Properties

Label 270.2.m.a.233.1
Level $270$
Weight $2$
Character 270.233
Analytic conductor $2.156$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(17,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.m (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 233.1
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 270.233
Dual form 270.2.m.a.197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.258819 + 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(-0.792893 - 2.09077i) q^{5} +(-1.05902 - 0.283763i) q^{7} +(0.707107 - 0.707107i) q^{8} +(2.22474 - 0.224745i) q^{10} +(5.44949 - 3.14626i) q^{11} +(3.34607 - 0.896575i) q^{13} +(0.548188 - 0.949490i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-3.14626 - 3.14626i) q^{17} -1.55051i q^{19} +(-0.358719 + 2.20711i) q^{20} +(1.62863 + 6.07812i) q^{22} +(-0.258819 - 0.965926i) q^{23} +(-3.74264 + 3.31552i) q^{25} +3.46410i q^{26} +(0.775255 + 0.775255i) q^{28} +(1.57313 + 2.72474i) q^{29} +(2.22474 - 3.85337i) q^{31} +(-0.965926 + 0.258819i) q^{32} +(3.85337 - 2.22474i) q^{34} +(0.246405 + 2.43916i) q^{35} +(-3.00000 + 3.00000i) q^{37} +(1.49768 + 0.401302i) q^{38} +(-2.03906 - 0.917738i) q^{40} +(3.39898 + 1.96240i) q^{41} +(0.896575 - 3.34607i) q^{43} -6.29253 q^{44} +1.00000 q^{46} +(-2.32937 + 8.69333i) q^{47} +(-5.02118 - 2.89898i) q^{49} +(-2.23388 - 4.47323i) q^{50} +(-3.34607 - 0.896575i) q^{52} +(-6.61037 + 6.61037i) q^{53} +(-10.8990 - 8.89898i) q^{55} +(-0.949490 + 0.548188i) q^{56} +(-3.03906 + 0.814313i) q^{58} +(5.90326 - 10.2247i) q^{59} +(2.72474 + 4.71940i) q^{61} +(3.14626 + 3.14626i) q^{62} -1.00000i q^{64} +(-4.52761 - 6.28497i) q^{65} +(0.978838 + 3.65307i) q^{67} +(1.15161 + 4.29788i) q^{68} +(-2.41982 - 0.393292i) q^{70} +0.635674i q^{71} +(2.89898 + 2.89898i) q^{73} +(-2.12132 - 3.67423i) q^{74} +(-0.775255 + 1.34278i) q^{76} +(-6.66390 + 1.78559i) q^{77} +(2.12132 - 1.22474i) q^{79} +(1.41421 - 1.73205i) q^{80} +(-2.77526 + 2.77526i) q^{82} +(0.531752 + 0.142483i) q^{83} +(-4.08346 + 9.07277i) q^{85} +(3.00000 + 1.73205i) q^{86} +(1.62863 - 6.07812i) q^{88} +2.36773 q^{89} -3.79796 q^{91} +(-0.258819 + 0.965926i) q^{92} +(-7.79423 - 4.50000i) q^{94} +(-3.24176 + 1.22939i) q^{95} +(10.7902 + 2.89123i) q^{97} +(4.09978 - 4.09978i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{5} - 8 q^{7} + 8 q^{10} + 24 q^{11} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 16 q^{28} + 8 q^{31} - 24 q^{37} - 12 q^{38} + 4 q^{40} - 12 q^{41} + 8 q^{46} - 24 q^{50} - 48 q^{55} + 12 q^{56} - 4 q^{58}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.258819 + 0.965926i −0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) −0.792893 2.09077i −0.354593 0.935021i
\(6\) 0 0
\(7\) −1.05902 0.283763i −0.400271 0.107252i 0.0530669 0.998591i \(-0.483100\pi\)
−0.453338 + 0.891339i \(0.649767\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 2.22474 0.224745i 0.703526 0.0710706i
\(11\) 5.44949 3.14626i 1.64308 0.948634i 0.663354 0.748305i \(-0.269132\pi\)
0.979729 0.200329i \(-0.0642011\pi\)
\(12\) 0 0
\(13\) 3.34607 0.896575i 0.928032 0.248665i 0.237016 0.971506i \(-0.423830\pi\)
0.691015 + 0.722840i \(0.257164\pi\)
\(14\) 0.548188 0.949490i 0.146509 0.253762i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −3.14626 3.14626i −0.763081 0.763081i 0.213797 0.976878i \(-0.431417\pi\)
−0.976878 + 0.213797i \(0.931417\pi\)
\(18\) 0 0
\(19\) 1.55051i 0.355711i −0.984057 0.177856i \(-0.943084\pi\)
0.984057 0.177856i \(-0.0569160\pi\)
\(20\) −0.358719 + 2.20711i −0.0802121 + 0.493524i
\(21\) 0 0
\(22\) 1.62863 + 6.07812i 0.347224 + 1.29586i
\(23\) −0.258819 0.965926i −0.0539675 0.201409i 0.933678 0.358113i \(-0.116580\pi\)
−0.987646 + 0.156704i \(0.949913\pi\)
\(24\) 0 0
\(25\) −3.74264 + 3.31552i −0.748528 + 0.663103i
\(26\) 3.46410i 0.679366i
\(27\) 0 0
\(28\) 0.775255 + 0.775255i 0.146509 + 0.146509i
\(29\) 1.57313 + 2.72474i 0.292123 + 0.505972i 0.974312 0.225204i \(-0.0723049\pi\)
−0.682188 + 0.731177i \(0.738972\pi\)
\(30\) 0 0
\(31\) 2.22474 3.85337i 0.399576 0.692086i −0.594098 0.804393i \(-0.702491\pi\)
0.993674 + 0.112307i \(0.0358240\pi\)
\(32\) −0.965926 + 0.258819i −0.170753 + 0.0457532i
\(33\) 0 0
\(34\) 3.85337 2.22474i 0.660848 0.381541i
\(35\) 0.246405 + 2.43916i 0.0416500 + 0.412293i
\(36\) 0 0
\(37\) −3.00000 + 3.00000i −0.493197 + 0.493197i −0.909312 0.416115i \(-0.863391\pi\)
0.416115 + 0.909312i \(0.363391\pi\)
\(38\) 1.49768 + 0.401302i 0.242955 + 0.0650997i
\(39\) 0 0
\(40\) −2.03906 0.917738i −0.322403 0.145107i
\(41\) 3.39898 + 1.96240i 0.530831 + 0.306476i 0.741355 0.671113i \(-0.234184\pi\)
−0.210524 + 0.977589i \(0.567517\pi\)
\(42\) 0 0
\(43\) 0.896575 3.34607i 0.136726 0.510270i −0.863258 0.504762i \(-0.831580\pi\)
0.999985 0.00550783i \(-0.00175320\pi\)
\(44\) −6.29253 −0.948634
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −2.32937 + 8.69333i −0.339774 + 1.26805i 0.558827 + 0.829285i \(0.311252\pi\)
−0.898600 + 0.438768i \(0.855415\pi\)
\(48\) 0 0
\(49\) −5.02118 2.89898i −0.717311 0.414140i
\(50\) −2.23388 4.47323i −0.315918 0.632611i
\(51\) 0 0
\(52\) −3.34607 0.896575i −0.464016 0.124333i
\(53\) −6.61037 + 6.61037i −0.908004 + 0.908004i −0.996111 0.0881074i \(-0.971918\pi\)
0.0881074 + 0.996111i \(0.471918\pi\)
\(54\) 0 0
\(55\) −10.8990 8.89898i −1.46962 1.19994i
\(56\) −0.949490 + 0.548188i −0.126881 + 0.0732547i
\(57\) 0 0
\(58\) −3.03906 + 0.814313i −0.399048 + 0.106925i
\(59\) 5.90326 10.2247i 0.768539 1.33115i −0.169816 0.985476i \(-0.554317\pi\)
0.938355 0.345673i \(-0.112349\pi\)
\(60\) 0 0
\(61\) 2.72474 + 4.71940i 0.348868 + 0.604257i 0.986049 0.166458i \(-0.0532329\pi\)
−0.637181 + 0.770714i \(0.719900\pi\)
\(62\) 3.14626 + 3.14626i 0.399576 + 0.399576i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −4.52761 6.28497i −0.561580 0.779554i
\(66\) 0 0
\(67\) 0.978838 + 3.65307i 0.119584 + 0.446294i 0.999589 0.0286709i \(-0.00912748\pi\)
−0.880005 + 0.474965i \(0.842461\pi\)
\(68\) 1.15161 + 4.29788i 0.139654 + 0.521194i
\(69\) 0 0
\(70\) −2.41982 0.393292i −0.289224 0.0470073i
\(71\) 0.635674i 0.0754407i 0.999288 + 0.0377203i \(0.0120096\pi\)
−0.999288 + 0.0377203i \(0.987990\pi\)
\(72\) 0 0
\(73\) 2.89898 + 2.89898i 0.339300 + 0.339300i 0.856104 0.516804i \(-0.172878\pi\)
−0.516804 + 0.856104i \(0.672878\pi\)
\(74\) −2.12132 3.67423i −0.246598 0.427121i
\(75\) 0 0
\(76\) −0.775255 + 1.34278i −0.0889279 + 0.154028i
\(77\) −6.66390 + 1.78559i −0.759422 + 0.203487i
\(78\) 0 0
\(79\) 2.12132 1.22474i 0.238667 0.137795i −0.375897 0.926662i \(-0.622665\pi\)
0.614564 + 0.788867i \(0.289332\pi\)
\(80\) 1.41421 1.73205i 0.158114 0.193649i
\(81\) 0 0
\(82\) −2.77526 + 2.77526i −0.306476 + 0.306476i
\(83\) 0.531752 + 0.142483i 0.0583674 + 0.0156395i 0.287885 0.957665i \(-0.407048\pi\)
−0.229517 + 0.973305i \(0.573715\pi\)
\(84\) 0 0
\(85\) −4.08346 + 9.07277i −0.442914 + 0.984080i
\(86\) 3.00000 + 1.73205i 0.323498 + 0.186772i
\(87\) 0 0
\(88\) 1.62863 6.07812i 0.173612 0.647929i
\(89\) 2.36773 0.250978 0.125489 0.992095i \(-0.459950\pi\)
0.125489 + 0.992095i \(0.459950\pi\)
\(90\) 0 0
\(91\) −3.79796 −0.398134
\(92\) −0.258819 + 0.965926i −0.0269838 + 0.100705i
\(93\) 0 0
\(94\) −7.79423 4.50000i −0.803913 0.464140i
\(95\) −3.24176 + 1.22939i −0.332598 + 0.126133i
\(96\) 0 0
\(97\) 10.7902 + 2.89123i 1.09558 + 0.293560i 0.760963 0.648795i \(-0.224727\pi\)
0.334616 + 0.942355i \(0.391393\pi\)
\(98\) 4.09978 4.09978i 0.414140 0.414140i
\(99\) 0 0
\(100\) 4.89898 1.00000i 0.489898 0.100000i
\(101\) −1.10102 + 0.635674i −0.109556 + 0.0632520i −0.553777 0.832665i \(-0.686814\pi\)
0.444221 + 0.895917i \(0.353481\pi\)
\(102\) 0 0
\(103\) −3.96008 + 1.06110i −0.390198 + 0.104553i −0.448584 0.893741i \(-0.648071\pi\)
0.0583855 + 0.998294i \(0.481405\pi\)
\(104\) 1.73205 3.00000i 0.169842 0.294174i
\(105\) 0 0
\(106\) −4.67423 8.09601i −0.454002 0.786354i
\(107\) −3.71051 3.71051i −0.358708 0.358708i 0.504628 0.863337i \(-0.331630\pi\)
−0.863337 + 0.504628i \(0.831630\pi\)
\(108\) 0 0
\(109\) 20.3485i 1.94903i 0.224323 + 0.974515i \(0.427983\pi\)
−0.224323 + 0.974515i \(0.572017\pi\)
\(110\) 11.4166 8.22438i 1.08853 0.784164i
\(111\) 0 0
\(112\) −0.283763 1.05902i −0.0268131 0.100068i
\(113\) 3.57117 + 13.3278i 0.335948 + 1.25377i 0.902838 + 0.429981i \(0.141480\pi\)
−0.566890 + 0.823793i \(0.691854\pi\)
\(114\) 0 0
\(115\) −1.81431 + 1.30701i −0.169186 + 0.121879i
\(116\) 3.14626i 0.292123i
\(117\) 0 0
\(118\) 8.34847 + 8.34847i 0.768539 + 0.768539i
\(119\) 2.43916 + 4.22474i 0.223597 + 0.387282i
\(120\) 0 0
\(121\) 14.2980 24.7648i 1.29981 2.25134i
\(122\) −5.26380 + 1.41043i −0.476562 + 0.127694i
\(123\) 0 0
\(124\) −3.85337 + 2.22474i −0.346043 + 0.199788i
\(125\) 9.89949 + 5.19615i 0.885438 + 0.464758i
\(126\) 0 0
\(127\) 14.1237 14.1237i 1.25328 1.25328i 0.299036 0.954242i \(-0.403335\pi\)
0.954242 0.299036i \(-0.0966651\pi\)
\(128\) 0.965926 + 0.258819i 0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 7.24264 2.74666i 0.635222 0.240898i
\(131\) −9.12372 5.26758i −0.797143 0.460231i 0.0453278 0.998972i \(-0.485567\pi\)
−0.842471 + 0.538741i \(0.818900\pi\)
\(132\) 0 0
\(133\) −0.439978 + 1.64202i −0.0381509 + 0.142381i
\(134\) −3.78194 −0.326710
\(135\) 0 0
\(136\) −4.44949 −0.381541
\(137\) 0.569930 2.12701i 0.0486924 0.181723i −0.937297 0.348533i \(-0.886680\pi\)
0.985989 + 0.166810i \(0.0533467\pi\)
\(138\) 0 0
\(139\) 11.1708 + 6.44949i 0.947499 + 0.547039i 0.892303 0.451437i \(-0.149088\pi\)
0.0551956 + 0.998476i \(0.482422\pi\)
\(140\) 1.00619 2.23557i 0.0850382 0.188941i
\(141\) 0 0
\(142\) −0.614014 0.164525i −0.0515269 0.0138066i
\(143\) 15.4135 15.4135i 1.28894 1.28894i
\(144\) 0 0
\(145\) 4.44949 5.44949i 0.369510 0.452555i
\(146\) −3.55051 + 2.04989i −0.293842 + 0.169650i
\(147\) 0 0
\(148\) 4.09808 1.09808i 0.336860 0.0902613i
\(149\) −6.45145 + 11.1742i −0.528523 + 0.915429i 0.470924 + 0.882174i \(0.343921\pi\)
−0.999447 + 0.0332550i \(0.989413\pi\)
\(150\) 0 0
\(151\) 10.7980 + 18.7026i 0.878725 + 1.52200i 0.852741 + 0.522335i \(0.174939\pi\)
0.0259849 + 0.999662i \(0.491728\pi\)
\(152\) −1.09638 1.09638i −0.0889279 0.0889279i
\(153\) 0 0
\(154\) 6.89898i 0.555936i
\(155\) −9.82050 1.59612i −0.788801 0.128203i
\(156\) 0 0
\(157\) 1.59165 + 5.94012i 0.127028 + 0.474073i 0.999904 0.0138684i \(-0.00441459\pi\)
−0.872876 + 0.487942i \(0.837748\pi\)
\(158\) 0.633975 + 2.36603i 0.0504363 + 0.188231i
\(159\) 0 0
\(160\) 1.30701 + 1.81431i 0.103328 + 0.143434i
\(161\) 1.09638i 0.0864066i
\(162\) 0 0
\(163\) −0.449490 0.449490i −0.0352068 0.0352068i 0.689284 0.724491i \(-0.257925\pi\)
−0.724491 + 0.689284i \(0.757925\pi\)
\(164\) −1.96240 3.39898i −0.153238 0.265416i
\(165\) 0 0
\(166\) −0.275255 + 0.476756i −0.0213639 + 0.0370034i
\(167\) 10.4300 2.79472i 0.807100 0.216262i 0.168401 0.985719i \(-0.446140\pi\)
0.638699 + 0.769457i \(0.279473\pi\)
\(168\) 0 0
\(169\) −0.866025 + 0.500000i −0.0666173 + 0.0384615i
\(170\) −7.70674 6.29253i −0.591080 0.482615i
\(171\) 0 0
\(172\) −2.44949 + 2.44949i −0.186772 + 0.186772i
\(173\) −2.99536 0.802603i −0.227733 0.0610208i 0.143148 0.989701i \(-0.454277\pi\)
−0.370881 + 0.928680i \(0.620944\pi\)
\(174\) 0 0
\(175\) 4.90435 2.44917i 0.370734 0.185140i
\(176\) 5.44949 + 3.14626i 0.410771 + 0.237159i
\(177\) 0 0
\(178\) −0.612812 + 2.28705i −0.0459322 + 0.171421i
\(179\) 17.6062 1.31595 0.657976 0.753039i \(-0.271413\pi\)
0.657976 + 0.753039i \(0.271413\pi\)
\(180\) 0 0
\(181\) −10.5505 −0.784213 −0.392107 0.919920i \(-0.628254\pi\)
−0.392107 + 0.919920i \(0.628254\pi\)
\(182\) 0.982984 3.66855i 0.0728636 0.271931i
\(183\) 0 0
\(184\) −0.866025 0.500000i −0.0638442 0.0368605i
\(185\) 8.65099 + 3.89363i 0.636033 + 0.286265i
\(186\) 0 0
\(187\) −27.0445 7.24656i −1.97769 0.529921i
\(188\) 6.36396 6.36396i 0.464140 0.464140i
\(189\) 0 0
\(190\) −0.348469 3.44949i −0.0252806 0.250252i
\(191\) 2.87628 1.66062i 0.208120 0.120158i −0.392317 0.919830i \(-0.628327\pi\)
0.600437 + 0.799672i \(0.294993\pi\)
\(192\) 0 0
\(193\) −16.7303 + 4.48288i −1.20428 + 0.322685i −0.804513 0.593934i \(-0.797574\pi\)
−0.399762 + 0.916619i \(0.630907\pi\)
\(194\) −5.58542 + 9.67423i −0.401010 + 0.694570i
\(195\) 0 0
\(196\) 2.89898 + 5.02118i 0.207070 + 0.358656i
\(197\) −6.92820 6.92820i −0.493614 0.493614i 0.415829 0.909443i \(-0.363492\pi\)
−0.909443 + 0.415829i \(0.863492\pi\)
\(198\) 0 0
\(199\) 3.55051i 0.251689i −0.992050 0.125844i \(-0.959836\pi\)
0.992050 0.125844i \(-0.0401640\pi\)
\(200\) −0.302023 + 4.99087i −0.0213563 + 0.352908i
\(201\) 0 0
\(202\) −0.329049 1.22803i −0.0231518 0.0864038i
\(203\) −0.892794 3.33195i −0.0626618 0.233857i
\(204\) 0 0
\(205\) 1.40790 8.66246i 0.0983322 0.605012i
\(206\) 4.09978i 0.285645i
\(207\) 0 0
\(208\) 2.44949 + 2.44949i 0.169842 + 0.169842i
\(209\) −4.87832 8.44949i −0.337440 0.584463i
\(210\) 0 0
\(211\) −9.44949 + 16.3670i −0.650530 + 1.12675i 0.332465 + 0.943116i \(0.392120\pi\)
−0.982995 + 0.183635i \(0.941214\pi\)
\(212\) 9.02993 2.41956i 0.620178 0.166176i
\(213\) 0 0
\(214\) 4.54442 2.62372i 0.310650 0.179354i
\(215\) −7.70674 + 0.778539i −0.525595 + 0.0530959i
\(216\) 0 0
\(217\) −3.44949 + 3.44949i −0.234167 + 0.234167i
\(218\) −19.6551 5.26657i −1.33121 0.356697i
\(219\) 0 0
\(220\) 4.98930 + 13.1562i 0.336379 + 0.886993i
\(221\) −13.3485 7.70674i −0.897915 0.518412i
\(222\) 0 0
\(223\) 2.15087 8.02714i 0.144033 0.537537i −0.855764 0.517367i \(-0.826912\pi\)
0.999797 0.0201706i \(-0.00642094\pi\)
\(224\) 1.09638 0.0732547
\(225\) 0 0
\(226\) −13.7980 −0.917827
\(227\) 3.90843 14.5865i 0.259412 0.968138i −0.706171 0.708041i \(-0.749579\pi\)
0.965583 0.260096i \(-0.0837543\pi\)
\(228\) 0 0
\(229\) −14.1582 8.17423i −0.935600 0.540169i −0.0470214 0.998894i \(-0.514973\pi\)
−0.888578 + 0.458725i \(0.848306\pi\)
\(230\) −0.792893 2.09077i −0.0522818 0.137861i
\(231\) 0 0
\(232\) 3.03906 + 0.814313i 0.199524 + 0.0534623i
\(233\) −10.9959 + 10.9959i −0.720363 + 0.720363i −0.968679 0.248316i \(-0.920123\pi\)
0.248316 + 0.968679i \(0.420123\pi\)
\(234\) 0 0
\(235\) 20.0227 2.02270i 1.30614 0.131947i
\(236\) −10.2247 + 5.90326i −0.665574 + 0.384269i
\(237\) 0 0
\(238\) −4.71209 + 1.26260i −0.305439 + 0.0818423i
\(239\) −8.48528 + 14.6969i −0.548867 + 0.950666i 0.449485 + 0.893288i \(0.351607\pi\)
−0.998353 + 0.0573782i \(0.981726\pi\)
\(240\) 0 0
\(241\) −9.50000 16.4545i −0.611949 1.05993i −0.990912 0.134515i \(-0.957053\pi\)
0.378963 0.925412i \(-0.376281\pi\)
\(242\) 20.2204 + 20.2204i 1.29981 + 1.29981i
\(243\) 0 0
\(244\) 5.44949i 0.348868i
\(245\) −2.07984 + 12.7967i −0.132876 + 0.817552i
\(246\) 0 0
\(247\) −1.39015 5.18811i −0.0884531 0.330111i
\(248\) −1.15161 4.29788i −0.0731275 0.272915i
\(249\) 0 0
\(250\) −7.58128 + 8.21731i −0.479482 + 0.519709i
\(251\) 11.1708i 0.705097i 0.935793 + 0.352549i \(0.114685\pi\)
−0.935793 + 0.352549i \(0.885315\pi\)
\(252\) 0 0
\(253\) −4.44949 4.44949i −0.279737 0.279737i
\(254\) 9.98698 + 17.2980i 0.626639 + 1.08537i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 25.1579 6.74105i 1.56931 0.420495i 0.633713 0.773568i \(-0.281530\pi\)
0.935596 + 0.353073i \(0.114863\pi\)
\(258\) 0 0
\(259\) 4.02834 2.32577i 0.250309 0.144516i
\(260\) 0.778539 + 7.70674i 0.0482829 + 0.477952i
\(261\) 0 0
\(262\) 7.44949 7.44949i 0.460231 0.460231i
\(263\) −12.2643 3.28621i −0.756249 0.202636i −0.139961 0.990157i \(-0.544698\pi\)
−0.616288 + 0.787521i \(0.711364\pi\)
\(264\) 0 0
\(265\) 19.0621 + 8.57944i 1.17097 + 0.527031i
\(266\) −1.47219 0.849971i −0.0902660 0.0521151i
\(267\) 0 0
\(268\) 0.978838 3.65307i 0.0597920 0.223147i
\(269\) −4.70334 −0.286768 −0.143384 0.989667i \(-0.545798\pi\)
−0.143384 + 0.989667i \(0.545798\pi\)
\(270\) 0 0
\(271\) −16.0454 −0.974689 −0.487345 0.873210i \(-0.662034\pi\)
−0.487345 + 0.873210i \(0.662034\pi\)
\(272\) 1.15161 4.29788i 0.0698268 0.260597i
\(273\) 0 0
\(274\) 1.90702 + 1.10102i 0.115208 + 0.0665151i
\(275\) −9.96399 + 29.8432i −0.600851 + 1.79961i
\(276\) 0 0
\(277\) 13.7983 + 3.69723i 0.829057 + 0.222145i 0.648302 0.761383i \(-0.275479\pi\)
0.180754 + 0.983528i \(0.442146\pi\)
\(278\) −9.12096 + 9.12096i −0.547039 + 0.547039i
\(279\) 0 0
\(280\) 1.89898 + 1.55051i 0.113486 + 0.0926607i
\(281\) 0.151531 0.0874863i 0.00903957 0.00521900i −0.495473 0.868623i \(-0.665005\pi\)
0.504513 + 0.863404i \(0.331672\pi\)
\(282\) 0 0
\(283\) −6.66112 + 1.78484i −0.395962 + 0.106098i −0.451305 0.892370i \(-0.649041\pi\)
0.0553430 + 0.998467i \(0.482375\pi\)
\(284\) 0.317837 0.550510i 0.0188602 0.0326668i
\(285\) 0 0
\(286\) 10.8990 + 18.8776i 0.644470 + 1.11626i
\(287\) −3.04272 3.04272i −0.179606 0.179606i
\(288\) 0 0
\(289\) 2.79796i 0.164586i
\(290\) 4.11219 + 5.70831i 0.241476 + 0.335203i
\(291\) 0 0
\(292\) −1.06110 3.96008i −0.0620962 0.231746i
\(293\) −5.70577 21.2942i −0.333335 1.24402i −0.905663 0.423998i \(-0.860626\pi\)
0.572329 0.820024i \(-0.306040\pi\)
\(294\) 0 0
\(295\) −26.0582 4.23523i −1.51717 0.246585i
\(296\) 4.24264i 0.246598i
\(297\) 0 0
\(298\) −9.12372 9.12372i −0.528523 0.528523i
\(299\) −1.73205 3.00000i −0.100167 0.173494i
\(300\) 0 0
\(301\) −1.89898 + 3.28913i −0.109455 + 0.189582i
\(302\) −20.8601 + 5.58943i −1.20036 + 0.321636i
\(303\) 0 0
\(304\) 1.34278 0.775255i 0.0770138 0.0444639i
\(305\) 7.70674 9.43879i 0.441287 0.540464i
\(306\) 0 0
\(307\) 0.674235 0.674235i 0.0384806 0.0384806i −0.687605 0.726085i \(-0.741338\pi\)
0.726085 + 0.687605i \(0.241338\pi\)
\(308\) 6.66390 + 1.78559i 0.379711 + 0.101743i
\(309\) 0 0
\(310\) 4.08346 9.07277i 0.231925 0.515299i
\(311\) 17.8207 + 10.2888i 1.01052 + 0.583422i 0.911343 0.411648i \(-0.135047\pi\)
0.0991741 + 0.995070i \(0.468380\pi\)
\(312\) 0 0
\(313\) 1.29958 4.85009i 0.0734564 0.274143i −0.919422 0.393271i \(-0.871343\pi\)
0.992879 + 0.119128i \(0.0380100\pi\)
\(314\) −6.14966 −0.347046
\(315\) 0 0
\(316\) −2.44949 −0.137795
\(317\) −0.284965 + 1.06350i −0.0160052 + 0.0597323i −0.973467 0.228829i \(-0.926510\pi\)
0.957461 + 0.288561i \(0.0931770\pi\)
\(318\) 0 0
\(319\) 17.1455 + 9.89898i 0.959966 + 0.554236i
\(320\) −2.09077 + 0.792893i −0.116878 + 0.0443241i
\(321\) 0 0
\(322\) −1.05902 0.283763i −0.0590168 0.0158135i
\(323\) −4.87832 + 4.87832i −0.271437 + 0.271437i
\(324\) 0 0
\(325\) −9.55051 + 14.4495i −0.529767 + 0.801513i
\(326\) 0.550510 0.317837i 0.0304899 0.0176034i
\(327\) 0 0
\(328\) 3.79107 1.01581i 0.209327 0.0560889i
\(329\) 4.93369 8.54541i 0.272003 0.471124i
\(330\) 0 0
\(331\) 2.22474 + 3.85337i 0.122283 + 0.211800i 0.920668 0.390347i \(-0.127645\pi\)
−0.798385 + 0.602148i \(0.794312\pi\)
\(332\) −0.389270 0.389270i −0.0213639 0.0213639i
\(333\) 0 0
\(334\) 10.7980i 0.590838i
\(335\) 6.86162 4.94302i 0.374890 0.270066i
\(336\) 0 0
\(337\) −7.97861 29.7766i −0.434622 1.62203i −0.741968 0.670435i \(-0.766108\pi\)
0.307346 0.951598i \(-0.400559\pi\)
\(338\) −0.258819 0.965926i −0.0140779 0.0525394i
\(339\) 0 0
\(340\) 8.07277 5.81552i 0.437807 0.315391i
\(341\) 27.9985i 1.51621i
\(342\) 0 0
\(343\) 9.92168 + 9.92168i 0.535721 + 0.535721i
\(344\) −1.73205 3.00000i −0.0933859 0.161749i
\(345\) 0 0
\(346\) 1.55051 2.68556i 0.0833559 0.144377i
\(347\) 4.05886 1.08757i 0.217891 0.0583837i −0.148222 0.988954i \(-0.547355\pi\)
0.366113 + 0.930570i \(0.380688\pi\)
\(348\) 0 0
\(349\) 13.0297 7.52270i 0.697464 0.402681i −0.108938 0.994049i \(-0.534745\pi\)
0.806402 + 0.591367i \(0.201412\pi\)
\(350\) 1.09638 + 5.37113i 0.0586038 + 0.287099i
\(351\) 0 0
\(352\) −4.44949 + 4.44949i −0.237159 + 0.237159i
\(353\) 33.1244 + 8.87564i 1.76303 + 0.472403i 0.987328 0.158694i \(-0.0507284\pi\)
0.775704 + 0.631097i \(0.217395\pi\)
\(354\) 0 0
\(355\) 1.32905 0.504022i 0.0705386 0.0267507i
\(356\) −2.05051 1.18386i −0.108677 0.0627446i
\(357\) 0 0
\(358\) −4.55683 + 17.0063i −0.240836 + 0.898812i
\(359\) −17.4634 −0.921682 −0.460841 0.887483i \(-0.652452\pi\)
−0.460841 + 0.887483i \(0.652452\pi\)
\(360\) 0 0
\(361\) 16.5959 0.873469
\(362\) 2.73067 10.1910i 0.143521 0.535628i
\(363\) 0 0
\(364\) 3.28913 + 1.89898i 0.172397 + 0.0995336i
\(365\) 3.76252 8.35968i 0.196939 0.437566i
\(366\) 0 0
\(367\) −9.42418 2.52520i −0.491938 0.131814i 0.00431778 0.999991i \(-0.498626\pi\)
−0.496256 + 0.868176i \(0.665292\pi\)
\(368\) 0.707107 0.707107i 0.0368605 0.0368605i
\(369\) 0 0
\(370\) −6.00000 + 7.34847i −0.311925 + 0.382029i
\(371\) 8.87628 5.12472i 0.460833 0.266062i
\(372\) 0 0
\(373\) −19.6004 + 5.25190i −1.01487 + 0.271933i −0.727662 0.685935i \(-0.759393\pi\)
−0.287206 + 0.957869i \(0.592727\pi\)
\(374\) 13.9993 24.2474i 0.723885 1.25381i
\(375\) 0 0
\(376\) 4.50000 + 7.79423i 0.232070 + 0.401957i
\(377\) 7.70674 + 7.70674i 0.396917 + 0.396917i
\(378\) 0 0
\(379\) 6.65153i 0.341666i 0.985300 + 0.170833i \(0.0546459\pi\)
−0.985300 + 0.170833i \(0.945354\pi\)
\(380\) 3.42214 + 0.556198i 0.175552 + 0.0285324i
\(381\) 0 0
\(382\) 0.859599 + 3.20807i 0.0439809 + 0.164139i
\(383\) −7.19464 26.8508i −0.367629 1.37201i −0.863822 0.503798i \(-0.831936\pi\)
0.496193 0.868212i \(-0.334731\pi\)
\(384\) 0 0
\(385\) 9.01702 + 12.5169i 0.459550 + 0.637921i
\(386\) 17.3205i 0.881591i
\(387\) 0 0
\(388\) −7.89898 7.89898i −0.401010 0.401010i
\(389\) 2.81237 + 4.87117i 0.142593 + 0.246978i 0.928472 0.371402i \(-0.121123\pi\)
−0.785879 + 0.618380i \(0.787789\pi\)
\(390\) 0 0
\(391\) −2.22474 + 3.85337i −0.112510 + 0.194873i
\(392\) −5.60040 + 1.50062i −0.282863 + 0.0757929i
\(393\) 0 0
\(394\) 8.48528 4.89898i 0.427482 0.246807i
\(395\) −4.24264 3.46410i −0.213470 0.174298i
\(396\) 0 0
\(397\) 15.4495 15.4495i 0.775388 0.775388i −0.203655 0.979043i \(-0.565282\pi\)
0.979043 + 0.203655i \(0.0652821\pi\)
\(398\) 3.42953 + 0.918940i 0.171907 + 0.0460623i
\(399\) 0 0
\(400\) −4.74264 1.58346i −0.237132 0.0791732i
\(401\) −22.3485 12.9029i −1.11603 0.644340i −0.175645 0.984454i \(-0.556201\pi\)
−0.940384 + 0.340114i \(0.889534\pi\)
\(402\) 0 0
\(403\) 3.98930 14.8883i 0.198721 0.741638i
\(404\) 1.27135 0.0632520
\(405\) 0 0
\(406\) 3.44949 0.171195
\(407\) −6.90968 + 25.7873i −0.342500 + 1.27823i
\(408\) 0 0
\(409\) −16.5420 9.55051i −0.817948 0.472242i 0.0317605 0.999496i \(-0.489889\pi\)
−0.849708 + 0.527253i \(0.823222\pi\)
\(410\) 8.00290 + 3.60194i 0.395235 + 0.177887i
\(411\) 0 0
\(412\) 3.96008 + 1.06110i 0.195099 + 0.0522767i
\(413\) −9.15306 + 9.15306i −0.450393 + 0.450393i
\(414\) 0 0
\(415\) −0.123724 1.22474i −0.00607339 0.0601204i
\(416\) −3.00000 + 1.73205i −0.147087 + 0.0849208i
\(417\) 0 0
\(418\) 9.42418 2.52520i 0.460952 0.123512i
\(419\) 5.97469 10.3485i 0.291883 0.505556i −0.682372 0.731005i \(-0.739052\pi\)
0.974255 + 0.225449i \(0.0723850\pi\)
\(420\) 0 0
\(421\) 7.44949 + 12.9029i 0.363066 + 0.628849i 0.988464 0.151457i \(-0.0483966\pi\)
−0.625398 + 0.780306i \(0.715063\pi\)
\(422\) −13.3636 13.3636i −0.650530 0.650530i
\(423\) 0 0
\(424\) 9.34847i 0.454002i
\(425\) 22.2068 + 1.34385i 1.07719 + 0.0651863i
\(426\) 0 0
\(427\) −1.54636 5.77111i −0.0748338 0.279284i
\(428\) 1.35814 + 5.06865i 0.0656482 + 0.245002i
\(429\) 0 0
\(430\) 1.24264 7.64564i 0.0599255 0.368706i
\(431\) 15.5563i 0.749323i 0.927162 + 0.374661i \(0.122241\pi\)
−0.927162 + 0.374661i \(0.877759\pi\)
\(432\) 0 0
\(433\) 8.55051 + 8.55051i 0.410911 + 0.410911i 0.882056 0.471145i \(-0.156159\pi\)
−0.471145 + 0.882056i \(0.656159\pi\)
\(434\) −2.43916 4.22474i −0.117083 0.202794i
\(435\) 0 0
\(436\) 10.1742 17.6223i 0.487257 0.843955i
\(437\) −1.49768 + 0.401302i −0.0716436 + 0.0191969i
\(438\) 0 0
\(439\) −8.83523 + 5.10102i −0.421682 + 0.243458i −0.695797 0.718239i \(-0.744949\pi\)
0.274114 + 0.961697i \(0.411615\pi\)
\(440\) −13.9993 + 1.41421i −0.667389 + 0.0674200i
\(441\) 0 0
\(442\) 10.8990 10.8990i 0.518412 0.518412i
\(443\) −0.531752 0.142483i −0.0252643 0.00676955i 0.246165 0.969228i \(-0.420830\pi\)
−0.271429 + 0.962458i \(0.587496\pi\)
\(444\) 0 0
\(445\) −1.87735 4.95037i −0.0889951 0.234670i
\(446\) 7.19694 + 4.15515i 0.340785 + 0.196752i
\(447\) 0 0
\(448\) −0.283763 + 1.05902i −0.0134065 + 0.0500339i
\(449\) 21.7060 1.02437 0.512185 0.858875i \(-0.328836\pi\)
0.512185 + 0.858875i \(0.328836\pi\)
\(450\) 0 0
\(451\) 24.6969 1.16293
\(452\) 3.57117 13.3278i 0.167974 0.626887i
\(453\) 0 0
\(454\) 13.0779 + 7.55051i 0.613775 + 0.354363i
\(455\) 3.01138 + 7.94066i 0.141175 + 0.372264i
\(456\) 0 0
\(457\) −5.94012 1.59165i −0.277867 0.0744543i 0.117194 0.993109i \(-0.462610\pi\)
−0.395061 + 0.918655i \(0.629277\pi\)
\(458\) 11.5601 11.5601i 0.540169 0.540169i
\(459\) 0 0
\(460\) 2.22474 0.224745i 0.103729 0.0104788i
\(461\) −16.3763 + 9.45485i −0.762719 + 0.440356i −0.830271 0.557360i \(-0.811814\pi\)
0.0675520 + 0.997716i \(0.478481\pi\)
\(462\) 0 0
\(463\) 31.8946 8.54613i 1.48227 0.397172i 0.575150 0.818048i \(-0.304944\pi\)
0.907118 + 0.420876i \(0.138277\pi\)
\(464\) −1.57313 + 2.72474i −0.0730308 + 0.126493i
\(465\) 0 0
\(466\) −7.77526 13.4671i −0.360182 0.623853i
\(467\) 2.82843 + 2.82843i 0.130884 + 0.130884i 0.769514 0.638630i \(-0.220499\pi\)
−0.638630 + 0.769514i \(0.720499\pi\)
\(468\) 0 0
\(469\) 4.14643i 0.191464i
\(470\) −3.22848 + 19.8640i −0.148918 + 0.916256i
\(471\) 0 0
\(472\) −3.05575 11.4042i −0.140652 0.524922i
\(473\) −5.64173 21.0552i −0.259407 0.968120i
\(474\) 0 0
\(475\) 5.14074 + 5.80300i 0.235873 + 0.266260i
\(476\) 4.87832i 0.223597i
\(477\) 0 0
\(478\) −12.0000 12.0000i −0.548867 0.548867i
\(479\) −3.53553 6.12372i −0.161543 0.279800i 0.773879 0.633333i \(-0.218314\pi\)
−0.935422 + 0.353533i \(0.884980\pi\)
\(480\) 0 0
\(481\) −7.34847 + 12.7279i −0.335061 + 0.580343i
\(482\) 18.3526 4.91756i 0.835938 0.223989i
\(483\) 0 0
\(484\) −24.7648 + 14.2980i −1.12567 + 0.649907i
\(485\) −2.51059 24.8523i −0.114000 1.12848i
\(486\) 0 0
\(487\) −12.0000 + 12.0000i −0.543772 + 0.543772i −0.924632 0.380861i \(-0.875628\pi\)
0.380861 + 0.924632i \(0.375628\pi\)
\(488\) 5.26380 + 1.41043i 0.238281 + 0.0638472i
\(489\) 0 0
\(490\) −11.8224 5.32101i −0.534080 0.240379i
\(491\) −0.247449 0.142865i −0.0111672 0.00644739i 0.494406 0.869231i \(-0.335386\pi\)
−0.505573 + 0.862784i \(0.668719\pi\)
\(492\) 0 0
\(493\) 3.62328 13.5223i 0.163184 0.609012i
\(494\) 5.37113 0.241658
\(495\) 0 0
\(496\) 4.44949 0.199788
\(497\) 0.180381 0.673191i 0.00809119 0.0301967i
\(498\) 0 0
\(499\) −7.70674 4.44949i −0.345001 0.199187i 0.317480 0.948265i \(-0.397163\pi\)
−0.662481 + 0.749078i \(0.730497\pi\)
\(500\) −5.97514 9.44975i −0.267216 0.422606i
\(501\) 0 0
\(502\) −10.7902 2.89123i −0.481590 0.129042i
\(503\) −16.7563 + 16.7563i −0.747125 + 0.747125i −0.973938 0.226813i \(-0.927169\pi\)
0.226813 + 0.973938i \(0.427169\pi\)
\(504\) 0 0
\(505\) 2.20204 + 1.79796i 0.0979895 + 0.0800081i
\(506\) 5.44949 3.14626i 0.242259 0.139869i
\(507\) 0 0
\(508\) −19.2934 + 5.16964i −0.856005 + 0.229366i
\(509\) −19.8150 + 34.3207i −0.878286 + 1.52124i −0.0250662 + 0.999686i \(0.507980\pi\)
−0.853220 + 0.521551i \(0.825354\pi\)
\(510\) 0 0
\(511\) −2.24745 3.89270i −0.0994213 0.172203i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 26.0454i 1.14881i
\(515\) 5.35844 + 7.43828i 0.236121 + 0.327770i
\(516\) 0 0
\(517\) 14.6576 + 54.7030i 0.644642 + 2.40584i
\(518\) 1.20390 + 4.49303i 0.0528965 + 0.197413i
\(519\) 0 0
\(520\) −7.64564 1.24264i −0.335284 0.0544934i
\(521\) 29.4449i 1.29000i 0.764181 + 0.645001i \(0.223143\pi\)
−0.764181 + 0.645001i \(0.776857\pi\)
\(522\) 0 0
\(523\) 1.77526 + 1.77526i 0.0776265 + 0.0776265i 0.744854 0.667228i \(-0.232519\pi\)
−0.667228 + 0.744854i \(0.732519\pi\)
\(524\) 5.26758 + 9.12372i 0.230116 + 0.398572i
\(525\) 0 0
\(526\) 6.34847 10.9959i 0.276806 0.479443i
\(527\) −19.1234 + 5.12409i −0.833027 + 0.223209i
\(528\) 0 0
\(529\) 19.0526 11.0000i 0.828372 0.478261i
\(530\) −13.2207 + 16.1920i −0.574272 + 0.703337i
\(531\) 0 0
\(532\) 1.20204 1.20204i 0.0521151 0.0521151i
\(533\) 13.1326 + 3.51888i 0.568838 + 0.152420i
\(534\) 0 0
\(535\) −4.81578 + 10.6999i −0.208204 + 0.462595i
\(536\) 3.27526 + 1.89097i 0.141469 + 0.0816774i
\(537\) 0 0
\(538\) 1.21731 4.54308i 0.0524822 0.195866i
\(539\) −36.4838 −1.57147
\(540\) 0 0
\(541\) −25.9444 −1.11544 −0.557718 0.830030i \(-0.688323\pi\)
−0.557718 + 0.830030i \(0.688323\pi\)
\(542\) 4.15286 15.4987i 0.178380 0.665725i
\(543\) 0 0
\(544\) 3.85337 + 2.22474i 0.165212 + 0.0953851i
\(545\) 42.5440 16.1342i 1.82238 0.691112i
\(546\) 0 0
\(547\) 20.6594 + 5.53567i 0.883332 + 0.236688i 0.671844 0.740693i \(-0.265502\pi\)
0.211488 + 0.977381i \(0.432169\pi\)
\(548\) −1.55708 + 1.55708i −0.0665151 + 0.0665151i
\(549\) 0 0
\(550\) −26.2474 17.3485i −1.11919 0.739741i
\(551\) 4.22474 2.43916i 0.179980 0.103912i
\(552\) 0 0
\(553\) −2.59405 + 0.695075i −0.110310 + 0.0295576i
\(554\) −7.14250 + 12.3712i −0.303456 + 0.525601i
\(555\) 0 0
\(556\) −6.44949 11.1708i −0.273519 0.473749i
\(557\) 16.3670 + 16.3670i 0.693492 + 0.693492i 0.962999 0.269507i \(-0.0868606\pi\)
−0.269507 + 0.962999i \(0.586861\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) −1.98917 + 1.43297i −0.0840578 + 0.0605541i
\(561\) 0 0
\(562\) 0.0452863 + 0.169011i 0.00191029 + 0.00712928i
\(563\) 8.89004 + 33.1781i 0.374670 + 1.39829i 0.853826 + 0.520559i \(0.174276\pi\)
−0.479155 + 0.877730i \(0.659057\pi\)
\(564\) 0 0
\(565\) 25.0338 18.0340i 1.05318 0.758697i
\(566\) 6.89610i 0.289864i
\(567\) 0 0
\(568\) 0.449490 + 0.449490i 0.0188602 + 0.0188602i
\(569\) −13.0458 22.5959i −0.546907 0.947270i −0.998484 0.0550383i \(-0.982472\pi\)
0.451578 0.892232i \(-0.350861\pi\)
\(570\) 0 0
\(571\) −13.5505 + 23.4702i −0.567071 + 0.982196i 0.429782 + 0.902932i \(0.358590\pi\)
−0.996854 + 0.0792637i \(0.974743\pi\)
\(572\) −21.0552 + 5.64173i −0.880363 + 0.235892i
\(573\) 0 0
\(574\) 3.72656 2.15153i 0.155544 0.0898032i
\(575\) 4.17121 + 2.75699i 0.173951 + 0.114975i
\(576\) 0 0
\(577\) −17.0000 + 17.0000i −0.707719 + 0.707719i −0.966055 0.258336i \(-0.916826\pi\)
0.258336 + 0.966055i \(0.416826\pi\)
\(578\) −2.70262 0.724165i −0.112414 0.0301213i
\(579\) 0 0
\(580\) −6.57812 + 2.49465i −0.273141 + 0.103585i
\(581\) −0.522704 0.301783i −0.0216854 0.0125201i
\(582\) 0 0
\(583\) −15.2252 + 56.8211i −0.630562 + 2.35329i
\(584\) 4.09978 0.169650
\(585\) 0 0
\(586\) 22.0454 0.910687
\(587\) −8.03514 + 29.9876i −0.331646 + 1.23772i 0.575814 + 0.817581i \(0.304685\pi\)
−0.907460 + 0.420138i \(0.861981\pi\)
\(588\) 0 0
\(589\) −5.97469 3.44949i −0.246183 0.142134i
\(590\) 10.8353 24.0742i 0.446082 0.991118i
\(591\) 0 0
\(592\) −4.09808 1.09808i −0.168430 0.0451307i
\(593\) 10.0745 10.0745i 0.413709 0.413709i −0.469320 0.883028i \(-0.655501\pi\)
0.883028 + 0.469320i \(0.155501\pi\)
\(594\) 0 0
\(595\) 6.89898 8.44949i 0.282831 0.346395i
\(596\) 11.1742 6.45145i 0.457714 0.264262i
\(597\) 0 0
\(598\) 3.34607 0.896575i 0.136831 0.0366637i
\(599\) 16.8991 29.2702i 0.690480 1.19595i −0.281201 0.959649i \(-0.590733\pi\)
0.971681 0.236297i \(-0.0759339\pi\)
\(600\) 0 0
\(601\) −17.3485 30.0484i −0.707659 1.22570i −0.965723 0.259573i \(-0.916418\pi\)
0.258065 0.966128i \(-0.416915\pi\)
\(602\) −2.68556 2.68556i −0.109455 0.109455i
\(603\) 0 0
\(604\) 21.5959i 0.878725i
\(605\) −63.1142 10.2579i −2.56596 0.417043i
\(606\) 0 0
\(607\) 5.73717 + 21.4114i 0.232864 + 0.869062i 0.979100 + 0.203380i \(0.0651926\pi\)
−0.746235 + 0.665682i \(0.768141\pi\)
\(608\) 0.401302 + 1.49768i 0.0162749 + 0.0607389i
\(609\) 0 0
\(610\) 7.12252 + 9.88708i 0.288383 + 0.400316i
\(611\) 31.1769i 1.26128i
\(612\) 0 0
\(613\) −12.7980 12.7980i −0.516905 0.516905i 0.399729 0.916633i \(-0.369104\pi\)
−0.916633 + 0.399729i \(0.869104\pi\)
\(614\) 0.476756 + 0.825765i 0.0192403 + 0.0333252i
\(615\) 0 0
\(616\) −3.44949 + 5.97469i −0.138984 + 0.240727i
\(617\) −6.85906 + 1.83788i −0.276135 + 0.0739902i −0.394229 0.919012i \(-0.628988\pi\)
0.118094 + 0.993002i \(0.462322\pi\)
\(618\) 0 0
\(619\) −21.4275 + 12.3712i −0.861244 + 0.497239i −0.864429 0.502756i \(-0.832320\pi\)
0.00318471 + 0.999995i \(0.498986\pi\)
\(620\) 7.70674 + 6.29253i 0.309510 + 0.252714i
\(621\) 0 0
\(622\) −14.5505 + 14.5505i −0.583422 + 0.583422i
\(623\) −2.50746 0.671873i −0.100459 0.0269180i
\(624\) 0 0
\(625\) 3.01472 24.8176i 0.120589 0.992703i
\(626\) 4.34847 + 2.51059i 0.173800 + 0.100343i
\(627\) 0 0
\(628\) 1.59165 5.94012i 0.0635138 0.237037i
\(629\) 18.8776 0.752699
\(630\) 0 0
\(631\) −12.8990 −0.513500 −0.256750 0.966478i \(-0.582652\pi\)
−0.256750 + 0.966478i \(0.582652\pi\)
\(632\) 0.633975 2.36603i 0.0252182 0.0941154i
\(633\) 0 0
\(634\) −0.953512 0.550510i −0.0378688 0.0218636i
\(635\) −40.7281 18.3309i −1.61624 0.727438i
\(636\) 0 0
\(637\) −19.4003 5.19831i −0.768670 0.205964i
\(638\) −13.9993 + 13.9993i −0.554236 + 0.554236i
\(639\) 0 0
\(640\) −0.224745 2.22474i −0.00888382 0.0879408i
\(641\) 7.74745 4.47299i 0.306006 0.176673i −0.339132 0.940739i \(-0.610133\pi\)
0.645138 + 0.764066i \(0.276800\pi\)
\(642\) 0 0
\(643\) 30.6976 8.22539i 1.21059 0.324378i 0.403599 0.914936i \(-0.367759\pi\)
0.806995 + 0.590558i \(0.201092\pi\)
\(644\) 0.548188 0.949490i 0.0216016 0.0374151i
\(645\) 0 0
\(646\) −3.44949 5.97469i −0.135718 0.235071i
\(647\) −24.9558 24.9558i −0.981114 0.981114i 0.0187105 0.999825i \(-0.494044\pi\)
−0.999825 + 0.0187105i \(0.994044\pi\)
\(648\) 0 0
\(649\) 74.2929i 2.91625i
\(650\) −11.4853 12.9649i −0.450490 0.508525i
\(651\) 0 0
\(652\) 0.164525 + 0.614014i 0.00644328 + 0.0240467i
\(653\) 5.57768 + 20.8162i 0.218272 + 0.814601i 0.984989 + 0.172616i \(0.0552220\pi\)
−0.766718 + 0.641985i \(0.778111\pi\)
\(654\) 0 0
\(655\) −3.77917 + 23.2522i −0.147664 + 0.908540i
\(656\) 3.92480i 0.153238i
\(657\) 0 0
\(658\) 6.97730 + 6.97730i 0.272003 + 0.272003i
\(659\) 5.65685 + 9.79796i 0.220360 + 0.381674i 0.954917 0.296872i \(-0.0959435\pi\)
−0.734557 + 0.678546i \(0.762610\pi\)
\(660\) 0 0
\(661\) 15.3485 26.5843i 0.596986 1.03401i −0.396277 0.918131i \(-0.629698\pi\)
0.993263 0.115880i \(-0.0369687\pi\)
\(662\) −4.29788 + 1.15161i −0.167042 + 0.0447587i
\(663\) 0 0
\(664\) 0.476756 0.275255i 0.0185017 0.0106820i
\(665\) 3.78194 0.382053i 0.146657 0.0148154i
\(666\) 0 0
\(667\) 2.22474 2.22474i 0.0861425 0.0861425i
\(668\) −10.4300 2.79472i −0.403550 0.108131i
\(669\) 0 0
\(670\) 2.99867 + 7.90717i 0.115849 + 0.305480i
\(671\) 29.6969 + 17.1455i 1.14644 + 0.661896i
\(672\) 0 0
\(673\) −4.22778 + 15.7783i −0.162969 + 0.608208i 0.835322 + 0.549762i \(0.185281\pi\)
−0.998291 + 0.0584468i \(0.981385\pi\)
\(674\) 30.8270 1.18741
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −1.65750 + 6.18587i −0.0637028 + 0.237742i −0.990435 0.137981i \(-0.955939\pi\)
0.926732 + 0.375723i \(0.122606\pi\)
\(678\) 0 0
\(679\) −10.6066 6.12372i −0.407044 0.235007i
\(680\) 3.52797 + 9.30286i 0.135291 + 0.356748i
\(681\) 0 0
\(682\) 27.0445 + 7.24656i 1.03559 + 0.277485i
\(683\) 13.8564 13.8564i 0.530201 0.530201i −0.390431 0.920632i \(-0.627674\pi\)
0.920632 + 0.390431i \(0.127674\pi\)
\(684\) 0 0
\(685\) −4.89898 + 0.494897i −0.187180 + 0.0189091i
\(686\) −12.1515 + 7.01569i −0.463948 + 0.267860i
\(687\) 0 0
\(688\) 3.34607 0.896575i 0.127568 0.0341816i
\(689\) −16.1920 + 28.0454i −0.616867 + 1.06844i
\(690\) 0 0
\(691\) −16.4722 28.5307i −0.626632 1.08536i −0.988223 0.153021i \(-0.951100\pi\)
0.361591 0.932337i \(-0.382234\pi\)
\(692\) 2.19275 + 2.19275i 0.0833559 + 0.0833559i
\(693\) 0 0
\(694\) 4.20204i 0.159507i
\(695\) 4.62712 28.4694i 0.175516 1.07991i
\(696\) 0 0
\(697\) −4.51985 16.8683i −0.171202 0.638933i
\(698\) 3.89404 + 14.5327i 0.147392 + 0.550073i
\(699\) 0 0
\(700\) −5.47187 0.331131i −0.206817 0.0125156i
\(701\) 23.9309i 0.903857i −0.892054 0.451928i \(-0.850736\pi\)
0.892054 0.451928i \(-0.149264\pi\)
\(702\) 0 0
\(703\) 4.65153 + 4.65153i 0.175436 + 0.175436i
\(704\) −3.14626 5.44949i −0.118579 0.205385i
\(705\) 0 0
\(706\) −17.1464 + 29.6985i −0.645314 + 1.11772i
\(707\) 1.34638 0.360762i 0.0506359 0.0135678i
\(708\) 0 0
\(709\) −38.4069 + 22.1742i −1.44240 + 0.832771i −0.998010 0.0630617i \(-0.979914\pi\)
−0.444392 + 0.895833i \(0.646580\pi\)
\(710\) 0.142865 + 1.41421i 0.00536161 + 0.0530745i
\(711\) 0 0
\(712\) 1.67423 1.67423i 0.0627446 0.0627446i
\(713\) −4.29788 1.15161i −0.160957 0.0431282i
\(714\) 0 0
\(715\) −44.4473 20.0048i −1.66223 0.748137i
\(716\) −15.2474 8.80312i −0.569824 0.328988i
\(717\) 0 0
\(718\) 4.51985 16.8683i 0.168679 0.629520i
\(719\) 32.5269 1.21305 0.606525 0.795065i \(-0.292563\pi\)
0.606525 + 0.795065i \(0.292563\pi\)
\(720\) 0 0
\(721\) 4.49490 0.167399
\(722\) −4.29534 + 16.0304i −0.159856 + 0.596591i
\(723\) 0 0
\(724\) 9.13701 + 5.27526i 0.339574 + 0.196053i
\(725\) −14.9216 4.98200i −0.554174 0.185027i
\(726\) 0 0
\(727\) 30.2836 + 8.11447i 1.12316 + 0.300949i 0.772160 0.635428i \(-0.219176\pi\)
0.350996 + 0.936377i \(0.385843\pi\)
\(728\) −2.68556 + 2.68556i −0.0995336 + 0.0995336i
\(729\) 0 0
\(730\) 7.10102 + 5.79796i 0.262821 + 0.214592i
\(731\) −13.3485 + 7.70674i −0.493711 + 0.285044i
\(732\) 0 0
\(733\) 13.8603 3.71385i 0.511941 0.137174i 0.00640470 0.999979i \(-0.497961\pi\)
0.505536 + 0.862805i \(0.331295\pi\)
\(734\) 4.87832 8.44949i 0.180062 0.311876i
\(735\) 0 0
\(736\) 0.500000 + 0.866025i 0.0184302 + 0.0319221i
\(737\) 16.8277 + 16.8277i 0.619856 + 0.619856i
\(738\) 0 0
\(739\) 24.9444i 0.917594i 0.888541 + 0.458797i \(0.151720\pi\)
−0.888541 + 0.458797i \(0.848280\pi\)
\(740\) −5.54516 7.69748i −0.203844 0.282965i
\(741\) 0 0
\(742\) 2.65275 + 9.90020i 0.0973855 + 0.363448i
\(743\) −0.0261460 0.0975783i −0.000959205 0.00357980i 0.965445 0.260609i \(-0.0839232\pi\)
−0.966404 + 0.257029i \(0.917257\pi\)
\(744\) 0 0
\(745\) 28.4781 + 4.62852i 1.04336 + 0.169576i
\(746\) 20.2918i 0.742936i
\(747\) 0 0
\(748\) 19.7980 + 19.7980i 0.723885 + 0.723885i
\(749\) 2.87659 + 4.98240i 0.105108 + 0.182053i
\(750\) 0 0
\(751\) 4.34847 7.53177i 0.158678 0.274838i −0.775714 0.631084i \(-0.782610\pi\)
0.934392 + 0.356246i \(0.115944\pi\)
\(752\) −8.69333 + 2.32937i −0.317013 + 0.0849434i
\(753\) 0 0
\(754\) −9.43879 + 5.44949i −0.343741 + 0.198459i
\(755\) 30.5412 37.4052i 1.11151 1.36132i
\(756\) 0 0
\(757\) −22.0454 + 22.0454i −0.801254 + 0.801254i −0.983292 0.182038i \(-0.941731\pi\)
0.182038 + 0.983292i \(0.441731\pi\)
\(758\) −6.42489 1.72154i −0.233362 0.0625293i
\(759\) 0 0
\(760\) −1.42296 + 3.16158i −0.0516162 + 0.114683i
\(761\) 15.3990 + 8.89060i 0.558213 + 0.322284i 0.752428 0.658675i \(-0.228883\pi\)
−0.194215 + 0.980959i \(0.562216\pi\)
\(762\) 0 0
\(763\) 5.77414 21.5494i 0.209038 0.780141i
\(764\) −3.32124 −0.120158
\(765\) 0 0
\(766\) 27.7980 1.00438
\(767\) 10.5854 39.5054i 0.382218 1.42646i
\(768\) 0 0
\(769\) 17.0580 + 9.84847i 0.615129 + 0.355145i 0.774970 0.631998i \(-0.217765\pi\)
−0.159841 + 0.987143i \(0.551098\pi\)
\(770\) −14.4242 + 5.47015i −0.519811 + 0.197131i
\(771\) 0 0
\(772\) 16.7303 + 4.48288i 0.602138 + 0.161342i
\(773\) 3.11416 3.11416i 0.112008 0.112008i −0.648881 0.760890i \(-0.724763\pi\)
0.760890 + 0.648881i \(0.224763\pi\)
\(774\) 0 0
\(775\) 4.44949 + 21.7980i 0.159830 + 0.783006i
\(776\) 9.67423 5.58542i 0.347285 0.200505i
\(777\) 0 0
\(778\) −5.43309 + 1.45579i −0.194786 + 0.0521927i
\(779\) 3.04272 5.27015i 0.109017 0.188823i
\(780\) 0 0
\(781\) 2.00000 + 3.46410i 0.0715656 + 0.123955i
\(782\) −3.14626 3.14626i −0.112510 0.112510i
\(783\) 0 0
\(784\) 5.79796i 0.207070i
\(785\) 11.1574 8.03766i 0.398225 0.286876i
\(786\) 0 0
\(787\) 1.06110 + 3.96008i 0.0378241 + 0.141162i 0.982256 0.187546i \(-0.0600535\pi\)
−0.944432 + 0.328708i \(0.893387\pi\)
\(788\) 2.53590 + 9.46410i 0.0903376 + 0.337145i
\(789\) 0 0
\(790\) 4.44414 3.20150i 0.158115 0.113904i
\(791\) 15.1278i 0.537881i
\(792\) 0 0
\(793\) 13.3485 + 13.3485i 0.474018 + 0.474018i
\(794\) 10.9244 + 18.9217i 0.387694 + 0.671505i
\(795\) 0 0
\(796\) −1.77526 + 3.07483i −0.0629222 + 0.108985i
\(797\) 19.5137 5.22867i 0.691210 0.185209i 0.103920 0.994586i \(-0.466861\pi\)
0.587290 + 0.809377i \(0.300195\pi\)
\(798\) 0 0
\(799\) 34.6803 20.0227i 1.22690 0.708352i
\(800\) 2.75699 4.17121i 0.0974745 0.147474i
\(801\) 0 0
\(802\) 18.2474 18.2474i 0.644340 0.644340i
\(803\) 24.9189 + 6.67700i 0.879369 + 0.235626i
\(804\) 0 0
\(805\) 2.29227 0.869309i 0.0807919 0.0306391i
\(806\) 13.3485 + 7.70674i 0.470180 + 0.271458i
\(807\) 0 0
\(808\) −0.329049 + 1.22803i −0.0115759 + 0.0432019i
\(809\) −54.0901 −1.90171 −0.950853 0.309644i \(-0.899790\pi\)
−0.950853 + 0.309644i \(0.899790\pi\)
\(810\) 0 0
\(811\) 43.6413 1.53245 0.766227 0.642570i \(-0.222132\pi\)
0.766227 + 0.642570i \(0.222132\pi\)
\(812\) −0.892794 + 3.33195i −0.0313309 + 0.116929i
\(813\) 0 0
\(814\) −23.1202 13.3485i −0.810364 0.467864i
\(815\) −0.583382 + 1.29618i −0.0204350 + 0.0454031i
\(816\) 0 0
\(817\) −5.18811 1.39015i −0.181509 0.0486352i
\(818\) 13.5065 13.5065i 0.472242 0.472242i
\(819\) 0 0
\(820\) −5.55051 + 6.79796i −0.193832 + 0.237395i
\(821\) 22.3207 12.8868i 0.778997 0.449754i −0.0570780 0.998370i \(-0.518178\pi\)
0.836075 + 0.548616i \(0.184845\pi\)
\(822\) 0 0
\(823\) 46.9519 12.5807i 1.63664 0.438536i 0.680811 0.732459i \(-0.261627\pi\)
0.955829 + 0.293923i \(0.0949608\pi\)
\(824\) −2.04989 + 3.55051i −0.0714112 + 0.123688i
\(825\) 0 0
\(826\) −6.47219 11.2102i −0.225196 0.390052i
\(827\) −27.3235 27.3235i −0.950133 0.950133i 0.0486816 0.998814i \(-0.484498\pi\)
−0.998814 + 0.0486816i \(0.984498\pi\)
\(828\) 0 0
\(829\) 15.4495i 0.536583i 0.963338 + 0.268291i \(0.0864590\pi\)
−0.963338 + 0.268291i \(0.913541\pi\)
\(830\) 1.21503 + 0.197479i 0.0421745 + 0.00685459i
\(831\) 0 0
\(832\) −0.896575 3.34607i −0.0310832 0.116004i
\(833\) 6.67700 + 24.9189i 0.231344 + 0.863389i
\(834\) 0 0
\(835\) −14.1130 19.5909i −0.488401 0.677970i
\(836\) 9.75663i 0.337440i
\(837\) 0 0
\(838\) 8.44949 + 8.44949i 0.291883 + 0.291883i
\(839\) −10.1459 17.5732i −0.350275 0.606695i 0.636022 0.771671i \(-0.280579\pi\)
−0.986298 + 0.164976i \(0.947245\pi\)
\(840\) 0 0
\(841\) 9.55051 16.5420i 0.329328 0.570413i
\(842\) −14.3913 + 3.85614i −0.495957 + 0.132891i
\(843\) 0 0
\(844\) 16.3670 9.44949i 0.563375 0.325265i
\(845\) 1.73205 + 1.41421i 0.0595844 + 0.0486504i
\(846\) 0 0
\(847\) −22.1691 + 22.1691i −0.761740 + 0.761740i
\(848\) −9.02993 2.41956i −0.310089 0.0830881i
\(849\) 0 0
\(850\) −7.04561 + 21.1023i −0.241662 + 0.723804i
\(851\) 3.67423 + 2.12132i 0.125951 + 0.0727179i
\(852\) 0 0
\(853\) −9.60723 + 35.8547i −0.328945 + 1.22764i 0.581340 + 0.813660i \(0.302528\pi\)
−0.910286 + 0.413980i \(0.864138\pi\)
\(854\) 5.97469 0.204450
\(855\) 0 0
\(856\) −5.24745 −0.179354
\(857\) −0.982984 + 3.66855i −0.0335781 + 0.125315i −0.980680 0.195616i \(-0.937329\pi\)
0.947102 + 0.320932i \(0.103996\pi\)
\(858\) 0 0
\(859\) 2.16064 + 1.24745i 0.0737202 + 0.0425624i 0.536407 0.843959i \(-0.319781\pi\)
−0.462687 + 0.886522i \(0.653115\pi\)
\(860\) 7.06350 + 3.17914i 0.240863 + 0.108408i
\(861\) 0 0
\(862\) −15.0263 4.02628i −0.511797 0.137136i
\(863\) 27.7842 27.7842i 0.945787 0.945787i −0.0528175 0.998604i \(-0.516820\pi\)
0.998604 + 0.0528175i \(0.0168202\pi\)
\(864\) 0 0
\(865\) 0.696938 + 6.89898i 0.0236966 + 0.234572i
\(866\) −10.4722 + 6.04612i −0.355860 + 0.205456i
\(867\) 0 0
\(868\) 4.71209 1.26260i 0.159939 0.0428555i
\(869\) 7.70674 13.3485i 0.261433 0.452816i
\(870\) 0 0
\(871\) 6.55051 + 11.3458i 0.221956 + 0.384438i
\(872\) 14.3885 + 14.3885i 0.487257 + 0.487257i
\(873\) 0 0
\(874\) 1.55051i 0.0524468i
\(875\) −9.00927 8.31193i −0.304569 0.280995i
\(876\) 0 0
\(877\) 2.10558 + 7.85813i 0.0711004 + 0.265350i 0.992321 0.123691i \(-0.0394731\pi\)
−0.921220 + 0.389041i \(0.872806\pi\)
\(878\) −2.64048 9.85441i −0.0891120 0.332570i
\(879\) 0 0
\(880\) 2.25725 13.8883i 0.0760920 0.468174i
\(881\) 58.3006i 1.96420i −0.188368 0.982098i \(-0.560320\pi\)
0.188368 0.982098i \(-0.439680\pi\)
\(882\) 0 0
\(883\) −40.2702 40.2702i −1.35520 1.35520i −0.879736 0.475463i \(-0.842281\pi\)
−0.475463 0.879736i \(-0.657719\pi\)
\(884\) 7.70674 + 13.3485i 0.259206 + 0.448958i
\(885\) 0 0
\(886\) 0.275255 0.476756i 0.00924738 0.0160169i
\(887\) −26.8508 + 7.19464i −0.901561 + 0.241572i −0.679686 0.733503i \(-0.737884\pi\)
−0.221874 + 0.975075i \(0.571217\pi\)
\(888\) 0 0
\(889\) −18.9651 + 10.9495i −0.636068 + 0.367234i
\(890\) 5.26758 0.532134i 0.176570 0.0178372i
\(891\) 0 0
\(892\) −5.87628 + 5.87628i −0.196752 + 0.196752i
\(893\) 13.4791 + 3.61171i 0.451061 + 0.120861i
\(894\) 0 0
\(895\) −13.9599 36.8106i −0.466627 1.23044i
\(896\) −0.949490 0.548188i −0.0317202 0.0183137i
\(897\) 0 0
\(898\) −5.61793 + 20.9664i −0.187473 + 0.699658i
\(899\) 13.9993 0.466902
\(900\) 0 0
\(901\) 41.5959 1.38576
\(902\) −6.39204 + 23.8554i −0.212832 + 0.794298i
\(903\) 0 0
\(904\) 11.9494 + 6.89898i 0.397431 + 0.229457i
\(905\) 8.36543 + 22.0587i 0.278076 + 0.733256i
\(906\) 0 0
\(907\) −6.38512 1.71089i −0.212015 0.0568091i 0.151248 0.988496i \(-0.451671\pi\)
−0.363263 + 0.931687i \(0.618337\pi\)
\(908\) −10.6780 + 10.6780i −0.354363 + 0.354363i
\(909\) 0 0
\(910\) −8.44949 + 0.853572i −0.280098 + 0.0282956i
\(911\) −6.12372 + 3.53553i −0.202888 + 0.117137i −0.598002 0.801495i \(-0.704038\pi\)
0.395114 + 0.918632i \(0.370705\pi\)
\(912\) 0 0
\(913\) 3.34607 0.896575i 0.110739 0.0296723i
\(914\) 3.07483 5.32577i 0.101706 0.176161i
\(915\) 0 0
\(916\) 8.17423 + 14.1582i 0.270084 + 0.467800i
\(917\) 8.16744 + 8.16744i 0.269713 + 0.269713i
\(918\) 0 0
\(919\) 27.3485i 0.902143i −0.892488 0.451071i \(-0.851042\pi\)
0.892488 0.451071i \(-0.148958\pi\)
\(920\) −0.358719 + 2.20711i −0.0118266 + 0.0727662i
\(921\) 0 0
\(922\) −4.89419 18.2654i −0.161182 0.601538i
\(923\) 0.569930 + 2.12701i 0.0187595 + 0.0700113i
\(924\) 0 0
\(925\) 1.28138 21.1745i 0.0421314 0.696212i
\(926\) 33.0197i 1.08510i
\(927\) 0 0
\(928\) −2.22474 2.22474i −0.0730308 0.0730308i
\(929\) −23.9309 41.4495i −0.785147 1.35991i −0.928912 0.370302i \(-0.879254\pi\)
0.143765 0.989612i \(-0.454079\pi\)
\(930\) 0 0
\(931\) −4.49490 + 7.78539i −0.147314 + 0.255156i
\(932\) 15.0206 4.02477i 0.492017 0.131836i
\(933\) 0 0
\(934\) −3.46410 + 2.00000i −0.113349 + 0.0654420i
\(935\) 6.29253 + 62.2896i 0.205788 + 2.03709i
\(936\) 0 0
\(937\) −12.8990 + 12.8990i −0.421391 + 0.421391i −0.885683 0.464291i \(-0.846309\pi\)
0.464291 + 0.885683i \(0.346309\pi\)
\(938\) 4.00514 + 1.07317i 0.130773 + 0.0350404i
\(939\) 0 0
\(940\) −18.3515 8.25964i −0.598561 0.269400i
\(941\) −5.47730 3.16232i −0.178555 0.103089i 0.408059 0.912956i \(-0.366206\pi\)
−0.586613 + 0.809867i \(0.699539\pi\)
\(942\) 0 0
\(943\) 1.01581 3.79107i 0.0330795 0.123454i
\(944\) 11.8065 0.384269
\(945\) 0 0
\(946\) 21.7980 0.708713
\(947\) −10.6233 + 39.6468i −0.345212 + 1.28835i 0.547152 + 0.837033i \(0.315712\pi\)
−0.892364 + 0.451316i \(0.850955\pi\)
\(948\) 0 0
\(949\) 12.2993 + 7.10102i 0.399253 + 0.230509i
\(950\) −6.93579 + 3.46365i −0.225027 + 0.112376i
\(951\) 0 0
\(952\) 4.71209 + 1.26260i 0.152720 + 0.0409211i
\(953\) −19.6561 + 19.6561i −0.636724 + 0.636724i −0.949746 0.313022i \(-0.898659\pi\)
0.313022 + 0.949746i \(0.398659\pi\)
\(954\) 0 0
\(955\) −5.75255 4.69694i −0.186148 0.151989i
\(956\) 14.6969 8.48528i 0.475333 0.274434i
\(957\) 0 0
\(958\) 6.83013 1.83013i 0.220671 0.0591287i
\(959\) −1.20713 + 2.09082i −0.0389804 + 0.0675159i
\(960\) 0 0
\(961\) 5.60102 + 9.70125i 0.180678 + 0.312944i
\(962\) −10.3923 10.3923i −0.335061 0.335061i
\(963\) 0 0
\(964\) 19.0000i 0.611949i
\(965\) 22.6380 + 31.4248i 0.728744 + 1.01160i
\(966\) 0 0
\(967\) −13.0577 48.7319i −0.419907 1.56711i −0.774800 0.632206i \(-0.782150\pi\)
0.354894 0.934907i \(-0.384517\pi\)
\(968\) −7.40117 27.6215i −0.237883 0.887790i
\(969\) 0 0
\(970\) 24.6552 + 4.00720i 0.791632 + 0.128663i
\(971\) 49.2117i 1.57928i 0.613570 + 0.789640i \(0.289733\pi\)
−0.613570 + 0.789640i \(0.710267\pi\)
\(972\) 0 0
\(973\) −10.0000 10.0000i −0.320585 0.320585i
\(974\) −8.48528 14.6969i −0.271886 0.470920i
\(975\) 0 0
\(976\) −2.72474 + 4.71940i −0.0872170 + 0.151064i
\(977\) −41.0469 + 10.9985i −1.31321 + 0.351873i −0.846429 0.532502i \(-0.821252\pi\)
−0.466778 + 0.884374i \(0.654585\pi\)
\(978\) 0 0
\(979\) 12.9029 7.44949i 0.412378 0.238087i
\(980\) 8.19955 10.0424i 0.261925 0.320791i
\(981\) 0 0
\(982\) 0.202041 0.202041i 0.00644739 0.00644739i
\(983\) −45.2034 12.1122i −1.44176 0.386319i −0.548612 0.836077i \(-0.684844\pi\)
−0.893151 + 0.449757i \(0.851510\pi\)
\(984\) 0 0
\(985\) −8.99196 + 19.9786i −0.286508 + 0.636571i
\(986\) 12.1237 + 6.99964i 0.386098 + 0.222914i
\(987\) 0 0
\(988\) −1.39015 + 5.18811i −0.0442265 + 0.165056i
\(989\) −3.46410 −0.110152
\(990\) 0 0
\(991\) −56.7423 −1.80248 −0.901240 0.433320i \(-0.857342\pi\)
−0.901240 + 0.433320i \(0.857342\pi\)
\(992\) −1.15161 + 4.29788i −0.0365637 + 0.136458i
\(993\) 0 0
\(994\) 0.603566 + 0.348469i 0.0191440 + 0.0110528i
\(995\) −7.42330 + 2.81518i −0.235334 + 0.0892471i
\(996\) 0 0
\(997\) 39.9528 + 10.7053i 1.26532 + 0.339041i 0.828235 0.560381i \(-0.189345\pi\)
0.437082 + 0.899422i \(0.356012\pi\)
\(998\) 6.29253 6.29253i 0.199187 0.199187i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.m.a.233.1 8
3.2 odd 2 90.2.l.a.23.2 8
5.2 odd 4 inner 270.2.m.a.17.1 8
5.3 odd 4 1350.2.q.g.557.2 8
5.4 even 2 1350.2.q.g.1043.2 8
9.2 odd 6 inner 270.2.m.a.143.1 8
9.4 even 3 810.2.f.b.323.2 8
9.5 odd 6 810.2.f.b.323.3 8
9.7 even 3 90.2.l.a.83.2 yes 8
12.11 even 2 720.2.cu.a.113.2 8
15.2 even 4 90.2.l.a.77.2 yes 8
15.8 even 4 450.2.p.a.257.1 8
15.14 odd 2 450.2.p.a.293.1 8
36.7 odd 6 720.2.cu.a.353.2 8
45.2 even 12 inner 270.2.m.a.197.1 8
45.7 odd 12 90.2.l.a.47.2 yes 8
45.22 odd 12 810.2.f.b.647.4 8
45.29 odd 6 1350.2.q.g.143.2 8
45.32 even 12 810.2.f.b.647.1 8
45.34 even 6 450.2.p.a.443.1 8
45.38 even 12 1350.2.q.g.1007.2 8
45.43 odd 12 450.2.p.a.407.1 8
60.47 odd 4 720.2.cu.a.257.2 8
180.7 even 12 720.2.cu.a.497.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.a.23.2 8 3.2 odd 2
90.2.l.a.47.2 yes 8 45.7 odd 12
90.2.l.a.77.2 yes 8 15.2 even 4
90.2.l.a.83.2 yes 8 9.7 even 3
270.2.m.a.17.1 8 5.2 odd 4 inner
270.2.m.a.143.1 8 9.2 odd 6 inner
270.2.m.a.197.1 8 45.2 even 12 inner
270.2.m.a.233.1 8 1.1 even 1 trivial
450.2.p.a.257.1 8 15.8 even 4
450.2.p.a.293.1 8 15.14 odd 2
450.2.p.a.407.1 8 45.43 odd 12
450.2.p.a.443.1 8 45.34 even 6
720.2.cu.a.113.2 8 12.11 even 2
720.2.cu.a.257.2 8 60.47 odd 4
720.2.cu.a.353.2 8 36.7 odd 6
720.2.cu.a.497.2 8 180.7 even 12
810.2.f.b.323.2 8 9.4 even 3
810.2.f.b.323.3 8 9.5 odd 6
810.2.f.b.647.1 8 45.32 even 12
810.2.f.b.647.4 8 45.22 odd 12
1350.2.q.g.143.2 8 45.29 odd 6
1350.2.q.g.557.2 8 5.3 odd 4
1350.2.q.g.1007.2 8 45.38 even 12
1350.2.q.g.1043.2 8 5.4 even 2