Properties

Label 720.2.cu.a.497.2
Level $720$
Weight $2$
Character 720.497
Analytic conductor $5.749$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(113,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.cu (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 497.2
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 720.497
Dual form 720.2.cu.a.113.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10721 - 1.33195i) q^{3} +(0.792893 - 2.09077i) q^{5} +(1.05902 - 0.283763i) q^{7} +(-0.548188 + 2.94949i) q^{9} +(5.44949 + 3.14626i) q^{11} +(3.34607 + 0.896575i) q^{13} +(-3.66270 + 1.25882i) q^{15} +(3.14626 - 3.14626i) q^{17} -1.55051i q^{19} +(-1.55051 - 1.09638i) q^{21} +(-0.258819 + 0.965926i) q^{23} +(-3.74264 - 3.31552i) q^{25} +(4.53553 - 2.53553i) q^{27} +(-1.57313 + 2.72474i) q^{29} +(-2.22474 - 3.85337i) q^{31} +(-1.84304 - 10.7420i) q^{33} +(0.246405 - 2.43916i) q^{35} +(-3.00000 - 3.00000i) q^{37} +(-2.51059 - 5.44949i) q^{39} +(-3.39898 + 1.96240i) q^{41} +(-0.896575 - 3.34607i) q^{43} +(5.73205 + 3.48477i) q^{45} +(-2.32937 - 8.69333i) q^{47} +(-5.02118 + 2.89898i) q^{49} +(-7.67423 - 0.707107i) q^{51} +(6.61037 + 6.61037i) q^{53} +(10.8990 - 8.89898i) q^{55} +(-2.06520 + 1.71673i) q^{57} +(5.90326 + 10.2247i) q^{59} +(2.72474 - 4.71940i) q^{61} +(0.256415 + 3.27912i) q^{63} +(4.52761 - 6.28497i) q^{65} +(-0.978838 + 3.65307i) q^{67} +(1.57313 - 0.724745i) q^{69} -0.635674i q^{71} +(2.89898 - 2.89898i) q^{73} +(-0.272229 + 8.65597i) q^{75} +(6.66390 + 1.78559i) q^{77} +(-2.12132 - 1.22474i) q^{79} +(-8.39898 - 3.23375i) q^{81} +(0.531752 - 0.142483i) q^{83} +(-4.08346 - 9.07277i) q^{85} +(5.37101 - 0.921519i) q^{87} -2.36773 q^{89} +3.79796 q^{91} +(-2.66925 + 7.22973i) q^{93} +(-3.24176 - 1.22939i) q^{95} +(10.7902 - 2.89123i) q^{97} +(-12.2672 + 14.3485i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 12 q^{5} + 8 q^{7} + 24 q^{11} - 16 q^{15} - 32 q^{21} + 4 q^{25} + 8 q^{27} - 8 q^{31} + 16 q^{33} - 24 q^{37} + 12 q^{41} + 32 q^{45} - 32 q^{51} + 48 q^{55} + 28 q^{57} + 12 q^{61} + 32 q^{63}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.10721 1.33195i −0.639246 0.769002i
\(4\) 0 0
\(5\) 0.792893 2.09077i 0.354593 0.935021i
\(6\) 0 0
\(7\) 1.05902 0.283763i 0.400271 0.107252i −0.0530669 0.998591i \(-0.516900\pi\)
0.453338 + 0.891339i \(0.350233\pi\)
\(8\) 0 0
\(9\) −0.548188 + 2.94949i −0.182729 + 0.983163i
\(10\) 0 0
\(11\) 5.44949 + 3.14626i 1.64308 + 0.948634i 0.979729 + 0.200329i \(0.0642011\pi\)
0.663354 + 0.748305i \(0.269132\pi\)
\(12\) 0 0
\(13\) 3.34607 + 0.896575i 0.928032 + 0.248665i 0.691015 0.722840i \(-0.257164\pi\)
0.237016 + 0.971506i \(0.423830\pi\)
\(14\) 0 0
\(15\) −3.66270 + 1.25882i −0.945705 + 0.325026i
\(16\) 0 0
\(17\) 3.14626 3.14626i 0.763081 0.763081i −0.213797 0.976878i \(-0.568583\pi\)
0.976878 + 0.213797i \(0.0685831\pi\)
\(18\) 0 0
\(19\) 1.55051i 0.355711i −0.984057 0.177856i \(-0.943084\pi\)
0.984057 0.177856i \(-0.0569160\pi\)
\(20\) 0 0
\(21\) −1.55051 1.09638i −0.338349 0.239249i
\(22\) 0 0
\(23\) −0.258819 + 0.965926i −0.0539675 + 0.201409i −0.987646 0.156704i \(-0.949913\pi\)
0.933678 + 0.358113i \(0.116580\pi\)
\(24\) 0 0
\(25\) −3.74264 3.31552i −0.748528 0.663103i
\(26\) 0 0
\(27\) 4.53553 2.53553i 0.872864 0.487964i
\(28\) 0 0
\(29\) −1.57313 + 2.72474i −0.292123 + 0.505972i −0.974312 0.225204i \(-0.927695\pi\)
0.682188 + 0.731177i \(0.261028\pi\)
\(30\) 0 0
\(31\) −2.22474 3.85337i −0.399576 0.692086i 0.594098 0.804393i \(-0.297509\pi\)
−0.993674 + 0.112307i \(0.964176\pi\)
\(32\) 0 0
\(33\) −1.84304 10.7420i −0.320832 1.86995i
\(34\) 0 0
\(35\) 0.246405 2.43916i 0.0416500 0.412293i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) −2.51059 5.44949i −0.402016 0.872617i
\(40\) 0 0
\(41\) −3.39898 + 1.96240i −0.530831 + 0.306476i −0.741355 0.671113i \(-0.765816\pi\)
0.210524 + 0.977589i \(0.432483\pi\)
\(42\) 0 0
\(43\) −0.896575 3.34607i −0.136726 0.510270i −0.999985 0.00550783i \(-0.998247\pi\)
0.863258 0.504762i \(-0.168420\pi\)
\(44\) 0 0
\(45\) 5.73205 + 3.48477i 0.854484 + 0.519478i
\(46\) 0 0
\(47\) −2.32937 8.69333i −0.339774 1.26805i −0.898600 0.438768i \(-0.855415\pi\)
0.558827 0.829285i \(-0.311252\pi\)
\(48\) 0 0
\(49\) −5.02118 + 2.89898i −0.717311 + 0.414140i
\(50\) 0 0
\(51\) −7.67423 0.707107i −1.07461 0.0990148i
\(52\) 0 0
\(53\) 6.61037 + 6.61037i 0.908004 + 0.908004i 0.996111 0.0881074i \(-0.0280819\pi\)
−0.0881074 + 0.996111i \(0.528082\pi\)
\(54\) 0 0
\(55\) 10.8990 8.89898i 1.46962 1.19994i
\(56\) 0 0
\(57\) −2.06520 + 1.71673i −0.273543 + 0.227387i
\(58\) 0 0
\(59\) 5.90326 + 10.2247i 0.768539 + 1.33115i 0.938355 + 0.345673i \(0.112349\pi\)
−0.169816 + 0.985476i \(0.554317\pi\)
\(60\) 0 0
\(61\) 2.72474 4.71940i 0.348868 0.604257i −0.637181 0.770714i \(-0.719900\pi\)
0.986049 + 0.166458i \(0.0532329\pi\)
\(62\) 0 0
\(63\) 0.256415 + 3.27912i 0.0323053 + 0.413130i
\(64\) 0 0
\(65\) 4.52761 6.28497i 0.561580 0.779554i
\(66\) 0 0
\(67\) −0.978838 + 3.65307i −0.119584 + 0.446294i −0.999589 0.0286709i \(-0.990873\pi\)
0.880005 + 0.474965i \(0.157539\pi\)
\(68\) 0 0
\(69\) 1.57313 0.724745i 0.189383 0.0872490i
\(70\) 0 0
\(71\) 0.635674i 0.0754407i −0.999288 0.0377203i \(-0.987990\pi\)
0.999288 0.0377203i \(-0.0120096\pi\)
\(72\) 0 0
\(73\) 2.89898 2.89898i 0.339300 0.339300i −0.516804 0.856104i \(-0.672878\pi\)
0.856104 + 0.516804i \(0.172878\pi\)
\(74\) 0 0
\(75\) −0.272229 + 8.65597i −0.0314343 + 0.999506i
\(76\) 0 0
\(77\) 6.66390 + 1.78559i 0.759422 + 0.203487i
\(78\) 0 0
\(79\) −2.12132 1.22474i −0.238667 0.137795i 0.375897 0.926662i \(-0.377335\pi\)
−0.614564 + 0.788867i \(0.710668\pi\)
\(80\) 0 0
\(81\) −8.39898 3.23375i −0.933220 0.359306i
\(82\) 0 0
\(83\) 0.531752 0.142483i 0.0583674 0.0156395i −0.229517 0.973305i \(-0.573715\pi\)
0.287885 + 0.957665i \(0.407048\pi\)
\(84\) 0 0
\(85\) −4.08346 9.07277i −0.442914 0.984080i
\(86\) 0 0
\(87\) 5.37101 0.921519i 0.575833 0.0987973i
\(88\) 0 0
\(89\) −2.36773 −0.250978 −0.125489 0.992095i \(-0.540050\pi\)
−0.125489 + 0.992095i \(0.540050\pi\)
\(90\) 0 0
\(91\) 3.79796 0.398134
\(92\) 0 0
\(93\) −2.66925 + 7.22973i −0.276788 + 0.749688i
\(94\) 0 0
\(95\) −3.24176 1.22939i −0.332598 0.126133i
\(96\) 0 0
\(97\) 10.7902 2.89123i 1.09558 0.293560i 0.334616 0.942355i \(-0.391393\pi\)
0.760963 + 0.648795i \(0.224727\pi\)
\(98\) 0 0
\(99\) −12.2672 + 14.3485i −1.23290 + 1.44208i
\(100\) 0 0
\(101\) 1.10102 + 0.635674i 0.109556 + 0.0632520i 0.553777 0.832665i \(-0.313186\pi\)
−0.444221 + 0.895917i \(0.646519\pi\)
\(102\) 0 0
\(103\) 3.96008 + 1.06110i 0.390198 + 0.104553i 0.448584 0.893741i \(-0.351929\pi\)
−0.0583855 + 0.998294i \(0.518595\pi\)
\(104\) 0 0
\(105\) −3.52166 + 2.37245i −0.343679 + 0.231528i
\(106\) 0 0
\(107\) −3.71051 + 3.71051i −0.358708 + 0.358708i −0.863337 0.504628i \(-0.831630\pi\)
0.504628 + 0.863337i \(0.331630\pi\)
\(108\) 0 0
\(109\) 20.3485i 1.94903i −0.224323 0.974515i \(-0.572017\pi\)
0.224323 0.974515i \(-0.427983\pi\)
\(110\) 0 0
\(111\) −0.674235 + 7.31747i −0.0639955 + 0.694544i
\(112\) 0 0
\(113\) −3.57117 + 13.3278i −0.335948 + 1.25377i 0.566890 + 0.823793i \(0.308146\pi\)
−0.902838 + 0.429981i \(0.858520\pi\)
\(114\) 0 0
\(115\) 1.81431 + 1.30701i 0.169186 + 0.121879i
\(116\) 0 0
\(117\) −4.47871 + 9.37769i −0.414057 + 0.866968i
\(118\) 0 0
\(119\) 2.43916 4.22474i 0.223597 0.387282i
\(120\) 0 0
\(121\) 14.2980 + 24.7648i 1.29981 + 2.25134i
\(122\) 0 0
\(123\) 6.37720 + 2.35449i 0.575012 + 0.212297i
\(124\) 0 0
\(125\) −9.89949 + 5.19615i −0.885438 + 0.464758i
\(126\) 0 0
\(127\) −14.1237 14.1237i −1.25328 1.25328i −0.954242 0.299036i \(-0.903335\pi\)
−0.299036 0.954242i \(-0.596665\pi\)
\(128\) 0 0
\(129\) −3.46410 + 4.89898i −0.304997 + 0.431331i
\(130\) 0 0
\(131\) −9.12372 + 5.26758i −0.797143 + 0.460231i −0.842471 0.538741i \(-0.818900\pi\)
0.0453278 + 0.998972i \(0.485567\pi\)
\(132\) 0 0
\(133\) −0.439978 1.64202i −0.0381509 0.142381i
\(134\) 0 0
\(135\) −1.70502 11.4932i −0.146745 0.989174i
\(136\) 0 0
\(137\) −0.569930 2.12701i −0.0486924 0.181723i 0.937297 0.348533i \(-0.113320\pi\)
−0.985989 + 0.166810i \(0.946653\pi\)
\(138\) 0 0
\(139\) −11.1708 + 6.44949i −0.947499 + 0.547039i −0.892303 0.451437i \(-0.850912\pi\)
−0.0551956 + 0.998476i \(0.517578\pi\)
\(140\) 0 0
\(141\) −9.00000 + 12.7279i −0.757937 + 1.07188i
\(142\) 0 0
\(143\) 15.4135 + 15.4135i 1.28894 + 1.28894i
\(144\) 0 0
\(145\) 4.44949 + 5.44949i 0.369510 + 0.452555i
\(146\) 0 0
\(147\) 9.42078 + 3.47820i 0.777013 + 0.286877i
\(148\) 0 0
\(149\) 6.45145 + 11.1742i 0.528523 + 0.915429i 0.999447 + 0.0332550i \(0.0105874\pi\)
−0.470924 + 0.882174i \(0.656079\pi\)
\(150\) 0 0
\(151\) −10.7980 + 18.7026i −0.878725 + 1.52200i −0.0259849 + 0.999662i \(0.508272\pi\)
−0.852741 + 0.522335i \(0.825061\pi\)
\(152\) 0 0
\(153\) 7.55513 + 11.0046i 0.610796 + 0.889671i
\(154\) 0 0
\(155\) −9.82050 + 1.59612i −0.788801 + 0.128203i
\(156\) 0 0
\(157\) 1.59165 5.94012i 0.127028 0.474073i −0.872876 0.487942i \(-0.837748\pi\)
0.999904 + 0.0138684i \(0.00441459\pi\)
\(158\) 0 0
\(159\) 1.48565 16.1237i 0.117819 1.27869i
\(160\) 0 0
\(161\) 1.09638i 0.0864066i
\(162\) 0 0
\(163\) 0.449490 0.449490i 0.0352068 0.0352068i −0.689284 0.724491i \(-0.742075\pi\)
0.724491 + 0.689284i \(0.242075\pi\)
\(164\) 0 0
\(165\) −23.9204 4.66390i −1.86220 0.363084i
\(166\) 0 0
\(167\) 10.4300 + 2.79472i 0.807100 + 0.216262i 0.638699 0.769457i \(-0.279473\pi\)
0.168401 + 0.985719i \(0.446140\pi\)
\(168\) 0 0
\(169\) −0.866025 0.500000i −0.0666173 0.0384615i
\(170\) 0 0
\(171\) 4.57321 + 0.849971i 0.349722 + 0.0649989i
\(172\) 0 0
\(173\) 2.99536 0.802603i 0.227733 0.0610208i −0.143148 0.989701i \(-0.545723\pi\)
0.370881 + 0.928680i \(0.379056\pi\)
\(174\) 0 0
\(175\) −4.90435 2.44917i −0.370734 0.185140i
\(176\) 0 0
\(177\) 7.08274 19.1838i 0.532371 1.44194i
\(178\) 0 0
\(179\) 17.6062 1.31595 0.657976 0.753039i \(-0.271413\pi\)
0.657976 + 0.753039i \(0.271413\pi\)
\(180\) 0 0
\(181\) −10.5505 −0.784213 −0.392107 0.919920i \(-0.628254\pi\)
−0.392107 + 0.919920i \(0.628254\pi\)
\(182\) 0 0
\(183\) −9.30286 + 1.59612i −0.687687 + 0.117988i
\(184\) 0 0
\(185\) −8.65099 + 3.89363i −0.636033 + 0.286265i
\(186\) 0 0
\(187\) 27.0445 7.24656i 1.97769 0.529921i
\(188\) 0 0
\(189\) 4.08372 3.97219i 0.297047 0.288935i
\(190\) 0 0
\(191\) 2.87628 + 1.66062i 0.208120 + 0.120158i 0.600437 0.799672i \(-0.294993\pi\)
−0.392317 + 0.919830i \(0.628327\pi\)
\(192\) 0 0
\(193\) −16.7303 4.48288i −1.20428 0.322685i −0.399762 0.916619i \(-0.630907\pi\)
−0.804513 + 0.593934i \(0.797574\pi\)
\(194\) 0 0
\(195\) −13.3843 + 0.928203i −0.958467 + 0.0664700i
\(196\) 0 0
\(197\) 6.92820 6.92820i 0.493614 0.493614i −0.415829 0.909443i \(-0.636508\pi\)
0.909443 + 0.415829i \(0.136508\pi\)
\(198\) 0 0
\(199\) 3.55051i 0.251689i −0.992050 0.125844i \(-0.959836\pi\)
0.992050 0.125844i \(-0.0401640\pi\)
\(200\) 0 0
\(201\) 5.94949 2.74094i 0.419645 0.193331i
\(202\) 0 0
\(203\) −0.892794 + 3.33195i −0.0626618 + 0.233857i
\(204\) 0 0
\(205\) 1.40790 + 8.66246i 0.0983322 + 0.605012i
\(206\) 0 0
\(207\) −2.70711 1.29289i −0.188157 0.0898623i
\(208\) 0 0
\(209\) 4.87832 8.44949i 0.337440 0.584463i
\(210\) 0 0
\(211\) 9.44949 + 16.3670i 0.650530 + 1.12675i 0.982995 + 0.183635i \(0.0587864\pi\)
−0.332465 + 0.943116i \(0.607880\pi\)
\(212\) 0 0
\(213\) −0.846687 + 0.703823i −0.0580141 + 0.0482251i
\(214\) 0 0
\(215\) −7.70674 0.778539i −0.525595 0.0530959i
\(216\) 0 0
\(217\) −3.44949 3.44949i −0.234167 0.234167i
\(218\) 0 0
\(219\) −7.07107 0.651531i −0.477818 0.0440264i
\(220\) 0 0
\(221\) 13.3485 7.70674i 0.897915 0.518412i
\(222\) 0 0
\(223\) −2.15087 8.02714i −0.144033 0.537537i −0.999797 0.0201706i \(-0.993579\pi\)
0.855764 0.517367i \(-0.173088\pi\)
\(224\) 0 0
\(225\) 11.8307 9.22135i 0.788717 0.614757i
\(226\) 0 0
\(227\) 3.90843 + 14.5865i 0.259412 + 0.968138i 0.965583 + 0.260096i \(0.0837543\pi\)
−0.706171 + 0.708041i \(0.749579\pi\)
\(228\) 0 0
\(229\) −14.1582 + 8.17423i −0.935600 + 0.540169i −0.888578 0.458725i \(-0.848306\pi\)
−0.0470214 + 0.998894i \(0.514973\pi\)
\(230\) 0 0
\(231\) −5.00000 10.8530i −0.328976 0.714075i
\(232\) 0 0
\(233\) 10.9959 + 10.9959i 0.720363 + 0.720363i 0.968679 0.248316i \(-0.0798770\pi\)
−0.248316 + 0.968679i \(0.579877\pi\)
\(234\) 0 0
\(235\) −20.0227 2.02270i −1.30614 0.131947i
\(236\) 0 0
\(237\) 0.717439 + 4.18154i 0.0466027 + 0.271620i
\(238\) 0 0
\(239\) −8.48528 14.6969i −0.548867 0.950666i −0.998353 0.0573782i \(-0.981726\pi\)
0.449485 0.893288i \(-0.351607\pi\)
\(240\) 0 0
\(241\) −9.50000 + 16.4545i −0.611949 + 1.05993i 0.378963 + 0.925412i \(0.376281\pi\)
−0.990912 + 0.134515i \(0.957053\pi\)
\(242\) 0 0
\(243\) 4.99221 + 14.7675i 0.320250 + 0.947333i
\(244\) 0 0
\(245\) 2.07984 + 12.7967i 0.132876 + 0.817552i
\(246\) 0 0
\(247\) 1.39015 5.18811i 0.0884531 0.330111i
\(248\) 0 0
\(249\) −0.778539 0.550510i −0.0493379 0.0348872i
\(250\) 0 0
\(251\) 11.1708i 0.705097i −0.935793 0.352549i \(-0.885315\pi\)
0.935793 0.352549i \(-0.114685\pi\)
\(252\) 0 0
\(253\) −4.44949 + 4.44949i −0.279737 + 0.279737i
\(254\) 0 0
\(255\) −7.56325 + 15.4844i −0.473629 + 0.969671i
\(256\) 0 0
\(257\) −25.1579 6.74105i −1.56931 0.420495i −0.633713 0.773568i \(-0.718470\pi\)
−0.935596 + 0.353073i \(0.885137\pi\)
\(258\) 0 0
\(259\) −4.02834 2.32577i −0.250309 0.144516i
\(260\) 0 0
\(261\) −7.17423 6.13361i −0.444074 0.379661i
\(262\) 0 0
\(263\) −12.2643 + 3.28621i −0.756249 + 0.202636i −0.616288 0.787521i \(-0.711364\pi\)
−0.139961 + 0.990157i \(0.544698\pi\)
\(264\) 0 0
\(265\) 19.0621 8.57944i 1.17097 0.527031i
\(266\) 0 0
\(267\) 2.62156 + 3.15369i 0.160437 + 0.193003i
\(268\) 0 0
\(269\) 4.70334 0.286768 0.143384 0.989667i \(-0.454202\pi\)
0.143384 + 0.989667i \(0.454202\pi\)
\(270\) 0 0
\(271\) 16.0454 0.974689 0.487345 0.873210i \(-0.337966\pi\)
0.487345 + 0.873210i \(0.337966\pi\)
\(272\) 0 0
\(273\) −4.20512 5.05870i −0.254506 0.306166i
\(274\) 0 0
\(275\) −9.96399 29.8432i −0.600851 1.79961i
\(276\) 0 0
\(277\) 13.7983 3.69723i 0.829057 0.222145i 0.180754 0.983528i \(-0.442146\pi\)
0.648302 + 0.761383i \(0.275479\pi\)
\(278\) 0 0
\(279\) 12.5851 4.44949i 0.753448 0.266384i
\(280\) 0 0
\(281\) −0.151531 0.0874863i −0.00903957 0.00521900i 0.495473 0.868623i \(-0.334995\pi\)
−0.504513 + 0.863404i \(0.668328\pi\)
\(282\) 0 0
\(283\) 6.66112 + 1.78484i 0.395962 + 0.106098i 0.451305 0.892370i \(-0.350959\pi\)
−0.0553430 + 0.998467i \(0.517625\pi\)
\(284\) 0 0
\(285\) 1.95181 + 5.67905i 0.115615 + 0.336398i
\(286\) 0 0
\(287\) −3.04272 + 3.04272i −0.179606 + 0.179606i
\(288\) 0 0
\(289\) 2.79796i 0.164586i
\(290\) 0 0
\(291\) −15.7980 11.1708i −0.926093 0.654846i
\(292\) 0 0
\(293\) 5.70577 21.2942i 0.333335 1.24402i −0.572329 0.820024i \(-0.693960\pi\)
0.905663 0.423998i \(-0.139374\pi\)
\(294\) 0 0
\(295\) 26.0582 4.23523i 1.51717 0.246585i
\(296\) 0 0
\(297\) 32.6938 + 0.452623i 1.89709 + 0.0262638i
\(298\) 0 0
\(299\) −1.73205 + 3.00000i −0.100167 + 0.173494i
\(300\) 0 0
\(301\) −1.89898 3.28913i −0.109455 0.189582i
\(302\) 0 0
\(303\) −0.372369 2.17033i −0.0213921 0.124682i
\(304\) 0 0
\(305\) −7.70674 9.43879i −0.441287 0.540464i
\(306\) 0 0
\(307\) −0.674235 0.674235i −0.0384806 0.0384806i 0.687605 0.726085i \(-0.258662\pi\)
−0.726085 + 0.687605i \(0.758662\pi\)
\(308\) 0 0
\(309\) −2.97129 6.44949i −0.169031 0.366899i
\(310\) 0 0
\(311\) 17.8207 10.2888i 1.01052 0.583422i 0.0991741 0.995070i \(-0.468380\pi\)
0.911343 + 0.411648i \(0.135047\pi\)
\(312\) 0 0
\(313\) 1.29958 + 4.85009i 0.0734564 + 0.274143i 0.992879 0.119128i \(-0.0380100\pi\)
−0.919422 + 0.393271i \(0.871343\pi\)
\(314\) 0 0
\(315\) 7.05919 + 2.06389i 0.397741 + 0.116287i
\(316\) 0 0
\(317\) 0.284965 + 1.06350i 0.0160052 + 0.0597323i 0.973467 0.228829i \(-0.0734897\pi\)
−0.957461 + 0.288561i \(0.906823\pi\)
\(318\) 0 0
\(319\) −17.1455 + 9.89898i −0.959966 + 0.554236i
\(320\) 0 0
\(321\) 9.05051 + 0.833917i 0.505150 + 0.0465447i
\(322\) 0 0
\(323\) −4.87832 4.87832i −0.271437 0.271437i
\(324\) 0 0
\(325\) −9.55051 14.4495i −0.529767 0.801513i
\(326\) 0 0
\(327\) −27.1032 + 22.5300i −1.49881 + 1.24591i
\(328\) 0 0
\(329\) −4.93369 8.54541i −0.272003 0.471124i
\(330\) 0 0
\(331\) −2.22474 + 3.85337i −0.122283 + 0.211800i −0.920668 0.390347i \(-0.872355\pi\)
0.798385 + 0.602148i \(0.205688\pi\)
\(332\) 0 0
\(333\) 10.4930 7.20390i 0.575015 0.394772i
\(334\) 0 0
\(335\) 6.86162 + 4.94302i 0.374890 + 0.270066i
\(336\) 0 0
\(337\) −7.97861 + 29.7766i −0.434622 + 1.62203i 0.307346 + 0.951598i \(0.400559\pi\)
−0.741968 + 0.670435i \(0.766108\pi\)
\(338\) 0 0
\(339\) 21.7060 10.0000i 1.17891 0.543125i
\(340\) 0 0
\(341\) 27.9985i 1.51621i
\(342\) 0 0
\(343\) −9.92168 + 9.92168i −0.535721 + 0.535721i
\(344\) 0 0
\(345\) −0.267949 3.86370i −0.0144259 0.208015i
\(346\) 0 0
\(347\) 4.05886 + 1.08757i 0.217891 + 0.0583837i 0.366113 0.930570i \(-0.380688\pi\)
−0.148222 + 0.988954i \(0.547355\pi\)
\(348\) 0 0
\(349\) 13.0297 + 7.52270i 0.697464 + 0.402681i 0.806402 0.591367i \(-0.201412\pi\)
−0.108938 + 0.994049i \(0.534745\pi\)
\(350\) 0 0
\(351\) 17.4495 4.41761i 0.931385 0.235795i
\(352\) 0 0
\(353\) −33.1244 + 8.87564i −1.76303 + 0.472403i −0.987328 0.158694i \(-0.949272\pi\)
−0.775704 + 0.631097i \(0.782605\pi\)
\(354\) 0 0
\(355\) −1.32905 0.504022i −0.0705386 0.0267507i
\(356\) 0 0
\(357\) −8.32780 + 1.42883i −0.440754 + 0.0756215i
\(358\) 0 0
\(359\) −17.4634 −0.921682 −0.460841 0.887483i \(-0.652452\pi\)
−0.460841 + 0.887483i \(0.652452\pi\)
\(360\) 0 0
\(361\) 16.5959 0.873469
\(362\) 0 0
\(363\) 17.1547 46.4639i 0.900388 2.43872i
\(364\) 0 0
\(365\) −3.76252 8.35968i −0.196939 0.437566i
\(366\) 0 0
\(367\) 9.42418 2.52520i 0.491938 0.131814i −0.00431778 0.999991i \(-0.501374\pi\)
0.496256 + 0.868176i \(0.334708\pi\)
\(368\) 0 0
\(369\) −3.92480 11.1010i −0.204317 0.577896i
\(370\) 0 0
\(371\) 8.87628 + 5.12472i 0.460833 + 0.266062i
\(372\) 0 0
\(373\) −19.6004 5.25190i −1.01487 0.271933i −0.287206 0.957869i \(-0.592727\pi\)
−0.727662 + 0.685935i \(0.759393\pi\)
\(374\) 0 0
\(375\) 17.8818 + 7.43243i 0.923412 + 0.383809i
\(376\) 0 0
\(377\) −7.70674 + 7.70674i −0.396917 + 0.396917i
\(378\) 0 0
\(379\) 6.65153i 0.341666i 0.985300 + 0.170833i \(0.0546459\pi\)
−0.985300 + 0.170833i \(0.945354\pi\)
\(380\) 0 0
\(381\) −3.17423 + 34.4500i −0.162621 + 1.76493i
\(382\) 0 0
\(383\) −7.19464 + 26.8508i −0.367629 + 1.37201i 0.496193 + 0.868212i \(0.334731\pi\)
−0.863822 + 0.503798i \(0.831936\pi\)
\(384\) 0 0
\(385\) 9.01702 12.5169i 0.459550 0.637921i
\(386\) 0 0
\(387\) 10.3607 0.810167i 0.526663 0.0411831i
\(388\) 0 0
\(389\) −2.81237 + 4.87117i −0.142593 + 0.246978i −0.928472 0.371402i \(-0.878877\pi\)
0.785879 + 0.618380i \(0.212211\pi\)
\(390\) 0 0
\(391\) 2.22474 + 3.85337i 0.112510 + 0.194873i
\(392\) 0 0
\(393\) 17.1180 + 6.32005i 0.863489 + 0.318804i
\(394\) 0 0
\(395\) −4.24264 + 3.46410i −0.213470 + 0.174298i
\(396\) 0 0
\(397\) 15.4495 + 15.4495i 0.775388 + 0.775388i 0.979043 0.203655i \(-0.0652821\pi\)
−0.203655 + 0.979043i \(0.565282\pi\)
\(398\) 0 0
\(399\) −1.69994 + 2.40408i −0.0851036 + 0.120355i
\(400\) 0 0
\(401\) 22.3485 12.9029i 1.11603 0.644340i 0.175645 0.984454i \(-0.443799\pi\)
0.940384 + 0.340114i \(0.110466\pi\)
\(402\) 0 0
\(403\) −3.98930 14.8883i −0.198721 0.741638i
\(404\) 0 0
\(405\) −13.4205 + 14.9963i −0.666871 + 0.745173i
\(406\) 0 0
\(407\) −6.90968 25.7873i −0.342500 1.27823i
\(408\) 0 0
\(409\) −16.5420 + 9.55051i −0.817948 + 0.472242i −0.849708 0.527253i \(-0.823222\pi\)
0.0317605 + 0.999496i \(0.489889\pi\)
\(410\) 0 0
\(411\) −2.20204 + 3.11416i −0.108619 + 0.153610i
\(412\) 0 0
\(413\) 9.15306 + 9.15306i 0.450393 + 0.450393i
\(414\) 0 0
\(415\) 0.123724 1.22474i 0.00607339 0.0601204i
\(416\) 0 0
\(417\) 20.9588 + 7.73810i 1.02636 + 0.378937i
\(418\) 0 0
\(419\) 5.97469 + 10.3485i 0.291883 + 0.505556i 0.974255 0.225449i \(-0.0723850\pi\)
−0.682372 + 0.731005i \(0.739052\pi\)
\(420\) 0 0
\(421\) 7.44949 12.9029i 0.363066 0.628849i −0.625398 0.780306i \(-0.715063\pi\)
0.988464 + 0.151457i \(0.0483966\pi\)
\(422\) 0 0
\(423\) 26.9178 2.10488i 1.30879 0.102343i
\(424\) 0 0
\(425\) −22.2068 + 1.34385i −1.07719 + 0.0651863i
\(426\) 0 0
\(427\) 1.54636 5.77111i 0.0748338 0.279284i
\(428\) 0 0
\(429\) 3.46410 37.5959i 0.167248 1.81515i
\(430\) 0 0
\(431\) 15.5563i 0.749323i −0.927162 0.374661i \(-0.877759\pi\)
0.927162 0.374661i \(-0.122241\pi\)
\(432\) 0 0
\(433\) 8.55051 8.55051i 0.410911 0.410911i −0.471145 0.882056i \(-0.656159\pi\)
0.882056 + 0.471145i \(0.156159\pi\)
\(434\) 0 0
\(435\) 2.33195 11.9602i 0.111809 0.573448i
\(436\) 0 0
\(437\) 1.49768 + 0.401302i 0.0716436 + 0.0191969i
\(438\) 0 0
\(439\) 8.83523 + 5.10102i 0.421682 + 0.243458i 0.695797 0.718239i \(-0.255051\pi\)
−0.274114 + 0.961697i \(0.588385\pi\)
\(440\) 0 0
\(441\) −5.79796 16.3991i −0.276093 0.780910i
\(442\) 0 0
\(443\) −0.531752 + 0.142483i −0.0252643 + 0.00676955i −0.271429 0.962458i \(-0.587496\pi\)
0.246165 + 0.969228i \(0.420830\pi\)
\(444\) 0 0
\(445\) −1.87735 + 4.95037i −0.0889951 + 0.234670i
\(446\) 0 0
\(447\) 7.74045 20.9652i 0.366111 0.991620i
\(448\) 0 0
\(449\) −21.7060 −1.02437 −0.512185 0.858875i \(-0.671164\pi\)
−0.512185 + 0.858875i \(0.671164\pi\)
\(450\) 0 0
\(451\) −24.6969 −1.16293
\(452\) 0 0
\(453\) 36.8665 6.32530i 1.73214 0.297188i
\(454\) 0 0
\(455\) 3.01138 7.94066i 0.141175 0.372264i
\(456\) 0 0
\(457\) −5.94012 + 1.59165i −0.277867 + 0.0744543i −0.395061 0.918655i \(-0.629277\pi\)
0.117194 + 0.993109i \(0.462610\pi\)
\(458\) 0 0
\(459\) 6.29253 22.2474i 0.293710 1.03842i
\(460\) 0 0
\(461\) 16.3763 + 9.45485i 0.762719 + 0.440356i 0.830271 0.557360i \(-0.188186\pi\)
−0.0675520 + 0.997716i \(0.521519\pi\)
\(462\) 0 0
\(463\) −31.8946 8.54613i −1.48227 0.397172i −0.575150 0.818048i \(-0.695056\pi\)
−0.907118 + 0.420876i \(0.861723\pi\)
\(464\) 0 0
\(465\) 12.9993 + 11.3132i 0.602827 + 0.524637i
\(466\) 0 0
\(467\) 2.82843 2.82843i 0.130884 0.130884i −0.638630 0.769514i \(-0.720499\pi\)
0.769514 + 0.638630i \(0.220499\pi\)
\(468\) 0 0
\(469\) 4.14643i 0.191464i
\(470\) 0 0
\(471\) −9.67423 + 4.45694i −0.445765 + 0.205365i
\(472\) 0 0
\(473\) 5.64173 21.0552i 0.259407 0.968120i
\(474\) 0 0
\(475\) −5.14074 + 5.80300i −0.235873 + 0.266260i
\(476\) 0 0
\(477\) −23.1209 + 15.8735i −1.05863 + 0.726797i
\(478\) 0 0
\(479\) −3.53553 + 6.12372i −0.161543 + 0.279800i −0.935422 0.353533i \(-0.884980\pi\)
0.773879 + 0.633333i \(0.218314\pi\)
\(480\) 0 0
\(481\) −7.34847 12.7279i −0.335061 0.580343i
\(482\) 0 0
\(483\) 1.46032 1.21391i 0.0664469 0.0552350i
\(484\) 0 0
\(485\) 2.51059 24.8523i 0.114000 1.12848i
\(486\) 0 0
\(487\) 12.0000 + 12.0000i 0.543772 + 0.543772i 0.924632 0.380861i \(-0.124372\pi\)
−0.380861 + 0.924632i \(0.624372\pi\)
\(488\) 0 0
\(489\) −1.09638 0.101021i −0.0495799 0.00456831i
\(490\) 0 0
\(491\) −0.247449 + 0.142865i −0.0111672 + 0.00644739i −0.505573 0.862784i \(-0.668719\pi\)
0.494406 + 0.869231i \(0.335386\pi\)
\(492\) 0 0
\(493\) 3.62328 + 13.5223i 0.163184 + 0.609012i
\(494\) 0 0
\(495\) 20.2728 + 37.0247i 0.911193 + 1.66414i
\(496\) 0 0
\(497\) −0.180381 0.673191i −0.00809119 0.0301967i
\(498\) 0 0
\(499\) 7.70674 4.44949i 0.345001 0.199187i −0.317480 0.948265i \(-0.602837\pi\)
0.662481 + 0.749078i \(0.269503\pi\)
\(500\) 0 0
\(501\) −7.82577 16.9866i −0.349629 0.758906i
\(502\) 0 0
\(503\) −16.7563 16.7563i −0.747125 0.747125i 0.226813 0.973938i \(-0.427169\pi\)
−0.973938 + 0.226813i \(0.927169\pi\)
\(504\) 0 0
\(505\) 2.20204 1.79796i 0.0979895 0.0800081i
\(506\) 0 0
\(507\) 0.292893 + 1.70711i 0.0130078 + 0.0758153i
\(508\) 0 0
\(509\) 19.8150 + 34.3207i 0.878286 + 1.52124i 0.853220 + 0.521551i \(0.174646\pi\)
0.0250662 + 0.999686i \(0.492020\pi\)
\(510\) 0 0
\(511\) 2.24745 3.89270i 0.0994213 0.172203i
\(512\) 0 0
\(513\) −3.93137 7.03239i −0.173574 0.310488i
\(514\) 0 0
\(515\) 5.35844 7.43828i 0.236121 0.327770i
\(516\) 0 0
\(517\) 14.6576 54.7030i 0.644642 2.40584i
\(518\) 0 0
\(519\) −4.38551 3.10102i −0.192502 0.136120i
\(520\) 0 0
\(521\) 29.4449i 1.29000i 0.764181 + 0.645001i \(0.223143\pi\)
−0.764181 + 0.645001i \(0.776857\pi\)
\(522\) 0 0
\(523\) −1.77526 + 1.77526i −0.0776265 + 0.0776265i −0.744854 0.667228i \(-0.767481\pi\)
0.667228 + 0.744854i \(0.267481\pi\)
\(524\) 0 0
\(525\) 2.16795 + 9.24408i 0.0946171 + 0.403445i
\(526\) 0 0
\(527\) −19.1234 5.12409i −0.833027 0.223209i
\(528\) 0 0
\(529\) 19.0526 + 11.0000i 0.828372 + 0.478261i
\(530\) 0 0
\(531\) −33.3939 + 11.8065i −1.44917 + 0.512359i
\(532\) 0 0
\(533\) −13.1326 + 3.51888i −0.568838 + 0.152420i
\(534\) 0 0
\(535\) 4.81578 + 10.6999i 0.208204 + 0.462595i
\(536\) 0 0
\(537\) −19.4937 23.4506i −0.841217 1.01197i
\(538\) 0 0
\(539\) −36.4838 −1.57147
\(540\) 0 0
\(541\) −25.9444 −1.11544 −0.557718 0.830030i \(-0.688323\pi\)
−0.557718 + 0.830030i \(0.688323\pi\)
\(542\) 0 0
\(543\) 11.6816 + 14.0528i 0.501305 + 0.603062i
\(544\) 0 0
\(545\) −42.5440 16.1342i −1.82238 0.691112i
\(546\) 0 0
\(547\) −20.6594 + 5.53567i −0.883332 + 0.236688i −0.671844 0.740693i \(-0.734498\pi\)
−0.211488 + 0.977381i \(0.567831\pi\)
\(548\) 0 0
\(549\) 12.4261 + 10.6237i 0.530335 + 0.453410i
\(550\) 0 0
\(551\) 4.22474 + 2.43916i 0.179980 + 0.103912i
\(552\) 0 0
\(553\) −2.59405 0.695075i −0.110310 0.0295576i
\(554\) 0 0
\(555\) 14.7646 + 7.21164i 0.626721 + 0.306117i
\(556\) 0 0
\(557\) −16.3670 + 16.3670i −0.693492 + 0.693492i −0.962999 0.269507i \(-0.913139\pi\)
0.269507 + 0.962999i \(0.413139\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) 0 0
\(561\) −39.5959 27.9985i −1.67174 1.18210i
\(562\) 0 0
\(563\) 8.89004 33.1781i 0.374670 1.39829i −0.479155 0.877730i \(-0.659057\pi\)
0.853826 0.520559i \(-0.174276\pi\)
\(564\) 0 0
\(565\) 25.0338 + 18.0340i 1.05318 + 0.758697i
\(566\) 0 0
\(567\) −9.81229 1.04128i −0.412077 0.0437297i
\(568\) 0 0
\(569\) 13.0458 22.5959i 0.546907 0.947270i −0.451578 0.892232i \(-0.649139\pi\)
0.998484 0.0550383i \(-0.0175281\pi\)
\(570\) 0 0
\(571\) 13.5505 + 23.4702i 0.567071 + 0.982196i 0.996854 + 0.0792637i \(0.0252569\pi\)
−0.429782 + 0.902932i \(0.641410\pi\)
\(572\) 0 0
\(573\) −0.972768 5.66971i −0.0406380 0.236855i
\(574\) 0 0
\(575\) 4.17121 2.75699i 0.173951 0.114975i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) 0 0
\(579\) 12.5529 + 27.2474i 0.521683 + 1.13237i
\(580\) 0 0
\(581\) 0.522704 0.301783i 0.0216854 0.0125201i
\(582\) 0 0
\(583\) 15.2252 + 56.8211i 0.630562 + 2.35329i
\(584\) 0 0
\(585\) 16.0555 + 16.7995i 0.663812 + 0.694573i
\(586\) 0 0
\(587\) −8.03514 29.9876i −0.331646 1.23772i −0.907460 0.420138i \(-0.861981\pi\)
0.575814 0.817581i \(-0.304685\pi\)
\(588\) 0 0
\(589\) −5.97469 + 3.44949i −0.246183 + 0.142134i
\(590\) 0 0
\(591\) −16.8990 1.55708i −0.695131 0.0640496i
\(592\) 0 0
\(593\) −10.0745 10.0745i −0.413709 0.413709i 0.469320 0.883028i \(-0.344499\pi\)
−0.883028 + 0.469320i \(0.844499\pi\)
\(594\) 0 0
\(595\) −6.89898 8.44949i −0.282831 0.346395i
\(596\) 0 0
\(597\) −4.72911 + 3.93115i −0.193549 + 0.160891i
\(598\) 0 0
\(599\) 16.8991 + 29.2702i 0.690480 + 1.19595i 0.971681 + 0.236297i \(0.0759339\pi\)
−0.281201 + 0.959649i \(0.590733\pi\)
\(600\) 0 0
\(601\) −17.3485 + 30.0484i −0.707659 + 1.22570i 0.258065 + 0.966128i \(0.416915\pi\)
−0.965723 + 0.259573i \(0.916418\pi\)
\(602\) 0 0
\(603\) −10.2381 4.88964i −0.416928 0.199122i
\(604\) 0 0
\(605\) 63.1142 10.2579i 2.56596 0.417043i
\(606\) 0 0
\(607\) −5.73717 + 21.4114i −0.232864 + 0.869062i 0.746235 + 0.665682i \(0.231859\pi\)
−0.979100 + 0.203380i \(0.934807\pi\)
\(608\) 0 0
\(609\) 5.42650 2.50000i 0.219893 0.101305i
\(610\) 0 0
\(611\) 31.1769i 1.26128i
\(612\) 0 0
\(613\) −12.7980 + 12.7980i −0.516905 + 0.516905i −0.916633 0.399729i \(-0.869104\pi\)
0.399729 + 0.916633i \(0.369104\pi\)
\(614\) 0 0
\(615\) 9.97914 11.4664i 0.402398 0.462369i
\(616\) 0 0
\(617\) 6.85906 + 1.83788i 0.276135 + 0.0739902i 0.394229 0.919012i \(-0.371012\pi\)
−0.118094 + 0.993002i \(0.537678\pi\)
\(618\) 0 0
\(619\) 21.4275 + 12.3712i 0.861244 + 0.497239i 0.864429 0.502756i \(-0.167680\pi\)
−0.00318471 + 0.999995i \(0.501014\pi\)
\(620\) 0 0
\(621\) 1.27526 + 5.03723i 0.0511742 + 0.202137i
\(622\) 0 0
\(623\) −2.50746 + 0.671873i −0.100459 + 0.0269180i
\(624\) 0 0
\(625\) 3.01472 + 24.8176i 0.120589 + 0.992703i
\(626\) 0 0
\(627\) −16.6556 + 2.85765i −0.665161 + 0.114124i
\(628\) 0 0
\(629\) −18.8776 −0.752699
\(630\) 0 0
\(631\) 12.8990 0.513500 0.256750 0.966478i \(-0.417348\pi\)
0.256750 + 0.966478i \(0.417348\pi\)
\(632\) 0 0
\(633\) 11.3375 30.7079i 0.450625 1.22053i
\(634\) 0 0
\(635\) −40.7281 + 18.3309i −1.61624 + 0.727438i
\(636\) 0 0
\(637\) −19.4003 + 5.19831i −0.768670 + 0.205964i
\(638\) 0 0
\(639\) 1.87492 + 0.348469i 0.0741705 + 0.0137852i
\(640\) 0 0
\(641\) −7.74745 4.47299i −0.306006 0.176673i 0.339132 0.940739i \(-0.389867\pi\)
−0.645138 + 0.764066i \(0.723200\pi\)
\(642\) 0 0
\(643\) −30.6976 8.22539i −1.21059 0.324378i −0.403599 0.914936i \(-0.632241\pi\)
−0.806995 + 0.590558i \(0.798908\pi\)
\(644\) 0 0
\(645\) 7.49598 + 11.1270i 0.295154 + 0.438126i
\(646\) 0 0
\(647\) −24.9558 + 24.9558i −0.981114 + 0.981114i −0.999825 0.0187105i \(-0.994044\pi\)
0.0187105 + 0.999825i \(0.494044\pi\)
\(648\) 0 0
\(649\) 74.2929i 2.91625i
\(650\) 0 0
\(651\) −0.775255 + 8.41385i −0.0303846 + 0.329765i
\(652\) 0 0
\(653\) −5.57768 + 20.8162i −0.218272 + 0.814601i 0.766718 + 0.641985i \(0.221889\pi\)
−0.984989 + 0.172616i \(0.944778\pi\)
\(654\) 0 0
\(655\) 3.77917 + 23.2522i 0.147664 + 0.908540i
\(656\) 0 0
\(657\) 6.96132 + 10.1397i 0.271587 + 0.395587i
\(658\) 0 0
\(659\) 5.65685 9.79796i 0.220360 0.381674i −0.734557 0.678546i \(-0.762610\pi\)
0.954917 + 0.296872i \(0.0959435\pi\)
\(660\) 0 0
\(661\) 15.3485 + 26.5843i 0.596986 + 1.03401i 0.993263 + 0.115880i \(0.0369687\pi\)
−0.396277 + 0.918131i \(0.629698\pi\)
\(662\) 0 0
\(663\) −25.0445 9.24656i −0.972648 0.359106i
\(664\) 0 0
\(665\) −3.78194 0.382053i −0.146657 0.0148154i
\(666\) 0 0
\(667\) −2.22474 2.22474i −0.0861425 0.0861425i
\(668\) 0 0
\(669\) −8.31031 + 11.7526i −0.321295 + 0.454380i
\(670\) 0 0
\(671\) 29.6969 17.1455i 1.14644 0.661896i
\(672\) 0 0
\(673\) −4.22778 15.7783i −0.162969 0.608208i −0.998291 0.0584468i \(-0.981385\pi\)
0.835322 0.549762i \(-0.185281\pi\)
\(674\) 0 0
\(675\) −25.3815 5.54804i −0.976933 0.213544i
\(676\) 0 0
\(677\) 1.65750 + 6.18587i 0.0637028 + 0.237742i 0.990435 0.137981i \(-0.0440612\pi\)
−0.926732 + 0.375723i \(0.877394\pi\)
\(678\) 0 0
\(679\) 10.6066 6.12372i 0.407044 0.235007i
\(680\) 0 0
\(681\) 15.1010 21.3561i 0.578672 0.818366i
\(682\) 0 0
\(683\) 13.8564 + 13.8564i 0.530201 + 0.530201i 0.920632 0.390431i \(-0.127674\pi\)
−0.390431 + 0.920632i \(0.627674\pi\)
\(684\) 0 0
\(685\) −4.89898 0.494897i −0.187180 0.0189091i
\(686\) 0 0
\(687\) 26.5637 + 9.80745i 1.01347 + 0.374178i
\(688\) 0 0
\(689\) 16.1920 + 28.0454i 0.616867 + 1.06844i
\(690\) 0 0
\(691\) 16.4722 28.5307i 0.626632 1.08536i −0.361591 0.932337i \(-0.617766\pi\)
0.988223 0.153021i \(-0.0489003\pi\)
\(692\) 0 0
\(693\) −8.91964 + 18.6763i −0.338829 + 0.709453i
\(694\) 0 0
\(695\) 4.62712 + 28.4694i 0.175516 + 1.07991i
\(696\) 0 0
\(697\) −4.51985 + 16.8683i −0.171202 + 0.638933i
\(698\) 0 0
\(699\) 2.47127 26.8207i 0.0934719 1.01445i
\(700\) 0 0
\(701\) 23.9309i 0.903857i −0.892054 0.451928i \(-0.850736\pi\)
0.892054 0.451928i \(-0.149264\pi\)
\(702\) 0 0
\(703\) −4.65153 + 4.65153i −0.175436 + 0.175436i
\(704\) 0 0
\(705\) 19.4751 + 28.9088i 0.733476 + 1.08877i
\(706\) 0 0
\(707\) 1.34638 + 0.360762i 0.0506359 + 0.0135678i
\(708\) 0 0
\(709\) −38.4069 22.1742i −1.44240 0.832771i −0.444392 0.895833i \(-0.646580\pi\)
−0.998010 + 0.0630617i \(0.979914\pi\)
\(710\) 0 0
\(711\) 4.77526 5.58542i 0.179086 0.209470i
\(712\) 0 0
\(713\) 4.29788 1.15161i 0.160957 0.0431282i
\(714\) 0 0
\(715\) 44.4473 20.0048i 1.66223 0.748137i
\(716\) 0 0
\(717\) −10.1806 + 27.5745i −0.380203 + 1.02979i
\(718\) 0 0
\(719\) 32.5269 1.21305 0.606525 0.795065i \(-0.292563\pi\)
0.606525 + 0.795065i \(0.292563\pi\)
\(720\) 0 0
\(721\) 4.49490 0.167399
\(722\) 0 0
\(723\) 32.4350 5.56497i 1.20627 0.206964i
\(724\) 0 0
\(725\) 14.9216 4.98200i 0.554174 0.185027i
\(726\) 0 0
\(727\) −30.2836 + 8.11447i −1.12316 + 0.300949i −0.772160 0.635428i \(-0.780824\pi\)
−0.350996 + 0.936377i \(0.614157\pi\)
\(728\) 0 0
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) 0 0
\(731\) −13.3485 7.70674i −0.493711 0.285044i
\(732\) 0 0
\(733\) 13.8603 + 3.71385i 0.511941 + 0.137174i 0.505536 0.862805i \(-0.331295\pi\)
0.00640470 + 0.999979i \(0.497961\pi\)
\(734\) 0 0
\(735\) 14.7418 16.9389i 0.543759 0.624799i
\(736\) 0 0
\(737\) −16.8277 + 16.8277i −0.619856 + 0.619856i
\(738\) 0 0
\(739\) 24.9444i 0.917594i 0.888541 + 0.458797i \(0.151720\pi\)
−0.888541 + 0.458797i \(0.848280\pi\)
\(740\) 0 0
\(741\) −8.44949 + 3.89270i −0.310400 + 0.143002i
\(742\) 0 0
\(743\) −0.0261460 + 0.0975783i −0.000959205 + 0.00357980i −0.966404 0.257029i \(-0.917257\pi\)
0.965445 + 0.260609i \(0.0839232\pi\)
\(744\) 0 0
\(745\) 28.4781 4.62852i 1.04336 0.169576i
\(746\) 0 0
\(747\) 0.128751 + 1.64650i 0.00471074 + 0.0602425i
\(748\) 0 0
\(749\) −2.87659 + 4.98240i −0.105108 + 0.182053i
\(750\) 0 0
\(751\) −4.34847 7.53177i −0.158678 0.274838i 0.775714 0.631084i \(-0.217390\pi\)
−0.934392 + 0.356246i \(0.884056\pi\)
\(752\) 0 0
\(753\) −14.8790 + 12.3684i −0.542222 + 0.450731i
\(754\) 0 0
\(755\) 30.5412 + 37.4052i 1.11151 + 1.36132i
\(756\) 0 0
\(757\) −22.0454 22.0454i −0.801254 0.801254i 0.182038 0.983292i \(-0.441731\pi\)
−0.983292 + 0.182038i \(0.941731\pi\)
\(758\) 0 0
\(759\) 10.8530 + 1.00000i 0.393939 + 0.0362977i
\(760\) 0 0
\(761\) −15.3990 + 8.89060i −0.558213 + 0.322284i −0.752428 0.658675i \(-0.771117\pi\)
0.194215 + 0.980959i \(0.437784\pi\)
\(762\) 0 0
\(763\) −5.77414 21.5494i −0.209038 0.780141i
\(764\) 0 0
\(765\) 28.9985 7.07055i 1.04844 0.255636i
\(766\) 0 0
\(767\) 10.5854 + 39.5054i 0.382218 + 1.42646i
\(768\) 0 0
\(769\) 17.0580 9.84847i 0.615129 0.355145i −0.159841 0.987143i \(-0.551098\pi\)
0.774970 + 0.631998i \(0.217765\pi\)
\(770\) 0 0
\(771\) 18.8763 + 40.9729i 0.679812 + 1.47560i
\(772\) 0 0
\(773\) −3.11416 3.11416i −0.112008 0.112008i 0.648881 0.760890i \(-0.275237\pi\)
−0.760890 + 0.648881i \(0.775237\pi\)
\(774\) 0 0
\(775\) −4.44949 + 21.7980i −0.159830 + 0.783006i
\(776\) 0 0
\(777\) 1.36240 + 7.94066i 0.0488759 + 0.284870i
\(778\) 0 0
\(779\) 3.04272 + 5.27015i 0.109017 + 0.188823i
\(780\) 0 0
\(781\) 2.00000 3.46410i 0.0715656 0.123955i
\(782\) 0 0
\(783\) −0.226311 + 16.3469i −0.00808771 + 0.584191i
\(784\) 0 0
\(785\) −11.1574 8.03766i −0.398225 0.286876i
\(786\) 0 0
\(787\) −1.06110 + 3.96008i −0.0378241 + 0.141162i −0.982256 0.187546i \(-0.939947\pi\)
0.944432 + 0.328708i \(0.106613\pi\)
\(788\) 0 0
\(789\) 17.9562 + 12.6969i 0.639257 + 0.452023i
\(790\) 0 0
\(791\) 15.1278i 0.537881i
\(792\) 0 0
\(793\) 13.3485 13.3485i 0.474018 0.474018i
\(794\) 0 0
\(795\) −32.5330 15.8905i −1.15383 0.563579i
\(796\) 0 0
\(797\) −19.5137 5.22867i −0.691210 0.185209i −0.103920 0.994586i \(-0.533139\pi\)
−0.587290 + 0.809377i \(0.699805\pi\)
\(798\) 0 0
\(799\) −34.6803 20.0227i −1.22690 0.708352i
\(800\) 0 0
\(801\) 1.29796 6.98358i 0.0458611 0.246753i
\(802\) 0 0
\(803\) 24.9189 6.67700i 0.879369 0.235626i
\(804\) 0 0
\(805\) 2.29227 + 0.869309i 0.0807919 + 0.0306391i
\(806\) 0 0
\(807\) −5.20757 6.26462i −0.183315 0.220525i
\(808\) 0 0
\(809\) 54.0901 1.90171 0.950853 0.309644i \(-0.100210\pi\)
0.950853 + 0.309644i \(0.100210\pi\)
\(810\) 0 0
\(811\) −43.6413 −1.53245 −0.766227 0.642570i \(-0.777868\pi\)
−0.766227 + 0.642570i \(0.777868\pi\)
\(812\) 0 0
\(813\) −17.7656 21.3717i −0.623066 0.749538i
\(814\) 0 0
\(815\) −0.583382 1.29618i −0.0204350 0.0454031i
\(816\) 0 0
\(817\) −5.18811 + 1.39015i −0.181509 + 0.0486352i
\(818\) 0 0
\(819\) −2.08200 + 11.2020i −0.0727508 + 0.391431i
\(820\) 0 0
\(821\) −22.3207 12.8868i −0.778997 0.449754i 0.0570780 0.998370i \(-0.481822\pi\)
−0.836075 + 0.548616i \(0.815155\pi\)
\(822\) 0 0
\(823\) −46.9519 12.5807i −1.63664 0.438536i −0.680811 0.732459i \(-0.738373\pi\)
−0.955829 + 0.293923i \(0.905039\pi\)
\(824\) 0 0
\(825\) −28.7175 + 46.3141i −0.999815 + 1.61245i
\(826\) 0 0
\(827\) −27.3235 + 27.3235i −0.950133 + 0.950133i −0.998814 0.0486816i \(-0.984498\pi\)
0.0486816 + 0.998814i \(0.484498\pi\)
\(828\) 0 0
\(829\) 15.4495i 0.536583i −0.963338 0.268291i \(-0.913541\pi\)
0.963338 0.268291i \(-0.0864590\pi\)
\(830\) 0 0
\(831\) −20.2020 14.2850i −0.700801 0.495541i
\(832\) 0 0
\(833\) −6.67700 + 24.9189i −0.231344 + 0.863389i
\(834\) 0 0
\(835\) 14.1130 19.5909i 0.488401 0.677970i
\(836\) 0 0
\(837\) −19.8608 11.8362i −0.686488 0.409118i
\(838\) 0 0
\(839\) −10.1459 + 17.5732i −0.350275 + 0.606695i −0.986298 0.164976i \(-0.947245\pi\)
0.636022 + 0.771671i \(0.280579\pi\)
\(840\) 0 0
\(841\) 9.55051 + 16.5420i 0.329328 + 0.570413i
\(842\) 0 0
\(843\) 0.0512483 + 0.298697i 0.00176509 + 0.0102877i
\(844\) 0 0
\(845\) −1.73205 + 1.41421i −0.0595844 + 0.0486504i
\(846\) 0 0
\(847\) 22.1691 + 22.1691i 0.761740 + 0.761740i
\(848\) 0 0
\(849\) −4.99791 10.8485i −0.171528 0.372319i
\(850\) 0 0
\(851\) 3.67423 2.12132i 0.125951 0.0727179i
\(852\) 0 0
\(853\) −9.60723 35.8547i −0.328945 1.22764i −0.910286 0.413980i \(-0.864138\pi\)
0.581340 0.813660i \(-0.302528\pi\)
\(854\) 0 0
\(855\) 5.40317 8.88760i 0.184784 0.303950i
\(856\) 0 0
\(857\) 0.982984 + 3.66855i 0.0335781 + 0.125315i 0.980680 0.195616i \(-0.0626707\pi\)
−0.947102 + 0.320932i \(0.896004\pi\)
\(858\) 0 0
\(859\) −2.16064 + 1.24745i −0.0737202 + 0.0425624i −0.536407 0.843959i \(-0.680219\pi\)
0.462687 + 0.886522i \(0.346885\pi\)
\(860\) 0 0
\(861\) 7.42168 + 0.683837i 0.252930 + 0.0233051i
\(862\) 0 0
\(863\) 27.7842 + 27.7842i 0.945787 + 0.945787i 0.998604 0.0528175i \(-0.0168202\pi\)
−0.0528175 + 0.998604i \(0.516820\pi\)
\(864\) 0 0
\(865\) 0.696938 6.89898i 0.0236966 0.234572i
\(866\) 0 0
\(867\) −3.72674 + 3.09792i −0.126567 + 0.105211i
\(868\) 0 0
\(869\) −7.70674 13.3485i −0.261433 0.452816i
\(870\) 0 0
\(871\) −6.55051 + 11.3458i −0.221956 + 0.384438i
\(872\) 0 0
\(873\) 2.61258 + 33.4105i 0.0884225 + 1.13078i
\(874\) 0 0
\(875\) −9.00927 + 8.31193i −0.304569 + 0.280995i
\(876\) 0 0
\(877\) 2.10558 7.85813i 0.0711004 0.265350i −0.921220 0.389041i \(-0.872806\pi\)
0.992321 + 0.123691i \(0.0394731\pi\)
\(878\) 0 0
\(879\) −34.6803 + 15.9773i −1.16974 + 0.538901i
\(880\) 0 0
\(881\) 58.3006i 1.96420i −0.188368 0.982098i \(-0.560320\pi\)
0.188368 0.982098i \(-0.439680\pi\)
\(882\) 0 0
\(883\) 40.2702 40.2702i 1.35520 1.35520i 0.475463 0.879736i \(-0.342281\pi\)
0.879736 0.475463i \(-0.157719\pi\)
\(884\) 0 0
\(885\) −34.4930 30.0190i −1.15947 1.00908i
\(886\) 0 0
\(887\) −26.8508 7.19464i −0.901561 0.241572i −0.221874 0.975075i \(-0.571217\pi\)
−0.679686 + 0.733503i \(0.737884\pi\)
\(888\) 0 0
\(889\) −18.9651 10.9495i −0.636068 0.367234i
\(890\) 0 0
\(891\) −35.5959 44.0477i −1.19251 1.47565i
\(892\) 0 0
\(893\) −13.4791 + 3.61171i −0.451061 + 0.120861i
\(894\) 0 0
\(895\) 13.9599 36.8106i 0.466627 1.23044i
\(896\) 0 0
\(897\) 5.91359 1.01461i 0.197449 0.0338769i
\(898\) 0 0
\(899\) 13.9993 0.466902
\(900\) 0 0
\(901\) 41.5959 1.38576
\(902\) 0 0
\(903\) −2.27840 + 6.17109i −0.0758203 + 0.205361i
\(904\) 0 0
\(905\) −8.36543 + 22.0587i −0.278076 + 0.733256i
\(906\) 0 0
\(907\) 6.38512 1.71089i 0.212015 0.0568091i −0.151248 0.988496i \(-0.548329\pi\)
0.363263 + 0.931687i \(0.381663\pi\)
\(908\) 0 0
\(909\) −2.47848 + 2.89898i −0.0822061 + 0.0961531i
\(910\) 0 0
\(911\) −6.12372 3.53553i −0.202888 0.117137i 0.395114 0.918632i \(-0.370705\pi\)
−0.598002 + 0.801495i \(0.704038\pi\)
\(912\) 0 0
\(913\) 3.34607 + 0.896575i 0.110739 + 0.0296723i
\(914\) 0 0
\(915\) −4.03906 + 20.7157i −0.133527 + 0.684840i
\(916\) 0 0
\(917\) −8.16744 + 8.16744i −0.269713 + 0.269713i
\(918\) 0 0
\(919\) 27.3485i 0.902143i −0.892488 0.451071i \(-0.851042\pi\)
0.892488 0.451071i \(-0.148958\pi\)
\(920\) 0 0
\(921\) −0.151531 + 1.64456i −0.00499311 + 0.0541902i
\(922\) 0 0
\(923\) 0.569930 2.12701i 0.0187595 0.0700113i
\(924\) 0 0
\(925\) 1.28138 + 21.1745i 0.0421314 + 0.696212i
\(926\) 0 0
\(927\) −5.30057 + 11.0985i −0.174094 + 0.364524i
\(928\) 0 0
\(929\) 23.9309 41.4495i 0.785147 1.35991i −0.143765 0.989612i \(-0.545921\pi\)
0.928912 0.370302i \(-0.120746\pi\)
\(930\) 0 0
\(931\) 4.49490 + 7.78539i 0.147314 + 0.255156i
\(932\) 0 0
\(933\) −33.4353 12.3445i −1.09462 0.404140i
\(934\) 0 0
\(935\) 6.29253 62.2896i 0.205788 2.03709i
\(936\) 0 0
\(937\) −12.8990 12.8990i −0.421391 0.421391i 0.464291 0.885683i \(-0.346309\pi\)
−0.885683 + 0.464291i \(0.846309\pi\)
\(938\) 0 0
\(939\) 5.02118 7.10102i 0.163860 0.231733i
\(940\) 0 0
\(941\) 5.47730 3.16232i 0.178555 0.103089i −0.408059 0.912956i \(-0.633794\pi\)
0.586613 + 0.809867i \(0.300461\pi\)
\(942\) 0 0
\(943\) −1.01581 3.79107i −0.0330795 0.123454i
\(944\) 0 0
\(945\) −5.06699 11.6877i −0.164829 0.380199i
\(946\) 0 0
\(947\) −10.6233 39.6468i −0.345212 1.28835i −0.892364 0.451316i \(-0.850955\pi\)
0.547152 0.837033i \(-0.315712\pi\)
\(948\) 0 0
\(949\) 12.2993 7.10102i 0.399253 0.230509i
\(950\) 0 0
\(951\) 1.10102 1.55708i 0.0357030 0.0504917i
\(952\) 0 0
\(953\) 19.6561 + 19.6561i 0.636724 + 0.636724i 0.949746 0.313022i \(-0.101341\pi\)
−0.313022 + 0.949746i \(0.601341\pi\)
\(954\) 0 0
\(955\) 5.75255 4.69694i 0.186148 0.151989i
\(956\) 0 0
\(957\) 32.1686 + 11.8768i 1.03986 + 0.383923i
\(958\) 0 0
\(959\) −1.20713 2.09082i −0.0389804 0.0675159i
\(960\) 0 0
\(961\) 5.60102 9.70125i 0.180678 0.312944i
\(962\) 0 0
\(963\) −8.91005 12.9782i −0.287122 0.418215i
\(964\) 0 0
\(965\) −22.6380 + 31.4248i −0.728744 + 1.01160i
\(966\) 0 0
\(967\) 13.0577 48.7319i 0.419907 1.56711i −0.354894 0.934907i \(-0.615483\pi\)
0.774800 0.632206i \(-0.217850\pi\)
\(968\) 0 0
\(969\) −1.09638 + 11.8990i −0.0352207 + 0.382250i
\(970\) 0 0
\(971\) 49.2117i 1.57928i −0.613570 0.789640i \(-0.710267\pi\)
0.613570 0.789640i \(-0.289733\pi\)
\(972\) 0 0
\(973\) −10.0000 + 10.0000i −0.320585 + 0.320585i
\(974\) 0 0
\(975\) −8.67163 + 28.7194i −0.277714 + 0.919756i
\(976\) 0 0
\(977\) 41.0469 + 10.9985i 1.31321 + 0.351873i 0.846429 0.532502i \(-0.178748\pi\)
0.466778 + 0.884374i \(0.345415\pi\)
\(978\) 0 0
\(979\) −12.9029 7.44949i −0.412378 0.238087i
\(980\) 0 0
\(981\) 60.0176 + 11.1548i 1.91621 + 0.356145i
\(982\) 0 0
\(983\) −45.2034 + 12.1122i −1.44176 + 0.386319i −0.893151 0.449757i \(-0.851510\pi\)
−0.548612 + 0.836077i \(0.684844\pi\)
\(984\) 0 0
\(985\) −8.99196 19.9786i −0.286508 0.636571i
\(986\) 0 0
\(987\) −5.91945 + 16.0330i −0.188418 + 0.510335i
\(988\) 0 0
\(989\) 3.46410 0.110152
\(990\) 0 0
\(991\) 56.7423 1.80248 0.901240 0.433320i \(-0.142658\pi\)
0.901240 + 0.433320i \(0.142658\pi\)
\(992\) 0 0
\(993\) 7.59575 1.30323i 0.241044 0.0413566i
\(994\) 0 0
\(995\) −7.42330 2.81518i −0.235334 0.0892471i
\(996\) 0 0
\(997\) 39.9528 10.7053i 1.26532 0.339041i 0.437082 0.899422i \(-0.356012\pi\)
0.828235 + 0.560381i \(0.189345\pi\)
\(998\) 0 0
\(999\) −21.2132 6.00000i −0.671156 0.189832i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.cu.a.497.2 8
4.3 odd 2 90.2.l.a.47.2 yes 8
5.3 odd 4 inner 720.2.cu.a.353.2 8
9.5 odd 6 inner 720.2.cu.a.257.2 8
12.11 even 2 270.2.m.a.197.1 8
20.3 even 4 90.2.l.a.83.2 yes 8
20.7 even 4 450.2.p.a.443.1 8
20.19 odd 2 450.2.p.a.407.1 8
36.7 odd 6 810.2.f.b.647.4 8
36.11 even 6 810.2.f.b.647.1 8
36.23 even 6 90.2.l.a.77.2 yes 8
36.31 odd 6 270.2.m.a.17.1 8
45.23 even 12 inner 720.2.cu.a.113.2 8
60.23 odd 4 270.2.m.a.143.1 8
60.47 odd 4 1350.2.q.g.143.2 8
60.59 even 2 1350.2.q.g.1007.2 8
180.23 odd 12 90.2.l.a.23.2 8
180.43 even 12 810.2.f.b.323.2 8
180.59 even 6 450.2.p.a.257.1 8
180.67 even 12 1350.2.q.g.1043.2 8
180.83 odd 12 810.2.f.b.323.3 8
180.103 even 12 270.2.m.a.233.1 8
180.139 odd 6 1350.2.q.g.557.2 8
180.167 odd 12 450.2.p.a.293.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.a.23.2 8 180.23 odd 12
90.2.l.a.47.2 yes 8 4.3 odd 2
90.2.l.a.77.2 yes 8 36.23 even 6
90.2.l.a.83.2 yes 8 20.3 even 4
270.2.m.a.17.1 8 36.31 odd 6
270.2.m.a.143.1 8 60.23 odd 4
270.2.m.a.197.1 8 12.11 even 2
270.2.m.a.233.1 8 180.103 even 12
450.2.p.a.257.1 8 180.59 even 6
450.2.p.a.293.1 8 180.167 odd 12
450.2.p.a.407.1 8 20.19 odd 2
450.2.p.a.443.1 8 20.7 even 4
720.2.cu.a.113.2 8 45.23 even 12 inner
720.2.cu.a.257.2 8 9.5 odd 6 inner
720.2.cu.a.353.2 8 5.3 odd 4 inner
720.2.cu.a.497.2 8 1.1 even 1 trivial
810.2.f.b.323.2 8 180.43 even 12
810.2.f.b.323.3 8 180.83 odd 12
810.2.f.b.647.1 8 36.11 even 6
810.2.f.b.647.4 8 36.7 odd 6
1350.2.q.g.143.2 8 60.47 odd 4
1350.2.q.g.557.2 8 180.139 odd 6
1350.2.q.g.1007.2 8 60.59 even 2
1350.2.q.g.1043.2 8 180.67 even 12