Properties

Label 720.2.bm.g.469.3
Level $720$
Weight $2$
Character 720.469
Analytic conductor $5.749$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(109,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bm (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 469.3
Character \(\chi\) \(=\) 720.469
Dual form 720.2.bm.g.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29731 + 0.563016i) q^{2} +(1.36603 - 1.46081i) q^{4} +(-0.496304 - 2.18029i) q^{5} -0.862231 q^{7} +(-0.949697 + 2.66422i) q^{8} +(1.87140 + 2.54909i) q^{10} +(-4.00287 - 4.00287i) q^{11} +(1.17783 + 1.17783i) q^{13} +(1.11858 - 0.485450i) q^{14} +(-0.267949 - 3.99102i) q^{16} +3.66487i q^{17} +(-0.732051 + 0.732051i) q^{19} +(-3.86297 - 2.25333i) q^{20} +(7.44665 + 2.93928i) q^{22} -4.97577 q^{23} +(-4.50736 + 2.16418i) q^{25} +(-2.19115 - 0.864873i) q^{26} +(-1.17783 + 1.25956i) q^{28} +(-0.253708 + 0.253708i) q^{29} +3.39471 q^{31} +(2.59462 + 5.02672i) q^{32} +(-2.06338 - 4.75447i) q^{34} +(0.427929 + 1.87992i) q^{35} +(-5.48124 + 5.48124i) q^{37} +(0.537540 - 1.36185i) q^{38} +(6.28012 + 0.748355i) q^{40} +9.27201i q^{41} +(2.43739 - 2.43739i) q^{43} +(-11.3155 + 0.379423i) q^{44} +(6.45512 - 2.80144i) q^{46} +6.79703i q^{47} -6.25656 q^{49} +(4.62898 - 5.34533i) q^{50} +(3.32953 - 0.111644i) q^{52} +(2.86097 - 2.86097i) q^{53} +(-6.74080 + 10.7141i) q^{55} +(0.818858 - 2.29718i) q^{56} +(0.186296 - 0.471980i) q^{58} +(-3.30973 - 3.30973i) q^{59} +(-3.44854 + 3.44854i) q^{61} +(-4.40399 + 1.91128i) q^{62} +(-6.19615 - 5.06040i) q^{64} +(1.98345 - 3.15258i) q^{65} +(-8.23423 - 8.23423i) q^{67} +(5.35369 + 5.00631i) q^{68} +(-1.61358 - 2.19791i) q^{70} -12.4801i q^{71} -11.5338 q^{73} +(4.02484 - 10.1969i) q^{74} +(0.0693893 + 2.06939i) q^{76} +(3.45140 + 3.45140i) q^{77} +0.0873587 q^{79} +(-8.56860 + 2.56496i) q^{80} +(-5.22029 - 12.0287i) q^{82} +(-7.17205 - 7.17205i) q^{83} +(7.99050 - 1.81889i) q^{85} +(-1.78976 + 4.53434i) q^{86} +(14.4661 - 6.86302i) q^{88} +5.86061i q^{89} +(-1.01556 - 1.01556i) q^{91} +(-6.79703 + 7.26867i) q^{92} +(-3.82684 - 8.81785i) q^{94} +(1.95941 + 1.23277i) q^{95} -15.8373i q^{97} +(8.11669 - 3.52254i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} - 24 q^{10} - 64 q^{16} + 32 q^{19} + 32 q^{31} - 72 q^{40} - 32 q^{46} + 128 q^{49} - 32 q^{64} - 104 q^{70} - 32 q^{76} + 224 q^{79} - 48 q^{85} - 32 q^{91} - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29731 + 0.563016i −0.917337 + 0.398113i
\(3\) 0 0
\(4\) 1.36603 1.46081i 0.683013 0.730406i
\(5\) −0.496304 2.18029i −0.221954 0.975057i
\(6\) 0 0
\(7\) −0.862231 −0.325893 −0.162946 0.986635i \(-0.552100\pi\)
−0.162946 + 0.986635i \(0.552100\pi\)
\(8\) −0.949697 + 2.66422i −0.335768 + 0.941945i
\(9\) 0 0
\(10\) 1.87140 + 2.54909i 0.591789 + 0.806093i
\(11\) −4.00287 4.00287i −1.20691 1.20691i −0.972022 0.234889i \(-0.924527\pi\)
−0.234889 0.972022i \(-0.575473\pi\)
\(12\) 0 0
\(13\) 1.17783 + 1.17783i 0.326671 + 0.326671i 0.851319 0.524648i \(-0.175803\pi\)
−0.524648 + 0.851319i \(0.675803\pi\)
\(14\) 1.11858 0.485450i 0.298953 0.129742i
\(15\) 0 0
\(16\) −0.267949 3.99102i −0.0669873 0.997754i
\(17\) 3.66487i 0.888862i 0.895813 + 0.444431i \(0.146594\pi\)
−0.895813 + 0.444431i \(0.853406\pi\)
\(18\) 0 0
\(19\) −0.732051 + 0.732051i −0.167944 + 0.167944i −0.786075 0.618131i \(-0.787890\pi\)
0.618131 + 0.786075i \(0.287890\pi\)
\(20\) −3.86297 2.25333i −0.863785 0.503860i
\(21\) 0 0
\(22\) 7.44665 + 2.93928i 1.58763 + 0.626657i
\(23\) −4.97577 −1.03752 −0.518760 0.854920i \(-0.673606\pi\)
−0.518760 + 0.854920i \(0.673606\pi\)
\(24\) 0 0
\(25\) −4.50736 + 2.16418i −0.901473 + 0.432835i
\(26\) −2.19115 0.864873i −0.429719 0.169616i
\(27\) 0 0
\(28\) −1.17783 + 1.25956i −0.222589 + 0.238034i
\(29\) −0.253708 + 0.253708i −0.0471124 + 0.0471124i −0.730271 0.683158i \(-0.760606\pi\)
0.683158 + 0.730271i \(0.260606\pi\)
\(30\) 0 0
\(31\) 3.39471 0.609708 0.304854 0.952399i \(-0.401392\pi\)
0.304854 + 0.952399i \(0.401392\pi\)
\(32\) 2.59462 + 5.02672i 0.458668 + 0.888608i
\(33\) 0 0
\(34\) −2.06338 4.75447i −0.353867 0.815385i
\(35\) 0.427929 + 1.87992i 0.0723332 + 0.317764i
\(36\) 0 0
\(37\) −5.48124 + 5.48124i −0.901110 + 0.901110i −0.995532 0.0944220i \(-0.969900\pi\)
0.0944220 + 0.995532i \(0.469900\pi\)
\(38\) 0.537540 1.36185i 0.0872005 0.220922i
\(39\) 0 0
\(40\) 6.28012 + 0.748355i 0.992975 + 0.118325i
\(41\) 9.27201i 1.44804i 0.689777 + 0.724022i \(0.257709\pi\)
−0.689777 + 0.724022i \(0.742291\pi\)
\(42\) 0 0
\(43\) 2.43739 2.43739i 0.371698 0.371698i −0.496397 0.868096i \(-0.665344\pi\)
0.868096 + 0.496397i \(0.165344\pi\)
\(44\) −11.3155 + 0.379423i −1.70587 + 0.0572001i
\(45\) 0 0
\(46\) 6.45512 2.80144i 0.951755 0.413050i
\(47\) 6.79703i 0.991449i 0.868480 + 0.495724i \(0.165097\pi\)
−0.868480 + 0.495724i \(0.834903\pi\)
\(48\) 0 0
\(49\) −6.25656 −0.893794
\(50\) 4.62898 5.34533i 0.654637 0.755943i
\(51\) 0 0
\(52\) 3.32953 0.111644i 0.461723 0.0154822i
\(53\) 2.86097 2.86097i 0.392985 0.392985i −0.482765 0.875750i \(-0.660367\pi\)
0.875750 + 0.482765i \(0.160367\pi\)
\(54\) 0 0
\(55\) −6.74080 + 10.7141i −0.908929 + 1.44469i
\(56\) 0.818858 2.29718i 0.109425 0.306973i
\(57\) 0 0
\(58\) 0.186296 0.471980i 0.0244619 0.0619740i
\(59\) −3.30973 3.30973i −0.430890 0.430890i 0.458041 0.888931i \(-0.348551\pi\)
−0.888931 + 0.458041i \(0.848551\pi\)
\(60\) 0 0
\(61\) −3.44854 + 3.44854i −0.441540 + 0.441540i −0.892529 0.450989i \(-0.851071\pi\)
0.450989 + 0.892529i \(0.351071\pi\)
\(62\) −4.40399 + 1.91128i −0.559308 + 0.242733i
\(63\) 0 0
\(64\) −6.19615 5.06040i −0.774519 0.632551i
\(65\) 1.98345 3.15258i 0.246017 0.391029i
\(66\) 0 0
\(67\) −8.23423 8.23423i −1.00597 1.00597i −0.999982 0.00598890i \(-0.998094\pi\)
−0.00598890 0.999982i \(-0.501906\pi\)
\(68\) 5.35369 + 5.00631i 0.649230 + 0.607104i
\(69\) 0 0
\(70\) −1.61358 2.19791i −0.192860 0.262700i
\(71\) 12.4801i 1.48111i −0.671995 0.740556i \(-0.734562\pi\)
0.671995 0.740556i \(-0.265438\pi\)
\(72\) 0 0
\(73\) −11.5338 −1.34993 −0.674967 0.737848i \(-0.735842\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(74\) 4.02484 10.1969i 0.467878 1.18536i
\(75\) 0 0
\(76\) 0.0693893 + 2.06939i 0.00795950 + 0.237375i
\(77\) 3.45140 + 3.45140i 0.393324 + 0.393324i
\(78\) 0 0
\(79\) 0.0873587 0.00982862 0.00491431 0.999988i \(-0.498436\pi\)
0.00491431 + 0.999988i \(0.498436\pi\)
\(80\) −8.56860 + 2.56496i −0.957999 + 0.286772i
\(81\) 0 0
\(82\) −5.22029 12.0287i −0.576485 1.32834i
\(83\) −7.17205 7.17205i −0.787235 0.787235i 0.193805 0.981040i \(-0.437917\pi\)
−0.981040 + 0.193805i \(0.937917\pi\)
\(84\) 0 0
\(85\) 7.99050 1.81889i 0.866691 0.197286i
\(86\) −1.78976 + 4.53434i −0.192995 + 0.488950i
\(87\) 0 0
\(88\) 14.4661 6.86302i 1.54209 0.731601i
\(89\) 5.86061i 0.621224i 0.950537 + 0.310612i \(0.100534\pi\)
−0.950537 + 0.310612i \(0.899466\pi\)
\(90\) 0 0
\(91\) −1.01556 1.01556i −0.106460 0.106460i
\(92\) −6.79703 + 7.26867i −0.708639 + 0.757811i
\(93\) 0 0
\(94\) −3.82684 8.81785i −0.394708 0.909492i
\(95\) 1.95941 + 1.23277i 0.201031 + 0.126479i
\(96\) 0 0
\(97\) 15.8373i 1.60803i −0.594609 0.804015i \(-0.702693\pi\)
0.594609 0.804015i \(-0.297307\pi\)
\(98\) 8.11669 3.52254i 0.819910 0.355831i
\(99\) 0 0
\(100\) −2.99572 + 9.54074i −0.299572 + 0.954074i
\(101\) 8.53721 + 8.53721i 0.849484 + 0.849484i 0.990069 0.140584i \(-0.0448982\pi\)
−0.140584 + 0.990069i \(0.544898\pi\)
\(102\) 0 0
\(103\) −14.1804 −1.39723 −0.698617 0.715496i \(-0.746201\pi\)
−0.698617 + 0.715496i \(0.746201\pi\)
\(104\) −4.25658 + 2.01942i −0.417392 + 0.198020i
\(105\) 0 0
\(106\) −2.10080 + 5.32235i −0.204047 + 0.516952i
\(107\) −9.73420 + 9.73420i −0.941041 + 0.941041i −0.998356 0.0573151i \(-0.981746\pi\)
0.0573151 + 0.998356i \(0.481746\pi\)
\(108\) 0 0
\(109\) 10.7231 10.7231i 1.02708 1.02708i 0.0274606 0.999623i \(-0.491258\pi\)
0.999623 0.0274606i \(-0.00874207\pi\)
\(110\) 2.71270 17.6947i 0.258646 1.68712i
\(111\) 0 0
\(112\) 0.231034 + 3.44118i 0.0218307 + 0.325161i
\(113\) 14.0025i 1.31725i −0.752473 0.658623i \(-0.771139\pi\)
0.752473 0.658623i \(-0.228861\pi\)
\(114\) 0 0
\(115\) 2.46949 + 10.8486i 0.230282 + 1.01164i
\(116\) 0.0240484 + 0.717192i 0.00223284 + 0.0665896i
\(117\) 0 0
\(118\) 6.15717 + 2.43031i 0.566814 + 0.223728i
\(119\) 3.15997i 0.289674i
\(120\) 0 0
\(121\) 21.0460i 1.91327i
\(122\) 2.53224 6.41541i 0.229258 0.580824i
\(123\) 0 0
\(124\) 4.63726 4.95904i 0.416439 0.445335i
\(125\) 6.95556 + 8.75329i 0.622125 + 0.782918i
\(126\) 0 0
\(127\) 22.0420i 1.95591i 0.208812 + 0.977956i \(0.433040\pi\)
−0.208812 + 0.977956i \(0.566960\pi\)
\(128\) 10.8874 + 3.07638i 0.962321 + 0.271916i
\(129\) 0 0
\(130\) −0.798202 + 5.20659i −0.0700070 + 0.456648i
\(131\) 0.609083 0.609083i 0.0532158 0.0532158i −0.679998 0.733214i \(-0.738019\pi\)
0.733214 + 0.679998i \(0.238019\pi\)
\(132\) 0 0
\(133\) 0.631197 0.631197i 0.0547317 0.0547317i
\(134\) 15.3183 + 6.04634i 1.32330 + 0.522324i
\(135\) 0 0
\(136\) −9.76403 3.48052i −0.837258 0.298452i
\(137\) 9.11228 0.778515 0.389257 0.921129i \(-0.372732\pi\)
0.389257 + 0.921129i \(0.372732\pi\)
\(138\) 0 0
\(139\) −12.2476 12.2476i −1.03883 1.03883i −0.999215 0.0396103i \(-0.987388\pi\)
−0.0396103 0.999215i \(-0.512612\pi\)
\(140\) 3.33077 + 1.94289i 0.281501 + 0.164204i
\(141\) 0 0
\(142\) 7.02648 + 16.1905i 0.589649 + 1.35868i
\(143\) 9.42941i 0.788527i
\(144\) 0 0
\(145\) 0.679075 + 0.427242i 0.0563941 + 0.0354805i
\(146\) 14.9630 6.49374i 1.23834 0.537426i
\(147\) 0 0
\(148\) 0.519554 + 15.4946i 0.0427070 + 1.27365i
\(149\) 9.01830 + 9.01830i 0.738808 + 0.738808i 0.972347 0.233539i \(-0.0750308\pi\)
−0.233539 + 0.972347i \(0.575031\pi\)
\(150\) 0 0
\(151\) 1.79183i 0.145817i −0.997339 0.0729086i \(-0.976772\pi\)
0.997339 0.0729086i \(-0.0232281\pi\)
\(152\) −1.25512 2.64557i −0.101804 0.214584i
\(153\) 0 0
\(154\) −6.42073 2.53434i −0.517397 0.204223i
\(155\) −1.68481 7.40147i −0.135327 0.594500i
\(156\) 0 0
\(157\) 10.3560 + 10.3560i 0.826500 + 0.826500i 0.987031 0.160531i \(-0.0513206\pi\)
−0.160531 + 0.987031i \(0.551321\pi\)
\(158\) −0.113331 + 0.0491844i −0.00901615 + 0.00391290i
\(159\) 0 0
\(160\) 9.67202 8.15182i 0.764640 0.644458i
\(161\) 4.29027 0.338120
\(162\) 0 0
\(163\) 2.80998 + 2.80998i 0.220095 + 0.220095i 0.808538 0.588444i \(-0.200259\pi\)
−0.588444 + 0.808538i \(0.700259\pi\)
\(164\) 13.5447 + 12.6658i 1.05766 + 0.989033i
\(165\) 0 0
\(166\) 13.3424 + 5.26639i 1.03557 + 0.408751i
\(167\) 8.08558 0.625681 0.312840 0.949806i \(-0.398719\pi\)
0.312840 + 0.949806i \(0.398719\pi\)
\(168\) 0 0
\(169\) 10.2254i 0.786572i
\(170\) −9.34208 + 6.85844i −0.716505 + 0.526018i
\(171\) 0 0
\(172\) −0.231034 6.89010i −0.0176162 0.525366i
\(173\) −10.9281 10.9281i −0.830846 0.830846i 0.156787 0.987632i \(-0.449886\pi\)
−0.987632 + 0.156787i \(0.949886\pi\)
\(174\) 0 0
\(175\) 3.88639 1.86602i 0.293784 0.141058i
\(176\) −14.9030 + 17.0481i −1.12335 + 1.28505i
\(177\) 0 0
\(178\) −3.29962 7.60303i −0.247317 0.569871i
\(179\) 9.17034 9.17034i 0.685424 0.685424i −0.275793 0.961217i \(-0.588941\pi\)
0.961217 + 0.275793i \(0.0889406\pi\)
\(180\) 0 0
\(181\) 6.86184 + 6.86184i 0.510037 + 0.510037i 0.914538 0.404501i \(-0.132555\pi\)
−0.404501 + 0.914538i \(0.632555\pi\)
\(182\) 1.88928 + 0.745721i 0.140042 + 0.0552765i
\(183\) 0 0
\(184\) 4.72547 13.2566i 0.348367 0.977286i
\(185\) 14.6711 + 9.23035i 1.07864 + 0.678629i
\(186\) 0 0
\(187\) 14.6700 14.6700i 1.07278 1.07278i
\(188\) 9.92919 + 9.28492i 0.724161 + 0.677172i
\(189\) 0 0
\(190\) −3.23602 0.496103i −0.234766 0.0359911i
\(191\) −4.67766 −0.338463 −0.169232 0.985576i \(-0.554129\pi\)
−0.169232 + 0.985576i \(0.554129\pi\)
\(192\) 0 0
\(193\) 7.75234i 0.558025i −0.960287 0.279013i \(-0.909993\pi\)
0.960287 0.279013i \(-0.0900071\pi\)
\(194\) 8.91663 + 20.5458i 0.640177 + 1.47510i
\(195\) 0 0
\(196\) −8.54662 + 9.13966i −0.610473 + 0.652833i
\(197\) 12.6883 12.6883i 0.904001 0.904001i −0.0917783 0.995779i \(-0.529255\pi\)
0.995779 + 0.0917783i \(0.0292551\pi\)
\(198\) 0 0
\(199\) 1.94377i 0.137790i 0.997624 + 0.0688949i \(0.0219473\pi\)
−0.997624 + 0.0688949i \(0.978053\pi\)
\(200\) −1.48522 14.0639i −0.105021 0.994470i
\(201\) 0 0
\(202\) −15.8820 6.26882i −1.11745 0.441073i
\(203\) 0.218755 0.218755i 0.0153536 0.0153536i
\(204\) 0 0
\(205\) 20.2157 4.60173i 1.41193 0.321399i
\(206\) 18.3963 7.98378i 1.28173 0.556256i
\(207\) 0 0
\(208\) 4.38514 5.01634i 0.304055 0.347820i
\(209\) 5.86061 0.405387
\(210\) 0 0
\(211\) 8.48794 8.48794i 0.584334 0.584334i −0.351757 0.936091i \(-0.614416\pi\)
0.936091 + 0.351757i \(0.114416\pi\)
\(212\) −0.271185 8.08751i −0.0186251 0.555453i
\(213\) 0 0
\(214\) 7.14776 18.1088i 0.488611 1.23789i
\(215\) −6.52391 4.10454i −0.444927 0.279927i
\(216\) 0 0
\(217\) −2.92703 −0.198700
\(218\) −7.87388 + 19.9484i −0.533286 + 1.35108i
\(219\) 0 0
\(220\) 6.44317 + 24.4828i 0.434398 + 1.65063i
\(221\) −4.31659 + 4.31659i −0.290366 + 0.290366i
\(222\) 0 0
\(223\) 8.72387i 0.584193i 0.956389 + 0.292097i \(0.0943529\pi\)
−0.956389 + 0.292097i \(0.905647\pi\)
\(224\) −2.23716 4.33420i −0.149477 0.289591i
\(225\) 0 0
\(226\) 7.88364 + 18.1656i 0.524412 + 1.20836i
\(227\) −2.84056 2.84056i −0.188534 0.188534i 0.606528 0.795062i \(-0.292562\pi\)
−0.795062 + 0.606528i \(0.792562\pi\)
\(228\) 0 0
\(229\) −15.6513 15.6513i −1.03426 1.03426i −0.999392 0.0348732i \(-0.988897\pi\)
−0.0348732 0.999392i \(-0.511103\pi\)
\(230\) −9.31166 12.6837i −0.613993 0.836338i
\(231\) 0 0
\(232\) −0.434989 0.916881i −0.0285584 0.0601962i
\(233\) −8.00603 −0.524492 −0.262246 0.965001i \(-0.584463\pi\)
−0.262246 + 0.965001i \(0.584463\pi\)
\(234\) 0 0
\(235\) 14.8195 3.37339i 0.966719 0.220056i
\(236\) −9.35607 + 0.313721i −0.609028 + 0.0204215i
\(237\) 0 0
\(238\) 1.77911 + 4.09946i 0.115323 + 0.265728i
\(239\) −12.8515 −0.831296 −0.415648 0.909526i \(-0.636445\pi\)
−0.415648 + 0.909526i \(0.636445\pi\)
\(240\) 0 0
\(241\) −25.1326 −1.61894 −0.809468 0.587164i \(-0.800244\pi\)
−0.809468 + 0.587164i \(0.800244\pi\)
\(242\) −11.8492 27.3032i −0.761697 1.75511i
\(243\) 0 0
\(244\) 0.326879 + 9.74846i 0.0209263 + 0.624081i
\(245\) 3.10515 + 13.6411i 0.198381 + 0.871500i
\(246\) 0 0
\(247\) −1.72446 −0.109725
\(248\) −3.22395 + 9.04427i −0.204721 + 0.574311i
\(249\) 0 0
\(250\) −13.9518 7.43964i −0.882387 0.470524i
\(251\) 10.6223 + 10.6223i 0.670476 + 0.670476i 0.957826 0.287350i \(-0.0927743\pi\)
−0.287350 + 0.957826i \(0.592774\pi\)
\(252\) 0 0
\(253\) 19.9174 + 19.9174i 1.25219 + 1.25219i
\(254\) −12.4100 28.5953i −0.778673 1.79423i
\(255\) 0 0
\(256\) −15.8564 + 2.13878i −0.991025 + 0.133674i
\(257\) 25.2426i 1.57459i 0.616576 + 0.787295i \(0.288519\pi\)
−0.616576 + 0.787295i \(0.711481\pi\)
\(258\) 0 0
\(259\) 4.72610 4.72610i 0.293665 0.293665i
\(260\) −1.89588 7.20396i −0.117577 0.446770i
\(261\) 0 0
\(262\) −0.447245 + 1.13309i −0.0276309 + 0.0700027i
\(263\) −29.1656 −1.79843 −0.899215 0.437506i \(-0.855862\pi\)
−0.899215 + 0.437506i \(0.855862\pi\)
\(264\) 0 0
\(265\) −7.65768 4.81785i −0.470408 0.295958i
\(266\) −0.463484 + 1.17423i −0.0284180 + 0.0719968i
\(267\) 0 0
\(268\) −23.2768 + 0.780503i −1.42186 + 0.0476768i
\(269\) −9.01830 + 9.01830i −0.549855 + 0.549855i −0.926399 0.376544i \(-0.877113\pi\)
0.376544 + 0.926399i \(0.377113\pi\)
\(270\) 0 0
\(271\) 21.2020 1.28793 0.643966 0.765054i \(-0.277288\pi\)
0.643966 + 0.765054i \(0.277288\pi\)
\(272\) 14.6266 0.981999i 0.886865 0.0595424i
\(273\) 0 0
\(274\) −11.8215 + 5.13036i −0.714160 + 0.309937i
\(275\) 26.7053 + 9.37948i 1.61039 + 0.565604i
\(276\) 0 0
\(277\) −0.546633 + 0.546633i −0.0328440 + 0.0328440i −0.723338 0.690494i \(-0.757393\pi\)
0.690494 + 0.723338i \(0.257393\pi\)
\(278\) 22.7845 + 8.99331i 1.36652 + 0.539383i
\(279\) 0 0
\(280\) −5.41492 0.645255i −0.323603 0.0385613i
\(281\) 20.8573i 1.24424i −0.782922 0.622120i \(-0.786271\pi\)
0.782922 0.622120i \(-0.213729\pi\)
\(282\) 0 0
\(283\) 23.2768 23.2768i 1.38366 1.38366i 0.545652 0.838012i \(-0.316282\pi\)
0.838012 0.545652i \(-0.183718\pi\)
\(284\) −18.2310 17.0481i −1.08181 1.01162i
\(285\) 0 0
\(286\) 5.30891 + 12.2329i 0.313922 + 0.723344i
\(287\) 7.99462i 0.471907i
\(288\) 0 0
\(289\) 3.56873 0.209925
\(290\) −1.12152 0.171935i −0.0658576 0.0100964i
\(291\) 0 0
\(292\) −15.7555 + 16.8488i −0.922023 + 0.986001i
\(293\) −6.89558 + 6.89558i −0.402844 + 0.402844i −0.879234 0.476390i \(-0.841945\pi\)
0.476390 + 0.879234i \(0.341945\pi\)
\(294\) 0 0
\(295\) −5.57355 + 8.85881i −0.324505 + 0.515780i
\(296\) −9.39772 19.8088i −0.546231 1.15136i
\(297\) 0 0
\(298\) −16.7770 6.62208i −0.971864 0.383607i
\(299\) −5.86061 5.86061i −0.338928 0.338928i
\(300\) 0 0
\(301\) −2.10159 + 2.10159i −0.121134 + 0.121134i
\(302\) 1.00883 + 2.32456i 0.0580517 + 0.133763i
\(303\) 0 0
\(304\) 3.11778 + 2.72547i 0.178817 + 0.156317i
\(305\) 9.23035 + 5.80731i 0.528529 + 0.332525i
\(306\) 0 0
\(307\) 10.3313 + 10.3313i 0.589637 + 0.589637i 0.937533 0.347896i \(-0.113104\pi\)
−0.347896 + 0.937533i \(0.613104\pi\)
\(308\) 9.75656 0.327150i 0.555931 0.0186411i
\(309\) 0 0
\(310\) 6.35287 + 8.65343i 0.360819 + 0.491482i
\(311\) 16.7703i 0.950959i 0.879727 + 0.475479i \(0.157725\pi\)
−0.879727 + 0.475479i \(0.842275\pi\)
\(312\) 0 0
\(313\) 3.04102 0.171888 0.0859442 0.996300i \(-0.472609\pi\)
0.0859442 + 0.996300i \(0.472609\pi\)
\(314\) −19.2656 7.60436i −1.08722 0.429139i
\(315\) 0 0
\(316\) 0.119334 0.127615i 0.00671307 0.00717889i
\(317\) −13.9469 13.9469i −0.783337 0.783337i 0.197056 0.980392i \(-0.436862\pi\)
−0.980392 + 0.197056i \(0.936862\pi\)
\(318\) 0 0
\(319\) 2.03112 0.113721
\(320\) −7.95800 + 16.0209i −0.444865 + 0.895597i
\(321\) 0 0
\(322\) −5.56580 + 2.41549i −0.310170 + 0.134610i
\(323\) −2.68287 2.68287i −0.149279 0.149279i
\(324\) 0 0
\(325\) −7.85794 2.75988i −0.435880 0.153090i
\(326\) −5.22748 2.06335i −0.289523 0.114278i
\(327\) 0 0
\(328\) −24.7027 8.80559i −1.36398 0.486208i
\(329\) 5.86061i 0.323106i
\(330\) 0 0
\(331\) −23.8684 23.8684i −1.31193 1.31193i −0.919993 0.391934i \(-0.871806\pi\)
−0.391934 0.919993i \(-0.628194\pi\)
\(332\) −20.2742 + 0.679822i −1.11269 + 0.0373101i
\(333\) 0 0
\(334\) −10.4895 + 4.55231i −0.573960 + 0.249091i
\(335\) −13.8664 + 22.0397i −0.757600 + 1.20416i
\(336\) 0 0
\(337\) 5.23322i 0.285072i −0.989790 0.142536i \(-0.954474\pi\)
0.989790 0.142536i \(-0.0455256\pi\)
\(338\) 5.75709 + 13.2656i 0.313144 + 0.721551i
\(339\) 0 0
\(340\) 8.25816 14.1573i 0.447862 0.767786i
\(341\) −13.5886 13.5886i −0.735864 0.735864i
\(342\) 0 0
\(343\) 11.4302 0.617174
\(344\) 4.17896 + 8.80852i 0.225315 + 0.474924i
\(345\) 0 0
\(346\) 20.3298 + 8.02441i 1.09294 + 0.431395i
\(347\) −1.44623 + 1.44623i −0.0776379 + 0.0776379i −0.744859 0.667221i \(-0.767483\pi\)
0.667221 + 0.744859i \(0.267483\pi\)
\(348\) 0 0
\(349\) 11.6513 11.6513i 0.623678 0.623678i −0.322792 0.946470i \(-0.604621\pi\)
0.946470 + 0.322792i \(0.104621\pi\)
\(350\) −3.99125 + 4.60891i −0.213341 + 0.246357i
\(351\) 0 0
\(352\) 9.73540 30.5073i 0.518899 1.62604i
\(353\) 20.0437i 1.06682i −0.845857 0.533409i \(-0.820911\pi\)
0.845857 0.533409i \(-0.179089\pi\)
\(354\) 0 0
\(355\) −27.2102 + 6.19391i −1.44417 + 0.328738i
\(356\) 8.56126 + 8.00575i 0.453746 + 0.424304i
\(357\) 0 0
\(358\) −6.73372 + 17.0598i −0.355888 + 0.901640i
\(359\) 9.69156i 0.511501i −0.966743 0.255750i \(-0.917677\pi\)
0.966743 0.255750i \(-0.0823225\pi\)
\(360\) 0 0
\(361\) 17.9282i 0.943590i
\(362\) −12.7653 5.03861i −0.670928 0.264823i
\(363\) 0 0
\(364\) −2.87083 + 0.0962627i −0.150472 + 0.00504553i
\(365\) 5.72429 + 25.1472i 0.299623 + 1.31626i
\(366\) 0 0
\(367\) 14.0169i 0.731677i −0.930678 0.365838i \(-0.880782\pi\)
0.930678 0.365838i \(-0.119218\pi\)
\(368\) 1.33325 + 19.8584i 0.0695007 + 1.03519i
\(369\) 0 0
\(370\) −24.2298 3.71458i −1.25965 0.193112i
\(371\) −2.46682 + 2.46682i −0.128071 + 0.128071i
\(372\) 0 0
\(373\) 7.77707 7.77707i 0.402681 0.402681i −0.476495 0.879177i \(-0.658093\pi\)
0.879177 + 0.476495i \(0.158093\pi\)
\(374\) −10.7721 + 27.2910i −0.557012 + 1.41118i
\(375\) 0 0
\(376\) −18.1088 6.45512i −0.933890 0.332897i
\(377\) −0.597650 −0.0307806
\(378\) 0 0
\(379\) −6.05737 6.05737i −0.311146 0.311146i 0.534207 0.845354i \(-0.320610\pi\)
−0.845354 + 0.534207i \(0.820610\pi\)
\(380\) 4.47744 1.17834i 0.229688 0.0604473i
\(381\) 0 0
\(382\) 6.06837 2.63360i 0.310485 0.134747i
\(383\) 12.9186i 0.660110i −0.943962 0.330055i \(-0.892933\pi\)
0.943962 0.330055i \(-0.107067\pi\)
\(384\) 0 0
\(385\) 5.81213 9.23802i 0.296213 0.470813i
\(386\) 4.36469 + 10.0572i 0.222157 + 0.511897i
\(387\) 0 0
\(388\) −23.1353 21.6341i −1.17452 1.09830i
\(389\) −11.4412 11.4412i −0.580091 0.580091i 0.354837 0.934928i \(-0.384536\pi\)
−0.934928 + 0.354837i \(0.884536\pi\)
\(390\) 0 0
\(391\) 18.2356i 0.922212i
\(392\) 5.94183 16.6689i 0.300108 0.841904i
\(393\) 0 0
\(394\) −9.31691 + 23.6043i −0.469379 + 1.18917i
\(395\) −0.0433565 0.190468i −0.00218150 0.00958347i
\(396\) 0 0
\(397\) 11.9170 + 11.9170i 0.598098 + 0.598098i 0.939806 0.341708i \(-0.111005\pi\)
−0.341708 + 0.939806i \(0.611005\pi\)
\(398\) −1.09437 2.52167i −0.0548559 0.126400i
\(399\) 0 0
\(400\) 9.84501 + 17.4091i 0.492250 + 0.870454i
\(401\) −30.1293 −1.50458 −0.752292 0.658830i \(-0.771052\pi\)
−0.752292 + 0.658830i \(0.771052\pi\)
\(402\) 0 0
\(403\) 3.99839 + 3.99839i 0.199174 + 0.199174i
\(404\) 24.1333 0.809222i 1.20068 0.0402603i
\(405\) 0 0
\(406\) −0.160631 + 0.406956i −0.00797196 + 0.0201969i
\(407\) 43.8814 2.17512
\(408\) 0 0
\(409\) 5.49693i 0.271806i −0.990722 0.135903i \(-0.956607\pi\)
0.990722 0.135903i \(-0.0433935\pi\)
\(410\) −23.6352 + 17.3516i −1.16726 + 0.856937i
\(411\) 0 0
\(412\) −19.3707 + 20.7149i −0.954328 + 1.02055i
\(413\) 2.85375 + 2.85375i 0.140424 + 0.140424i
\(414\) 0 0
\(415\) −12.0777 + 19.1967i −0.592869 + 0.942329i
\(416\) −2.86460 + 8.97665i −0.140449 + 0.440116i
\(417\) 0 0
\(418\) −7.60303 + 3.29962i −0.371876 + 0.161390i
\(419\) −16.4829 + 16.4829i −0.805244 + 0.805244i −0.983910 0.178665i \(-0.942822\pi\)
0.178665 + 0.983910i \(0.442822\pi\)
\(420\) 0 0
\(421\) 10.4079 + 10.4079i 0.507248 + 0.507248i 0.913681 0.406432i \(-0.133227\pi\)
−0.406432 + 0.913681i \(0.633227\pi\)
\(422\) −6.23264 + 15.7903i −0.303400 + 0.768662i
\(423\) 0 0
\(424\) 4.90521 + 10.3393i 0.238218 + 0.502122i
\(425\) −7.93143 16.5189i −0.384731 0.801285i
\(426\) 0 0
\(427\) 2.97344 2.97344i 0.143895 0.143895i
\(428\) 0.922682 + 27.5170i 0.0445995 + 1.33009i
\(429\) 0 0
\(430\) 10.7745 + 1.65179i 0.519590 + 0.0796564i
\(431\) 3.91881 0.188763 0.0943813 0.995536i \(-0.469913\pi\)
0.0943813 + 0.995536i \(0.469913\pi\)
\(432\) 0 0
\(433\) 17.0997i 0.821757i −0.911690 0.410878i \(-0.865222\pi\)
0.911690 0.410878i \(-0.134778\pi\)
\(434\) 3.79726 1.64796i 0.182274 0.0791048i
\(435\) 0 0
\(436\) −1.01641 30.3124i −0.0486774 1.45170i
\(437\) 3.64252 3.64252i 0.174245 0.174245i
\(438\) 0 0
\(439\) 21.5155i 1.02688i 0.858126 + 0.513440i \(0.171629\pi\)
−0.858126 + 0.513440i \(0.828371\pi\)
\(440\) −22.1430 28.1341i −1.05562 1.34124i
\(441\) 0 0
\(442\) 3.16965 8.03027i 0.150765 0.381961i
\(443\) 2.02944 2.02944i 0.0964216 0.0964216i −0.657251 0.753672i \(-0.728281\pi\)
0.753672 + 0.657251i \(0.228281\pi\)
\(444\) 0 0
\(445\) 12.7779 2.90864i 0.605729 0.137883i
\(446\) −4.91168 11.3176i −0.232575 0.535902i
\(447\) 0 0
\(448\) 5.34252 + 4.36324i 0.252410 + 0.206144i
\(449\) −7.75432 −0.365949 −0.182974 0.983118i \(-0.558573\pi\)
−0.182974 + 0.983118i \(0.558573\pi\)
\(450\) 0 0
\(451\) 37.1147 37.1147i 1.74766 1.74766i
\(452\) −20.4551 19.1278i −0.962125 0.899696i
\(453\) 0 0
\(454\) 5.28436 + 2.08580i 0.248007 + 0.0978916i
\(455\) −1.71020 + 2.71825i −0.0801752 + 0.127434i
\(456\) 0 0
\(457\) −17.0997 −0.799888 −0.399944 0.916540i \(-0.630970\pi\)
−0.399944 + 0.916540i \(0.630970\pi\)
\(458\) 29.1165 + 11.4926i 1.36052 + 0.537015i
\(459\) 0 0
\(460\) 19.2212 + 11.2121i 0.896195 + 0.522765i
\(461\) 22.1258 22.1258i 1.03050 1.03050i 0.0309819 0.999520i \(-0.490137\pi\)
0.999520 0.0309819i \(-0.00986341\pi\)
\(462\) 0 0
\(463\) 22.2055i 1.03198i 0.856596 + 0.515988i \(0.172575\pi\)
−0.856596 + 0.515988i \(0.827425\pi\)
\(464\) 1.08053 + 0.944573i 0.0501626 + 0.0438507i
\(465\) 0 0
\(466\) 10.3863 4.50752i 0.481136 0.208807i
\(467\) −18.3064 18.3064i −0.847118 0.847118i 0.142655 0.989773i \(-0.454436\pi\)
−0.989773 + 0.142655i \(0.954436\pi\)
\(468\) 0 0
\(469\) 7.09981 + 7.09981i 0.327839 + 0.327839i
\(470\) −17.3262 + 12.7200i −0.799200 + 0.586728i
\(471\) 0 0
\(472\) 11.9611 5.67461i 0.550554 0.261195i
\(473\) −19.5131 −0.897214
\(474\) 0 0
\(475\) 1.71533 4.88391i 0.0787049 0.224089i
\(476\) −4.61612 4.31659i −0.211579 0.197851i
\(477\) 0 0
\(478\) 16.6724 7.23562i 0.762578 0.330949i
\(479\) 26.4619 1.20907 0.604537 0.796577i \(-0.293358\pi\)
0.604537 + 0.796577i \(0.293358\pi\)
\(480\) 0 0
\(481\) −12.9119 −0.588734
\(482\) 32.6048 14.1501i 1.48511 0.644519i
\(483\) 0 0
\(484\) 30.7442 + 28.7493i 1.39747 + 1.30679i
\(485\) −34.5299 + 7.86009i −1.56792 + 0.356908i
\(486\) 0 0
\(487\) −25.9375 −1.17534 −0.587670 0.809101i \(-0.699955\pi\)
−0.587670 + 0.809101i \(0.699955\pi\)
\(488\) −5.91261 12.4627i −0.267651 0.564162i
\(489\) 0 0
\(490\) −11.7085 15.9485i −0.528937 0.720481i
\(491\) −8.15551 8.15551i −0.368053 0.368053i 0.498714 0.866767i \(-0.333806\pi\)
−0.866767 + 0.498714i \(0.833806\pi\)
\(492\) 0 0
\(493\) −0.929808 0.929808i −0.0418764 0.0418764i
\(494\) 2.23716 0.970901i 0.100655 0.0436829i
\(495\) 0 0
\(496\) −0.909610 13.5483i −0.0408427 0.608339i
\(497\) 10.7607i 0.482684i
\(498\) 0 0
\(499\) −20.6267 + 20.6267i −0.923379 + 0.923379i −0.997267 0.0738876i \(-0.976459\pi\)
0.0738876 + 0.997267i \(0.476459\pi\)
\(500\) 22.2884 + 1.79644i 0.996768 + 0.0803392i
\(501\) 0 0
\(502\) −19.7610 7.79991i −0.881977 0.348127i
\(503\) 8.69417 0.387654 0.193827 0.981036i \(-0.437910\pi\)
0.193827 + 0.981036i \(0.437910\pi\)
\(504\) 0 0
\(505\) 14.3766 22.8507i 0.639749 1.01684i
\(506\) −37.0528 14.6252i −1.64720 0.650170i
\(507\) 0 0
\(508\) 32.1992 + 30.1099i 1.42861 + 1.33591i
\(509\) 17.2537 17.2537i 0.764757 0.764757i −0.212421 0.977178i \(-0.568135\pi\)
0.977178 + 0.212421i \(0.0681349\pi\)
\(510\) 0 0
\(511\) 9.94484 0.439934
\(512\) 19.3665 11.7021i 0.855887 0.517163i
\(513\) 0 0
\(514\) −14.2120 32.7475i −0.626864 1.44443i
\(515\) 7.03777 + 30.9174i 0.310121 + 1.36238i
\(516\) 0 0
\(517\) 27.2076 27.2076i 1.19659 1.19659i
\(518\) −3.47034 + 8.79208i −0.152478 + 0.386302i
\(519\) 0 0
\(520\) 6.51548 + 8.27835i 0.285723 + 0.363030i
\(521\) 15.8755i 0.695520i 0.937584 + 0.347760i \(0.113058\pi\)
−0.937584 + 0.347760i \(0.886942\pi\)
\(522\) 0 0
\(523\) −19.2784 + 19.2784i −0.842987 + 0.842987i −0.989246 0.146259i \(-0.953277\pi\)
0.146259 + 0.989246i \(0.453277\pi\)
\(524\) −0.0577335 1.72178i −0.00252210 0.0752162i
\(525\) 0 0
\(526\) 37.8369 16.4207i 1.64977 0.715978i
\(527\) 12.4412i 0.541946i
\(528\) 0 0
\(529\) 1.75830 0.0764479
\(530\) 12.6469 + 1.93885i 0.549347 + 0.0842183i
\(531\) 0 0
\(532\) −0.0598297 1.78429i −0.00259394 0.0773589i
\(533\) −10.9208 + 10.9208i −0.473034 + 0.473034i
\(534\) 0 0
\(535\) 26.0546 + 16.3923i 1.12644 + 0.708701i
\(536\) 29.7578 14.1178i 1.28534 0.609796i
\(537\) 0 0
\(538\) 6.62208 16.7770i 0.285498 0.723307i
\(539\) 25.0442 + 25.0442i 1.07873 + 1.07873i
\(540\) 0 0
\(541\) −9.89164 + 9.89164i −0.425275 + 0.425275i −0.887015 0.461740i \(-0.847225\pi\)
0.461740 + 0.887015i \(0.347225\pi\)
\(542\) −27.5056 + 11.9371i −1.18147 + 0.512742i
\(543\) 0 0
\(544\) −18.4223 + 9.50894i −0.789849 + 0.407693i
\(545\) −28.7013 18.0575i −1.22943 0.773500i
\(546\) 0 0
\(547\) 18.9058 + 18.9058i 0.808355 + 0.808355i 0.984385 0.176029i \(-0.0563254\pi\)
−0.176029 + 0.984385i \(0.556325\pi\)
\(548\) 12.4476 13.3113i 0.531736 0.568632i
\(549\) 0 0
\(550\) −39.9259 + 2.86744i −1.70245 + 0.122268i
\(551\) 0.371455i 0.0158245i
\(552\) 0 0
\(553\) −0.0753234 −0.00320308
\(554\) 0.401389 1.01692i 0.0170534 0.0432046i
\(555\) 0 0
\(556\) −34.6219 + 1.16092i −1.46830 + 0.0492339i
\(557\) −14.2215 14.2215i −0.602582 0.602582i 0.338415 0.940997i \(-0.390109\pi\)
−0.940997 + 0.338415i \(0.890109\pi\)
\(558\) 0 0
\(559\) 5.74166 0.242846
\(560\) 7.38812 2.21159i 0.312205 0.0934569i
\(561\) 0 0
\(562\) 11.7430 + 27.0583i 0.495348 + 1.14139i
\(563\) −13.6907 13.6907i −0.576993 0.576993i 0.357080 0.934074i \(-0.383772\pi\)
−0.934074 + 0.357080i \(0.883772\pi\)
\(564\) 0 0
\(565\) −30.5296 + 6.94950i −1.28439 + 0.292368i
\(566\) −17.0920 + 43.3025i −0.718431 + 1.82014i
\(567\) 0 0
\(568\) 33.2497 + 11.8523i 1.39513 + 0.497311i
\(569\) 0.878871i 0.0368442i 0.999830 + 0.0184221i \(0.00586427\pi\)
−0.999830 + 0.0184221i \(0.994136\pi\)
\(570\) 0 0
\(571\) −3.72964 3.72964i −0.156081 0.156081i 0.624747 0.780827i \(-0.285202\pi\)
−0.780827 + 0.624747i \(0.785202\pi\)
\(572\) −13.7746 12.8808i −0.575945 0.538574i
\(573\) 0 0
\(574\) 4.50110 + 10.3715i 0.187872 + 0.432898i
\(575\) 22.4276 10.7684i 0.935296 0.449075i
\(576\) 0 0
\(577\) 33.4588i 1.39291i 0.717601 + 0.696454i \(0.245240\pi\)
−0.717601 + 0.696454i \(0.754760\pi\)
\(578\) −4.62974 + 2.00925i −0.192572 + 0.0835738i
\(579\) 0 0
\(580\) 1.55175 0.408378i 0.0644331 0.0169570i
\(581\) 6.18397 + 6.18397i 0.256554 + 0.256554i
\(582\) 0 0
\(583\) −22.9042 −0.948597
\(584\) 10.9537 30.7287i 0.453266 1.27156i
\(585\) 0 0
\(586\) 5.06338 12.8280i 0.209166 0.529921i
\(587\) −8.81152 + 8.81152i −0.363690 + 0.363690i −0.865170 0.501479i \(-0.832789\pi\)
0.501479 + 0.865170i \(0.332789\pi\)
\(588\) 0 0
\(589\) −2.48510 + 2.48510i −0.102397 + 0.102397i
\(590\) 2.24297 14.6306i 0.0923415 0.602333i
\(591\) 0 0
\(592\) 23.3444 + 20.4070i 0.959449 + 0.838723i
\(593\) 3.15239i 0.129453i −0.997903 0.0647267i \(-0.979382\pi\)
0.997903 0.0647267i \(-0.0206175\pi\)
\(594\) 0 0
\(595\) −6.88966 + 1.56830i −0.282448 + 0.0642942i
\(596\) 25.4933 0.854823i 1.04425 0.0350149i
\(597\) 0 0
\(598\) 10.9027 + 4.30341i 0.445843 + 0.175980i
\(599\) 39.8254i 1.62722i 0.581410 + 0.813611i \(0.302501\pi\)
−0.581410 + 0.813611i \(0.697499\pi\)
\(600\) 0 0
\(601\) 23.2146i 0.946942i 0.880810 + 0.473471i \(0.156999\pi\)
−0.880810 + 0.473471i \(0.843001\pi\)
\(602\) 1.54319 3.90965i 0.0628956 0.159345i
\(603\) 0 0
\(604\) −2.61753 2.44769i −0.106506 0.0995950i
\(605\) 45.8864 10.4452i 1.86555 0.424658i
\(606\) 0 0
\(607\) 11.0584i 0.448845i −0.974492 0.224423i \(-0.927950\pi\)
0.974492 0.224423i \(-0.0720496\pi\)
\(608\) −5.57921 1.78042i −0.226267 0.0722057i
\(609\) 0 0
\(610\) −15.2442 2.33704i −0.617221 0.0946239i
\(611\) −8.00575 + 8.00575i −0.323878 + 0.323878i
\(612\) 0 0
\(613\) −20.3006 + 20.3006i −0.819932 + 0.819932i −0.986098 0.166166i \(-0.946861\pi\)
0.166166 + 0.986098i \(0.446861\pi\)
\(614\) −19.2196 7.58619i −0.775638 0.306154i
\(615\) 0 0
\(616\) −12.4731 + 5.91752i −0.502555 + 0.238423i
\(617\) −9.58356 −0.385819 −0.192910 0.981217i \(-0.561792\pi\)
−0.192910 + 0.981217i \(0.561792\pi\)
\(618\) 0 0
\(619\) 29.0190 + 29.0190i 1.16637 + 1.16637i 0.983053 + 0.183320i \(0.0586844\pi\)
0.183320 + 0.983053i \(0.441316\pi\)
\(620\) −13.1137 7.64941i −0.526657 0.307208i
\(621\) 0 0
\(622\) −9.44197 21.7563i −0.378589 0.872349i
\(623\) 5.05320i 0.202452i
\(624\) 0 0
\(625\) 15.6327 19.5095i 0.625307 0.780379i
\(626\) −3.94514 + 1.71214i −0.157679 + 0.0684309i
\(627\) 0 0
\(628\) 29.2748 0.981622i 1.16819 0.0391710i
\(629\) −20.0880 20.0880i −0.800962 0.800962i
\(630\) 0 0
\(631\) 33.6303i 1.33880i −0.742902 0.669400i \(-0.766551\pi\)
0.742902 0.669400i \(-0.233449\pi\)
\(632\) −0.0829643 + 0.232743i −0.00330014 + 0.00925802i
\(633\) 0 0
\(634\) 25.9458 + 10.2411i 1.03044 + 0.406727i
\(635\) 48.0581 10.9395i 1.90713 0.434122i
\(636\) 0 0
\(637\) −7.36916 7.36916i −0.291977 0.291977i
\(638\) −2.63500 + 1.14356i −0.104321 + 0.0452738i
\(639\) 0 0
\(640\) 1.30394 25.2646i 0.0515428 0.998671i
\(641\) 48.7259 1.92456 0.962280 0.272062i \(-0.0877057\pi\)
0.962280 + 0.272062i \(0.0877057\pi\)
\(642\) 0 0
\(643\) −25.7142 25.7142i −1.01407 1.01407i −0.999900 0.0141702i \(-0.995489\pi\)
−0.0141702 0.999900i \(-0.504511\pi\)
\(644\) 5.86061 6.26728i 0.230940 0.246965i
\(645\) 0 0
\(646\) 4.99102 + 1.97002i 0.196369 + 0.0775092i
\(647\) 38.6931 1.52118 0.760591 0.649231i \(-0.224909\pi\)
0.760591 + 0.649231i \(0.224909\pi\)
\(648\) 0 0
\(649\) 26.4968i 1.04009i
\(650\) 11.7480 0.843733i 0.460796 0.0330939i
\(651\) 0 0
\(652\) 7.94336 0.266351i 0.311086 0.0104311i
\(653\) −4.04183 4.04183i −0.158169 0.158169i 0.623586 0.781755i \(-0.285675\pi\)
−0.781755 + 0.623586i \(0.785675\pi\)
\(654\) 0 0
\(655\) −1.63027 1.02569i −0.0636999 0.0400770i
\(656\) 37.0047 2.48443i 1.44479 0.0970006i
\(657\) 0 0
\(658\) 3.29962 + 7.60303i 0.128633 + 0.296397i
\(659\) −5.08341 + 5.08341i −0.198021 + 0.198021i −0.799151 0.601130i \(-0.794717\pi\)
0.601130 + 0.799151i \(0.294717\pi\)
\(660\) 0 0
\(661\) −9.82288 9.82288i −0.382066 0.382066i 0.489780 0.871846i \(-0.337077\pi\)
−0.871846 + 0.489780i \(0.837077\pi\)
\(662\) 44.4030 + 17.5264i 1.72577 + 0.681184i
\(663\) 0 0
\(664\) 25.9192 12.2967i 1.00586 0.477203i
\(665\) −1.68946 1.06293i −0.0655145 0.0412187i
\(666\) 0 0
\(667\) 1.26239 1.26239i 0.0488801 0.0488801i
\(668\) 11.0451 11.8115i 0.427348 0.457001i
\(669\) 0 0
\(670\) 5.58024 36.3993i 0.215584 1.40623i
\(671\) 27.6081 1.06580
\(672\) 0 0
\(673\) 10.6794i 0.411659i −0.978588 0.205830i \(-0.934011\pi\)
0.978588 0.205830i \(-0.0659893\pi\)
\(674\) 2.94639 + 6.78910i 0.113491 + 0.261507i
\(675\) 0 0
\(676\) −14.9374 13.9682i −0.574517 0.537239i
\(677\) 27.5019 27.5019i 1.05698 1.05698i 0.0587084 0.998275i \(-0.481302\pi\)
0.998275 0.0587084i \(-0.0186982\pi\)
\(678\) 0 0
\(679\) 13.6554i 0.524045i
\(680\) −2.74262 + 23.0158i −0.105175 + 0.882617i
\(681\) 0 0
\(682\) 25.2792 + 9.97802i 0.967992 + 0.382078i
\(683\) 30.3888 30.3888i 1.16279 1.16279i 0.178932 0.983861i \(-0.442736\pi\)
0.983861 0.178932i \(-0.0572642\pi\)
\(684\) 0 0
\(685\) −4.52246 19.8675i −0.172794 0.759097i
\(686\) −14.8285 + 6.43540i −0.566156 + 0.245705i
\(687\) 0 0
\(688\) −10.3808 9.07456i −0.395762 0.345964i
\(689\) 6.73948 0.256754
\(690\) 0 0
\(691\) −4.06344 + 4.06344i −0.154580 + 0.154580i −0.780160 0.625580i \(-0.784862\pi\)
0.625580 + 0.780160i \(0.284862\pi\)
\(692\) −30.8919 + 1.03585i −1.17433 + 0.0393769i
\(693\) 0 0
\(694\) 1.06196 2.69047i 0.0403115 0.102129i
\(695\) −20.6248 + 32.7818i −0.782343 + 1.24349i
\(696\) 0 0
\(697\) −33.9807 −1.28711
\(698\) −8.55545 + 21.6752i −0.323829 + 0.820417i
\(699\) 0 0
\(700\) 2.58300 8.22632i 0.0976283 0.310926i
\(701\) −31.9270 + 31.9270i −1.20587 + 1.20587i −0.233513 + 0.972354i \(0.575022\pi\)
−0.972354 + 0.233513i \(0.924978\pi\)
\(702\) 0 0
\(703\) 8.02509i 0.302672i
\(704\) 4.54625 + 45.0586i 0.171343 + 1.69821i
\(705\) 0 0
\(706\) 11.2849 + 26.0029i 0.424714 + 0.978632i
\(707\) −7.36105 7.36105i −0.276841 0.276841i
\(708\) 0 0
\(709\) 29.5514 + 29.5514i 1.10983 + 1.10983i 0.993173 + 0.116653i \(0.0372164\pi\)
0.116653 + 0.993173i \(0.462784\pi\)
\(710\) 31.8128 23.3552i 1.19391 0.876506i
\(711\) 0 0
\(712\) −15.6140 5.56580i −0.585158 0.208587i
\(713\) −16.8913 −0.632585
\(714\) 0 0
\(715\) −20.5589 + 4.67985i −0.768859 + 0.175017i
\(716\) −0.869235 25.9231i −0.0324848 0.968791i
\(717\) 0 0
\(718\) 5.45651 + 12.5730i 0.203635 + 0.469218i
\(719\) 10.6102 0.395694 0.197847 0.980233i \(-0.436605\pi\)
0.197847 + 0.980233i \(0.436605\pi\)
\(720\) 0 0
\(721\) 12.2268 0.455348
\(722\) −10.0939 23.2584i −0.375655 0.865589i
\(723\) 0 0
\(724\) 19.3973 0.650418i 0.720896 0.0241726i
\(725\) 0.594486 1.69263i 0.0220787 0.0628625i
\(726\) 0 0
\(727\) −20.3175 −0.753536 −0.376768 0.926308i \(-0.622965\pi\)
−0.376768 + 0.926308i \(0.622965\pi\)
\(728\) 3.67016 1.74121i 0.136025 0.0645334i
\(729\) 0 0
\(730\) −21.5845 29.4008i −0.798876 1.08817i
\(731\) 8.93271 + 8.93271i 0.330388 + 0.330388i
\(732\) 0 0
\(733\) −32.3903 32.3903i −1.19636 1.19636i −0.975248 0.221114i \(-0.929031\pi\)
−0.221114 0.975248i \(-0.570969\pi\)
\(734\) 7.89175 + 18.1843i 0.291290 + 0.671194i
\(735\) 0 0
\(736\) −12.9102 25.0118i −0.475878 0.921948i
\(737\) 65.9211i 2.42824i
\(738\) 0 0
\(739\) −23.8193 + 23.8193i −0.876208 + 0.876208i −0.993140 0.116932i \(-0.962694\pi\)
0.116932 + 0.993140i \(0.462694\pi\)
\(740\) 33.5249 8.82280i 1.23240 0.324333i
\(741\) 0 0
\(742\) 1.81137 4.58909i 0.0664975 0.168471i
\(743\) −29.0300 −1.06501 −0.532503 0.846428i \(-0.678749\pi\)
−0.532503 + 0.846428i \(0.678749\pi\)
\(744\) 0 0
\(745\) 15.1867 24.1384i 0.556399 0.884361i
\(746\) −5.71065 + 14.4679i −0.209082 + 0.529707i
\(747\) 0 0
\(748\) −1.39053 41.4697i −0.0508430 1.51628i
\(749\) 8.39314 8.39314i 0.306679 0.306679i
\(750\) 0 0
\(751\) −13.7034 −0.500044 −0.250022 0.968240i \(-0.580438\pi\)
−0.250022 + 0.968240i \(0.580438\pi\)
\(752\) 27.1271 1.82126i 0.989222 0.0664145i
\(753\) 0 0
\(754\) 0.775338 0.336487i 0.0282361 0.0122541i
\(755\) −3.90672 + 0.889293i −0.142180 + 0.0323647i
\(756\) 0 0
\(757\) −2.90229 + 2.90229i −0.105486 + 0.105486i −0.757880 0.652394i \(-0.773765\pi\)
0.652394 + 0.757880i \(0.273765\pi\)
\(758\) 11.2687 + 4.44789i 0.409297 + 0.161555i
\(759\) 0 0
\(760\) −5.14520 + 4.04954i −0.186636 + 0.146892i
\(761\) 15.0364i 0.545070i −0.962146 0.272535i \(-0.912138\pi\)
0.962146 0.272535i \(-0.0878621\pi\)
\(762\) 0 0
\(763\) −9.24576 + 9.24576i −0.334719 + 0.334719i
\(764\) −6.38980 + 6.83318i −0.231175 + 0.247216i
\(765\) 0 0
\(766\) 7.27339 + 16.7594i 0.262798 + 0.605543i
\(767\) 7.79660i 0.281519i
\(768\) 0 0
\(769\) −2.85110 −0.102813 −0.0514066 0.998678i \(-0.516370\pi\)
−0.0514066 + 0.998678i \(0.516370\pi\)
\(770\) −2.33898 + 15.2569i −0.0842909 + 0.549820i
\(771\) 0 0
\(772\) −11.3247 10.5899i −0.407585 0.381138i
\(773\) −6.38311 + 6.38311i −0.229584 + 0.229584i −0.812519 0.582935i \(-0.801904\pi\)
0.582935 + 0.812519i \(0.301904\pi\)
\(774\) 0 0
\(775\) −15.3012 + 7.34676i −0.549636 + 0.263903i
\(776\) 42.1940 + 15.0406i 1.51467 + 0.539926i
\(777\) 0 0
\(778\) 21.2843 + 8.40119i 0.763081 + 0.301197i
\(779\) −6.78758 6.78758i −0.243190 0.243190i
\(780\) 0 0
\(781\) −49.9561 + 49.9561i −1.78757 + 1.78757i
\(782\) 10.2669 + 23.6572i 0.367144 + 0.845979i
\(783\) 0 0
\(784\) 1.67644 + 24.9700i 0.0598728 + 0.891786i
\(785\) 17.4394 27.7189i 0.622440 0.989330i
\(786\) 0 0
\(787\) −15.8450 15.8450i −0.564813 0.564813i 0.365857 0.930671i \(-0.380776\pi\)
−0.930671 + 0.365857i \(0.880776\pi\)
\(788\) −1.20269 35.8677i −0.0428440 1.27773i
\(789\) 0 0
\(790\) 0.163483 + 0.222685i 0.00581647 + 0.00792278i
\(791\) 12.0734i 0.429281i
\(792\) 0 0
\(793\) −8.12359 −0.288477
\(794\) −22.1695 8.75059i −0.786768 0.310547i
\(795\) 0 0
\(796\) 2.83948 + 2.65523i 0.100643 + 0.0941122i
\(797\) −14.7638 14.7638i −0.522961 0.522961i 0.395503 0.918465i \(-0.370570\pi\)
−0.918465 + 0.395503i \(0.870570\pi\)
\(798\) 0 0
\(799\) −24.9102 −0.881261
\(800\) −22.5736 17.0421i −0.798098 0.602528i
\(801\) 0 0
\(802\) 39.0870 16.9633i 1.38021 0.598994i
\(803\) 46.1685 + 46.1685i 1.62925 + 1.62925i
\(804\) 0 0
\(805\) −2.12928 9.35404i −0.0750471 0.329687i
\(806\) −7.43832 2.93599i −0.262004 0.103416i
\(807\) 0 0
\(808\) −30.8528 + 14.6373i −1.08540 + 0.514937i
\(809\) 17.9052i 0.629513i −0.949172 0.314757i \(-0.898077\pi\)
0.949172 0.314757i \(-0.101923\pi\)
\(810\) 0 0
\(811\) 10.1471 + 10.1471i 0.356311 + 0.356311i 0.862451 0.506140i \(-0.168928\pi\)
−0.506140 + 0.862451i \(0.668928\pi\)
\(812\) −0.0207353 0.618386i −0.000727666 0.0217011i
\(813\) 0 0
\(814\) −56.9278 + 24.7059i −1.99532 + 0.865943i
\(815\) 4.73198 7.52119i 0.165754 0.263456i
\(816\) 0 0
\(817\) 3.56858i 0.124849i
\(818\) 3.09486 + 7.13122i 0.108209 + 0.249337i
\(819\) 0 0
\(820\) 20.8929 35.8174i 0.729611 1.25080i
\(821\) −17.6996 17.6996i −0.617720 0.617720i 0.327226 0.944946i \(-0.393886\pi\)
−0.944946 + 0.327226i \(0.893886\pi\)
\(822\) 0 0
\(823\) 20.1979 0.704054 0.352027 0.935990i \(-0.385493\pi\)
0.352027 + 0.935990i \(0.385493\pi\)
\(824\) 13.4671 37.7796i 0.469147 1.31612i
\(825\) 0 0
\(826\) −5.30891 2.09549i −0.184721 0.0729115i
\(827\) −14.2753 + 14.2753i −0.496401 + 0.496401i −0.910316 0.413915i \(-0.864161\pi\)
0.413915 + 0.910316i \(0.364161\pi\)
\(828\) 0 0
\(829\) 3.72004 3.72004i 0.129202 0.129202i −0.639549 0.768751i \(-0.720879\pi\)
0.768751 + 0.639549i \(0.220879\pi\)
\(830\) 4.86042 31.7040i 0.168708 1.10046i
\(831\) 0 0
\(832\) −1.33772 13.2583i −0.0463770 0.459649i
\(833\) 22.9295i 0.794459i
\(834\) 0 0
\(835\) −4.01290 17.6289i −0.138872 0.610075i
\(836\) 8.00575 8.56126i 0.276885 0.296097i
\(837\) 0 0
\(838\) 12.1033 30.6636i 0.418102 1.05926i
\(839\) 3.88360i 0.134077i −0.997750 0.0670384i \(-0.978645\pi\)
0.997750 0.0670384i \(-0.0213550\pi\)
\(840\) 0 0
\(841\) 28.8713i 0.995561i
\(842\) −19.3620 7.64243i −0.667259 0.263376i
\(843\) 0 0
\(844\) −0.804552 23.9940i −0.0276938 0.825909i
\(845\) −22.2945 + 5.07492i −0.766952 + 0.174583i
\(846\) 0 0
\(847\) 18.1465i 0.623521i
\(848\) −12.1848 10.6516i −0.418427 0.365777i
\(849\) 0 0
\(850\) 19.5899 + 16.9646i 0.671929 + 0.581882i
\(851\) 27.2734 27.2734i 0.934920 0.934920i
\(852\) 0 0
\(853\) −10.0574 + 10.0574i −0.344359 + 0.344359i −0.858003 0.513644i \(-0.828295\pi\)
0.513644 + 0.858003i \(0.328295\pi\)
\(854\) −2.18338 + 5.53157i −0.0747136 + 0.189286i
\(855\) 0 0
\(856\) −16.6895 35.1786i −0.570437 1.20238i
\(857\) −20.4938 −0.700056 −0.350028 0.936739i \(-0.613828\pi\)
−0.350028 + 0.936739i \(0.613828\pi\)
\(858\) 0 0
\(859\) 28.4317 + 28.4317i 0.970077 + 0.970077i 0.999565 0.0294877i \(-0.00938760\pi\)
−0.0294877 + 0.999565i \(0.509388\pi\)
\(860\) −14.9078 + 3.92331i −0.508351 + 0.133784i
\(861\) 0 0
\(862\) −5.08391 + 2.20635i −0.173159 + 0.0751487i
\(863\) 9.49626i 0.323257i 0.986852 + 0.161628i \(0.0516746\pi\)
−0.986852 + 0.161628i \(0.948325\pi\)
\(864\) 0 0
\(865\) −18.4028 + 29.2501i −0.625713 + 0.994532i
\(866\) 9.62738 + 22.1835i 0.327152 + 0.753828i
\(867\) 0 0
\(868\) −3.99839 + 4.27584i −0.135714 + 0.145131i
\(869\) −0.349686 0.349686i −0.0118623 0.0118623i
\(870\) 0 0
\(871\) 19.3970i 0.657244i
\(872\) 18.3850 + 38.7523i 0.622593 + 1.31232i
\(873\) 0 0
\(874\) −2.67468 + 6.77627i −0.0904723 + 0.229211i
\(875\) −5.99731 7.54736i −0.202746 0.255147i
\(876\) 0 0
\(877\) −19.8385 19.8385i −0.669898 0.669898i 0.287794 0.957692i \(-0.407078\pi\)
−0.957692 + 0.287794i \(0.907078\pi\)
\(878\) −12.1136 27.9123i −0.408814 0.941994i
\(879\) 0 0
\(880\) 44.5663 + 24.0318i 1.50233 + 0.810112i
\(881\) −26.6217 −0.896908 −0.448454 0.893806i \(-0.648025\pi\)
−0.448454 + 0.893806i \(0.648025\pi\)
\(882\) 0 0
\(883\) 8.94715 + 8.94715i 0.301096 + 0.301096i 0.841442 0.540347i \(-0.181707\pi\)
−0.540347 + 0.841442i \(0.681707\pi\)
\(884\) 0.409160 + 12.2023i 0.0137615 + 0.410408i
\(885\) 0 0
\(886\) −1.49020 + 3.77542i −0.0500644 + 0.126838i
\(887\) 30.8407 1.03553 0.517764 0.855523i \(-0.326765\pi\)
0.517764 + 0.855523i \(0.326765\pi\)
\(888\) 0 0
\(889\) 19.0053i 0.637418i
\(890\) −14.9392 + 10.9676i −0.500764 + 0.367633i
\(891\) 0 0
\(892\) 12.7439 + 11.9170i 0.426699 + 0.399011i
\(893\) −4.97577 4.97577i −0.166508 0.166508i
\(894\) 0 0
\(895\) −24.5453 15.4428i −0.820459 0.516195i
\(896\) −9.38747 2.65255i −0.313614 0.0886155i
\(897\) 0 0
\(898\) 10.0598 4.36581i 0.335698 0.145689i
\(899\) −0.861267 + 0.861267i −0.0287248 + 0.0287248i
\(900\) 0 0
\(901\) 10.4851 + 10.4851i 0.349309 + 0.349309i
\(902\) −27.2531 + 69.0454i −0.907428 + 2.29896i
\(903\) 0 0
\(904\) 37.3058 + 13.2981i 1.24077 + 0.442290i
\(905\) 11.5553 18.3664i 0.384110 0.610520i
\(906\) 0 0
\(907\) −35.6729 + 35.6729i −1.18450 + 1.18450i −0.205933 + 0.978566i \(0.566023\pi\)
−0.978566 + 0.205933i \(0.933977\pi\)
\(908\) −8.02980 + 0.269250i −0.266478 + 0.00893536i
\(909\) 0 0
\(910\) 0.688235 4.48928i 0.0228148 0.148818i
\(911\) −58.4656 −1.93705 −0.968526 0.248913i \(-0.919927\pi\)
−0.968526 + 0.248913i \(0.919927\pi\)
\(912\) 0 0
\(913\) 57.4176i 1.90025i
\(914\) 22.1835 9.62738i 0.733766 0.318445i
\(915\) 0 0
\(916\) −44.2436 + 1.48355i −1.46185 + 0.0490177i
\(917\) −0.525170 + 0.525170i −0.0173426 + 0.0173426i
\(918\) 0 0
\(919\) 28.9617i 0.955357i 0.878535 + 0.477678i \(0.158522\pi\)
−0.878535 + 0.477678i \(0.841478\pi\)
\(920\) −31.2485 3.72364i −1.03023 0.122765i
\(921\) 0 0
\(922\) −16.2468 + 41.1612i −0.535061 + 1.35557i
\(923\) 14.6994 14.6994i 0.483837 0.483837i
\(924\) 0 0
\(925\) 12.8436 36.5683i 0.422294 1.20236i
\(926\) −12.5020 28.8074i −0.410842 0.946669i
\(927\) 0 0
\(928\) −1.93360 0.617045i −0.0634735 0.0202555i
\(929\) −23.8093 −0.781159 −0.390580 0.920569i \(-0.627725\pi\)
−0.390580 + 0.920569i \(0.627725\pi\)
\(930\) 0 0
\(931\) 4.58012 4.58012i 0.150107 0.150107i
\(932\) −10.9364 + 11.6953i −0.358235 + 0.383093i
\(933\) 0 0
\(934\) 34.0558 + 13.4422i 1.11434 + 0.439844i
\(935\) −39.2657 24.7042i −1.28413 0.807912i
\(936\) 0 0
\(937\) 36.3858 1.18867 0.594337 0.804216i \(-0.297415\pi\)
0.594337 + 0.804216i \(0.297415\pi\)
\(938\) −13.2080 5.21334i −0.431255 0.170222i
\(939\) 0 0
\(940\) 15.3160 26.2567i 0.499551 0.856399i
\(941\) 19.5670 19.5670i 0.637865 0.637865i −0.312164 0.950028i \(-0.601054\pi\)
0.950028 + 0.312164i \(0.101054\pi\)
\(942\) 0 0
\(943\) 46.1354i 1.50237i
\(944\) −12.3223 + 14.0960i −0.401058 + 0.458786i
\(945\) 0 0
\(946\) 25.3146 10.9862i 0.823047 0.357192i
\(947\) −15.2620 15.2620i −0.495949 0.495949i 0.414226 0.910174i \(-0.364052\pi\)
−0.910174 + 0.414226i \(0.864052\pi\)
\(948\) 0 0
\(949\) −13.5849 13.5849i −0.440985 0.440985i
\(950\) 0.524401 + 7.30170i 0.0170138 + 0.236898i
\(951\) 0 0
\(952\) 8.41885 + 3.00101i 0.272856 + 0.0972633i
\(953\) 34.8080 1.12754 0.563772 0.825931i \(-0.309350\pi\)
0.563772 + 0.825931i \(0.309350\pi\)
\(954\) 0 0
\(955\) 2.32154 + 10.1987i 0.0751232 + 0.330021i
\(956\) −17.5555 + 18.7737i −0.567786 + 0.607184i
\(957\) 0 0
\(958\) −34.3293 + 14.8985i −1.10913 + 0.481348i
\(959\) −7.85690 −0.253712
\(960\) 0 0
\(961\) −19.4759 −0.628256
\(962\) 16.7508 7.26963i 0.540067 0.234382i
\(963\) 0 0
\(964\) −34.3318 + 36.7141i −1.10575 + 1.18248i
\(965\) −16.9024 + 3.84751i −0.544107 + 0.123856i
\(966\) 0 0
\(967\) 46.6707 1.50083 0.750414 0.660968i \(-0.229854\pi\)
0.750414 + 0.660968i \(0.229854\pi\)
\(968\) −56.0712 19.9873i −1.80220 0.642416i
\(969\) 0 0
\(970\) 40.3706 29.6379i 1.29622 0.951614i
\(971\) −7.25903 7.25903i −0.232953 0.232953i 0.580971 0.813924i \(-0.302673\pi\)
−0.813924 + 0.580971i \(0.802673\pi\)
\(972\) 0 0
\(973\) 10.5602 + 10.5602i 0.338546 + 0.338546i
\(974\) 33.6490 14.6032i 1.07818 0.467918i
\(975\) 0 0
\(976\) 14.6872 + 12.8391i 0.470126 + 0.410971i
\(977\) 58.1421i 1.86013i 0.367394 + 0.930065i \(0.380250\pi\)
−0.367394 + 0.930065i \(0.619750\pi\)
\(978\) 0 0
\(979\) 23.4593 23.4593i 0.749762 0.749762i
\(980\) 24.1689 + 14.0981i 0.772046 + 0.450347i
\(981\) 0 0
\(982\) 15.1719 + 5.98854i 0.484155 + 0.191102i
\(983\) 23.9250 0.763089 0.381544 0.924350i \(-0.375392\pi\)
0.381544 + 0.924350i \(0.375392\pi\)
\(984\) 0 0
\(985\) −33.9614 21.3669i −1.08210 0.680806i
\(986\) 1.72975 + 0.682752i 0.0550863 + 0.0217433i
\(987\) 0 0
\(988\) −2.35566 + 2.51912i −0.0749435 + 0.0801438i
\(989\) −12.1279 + 12.1279i −0.385644 + 0.385644i
\(990\) 0 0
\(991\) 29.5680 0.939259 0.469630 0.882864i \(-0.344387\pi\)
0.469630 + 0.882864i \(0.344387\pi\)
\(992\) 8.80799 + 17.0643i 0.279654 + 0.541791i
\(993\) 0 0
\(994\) −6.05845 13.9600i −0.192162 0.442783i
\(995\) 4.23798 0.964698i 0.134353 0.0305830i
\(996\) 0 0
\(997\) −27.7001 + 27.7001i −0.877272 + 0.877272i −0.993252 0.115980i \(-0.962999\pi\)
0.115980 + 0.993252i \(0.462999\pi\)
\(998\) 15.1461 38.3724i 0.479440 1.21466i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bm.g.469.3 yes 32
3.2 odd 2 inner 720.2.bm.g.469.14 yes 32
5.4 even 2 inner 720.2.bm.g.469.13 yes 32
15.14 odd 2 inner 720.2.bm.g.469.4 yes 32
16.13 even 4 inner 720.2.bm.g.109.15 yes 32
48.29 odd 4 inner 720.2.bm.g.109.2 yes 32
80.29 even 4 inner 720.2.bm.g.109.1 32
240.29 odd 4 inner 720.2.bm.g.109.16 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
720.2.bm.g.109.1 32 80.29 even 4 inner
720.2.bm.g.109.2 yes 32 48.29 odd 4 inner
720.2.bm.g.109.15 yes 32 16.13 even 4 inner
720.2.bm.g.109.16 yes 32 240.29 odd 4 inner
720.2.bm.g.469.3 yes 32 1.1 even 1 trivial
720.2.bm.g.469.4 yes 32 15.14 odd 2 inner
720.2.bm.g.469.13 yes 32 5.4 even 2 inner
720.2.bm.g.469.14 yes 32 3.2 odd 2 inner