \(0.152476\pi\)
\(798\) 0 0
\(799\) −5.95054 −0.210515
\(800\) 28.2775 + 0.618411i 0.999761 + 0.0218641i
\(801\) 0 0
\(802\) −7.38871 + 8.89111i −0.260905 + 0.313956i
\(803\) −6.22128 + 6.22128i −0.219544 + 0.219544i
\(804\) 0 0
\(805\) −13.5736 + 18.4728i −0.478405 + 0.651079i
\(806\) −1.61488 17.4987i −0.0568817 0.616365i
\(807\) 0 0
\(808\) 2.41078 0.682997i 0.0848109 0.0240277i
\(809\) 0.0662866i 0.00233051i 0.999999 + 0.00116526i \(0.000370913\pi\)
−0.999999 + 0.00116526i \(0.999629\pi\)
\(810\) 0 0
\(811\) 3.55286 3.55286i 0.124758 0.124758i −0.641971 0.766729i \(-0.721883\pi\)
0.766729 + 0.641971i \(0.221883\pi\)
\(812\) −24.5214 + 35.7394i −0.860533 + 1.25421i
\(813\) 0 0
\(814\) 7.88522 9.48857i 0.276377 0.332574i
\(815\) 6.10702 + 39.9470i 0.213920 + 1.39928i
\(816\) 0 0
\(817\) 39.0400i 1.36584i
\(818\) −20.1537 16.7482i −0.704659 0.585588i
\(819\) 0 0
\(820\) −21.0486 + 43.6136i −0.735050 + 1.52305i
\(821\) −21.0773 + 21.0773i −0.735601 + 0.735601i −0.971723 0.236122i \(-0.924123\pi\)
0.236122 + 0.971723i \(0.424123\pi\)
\(822\) 0 0
\(823\) −44.2906 −1.54387 −0.771937 0.635699i \(-0.780712\pi\)
−0.771937 + 0.635699i \(0.780712\pi\)
\(824\) 33.3971 + 18.6513i 1.16344 + 0.649748i
\(825\) 0 0
\(826\) 1.67510 + 18.1512i 0.0582840 + 0.631561i
\(827\) 37.6123 + 37.6123i 1.30791 + 1.30791i 0.922923 + 0.384984i \(0.125793\pi\)
0.384984 + 0.922923i \(0.374207\pi\)
\(828\) 0 0
\(829\) −23.0437 23.0437i −0.800339 0.800339i 0.182809 0.983148i \(-0.441481\pi\)
−0.983148 + 0.182809i \(0.941481\pi\)
\(830\) −9.47018 5.69822i −0.328715 0.197788i
\(831\) 0 0
\(832\) −12.3427 2.93228i −0.427906 0.101659i
\(833\) 11.5864i 0.401445i
\(834\) 0 0
\(835\) −3.56853 + 4.85654i −0.123494 + 0.168067i
\(836\) 1.37346 + 7.37800i 0.0475023 + 0.255173i
\(837\) 0 0
\(838\) 17.9554 1.65702i 0.620258 0.0572409i
\(839\) 26.6564i 0.920280i 0.887846 + 0.460140i \(0.152201\pi\)
−0.887846 + 0.460140i \(0.847799\pi\)
\(840\) 0 0
\(841\) 21.0429i 0.725618i
\(842\) 2.72514 + 29.5294i 0.0939146 + 1.01765i
\(843\) 0 0
\(844\) −28.9475 + 42.1903i −0.996416 + 1.45225i
\(845\) −18.8937 13.8829i −0.649964 0.477586i
\(846\) 0 0
\(847\) 30.8089i 1.05861i
\(848\) 31.3048 + 13.8785i 1.07501 + 0.476591i
\(849\) 0 0
\(850\) 13.0591 31.7729i 0.447925 1.08980i
\(851\) 21.2553 + 21.2553i 0.728622 + 0.728622i
\(852\) 0 0
\(853\) 40.6085 + 40.6085i 1.39041 + 1.39041i 0.824398 + 0.566010i \(0.191514\pi\)
0.566010 + 0.824398i \(0.308486\pi\)
\(854\) 5.92432 0.546730i 0.202726 0.0187087i
\(855\) 0 0
\(856\) −10.0212 35.3719i −0.342518 1.20899i
\(857\) −53.2027 −1.81737 −0.908685 0.417483i \(-0.862912\pi\)
−0.908685 + 0.417483i \(0.862912\pi\)
\(858\) 0 0
\(859\) −16.4533 + 16.4533i −0.561381 + 0.561381i −0.929700 0.368319i \(-0.879934\pi\)
0.368319 + 0.929700i \(0.379934\pi\)
\(860\) −14.8885 42.6646i −0.507694 1.45485i
\(861\) 0 0
\(862\) −15.4387 + 18.5779i −0.525843 + 0.632766i
\(863\) 0.342388i 0.0116550i −0.999983 0.00582751i \(-0.998145\pi\)
0.999983 0.00582751i \(-0.00185497\pi\)
\(864\) 0 0
\(865\) −7.26540 47.5241i −0.247031 1.61587i
\(866\) −19.9320 16.5639i −0.677316 0.562865i
\(867\) 0 0
\(868\) −8.78653 47.1996i −0.298234 1.60206i
\(869\) −6.51920 + 6.51920i −0.221149 + 0.221149i
\(870\) 0 0
\(871\) 11.1637i 0.378266i
\(872\) −5.13252 18.1163i −0.173809 0.613495i
\(873\) 0 0
\(874\) −18.2077 + 1.68031i −0.615886 + 0.0568374i
\(875\) −32.3996 11.1081i −1.09530 0.375521i
\(876\) 0 0
\(877\) 3.51545 3.51545i 0.118708 0.118708i −0.645257 0.763965i \(-0.723250\pi\)
0.763965 + 0.645257i \(0.223250\pi\)
\(878\) −14.9950 12.4612i −0.506058 0.420546i
\(879\) 0 0
\(880\) 4.31469 + 7.53920i 0.145448 + 0.254146i
\(881\) 16.7669 0.564891 0.282445 0.959283i \(-0.408854\pi\)
0.282445 + 0.959283i \(0.408854\pi\)
\(882\) 0 0
\(883\) −18.2497 + 18.2497i −0.614152 + 0.614152i −0.944025 0.329873i \(-0.892994\pi\)
0.329873 + 0.944025i \(0.392994\pi\)
\(884\) −8.71701 + 12.7048i −0.293185 + 0.427310i
\(885\) 0 0
\(886\) −6.31528 + 0.582810i −0.212166 + 0.0195799i
\(887\) −22.7350 −0.763368 −0.381684 0.924293i \(-0.624656\pi\)
−0.381684 + 0.924293i \(0.624656\pi\)
\(888\) 0 0
\(889\) 34.8553i 1.16901i
\(890\) −11.5153 + 2.86355i −0.385995 + 0.0959863i
\(891\) 0 0
\(892\) 42.9391 7.99340i 1.43771 0.267639i
\(893\) −3.34641 + 3.34641i −0.111983 + 0.111983i
\(894\) 0 0
\(895\) 21.0298 3.21500i 0.702948 0.107465i
\(896\) −34.3144 4.87845i −1.14636 0.162978i
\(897\) 0 0
\(898\) 5.81463 6.99696i 0.194037 0.233492i
\(899\) −39.1964 39.1964i −1.30727 1.30727i
\(900\) 0 0
\(901\) 29.4081 29.4081i 0.979727 0.979727i
\(902\) −14.8098 + 1.36673i −0.493113 + 0.0455073i
\(903\) 0 0
\(904\) 3.01712 5.40248i 0.100348 0.179684i
\(905\) 4.51653 + 29.5433i 0.150134 + 0.982052i
\(906\) 0 0
\(907\) −5.61400 5.61400i −0.186410 0.186410i 0.607732 0.794142i \(-0.292079\pi\)
−0.794142 + 0.607732i \(0.792079\pi\)
\(908\) 2.53049 + 1.73622i 0.0839773 + 0.0576183i
\(909\) 0 0
\(910\) 13.1633 + 7.92035i 0.436357 + 0.262557i
\(911\) −25.4300 −0.842535 −0.421267 0.906936i \(-0.638415\pi\)
−0.421267 + 0.906936i \(0.638415\pi\)
\(912\) 0 0
\(913\) 3.39435i 0.112337i
\(914\) 16.5639 19.9320i 0.547886 0.659291i
\(915\) 0 0
\(916\) −9.84413 6.75423i −0.325259 0.223166i
\(917\) 43.2119 + 43.2119i 1.42698 + 1.42698i
\(918\) 0 0
\(919\) 9.20111i 0.303517i −0.988418 0.151758i \(-0.951506\pi\)
0.988418 0.151758i \(-0.0484935\pi\)
\(920\) −19.2574 + 8.78012i −0.634897 + 0.289472i
\(921\) 0 0
\(922\) −11.9643 + 1.10414i −0.394025 + 0.0363628i
\(923\) 10.8796 + 10.8796i 0.358107 + 0.358107i
\(924\) 0 0
\(925\) −20.8192 + 39.7964i −0.684532 + 1.30850i
\(926\) 23.0389 + 19.1459i 0.757105 + 0.629172i
\(927\) 0 0
\(928\) −35.8553 + 17.7700i −1.17701 + 0.583330i
\(929\) −37.9400 −1.24477 −0.622385 0.782711i \(-0.713836\pi\)
−0.622385 + 0.782711i \(0.713836\pi\)
\(930\) 0 0
\(931\) 6.51584 + 6.51584i 0.213548 + 0.213548i
\(932\) 8.92842 + 47.9619i 0.292460 + 1.57104i
\(933\) 0 0
\(934\) 1.40633 + 15.2388i 0.0460164 + 0.498630i
\(935\) 10.4289 1.59435i 0.341061 0.0521407i
\(936\) 0 0
\(937\) −7.65779 −0.250169 −0.125084 0.992146i \(-0.539920\pi\)
−0.125084 + 0.992146i \(0.539920\pi\)
\(938\) 2.80278 + 30.3706i 0.0915139 + 0.991637i
\(939\) 0 0
\(940\) −2.38089 + 4.93330i −0.0776562 + 0.160907i
\(941\) 23.2008 + 23.2008i 0.756325 + 0.756325i 0.975652 0.219326i \(-0.0703859\pi\)
−0.219326 + 0.975652i \(0.570386\pi\)
\(942\) 0 0
\(943\) 36.2370i 1.18004i
\(944\) −6.82093 + 15.3855i −0.222002 + 0.500754i
\(945\) 0 0
\(946\) 8.86984 10.6734i 0.288383 0.347022i
\(947\) −41.3933 + 41.3933i −1.34510 + 1.34510i −0.454205 + 0.890897i \(0.650077\pi\)
−0.890897 + 0.454205i \(0.849923\pi\)
\(948\) 0 0
\(949\) −10.1583 + 10.1583i −0.329752 + 0.329752i
\(950\) −10.5241 25.2122i −0.341445 0.817991i
\(951\) 0 0
\(952\) −20.5248 + 36.7519i −0.665214 + 1.19114i
\(953\) 19.1404 0.620018 0.310009 0.950734i \(-0.399668\pi\)
0.310009 + 0.950734i \(0.399668\pi\)
\(954\) 0 0
\(955\) −25.5252 + 34.7382i −0.825977 + 1.12410i
\(956\) 6.45291 + 34.6638i 0.208702 + 1.12111i
\(957\) 0 0
\(958\) 29.8834 35.9598i 0.965490 1.16181i
\(959\) 21.0358 0.679280
\(960\) 0 0
\(961\) 30.4016 0.980697
\(962\) 12.8752 15.4932i 0.415113 0.499520i
\(963\) 0 0
\(964\) −5.23970 28.1467i −0.168759 0.906544i
\(965\) −35.5465 26.1192i −1.14428 0.840805i
\(966\) 0 0
\(967\) −13.5648 −0.436215 −0.218108 0.975925i \(-0.569988\pi\)
−0.218108 + 0.975925i \(0.569988\pi\)
\(968\) 13.8694 24.8345i 0.445778 0.798212i
\(969\) 0 0
\(970\) 4.86795 1.21052i 0.156300 0.0388676i
\(971\) −17.8216 + 17.8216i −0.571924 + 0.571924i −0.932666 0.360742i \(-0.882523\pi\)
0.360742 + 0.932666i \(0.382523\pi\)
\(972\) 0 0
\(973\) 3.23018 3.23018i 0.103555 0.103555i
\(974\) −7.27944 + 8.75962i −0.233248 + 0.280676i
\(975\) 0 0
\(976\) 5.02162 + 2.22627i 0.160738 + 0.0712610i
\(977\) 12.5185i 0.400504i −0.979744 0.200252i \(-0.935824\pi\)
0.979744 0.200252i \(-0.0641760\pi\)
\(978\) 0 0
\(979\) −2.57688 2.57688i −0.0823573 0.0823573i
\(980\) 9.60571 + 4.63587i 0.306843 + 0.148088i
\(981\) 0 0
\(982\) 2.44094 + 26.4498i 0.0778936 + 0.844048i
\(983\) 44.1661 1.40868 0.704340 0.709863i \(-0.251243\pi\)
0.704340 + 0.709863i \(0.251243\pi\)
\(984\) 0 0
\(985\) −43.0389 + 6.57971i −1.37133 + 0.209647i
\(986\) 4.46628 + 48.3962i 0.142235 + 1.54125i
\(987\) 0 0
\(988\) 2.24263 + 12.0470i 0.0713475 + 0.383266i
\(989\) 23.9094 + 23.9094i 0.760276 + 0.760276i
\(990\) 0 0
\(991\) 1.64743 0.0523324 0.0261662 0.999658i \(-0.491670\pi\)
0.0261662 + 0.999658i \(0.491670\pi\)
\(992\) 14.1654 42.0023i 0.449751 1.33357i
\(993\) 0 0
\(994\) 32.3294 + 26.8665i 1.02543 + 0.852152i
\(995\) −29.4855 21.6656i −0.934753 0.686846i
\(996\) 0 0
\(997\) 28.4173 + 28.4173i 0.899985 + 0.899985i 0.995434 0.0954491i \(-0.0304287\pi\)
−0.0954491 + 0.995434i \(0.530429\pi\)
\(998\) −5.28480 + 0.487711i −0.167287 + 0.0154382i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bm.g.109.9 yes 32
3.2 odd 2 inner 720.2.bm.g.109.8 yes 32
5.4 even 2 inner 720.2.bm.g.109.7 32
15.14 odd 2 inner 720.2.bm.g.109.10 yes 32
16.5 even 4 inner 720.2.bm.g.469.5 yes 32
48.5 odd 4 inner 720.2.bm.g.469.12 yes 32
80.69 even 4 inner 720.2.bm.g.469.11 yes 32
240.149 odd 4 inner 720.2.bm.g.469.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
720.2.bm.g.109.7 32 5.4 even 2 inner
720.2.bm.g.109.8 yes 32 3.2 odd 2 inner
720.2.bm.g.109.9 yes 32 1.1 even 1 trivial
720.2.bm.g.109.10 yes 32 15.14 odd 2 inner
720.2.bm.g.469.5 yes 32 16.5 even 4 inner
720.2.bm.g.469.6 yes 32 240.149 odd 4 inner
720.2.bm.g.469.11 yes 32 80.69 even 4 inner
720.2.bm.g.469.12 yes 32 48.5 odd 4 inner