Properties

Label 270.2.m.a.143.1
Level $270$
Weight $2$
Character 270.143
Analytic conductor $2.156$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(17,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.m (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 143.1
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 270.143
Dual form 270.2.m.a.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(-2.20711 - 0.358719i) q^{5} +(0.283763 + 1.05902i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(2.22474 - 0.224745i) q^{10} +(5.44949 + 3.14626i) q^{11} +(-0.896575 + 3.34607i) q^{13} +(-0.548188 - 0.949490i) q^{14} +(0.500000 - 0.866025i) q^{16} +(3.14626 + 3.14626i) q^{17} -1.55051i q^{19} +(-2.09077 + 0.792893i) q^{20} +(-6.07812 - 1.62863i) q^{22} +(-0.965926 - 0.258819i) q^{23} +(4.74264 + 1.58346i) q^{25} -3.46410i q^{26} +(0.775255 + 0.775255i) q^{28} +(-1.57313 + 2.72474i) q^{29} +(2.22474 + 3.85337i) q^{31} +(-0.258819 + 0.965926i) q^{32} +(-3.85337 - 2.22474i) q^{34} +(-0.246405 - 2.43916i) q^{35} +(-3.00000 + 3.00000i) q^{37} +(0.401302 + 1.49768i) q^{38} +(1.81431 - 1.30701i) q^{40} +(3.39898 - 1.96240i) q^{41} +(-3.34607 + 0.896575i) q^{43} +6.29253 q^{44} +1.00000 q^{46} +(-8.69333 + 2.32937i) q^{47} +(5.02118 - 2.89898i) q^{49} +(-4.99087 - 0.302023i) q^{50} +(0.896575 + 3.34607i) q^{52} +(6.61037 - 6.61037i) q^{53} +(-10.8990 - 8.89898i) q^{55} +(-0.949490 - 0.548188i) q^{56} +(0.814313 - 3.03906i) q^{58} +(-5.90326 - 10.2247i) q^{59} +(2.72474 - 4.71940i) q^{61} +(-3.14626 - 3.14626i) q^{62} -1.00000i q^{64} +(3.17914 - 7.06350i) q^{65} +(-3.65307 - 0.978838i) q^{67} +(4.29788 + 1.15161i) q^{68} +(0.869309 + 2.29227i) q^{70} -0.635674i q^{71} +(2.89898 + 2.89898i) q^{73} +(2.12132 - 3.67423i) q^{74} +(-0.775255 - 1.34278i) q^{76} +(-1.78559 + 6.66390i) q^{77} +(-2.12132 - 1.22474i) q^{79} +(-1.41421 + 1.73205i) q^{80} +(-2.77526 + 2.77526i) q^{82} +(0.142483 + 0.531752i) q^{83} +(-5.81552 - 8.07277i) q^{85} +(3.00000 - 1.73205i) q^{86} +(-6.07812 + 1.62863i) q^{88} -2.36773 q^{89} -3.79796 q^{91} +(-0.965926 + 0.258819i) q^{92} +(7.79423 - 4.50000i) q^{94} +(-0.556198 + 3.42214i) q^{95} +(-2.89123 - 10.7902i) q^{97} +(-4.09978 + 4.09978i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{5} - 8 q^{7} + 8 q^{10} + 24 q^{11} + 4 q^{16} - 8 q^{22} + 4 q^{25} + 16 q^{28} + 8 q^{31} - 24 q^{37} - 12 q^{38} + 4 q^{40} - 12 q^{41} + 8 q^{46} - 24 q^{50} - 48 q^{55} + 12 q^{56} - 4 q^{58}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 + 0.258819i −0.683013 + 0.183013i
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) −2.20711 0.358719i −0.987048 0.160424i
\(6\) 0 0
\(7\) 0.283763 + 1.05902i 0.107252 + 0.400271i 0.998591 0.0530669i \(-0.0168997\pi\)
−0.891339 + 0.453338i \(0.850233\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 2.22474 0.224745i 0.703526 0.0710706i
\(11\) 5.44949 + 3.14626i 1.64308 + 0.948634i 0.979729 + 0.200329i \(0.0642011\pi\)
0.663354 + 0.748305i \(0.269132\pi\)
\(12\) 0 0
\(13\) −0.896575 + 3.34607i −0.248665 + 0.928032i 0.722840 + 0.691015i \(0.242836\pi\)
−0.971506 + 0.237016i \(0.923830\pi\)
\(14\) −0.548188 0.949490i −0.146509 0.253762i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 3.14626 + 3.14626i 0.763081 + 0.763081i 0.976878 0.213797i \(-0.0685831\pi\)
−0.213797 + 0.976878i \(0.568583\pi\)
\(18\) 0 0
\(19\) 1.55051i 0.355711i −0.984057 0.177856i \(-0.943084\pi\)
0.984057 0.177856i \(-0.0569160\pi\)
\(20\) −2.09077 + 0.792893i −0.467510 + 0.177296i
\(21\) 0 0
\(22\) −6.07812 1.62863i −1.29586 0.347224i
\(23\) −0.965926 0.258819i −0.201409 0.0539675i 0.156704 0.987646i \(-0.449913\pi\)
−0.358113 + 0.933678i \(0.616580\pi\)
\(24\) 0 0
\(25\) 4.74264 + 1.58346i 0.948528 + 0.316693i
\(26\) 3.46410i 0.679366i
\(27\) 0 0
\(28\) 0.775255 + 0.775255i 0.146509 + 0.146509i
\(29\) −1.57313 + 2.72474i −0.292123 + 0.505972i −0.974312 0.225204i \(-0.927695\pi\)
0.682188 + 0.731177i \(0.261028\pi\)
\(30\) 0 0
\(31\) 2.22474 + 3.85337i 0.399576 + 0.692086i 0.993674 0.112307i \(-0.0358240\pi\)
−0.594098 + 0.804393i \(0.702491\pi\)
\(32\) −0.258819 + 0.965926i −0.0457532 + 0.170753i
\(33\) 0 0
\(34\) −3.85337 2.22474i −0.660848 0.381541i
\(35\) −0.246405 2.43916i −0.0416500 0.412293i
\(36\) 0 0
\(37\) −3.00000 + 3.00000i −0.493197 + 0.493197i −0.909312 0.416115i \(-0.863391\pi\)
0.416115 + 0.909312i \(0.363391\pi\)
\(38\) 0.401302 + 1.49768i 0.0650997 + 0.242955i
\(39\) 0 0
\(40\) 1.81431 1.30701i 0.286868 0.206656i
\(41\) 3.39898 1.96240i 0.530831 0.306476i −0.210524 0.977589i \(-0.567517\pi\)
0.741355 + 0.671113i \(0.234184\pi\)
\(42\) 0 0
\(43\) −3.34607 + 0.896575i −0.510270 + 0.136726i −0.504762 0.863258i \(-0.668420\pi\)
−0.00550783 + 0.999985i \(0.501753\pi\)
\(44\) 6.29253 0.948634
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −8.69333 + 2.32937i −1.26805 + 0.339774i −0.829285 0.558827i \(-0.811252\pi\)
−0.438768 + 0.898600i \(0.644585\pi\)
\(48\) 0 0
\(49\) 5.02118 2.89898i 0.717311 0.414140i
\(50\) −4.99087 0.302023i −0.705816 0.0427126i
\(51\) 0 0
\(52\) 0.896575 + 3.34607i 0.124333 + 0.464016i
\(53\) 6.61037 6.61037i 0.908004 0.908004i −0.0881074 0.996111i \(-0.528082\pi\)
0.996111 + 0.0881074i \(0.0280819\pi\)
\(54\) 0 0
\(55\) −10.8990 8.89898i −1.46962 1.19994i
\(56\) −0.949490 0.548188i −0.126881 0.0732547i
\(57\) 0 0
\(58\) 0.814313 3.03906i 0.106925 0.399048i
\(59\) −5.90326 10.2247i −0.768539 1.33115i −0.938355 0.345673i \(-0.887651\pi\)
0.169816 0.985476i \(-0.445683\pi\)
\(60\) 0 0
\(61\) 2.72474 4.71940i 0.348868 0.604257i −0.637181 0.770714i \(-0.719900\pi\)
0.986049 + 0.166458i \(0.0532329\pi\)
\(62\) −3.14626 3.14626i −0.399576 0.399576i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 3.17914 7.06350i 0.394323 0.876120i
\(66\) 0 0
\(67\) −3.65307 0.978838i −0.446294 0.119584i 0.0286709 0.999589i \(-0.490873\pi\)
−0.474965 + 0.880005i \(0.657539\pi\)
\(68\) 4.29788 + 1.15161i 0.521194 + 0.139654i
\(69\) 0 0
\(70\) 0.869309 + 2.29227i 0.103902 + 0.273979i
\(71\) 0.635674i 0.0754407i −0.999288 0.0377203i \(-0.987990\pi\)
0.999288 0.0377203i \(-0.0120096\pi\)
\(72\) 0 0
\(73\) 2.89898 + 2.89898i 0.339300 + 0.339300i 0.856104 0.516804i \(-0.172878\pi\)
−0.516804 + 0.856104i \(0.672878\pi\)
\(74\) 2.12132 3.67423i 0.246598 0.427121i
\(75\) 0 0
\(76\) −0.775255 1.34278i −0.0889279 0.154028i
\(77\) −1.78559 + 6.66390i −0.203487 + 0.759422i
\(78\) 0 0
\(79\) −2.12132 1.22474i −0.238667 0.137795i 0.375897 0.926662i \(-0.377335\pi\)
−0.614564 + 0.788867i \(0.710668\pi\)
\(80\) −1.41421 + 1.73205i −0.158114 + 0.193649i
\(81\) 0 0
\(82\) −2.77526 + 2.77526i −0.306476 + 0.306476i
\(83\) 0.142483 + 0.531752i 0.0156395 + 0.0583674i 0.973305 0.229517i \(-0.0737147\pi\)
−0.957665 + 0.287885i \(0.907048\pi\)
\(84\) 0 0
\(85\) −5.81552 8.07277i −0.630781 0.875615i
\(86\) 3.00000 1.73205i 0.323498 0.186772i
\(87\) 0 0
\(88\) −6.07812 + 1.62863i −0.647929 + 0.173612i
\(89\) −2.36773 −0.250978 −0.125489 0.992095i \(-0.540050\pi\)
−0.125489 + 0.992095i \(0.540050\pi\)
\(90\) 0 0
\(91\) −3.79796 −0.398134
\(92\) −0.965926 + 0.258819i −0.100705 + 0.0269838i
\(93\) 0 0
\(94\) 7.79423 4.50000i 0.803913 0.464140i
\(95\) −0.556198 + 3.42214i −0.0570647 + 0.351104i
\(96\) 0 0
\(97\) −2.89123 10.7902i −0.293560 1.09558i −0.942355 0.334616i \(-0.891393\pi\)
0.648795 0.760963i \(-0.275273\pi\)
\(98\) −4.09978 + 4.09978i −0.414140 + 0.414140i
\(99\) 0 0
\(100\) 4.89898 1.00000i 0.489898 0.100000i
\(101\) −1.10102 0.635674i −0.109556 0.0632520i 0.444221 0.895917i \(-0.353481\pi\)
−0.553777 + 0.832665i \(0.686814\pi\)
\(102\) 0 0
\(103\) 1.06110 3.96008i 0.104553 0.390198i −0.893741 0.448584i \(-0.851929\pi\)
0.998294 + 0.0583855i \(0.0185953\pi\)
\(104\) −1.73205 3.00000i −0.169842 0.294174i
\(105\) 0 0
\(106\) −4.67423 + 8.09601i −0.454002 + 0.786354i
\(107\) 3.71051 + 3.71051i 0.358708 + 0.358708i 0.863337 0.504628i \(-0.168370\pi\)
−0.504628 + 0.863337i \(0.668370\pi\)
\(108\) 0 0
\(109\) 20.3485i 1.94903i 0.224323 + 0.974515i \(0.427983\pi\)
−0.224323 + 0.974515i \(0.572017\pi\)
\(110\) 12.8308 + 5.77489i 1.22337 + 0.550614i
\(111\) 0 0
\(112\) 1.05902 + 0.283763i 0.100068 + 0.0268131i
\(113\) 13.3278 + 3.57117i 1.25377 + 0.335948i 0.823793 0.566890i \(-0.191854\pi\)
0.429981 + 0.902838i \(0.358520\pi\)
\(114\) 0 0
\(115\) 2.03906 + 0.917738i 0.190143 + 0.0855795i
\(116\) 3.14626i 0.292123i
\(117\) 0 0
\(118\) 8.34847 + 8.34847i 0.768539 + 0.768539i
\(119\) −2.43916 + 4.22474i −0.223597 + 0.387282i
\(120\) 0 0
\(121\) 14.2980 + 24.7648i 1.29981 + 2.25134i
\(122\) −1.41043 + 5.26380i −0.127694 + 0.476562i
\(123\) 0 0
\(124\) 3.85337 + 2.22474i 0.346043 + 0.199788i
\(125\) −9.89949 5.19615i −0.885438 0.464758i
\(126\) 0 0
\(127\) 14.1237 14.1237i 1.25328 1.25328i 0.299036 0.954242i \(-0.403335\pi\)
0.954242 0.299036i \(-0.0966651\pi\)
\(128\) 0.258819 + 0.965926i 0.0228766 + 0.0853766i
\(129\) 0 0
\(130\) −1.24264 + 7.64564i −0.108987 + 0.670567i
\(131\) −9.12372 + 5.26758i −0.797143 + 0.460231i −0.842471 0.538741i \(-0.818900\pi\)
0.0453278 + 0.998972i \(0.485567\pi\)
\(132\) 0 0
\(133\) 1.64202 0.439978i 0.142381 0.0381509i
\(134\) 3.78194 0.326710
\(135\) 0 0
\(136\) −4.44949 −0.381541
\(137\) 2.12701 0.569930i 0.181723 0.0486924i −0.166810 0.985989i \(-0.553347\pi\)
0.348533 + 0.937297i \(0.386680\pi\)
\(138\) 0 0
\(139\) −11.1708 + 6.44949i −0.947499 + 0.547039i −0.892303 0.451437i \(-0.850912\pi\)
−0.0551956 + 0.998476i \(0.517578\pi\)
\(140\) −1.43297 1.98917i −0.121108 0.168116i
\(141\) 0 0
\(142\) 0.164525 + 0.614014i 0.0138066 + 0.0515269i
\(143\) −15.4135 + 15.4135i −1.28894 + 1.28894i
\(144\) 0 0
\(145\) 4.44949 5.44949i 0.369510 0.452555i
\(146\) −3.55051 2.04989i −0.293842 0.169650i
\(147\) 0 0
\(148\) −1.09808 + 4.09808i −0.0902613 + 0.336860i
\(149\) 6.45145 + 11.1742i 0.528523 + 0.915429i 0.999447 + 0.0332550i \(0.0105874\pi\)
−0.470924 + 0.882174i \(0.656079\pi\)
\(150\) 0 0
\(151\) 10.7980 18.7026i 0.878725 1.52200i 0.0259849 0.999662i \(-0.491728\pi\)
0.852741 0.522335i \(-0.174939\pi\)
\(152\) 1.09638 + 1.09638i 0.0889279 + 0.0889279i
\(153\) 0 0
\(154\) 6.89898i 0.555936i
\(155\) −3.52797 9.30286i −0.283373 0.747224i
\(156\) 0 0
\(157\) −5.94012 1.59165i −0.474073 0.127028i 0.0138684 0.999904i \(-0.495585\pi\)
−0.487942 + 0.872876i \(0.662252\pi\)
\(158\) 2.36603 + 0.633975i 0.188231 + 0.0504363i
\(159\) 0 0
\(160\) 0.917738 2.03906i 0.0725535 0.161202i
\(161\) 1.09638i 0.0864066i
\(162\) 0 0
\(163\) −0.449490 0.449490i −0.0352068 0.0352068i 0.689284 0.724491i \(-0.257925\pi\)
−0.724491 + 0.689284i \(0.757925\pi\)
\(164\) 1.96240 3.39898i 0.153238 0.265416i
\(165\) 0 0
\(166\) −0.275255 0.476756i −0.0213639 0.0370034i
\(167\) 2.79472 10.4300i 0.216262 0.807100i −0.769457 0.638699i \(-0.779473\pi\)
0.985719 0.168401i \(-0.0538603\pi\)
\(168\) 0 0
\(169\) 0.866025 + 0.500000i 0.0666173 + 0.0384615i
\(170\) 7.70674 + 6.29253i 0.591080 + 0.482615i
\(171\) 0 0
\(172\) −2.44949 + 2.44949i −0.186772 + 0.186772i
\(173\) −0.802603 2.99536i −0.0610208 0.227733i 0.928680 0.370881i \(-0.120944\pi\)
−0.989701 + 0.143148i \(0.954277\pi\)
\(174\) 0 0
\(175\) −0.331131 + 5.47187i −0.0250312 + 0.413635i
\(176\) 5.44949 3.14626i 0.410771 0.237159i
\(177\) 0 0
\(178\) 2.28705 0.612812i 0.171421 0.0459322i
\(179\) −17.6062 −1.31595 −0.657976 0.753039i \(-0.728587\pi\)
−0.657976 + 0.753039i \(0.728587\pi\)
\(180\) 0 0
\(181\) −10.5505 −0.784213 −0.392107 0.919920i \(-0.628254\pi\)
−0.392107 + 0.919920i \(0.628254\pi\)
\(182\) 3.66855 0.982984i 0.271931 0.0728636i
\(183\) 0 0
\(184\) 0.866025 0.500000i 0.0638442 0.0368605i
\(185\) 7.69748 5.54516i 0.565930 0.407688i
\(186\) 0 0
\(187\) 7.24656 + 27.0445i 0.529921 + 1.97769i
\(188\) −6.36396 + 6.36396i −0.464140 + 0.464140i
\(189\) 0 0
\(190\) −0.348469 3.44949i −0.0252806 0.250252i
\(191\) 2.87628 + 1.66062i 0.208120 + 0.120158i 0.600437 0.799672i \(-0.294993\pi\)
−0.392317 + 0.919830i \(0.628327\pi\)
\(192\) 0 0
\(193\) 4.48288 16.7303i 0.322685 1.20428i −0.593934 0.804513i \(-0.702426\pi\)
0.916619 0.399762i \(-0.130907\pi\)
\(194\) 5.58542 + 9.67423i 0.401010 + 0.694570i
\(195\) 0 0
\(196\) 2.89898 5.02118i 0.207070 0.358656i
\(197\) 6.92820 + 6.92820i 0.493614 + 0.493614i 0.909443 0.415829i \(-0.136508\pi\)
−0.415829 + 0.909443i \(0.636508\pi\)
\(198\) 0 0
\(199\) 3.55051i 0.251689i −0.992050 0.125844i \(-0.959836\pi\)
0.992050 0.125844i \(-0.0401640\pi\)
\(200\) −4.47323 + 2.23388i −0.316305 + 0.157959i
\(201\) 0 0
\(202\) 1.22803 + 0.329049i 0.0864038 + 0.0231518i
\(203\) −3.33195 0.892794i −0.233857 0.0626618i
\(204\) 0 0
\(205\) −8.20586 + 3.11195i −0.573122 + 0.217348i
\(206\) 4.09978i 0.285645i
\(207\) 0 0
\(208\) 2.44949 + 2.44949i 0.169842 + 0.169842i
\(209\) 4.87832 8.44949i 0.337440 0.584463i
\(210\) 0 0
\(211\) −9.44949 16.3670i −0.650530 1.12675i −0.982995 0.183635i \(-0.941214\pi\)
0.332465 0.943116i \(-0.392120\pi\)
\(212\) 2.41956 9.02993i 0.166176 0.620178i
\(213\) 0 0
\(214\) −4.54442 2.62372i −0.310650 0.179354i
\(215\) 7.70674 0.778539i 0.525595 0.0530959i
\(216\) 0 0
\(217\) −3.44949 + 3.44949i −0.234167 + 0.234167i
\(218\) −5.26657 19.6551i −0.356697 1.33121i
\(219\) 0 0
\(220\) −13.8883 2.25725i −0.936348 0.152184i
\(221\) −13.3485 + 7.70674i −0.897915 + 0.518412i
\(222\) 0 0
\(223\) −8.02714 + 2.15087i −0.537537 + 0.144033i −0.517367 0.855764i \(-0.673088\pi\)
−0.0201706 + 0.999797i \(0.506421\pi\)
\(224\) −1.09638 −0.0732547
\(225\) 0 0
\(226\) −13.7980 −0.917827
\(227\) 14.5865 3.90843i 0.968138 0.259412i 0.260096 0.965583i \(-0.416246\pi\)
0.708041 + 0.706171i \(0.249579\pi\)
\(228\) 0 0
\(229\) 14.1582 8.17423i 0.935600 0.540169i 0.0470214 0.998894i \(-0.485027\pi\)
0.888578 + 0.458725i \(0.151694\pi\)
\(230\) −2.20711 0.358719i −0.145532 0.0236533i
\(231\) 0 0
\(232\) −0.814313 3.03906i −0.0534623 0.199524i
\(233\) 10.9959 10.9959i 0.720363 0.720363i −0.248316 0.968679i \(-0.579877\pi\)
0.968679 + 0.248316i \(0.0798770\pi\)
\(234\) 0 0
\(235\) 20.0227 2.02270i 1.30614 0.131947i
\(236\) −10.2247 5.90326i −0.665574 0.384269i
\(237\) 0 0
\(238\) 1.26260 4.71209i 0.0818423 0.305439i
\(239\) 8.48528 + 14.6969i 0.548867 + 0.950666i 0.998353 + 0.0573782i \(0.0182741\pi\)
−0.449485 + 0.893288i \(0.648393\pi\)
\(240\) 0 0
\(241\) −9.50000 + 16.4545i −0.611949 + 1.05993i 0.378963 + 0.925412i \(0.376281\pi\)
−0.990912 + 0.134515i \(0.957053\pi\)
\(242\) −20.2204 20.2204i −1.29981 1.29981i
\(243\) 0 0
\(244\) 5.44949i 0.348868i
\(245\) −12.1222 + 4.59716i −0.774459 + 0.293702i
\(246\) 0 0
\(247\) 5.18811 + 1.39015i 0.330111 + 0.0884531i
\(248\) −4.29788 1.15161i −0.272915 0.0731275i
\(249\) 0 0
\(250\) 10.9070 + 2.45692i 0.689822 + 0.155389i
\(251\) 11.1708i 0.705097i −0.935793 0.352549i \(-0.885315\pi\)
0.935793 0.352549i \(-0.114685\pi\)
\(252\) 0 0
\(253\) −4.44949 4.44949i −0.279737 0.279737i
\(254\) −9.98698 + 17.2980i −0.626639 + 1.08537i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.74105 25.1579i 0.420495 1.56931i −0.353073 0.935596i \(-0.614863\pi\)
0.773568 0.633713i \(-0.218470\pi\)
\(258\) 0 0
\(259\) −4.02834 2.32577i −0.250309 0.144516i
\(260\) −0.778539 7.70674i −0.0482829 0.477952i
\(261\) 0 0
\(262\) 7.44949 7.44949i 0.460231 0.460231i
\(263\) −3.28621 12.2643i −0.202636 0.756249i −0.990157 0.139961i \(-0.955302\pi\)
0.787521 0.616288i \(-0.211364\pi\)
\(264\) 0 0
\(265\) −16.9611 + 12.2185i −1.04191 + 0.750578i
\(266\) −1.47219 + 0.849971i −0.0902660 + 0.0521151i
\(267\) 0 0
\(268\) −3.65307 + 0.978838i −0.223147 + 0.0597920i
\(269\) 4.70334 0.286768 0.143384 0.989667i \(-0.454202\pi\)
0.143384 + 0.989667i \(0.454202\pi\)
\(270\) 0 0
\(271\) −16.0454 −0.974689 −0.487345 0.873210i \(-0.662034\pi\)
−0.487345 + 0.873210i \(0.662034\pi\)
\(272\) 4.29788 1.15161i 0.260597 0.0698268i
\(273\) 0 0
\(274\) −1.90702 + 1.10102i −0.115208 + 0.0665151i
\(275\) 20.8630 + 23.5507i 1.25808 + 1.42016i
\(276\) 0 0
\(277\) −3.69723 13.7983i −0.222145 0.829057i −0.983528 0.180754i \(-0.942146\pi\)
0.761383 0.648302i \(-0.224521\pi\)
\(278\) 9.12096 9.12096i 0.547039 0.547039i
\(279\) 0 0
\(280\) 1.89898 + 1.55051i 0.113486 + 0.0926607i
\(281\) 0.151531 + 0.0874863i 0.00903957 + 0.00521900i 0.504513 0.863404i \(-0.331672\pi\)
−0.495473 + 0.868623i \(0.665005\pi\)
\(282\) 0 0
\(283\) 1.78484 6.66112i 0.106098 0.395962i −0.892370 0.451305i \(-0.850959\pi\)
0.998467 + 0.0553430i \(0.0176252\pi\)
\(284\) −0.317837 0.550510i −0.0188602 0.0326668i
\(285\) 0 0
\(286\) 10.8990 18.8776i 0.644470 1.11626i
\(287\) 3.04272 + 3.04272i 0.179606 + 0.179606i
\(288\) 0 0
\(289\) 2.79796i 0.164586i
\(290\) −2.88745 + 6.41542i −0.169557 + 0.376726i
\(291\) 0 0
\(292\) 3.96008 + 1.06110i 0.231746 + 0.0620962i
\(293\) −21.2942 5.70577i −1.24402 0.333335i −0.423998 0.905663i \(-0.639374\pi\)
−0.820024 + 0.572329i \(0.806040\pi\)
\(294\) 0 0
\(295\) 9.36131 + 24.6847i 0.545036 + 1.43720i
\(296\) 4.24264i 0.246598i
\(297\) 0 0
\(298\) −9.12372 9.12372i −0.528523 0.528523i
\(299\) 1.73205 3.00000i 0.100167 0.173494i
\(300\) 0 0
\(301\) −1.89898 3.28913i −0.109455 0.189582i
\(302\) −5.58943 + 20.8601i −0.321636 + 1.20036i
\(303\) 0 0
\(304\) −1.34278 0.775255i −0.0770138 0.0444639i
\(305\) −7.70674 + 9.43879i −0.441287 + 0.540464i
\(306\) 0 0
\(307\) 0.674235 0.674235i 0.0384806 0.0384806i −0.687605 0.726085i \(-0.741338\pi\)
0.726085 + 0.687605i \(0.241338\pi\)
\(308\) 1.78559 + 6.66390i 0.101743 + 0.379711i
\(309\) 0 0
\(310\) 5.81552 + 8.07277i 0.330299 + 0.458502i
\(311\) 17.8207 10.2888i 1.01052 0.583422i 0.0991741 0.995070i \(-0.468380\pi\)
0.911343 + 0.411648i \(0.135047\pi\)
\(312\) 0 0
\(313\) −4.85009 + 1.29958i −0.274143 + 0.0734564i −0.393271 0.919422i \(-0.628657\pi\)
0.119128 + 0.992879i \(0.461990\pi\)
\(314\) 6.14966 0.347046
\(315\) 0 0
\(316\) −2.44949 −0.137795
\(317\) −1.06350 + 0.284965i −0.0597323 + 0.0160052i −0.288561 0.957461i \(-0.593177\pi\)
0.228829 + 0.973467i \(0.426510\pi\)
\(318\) 0 0
\(319\) −17.1455 + 9.89898i −0.959966 + 0.554236i
\(320\) −0.358719 + 2.20711i −0.0200530 + 0.123381i
\(321\) 0 0
\(322\) 0.283763 + 1.05902i 0.0158135 + 0.0590168i
\(323\) 4.87832 4.87832i 0.271437 0.271437i
\(324\) 0 0
\(325\) −9.55051 + 14.4495i −0.529767 + 0.801513i
\(326\) 0.550510 + 0.317837i 0.0304899 + 0.0176034i
\(327\) 0 0
\(328\) −1.01581 + 3.79107i −0.0560889 + 0.209327i
\(329\) −4.93369 8.54541i −0.272003 0.471124i
\(330\) 0 0
\(331\) 2.22474 3.85337i 0.122283 0.211800i −0.798385 0.602148i \(-0.794312\pi\)
0.920668 + 0.390347i \(0.127645\pi\)
\(332\) 0.389270 + 0.389270i 0.0213639 + 0.0213639i
\(333\) 0 0
\(334\) 10.7980i 0.590838i
\(335\) 7.71159 + 3.47083i 0.421329 + 0.189632i
\(336\) 0 0
\(337\) 29.7766 + 7.97861i 1.62203 + 0.434622i 0.951598 0.307346i \(-0.0994408\pi\)
0.670435 + 0.741968i \(0.266108\pi\)
\(338\) −0.965926 0.258819i −0.0525394 0.0140779i
\(339\) 0 0
\(340\) −9.07277 4.08346i −0.492040 0.221457i
\(341\) 27.9985i 1.51621i
\(342\) 0 0
\(343\) 9.92168 + 9.92168i 0.535721 + 0.535721i
\(344\) 1.73205 3.00000i 0.0933859 0.161749i
\(345\) 0 0
\(346\) 1.55051 + 2.68556i 0.0833559 + 0.144377i
\(347\) 1.08757 4.05886i 0.0583837 0.217891i −0.930570 0.366113i \(-0.880688\pi\)
0.988954 + 0.148222i \(0.0473550\pi\)
\(348\) 0 0
\(349\) −13.0297 7.52270i −0.697464 0.402681i 0.108938 0.994049i \(-0.465255\pi\)
−0.806402 + 0.591367i \(0.798588\pi\)
\(350\) −1.09638 5.37113i −0.0586038 0.287099i
\(351\) 0 0
\(352\) −4.44949 + 4.44949i −0.237159 + 0.237159i
\(353\) 8.87564 + 33.1244i 0.472403 + 1.76303i 0.631097 + 0.775704i \(0.282605\pi\)
−0.158694 + 0.987328i \(0.550728\pi\)
\(354\) 0 0
\(355\) −0.228029 + 1.40300i −0.0121025 + 0.0744636i
\(356\) −2.05051 + 1.18386i −0.108677 + 0.0627446i
\(357\) 0 0
\(358\) 17.0063 4.55683i 0.898812 0.240836i
\(359\) 17.4634 0.921682 0.460841 0.887483i \(-0.347548\pi\)
0.460841 + 0.887483i \(0.347548\pi\)
\(360\) 0 0
\(361\) 16.5959 0.873469
\(362\) 10.1910 2.73067i 0.535628 0.143521i
\(363\) 0 0
\(364\) −3.28913 + 1.89898i −0.172397 + 0.0995336i
\(365\) −5.35844 7.43828i −0.280473 0.389337i
\(366\) 0 0
\(367\) 2.52520 + 9.42418i 0.131814 + 0.491938i 0.999991 0.00431778i \(-0.00137440\pi\)
−0.868176 + 0.496256i \(0.834708\pi\)
\(368\) −0.707107 + 0.707107i −0.0368605 + 0.0368605i
\(369\) 0 0
\(370\) −6.00000 + 7.34847i −0.311925 + 0.382029i
\(371\) 8.87628 + 5.12472i 0.460833 + 0.266062i
\(372\) 0 0
\(373\) 5.25190 19.6004i 0.271933 1.01487i −0.685935 0.727662i \(-0.740607\pi\)
0.957869 0.287206i \(-0.0927266\pi\)
\(374\) −13.9993 24.2474i −0.723885 1.25381i
\(375\) 0 0
\(376\) 4.50000 7.79423i 0.232070 0.401957i
\(377\) −7.70674 7.70674i −0.396917 0.396917i
\(378\) 0 0
\(379\) 6.65153i 0.341666i 0.985300 + 0.170833i \(0.0546459\pi\)
−0.985300 + 0.170833i \(0.945354\pi\)
\(380\) 1.22939 + 3.24176i 0.0630663 + 0.166299i
\(381\) 0 0
\(382\) −3.20807 0.859599i −0.164139 0.0439809i
\(383\) −26.8508 7.19464i −1.37201 0.367629i −0.503798 0.863822i \(-0.668064\pi\)
−0.868212 + 0.496193i \(0.834731\pi\)
\(384\) 0 0
\(385\) 6.33145 14.0674i 0.322681 0.716942i
\(386\) 17.3205i 0.881591i
\(387\) 0 0
\(388\) −7.89898 7.89898i −0.401010 0.401010i
\(389\) −2.81237 + 4.87117i −0.142593 + 0.246978i −0.928472 0.371402i \(-0.878877\pi\)
0.785879 + 0.618380i \(0.212211\pi\)
\(390\) 0 0
\(391\) −2.22474 3.85337i −0.112510 0.194873i
\(392\) −1.50062 + 5.60040i −0.0757929 + 0.282863i
\(393\) 0 0
\(394\) −8.48528 4.89898i −0.427482 0.246807i
\(395\) 4.24264 + 3.46410i 0.213470 + 0.174298i
\(396\) 0 0
\(397\) 15.4495 15.4495i 0.775388 0.775388i −0.203655 0.979043i \(-0.565282\pi\)
0.979043 + 0.203655i \(0.0652821\pi\)
\(398\) 0.918940 + 3.42953i 0.0460623 + 0.171907i
\(399\) 0 0
\(400\) 3.74264 3.31552i 0.187132 0.165776i
\(401\) −22.3485 + 12.9029i −1.11603 + 0.644340i −0.940384 0.340114i \(-0.889534\pi\)
−0.175645 + 0.984454i \(0.556201\pi\)
\(402\) 0 0
\(403\) −14.8883 + 3.98930i −0.741638 + 0.198721i
\(404\) −1.27135 −0.0632520
\(405\) 0 0
\(406\) 3.44949 0.171195
\(407\) −25.7873 + 6.90968i −1.27823 + 0.342500i
\(408\) 0 0
\(409\) 16.5420 9.55051i 0.817948 0.472242i −0.0317605 0.999496i \(-0.510111\pi\)
0.849708 + 0.527253i \(0.176778\pi\)
\(410\) 7.12082 5.12975i 0.351672 0.253340i
\(411\) 0 0
\(412\) −1.06110 3.96008i −0.0522767 0.195099i
\(413\) 9.15306 9.15306i 0.450393 0.450393i
\(414\) 0 0
\(415\) −0.123724 1.22474i −0.00607339 0.0601204i
\(416\) −3.00000 1.73205i −0.147087 0.0849208i
\(417\) 0 0
\(418\) −2.52520 + 9.42418i −0.123512 + 0.460952i
\(419\) −5.97469 10.3485i −0.291883 0.505556i 0.682372 0.731005i \(-0.260948\pi\)
−0.974255 + 0.225449i \(0.927615\pi\)
\(420\) 0 0
\(421\) 7.44949 12.9029i 0.363066 0.628849i −0.625398 0.780306i \(-0.715063\pi\)
0.988464 + 0.151457i \(0.0483966\pi\)
\(422\) 13.3636 + 13.3636i 0.650530 + 0.650530i
\(423\) 0 0
\(424\) 9.34847i 0.454002i
\(425\) 9.93960 + 19.9036i 0.482142 + 0.965466i
\(426\) 0 0
\(427\) 5.77111 + 1.54636i 0.279284 + 0.0748338i
\(428\) 5.06865 + 1.35814i 0.245002 + 0.0656482i
\(429\) 0 0
\(430\) −7.24264 + 2.74666i −0.349271 + 0.132456i
\(431\) 15.5563i 0.749323i −0.927162 0.374661i \(-0.877759\pi\)
0.927162 0.374661i \(-0.122241\pi\)
\(432\) 0 0
\(433\) 8.55051 + 8.55051i 0.410911 + 0.410911i 0.882056 0.471145i \(-0.156159\pi\)
−0.471145 + 0.882056i \(0.656159\pi\)
\(434\) 2.43916 4.22474i 0.117083 0.202794i
\(435\) 0 0
\(436\) 10.1742 + 17.6223i 0.487257 + 0.843955i
\(437\) −0.401302 + 1.49768i −0.0191969 + 0.0716436i
\(438\) 0 0
\(439\) 8.83523 + 5.10102i 0.421682 + 0.243458i 0.695797 0.718239i \(-0.255051\pi\)
−0.274114 + 0.961697i \(0.588385\pi\)
\(440\) 13.9993 1.41421i 0.667389 0.0674200i
\(441\) 0 0
\(442\) 10.8990 10.8990i 0.518412 0.518412i
\(443\) −0.142483 0.531752i −0.00676955 0.0252643i 0.962458 0.271429i \(-0.0874962\pi\)
−0.969228 + 0.246165i \(0.920830\pi\)
\(444\) 0 0
\(445\) 5.22582 + 0.849349i 0.247728 + 0.0402630i
\(446\) 7.19694 4.15515i 0.340785 0.196752i
\(447\) 0 0
\(448\) 1.05902 0.283763i 0.0500339 0.0134065i
\(449\) −21.7060 −1.02437 −0.512185 0.858875i \(-0.671164\pi\)
−0.512185 + 0.858875i \(0.671164\pi\)
\(450\) 0 0
\(451\) 24.6969 1.16293
\(452\) 13.3278 3.57117i 0.626887 0.167974i
\(453\) 0 0
\(454\) −13.0779 + 7.55051i −0.613775 + 0.354363i
\(455\) 8.38250 + 1.36240i 0.392978 + 0.0638704i
\(456\) 0 0
\(457\) 1.59165 + 5.94012i 0.0744543 + 0.277867i 0.993109 0.117194i \(-0.0373900\pi\)
−0.918655 + 0.395061i \(0.870723\pi\)
\(458\) −11.5601 + 11.5601i −0.540169 + 0.540169i
\(459\) 0 0
\(460\) 2.22474 0.224745i 0.103729 0.0104788i
\(461\) −16.3763 9.45485i −0.762719 0.440356i 0.0675520 0.997716i \(-0.478481\pi\)
−0.830271 + 0.557360i \(0.811814\pi\)
\(462\) 0 0
\(463\) −8.54613 + 31.8946i −0.397172 + 1.48227i 0.420876 + 0.907118i \(0.361723\pi\)
−0.818048 + 0.575150i \(0.804944\pi\)
\(464\) 1.57313 + 2.72474i 0.0730308 + 0.126493i
\(465\) 0 0
\(466\) −7.77526 + 13.4671i −0.360182 + 0.623853i
\(467\) −2.82843 2.82843i −0.130884 0.130884i 0.638630 0.769514i \(-0.279501\pi\)
−0.769514 + 0.638630i \(0.779501\pi\)
\(468\) 0 0
\(469\) 4.14643i 0.191464i
\(470\) −18.8169 + 7.13604i −0.867960 + 0.329161i
\(471\) 0 0
\(472\) 11.4042 + 3.05575i 0.524922 + 0.140652i
\(473\) −21.0552 5.64173i −0.968120 0.259407i
\(474\) 0 0
\(475\) 2.45518 7.35351i 0.112651 0.337402i
\(476\) 4.87832i 0.223597i
\(477\) 0 0
\(478\) −12.0000 12.0000i −0.548867 0.548867i
\(479\) 3.53553 6.12372i 0.161543 0.279800i −0.773879 0.633333i \(-0.781686\pi\)
0.935422 + 0.353533i \(0.115020\pi\)
\(480\) 0 0
\(481\) −7.34847 12.7279i −0.335061 0.580343i
\(482\) 4.91756 18.3526i 0.223989 0.835938i
\(483\) 0 0
\(484\) 24.7648 + 14.2980i 1.12567 + 0.649907i
\(485\) 2.51059 + 24.8523i 0.114000 + 1.12848i
\(486\) 0 0
\(487\) −12.0000 + 12.0000i −0.543772 + 0.543772i −0.924632 0.380861i \(-0.875628\pi\)
0.380861 + 0.924632i \(0.375628\pi\)
\(488\) 1.41043 + 5.26380i 0.0638472 + 0.238281i
\(489\) 0 0
\(490\) 10.5193 7.57797i 0.475214 0.342338i
\(491\) −0.247449 + 0.142865i −0.0111672 + 0.00644739i −0.505573 0.862784i \(-0.668719\pi\)
0.494406 + 0.869231i \(0.335386\pi\)
\(492\) 0 0
\(493\) −13.5223 + 3.62328i −0.609012 + 0.163184i
\(494\) −5.37113 −0.241658
\(495\) 0 0
\(496\) 4.44949 0.199788
\(497\) 0.673191 0.180381i 0.0301967 0.00809119i
\(498\) 0 0
\(499\) 7.70674 4.44949i 0.345001 0.199187i −0.317480 0.948265i \(-0.602837\pi\)
0.662481 + 0.749078i \(0.269503\pi\)
\(500\) −11.1713 + 0.449747i −0.499595 + 0.0201133i
\(501\) 0 0
\(502\) 2.89123 + 10.7902i 0.129042 + 0.481590i
\(503\) 16.7563 16.7563i 0.747125 0.747125i −0.226813 0.973938i \(-0.572831\pi\)
0.973938 + 0.226813i \(0.0728307\pi\)
\(504\) 0 0
\(505\) 2.20204 + 1.79796i 0.0979895 + 0.0800081i
\(506\) 5.44949 + 3.14626i 0.242259 + 0.139869i
\(507\) 0 0
\(508\) 5.16964 19.2934i 0.229366 0.856005i
\(509\) 19.8150 + 34.3207i 0.878286 + 1.52124i 0.853220 + 0.521551i \(0.174646\pi\)
0.0250662 + 0.999686i \(0.492020\pi\)
\(510\) 0 0
\(511\) −2.24745 + 3.89270i −0.0994213 + 0.172203i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 26.0454i 1.14881i
\(515\) −3.76252 + 8.35968i −0.165796 + 0.368372i
\(516\) 0 0
\(517\) −54.7030 14.6576i −2.40584 0.644642i
\(518\) 4.49303 + 1.20390i 0.197413 + 0.0528965i
\(519\) 0 0
\(520\) 2.74666 + 7.24264i 0.120449 + 0.317611i
\(521\) 29.4449i 1.29000i −0.764181 0.645001i \(-0.776857\pi\)
0.764181 0.645001i \(-0.223143\pi\)
\(522\) 0 0
\(523\) 1.77526 + 1.77526i 0.0776265 + 0.0776265i 0.744854 0.667228i \(-0.232519\pi\)
−0.667228 + 0.744854i \(0.732519\pi\)
\(524\) −5.26758 + 9.12372i −0.230116 + 0.398572i
\(525\) 0 0
\(526\) 6.34847 + 10.9959i 0.276806 + 0.479443i
\(527\) −5.12409 + 19.1234i −0.223209 + 0.833027i
\(528\) 0 0
\(529\) −19.0526 11.0000i −0.828372 0.478261i
\(530\) 13.2207 16.1920i 0.574272 0.703337i
\(531\) 0 0
\(532\) 1.20204 1.20204i 0.0521151 0.0521151i
\(533\) 3.51888 + 13.1326i 0.152420 + 0.568838i
\(534\) 0 0
\(535\) −6.85845 9.52052i −0.296517 0.411608i
\(536\) 3.27526 1.89097i 0.141469 0.0816774i
\(537\) 0 0
\(538\) −4.54308 + 1.21731i −0.195866 + 0.0524822i
\(539\) 36.4838 1.57147
\(540\) 0 0
\(541\) −25.9444 −1.11544 −0.557718 0.830030i \(-0.688323\pi\)
−0.557718 + 0.830030i \(0.688323\pi\)
\(542\) 15.4987 4.15286i 0.665725 0.178380i
\(543\) 0 0
\(544\) −3.85337 + 2.22474i −0.165212 + 0.0953851i
\(545\) 7.29939 44.9112i 0.312672 1.92379i
\(546\) 0 0
\(547\) −5.53567 20.6594i −0.236688 0.883332i −0.977381 0.211488i \(-0.932169\pi\)
0.740693 0.671844i \(-0.234498\pi\)
\(548\) 1.55708 1.55708i 0.0665151 0.0665151i
\(549\) 0 0
\(550\) −26.2474 17.3485i −1.11919 0.739741i
\(551\) 4.22474 + 2.43916i 0.179980 + 0.103912i
\(552\) 0 0
\(553\) 0.695075 2.59405i 0.0295576 0.110310i
\(554\) 7.14250 + 12.3712i 0.303456 + 0.525601i
\(555\) 0 0
\(556\) −6.44949 + 11.1708i −0.273519 + 0.473749i
\(557\) −16.3670 16.3670i −0.693492 0.693492i 0.269507 0.962999i \(-0.413139\pi\)
−0.962999 + 0.269507i \(0.913139\pi\)
\(558\) 0 0
\(559\) 12.0000i 0.507546i
\(560\) −2.23557 1.00619i −0.0944703 0.0425191i
\(561\) 0 0
\(562\) −0.169011 0.0452863i −0.00712928 0.00191029i
\(563\) 33.1781 + 8.89004i 1.39829 + 0.374670i 0.877730 0.479155i \(-0.159057\pi\)
0.520559 + 0.853826i \(0.325724\pi\)
\(564\) 0 0
\(565\) −28.1348 12.6629i −1.18364 0.532732i
\(566\) 6.89610i 0.289864i
\(567\) 0 0
\(568\) 0.449490 + 0.449490i 0.0188602 + 0.0188602i
\(569\) 13.0458 22.5959i 0.546907 0.947270i −0.451578 0.892232i \(-0.649139\pi\)
0.998484 0.0550383i \(-0.0175281\pi\)
\(570\) 0 0
\(571\) −13.5505 23.4702i −0.567071 0.982196i −0.996854 0.0792637i \(-0.974743\pi\)
0.429782 0.902932i \(-0.358590\pi\)
\(572\) −5.64173 + 21.0552i −0.235892 + 0.880363i
\(573\) 0 0
\(574\) −3.72656 2.15153i −0.155544 0.0898032i
\(575\) −4.17121 2.75699i −0.173951 0.114975i
\(576\) 0 0
\(577\) −17.0000 + 17.0000i −0.707719 + 0.707719i −0.966055 0.258336i \(-0.916826\pi\)
0.258336 + 0.966055i \(0.416826\pi\)
\(578\) −0.724165 2.70262i −0.0301213 0.112414i
\(579\) 0 0
\(580\) 1.12863 6.94414i 0.0468637 0.288340i
\(581\) −0.522704 + 0.301783i −0.0216854 + 0.0125201i
\(582\) 0 0
\(583\) 56.8211 15.2252i 2.35329 0.630562i
\(584\) −4.09978 −0.169650
\(585\) 0 0
\(586\) 22.0454 0.910687
\(587\) −29.9876 + 8.03514i −1.23772 + 0.331646i −0.817581 0.575814i \(-0.804685\pi\)
−0.420138 + 0.907460i \(0.638019\pi\)
\(588\) 0 0
\(589\) 5.97469 3.44949i 0.246183 0.142134i
\(590\) −15.4312 21.4207i −0.635293 0.881877i
\(591\) 0 0
\(592\) 1.09808 + 4.09808i 0.0451307 + 0.168430i
\(593\) −10.0745 + 10.0745i −0.413709 + 0.413709i −0.883028 0.469320i \(-0.844499\pi\)
0.469320 + 0.883028i \(0.344499\pi\)
\(594\) 0 0
\(595\) 6.89898 8.44949i 0.282831 0.346395i
\(596\) 11.1742 + 6.45145i 0.457714 + 0.264262i
\(597\) 0 0
\(598\) −0.896575 + 3.34607i −0.0366637 + 0.136831i
\(599\) −16.8991 29.2702i −0.690480 1.19595i −0.971681 0.236297i \(-0.924066\pi\)
0.281201 0.959649i \(-0.409267\pi\)
\(600\) 0 0
\(601\) −17.3485 + 30.0484i −0.707659 + 1.22570i 0.258065 + 0.966128i \(0.416915\pi\)
−0.965723 + 0.259573i \(0.916418\pi\)
\(602\) 2.68556 + 2.68556i 0.109455 + 0.109455i
\(603\) 0 0
\(604\) 21.5959i 0.878725i
\(605\) −22.6735 59.7875i −0.921809 2.43071i
\(606\) 0 0
\(607\) −21.4114 5.73717i −0.869062 0.232864i −0.203380 0.979100i \(-0.565193\pi\)
−0.665682 + 0.746235i \(0.731859\pi\)
\(608\) 1.49768 + 0.401302i 0.0607389 + 0.0162749i
\(609\) 0 0
\(610\) 5.00120 11.1118i 0.202493 0.449905i
\(611\) 31.1769i 1.26128i
\(612\) 0 0
\(613\) −12.7980 12.7980i −0.516905 0.516905i 0.399729 0.916633i \(-0.369104\pi\)
−0.916633 + 0.399729i \(0.869104\pi\)
\(614\) −0.476756 + 0.825765i −0.0192403 + 0.0333252i
\(615\) 0 0
\(616\) −3.44949 5.97469i −0.138984 0.240727i
\(617\) −1.83788 + 6.85906i −0.0739902 + 0.276135i −0.993002 0.118094i \(-0.962322\pi\)
0.919012 + 0.394229i \(0.128988\pi\)
\(618\) 0 0
\(619\) 21.4275 + 12.3712i 0.861244 + 0.497239i 0.864429 0.502756i \(-0.167680\pi\)
−0.00318471 + 0.999995i \(0.501014\pi\)
\(620\) −7.70674 6.29253i −0.309510 0.252714i
\(621\) 0 0
\(622\) −14.5505 + 14.5505i −0.583422 + 0.583422i
\(623\) −0.671873 2.50746i −0.0269180 0.100459i
\(624\) 0 0
\(625\) 19.9853 + 15.0196i 0.799411 + 0.600784i
\(626\) 4.34847 2.51059i 0.173800 0.100343i
\(627\) 0 0
\(628\) −5.94012 + 1.59165i −0.237037 + 0.0635138i
\(629\) −18.8776 −0.752699
\(630\) 0 0
\(631\) −12.8990 −0.513500 −0.256750 0.966478i \(-0.582652\pi\)
−0.256750 + 0.966478i \(0.582652\pi\)
\(632\) 2.36603 0.633975i 0.0941154 0.0252182i
\(633\) 0 0
\(634\) 0.953512 0.550510i 0.0378688 0.0218636i
\(635\) −36.2390 + 26.1061i −1.43810 + 1.03599i
\(636\) 0 0
\(637\) 5.19831 + 19.4003i 0.205964 + 0.768670i
\(638\) 13.9993 13.9993i 0.554236 0.554236i
\(639\) 0 0
\(640\) −0.224745 2.22474i −0.00888382 0.0879408i
\(641\) 7.74745 + 4.47299i 0.306006 + 0.176673i 0.645138 0.764066i \(-0.276800\pi\)
−0.339132 + 0.940739i \(0.610133\pi\)
\(642\) 0 0
\(643\) −8.22539 + 30.6976i −0.324378 + 1.21059i 0.590558 + 0.806995i \(0.298908\pi\)
−0.914936 + 0.403599i \(0.867759\pi\)
\(644\) −0.548188 0.949490i −0.0216016 0.0374151i
\(645\) 0 0
\(646\) −3.44949 + 5.97469i −0.135718 + 0.235071i
\(647\) 24.9558 + 24.9558i 0.981114 + 0.981114i 0.999825 0.0187105i \(-0.00595608\pi\)
−0.0187105 + 0.999825i \(0.505956\pi\)
\(648\) 0 0
\(649\) 74.2929i 2.91625i
\(650\) 5.48528 16.4290i 0.215150 0.644398i
\(651\) 0 0
\(652\) −0.614014 0.164525i −0.0240467 0.00644328i
\(653\) 20.8162 + 5.57768i 0.814601 + 0.218272i 0.641985 0.766718i \(-0.278111\pi\)
0.172616 + 0.984989i \(0.444778\pi\)
\(654\) 0 0
\(655\) 22.0266 8.35326i 0.860651 0.326389i
\(656\) 3.92480i 0.153238i
\(657\) 0 0
\(658\) 6.97730 + 6.97730i 0.272003 + 0.272003i
\(659\) −5.65685 + 9.79796i −0.220360 + 0.381674i −0.954917 0.296872i \(-0.904056\pi\)
0.734557 + 0.678546i \(0.237390\pi\)
\(660\) 0 0
\(661\) 15.3485 + 26.5843i 0.596986 + 1.03401i 0.993263 + 0.115880i \(0.0369687\pi\)
−0.396277 + 0.918131i \(0.629698\pi\)
\(662\) −1.15161 + 4.29788i −0.0447587 + 0.167042i
\(663\) 0 0
\(664\) −0.476756 0.275255i −0.0185017 0.0106820i
\(665\) −3.78194 + 0.382053i −0.146657 + 0.0148154i
\(666\) 0 0
\(667\) 2.22474 2.22474i 0.0861425 0.0861425i
\(668\) −2.79472 10.4300i −0.108131 0.403550i
\(669\) 0 0
\(670\) −8.34714 1.35666i −0.322478 0.0524122i
\(671\) 29.6969 17.1455i 1.14644 0.661896i
\(672\) 0 0
\(673\) 15.7783 4.22778i 0.608208 0.162969i 0.0584468 0.998291i \(-0.481385\pi\)
0.549762 + 0.835322i \(0.314719\pi\)
\(674\) −30.8270 −1.18741
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −6.18587 + 1.65750i −0.237742 + 0.0637028i −0.375723 0.926732i \(-0.622606\pi\)
0.137981 + 0.990435i \(0.455939\pi\)
\(678\) 0 0
\(679\) 10.6066 6.12372i 0.407044 0.235007i
\(680\) 9.82050 + 1.59612i 0.376599 + 0.0612084i
\(681\) 0 0
\(682\) −7.24656 27.0445i −0.277485 1.03559i
\(683\) −13.8564 + 13.8564i −0.530201 + 0.530201i −0.920632 0.390431i \(-0.872326\pi\)
0.390431 + 0.920632i \(0.372326\pi\)
\(684\) 0 0
\(685\) −4.89898 + 0.494897i −0.187180 + 0.0189091i
\(686\) −12.1515 7.01569i −0.463948 0.267860i
\(687\) 0 0
\(688\) −0.896575 + 3.34607i −0.0341816 + 0.127568i
\(689\) 16.1920 + 28.0454i 0.616867 + 1.06844i
\(690\) 0 0
\(691\) −16.4722 + 28.5307i −0.626632 + 1.08536i 0.361591 + 0.932337i \(0.382234\pi\)
−0.988223 + 0.153021i \(0.951100\pi\)
\(692\) −2.19275 2.19275i −0.0833559 0.0833559i
\(693\) 0 0
\(694\) 4.20204i 0.159507i
\(695\) 26.9688 10.2275i 1.02299 0.387952i
\(696\) 0 0
\(697\) 16.8683 + 4.51985i 0.638933 + 0.171202i
\(698\) 14.5327 + 3.89404i 0.550073 + 0.147392i
\(699\) 0 0
\(700\) 2.44917 + 4.90435i 0.0925698 + 0.185367i
\(701\) 23.9309i 0.903857i 0.892054 + 0.451928i \(0.149264\pi\)
−0.892054 + 0.451928i \(0.850736\pi\)
\(702\) 0 0
\(703\) 4.65153 + 4.65153i 0.175436 + 0.175436i
\(704\) 3.14626 5.44949i 0.118579 0.205385i
\(705\) 0 0
\(706\) −17.1464 29.6985i −0.645314 1.11772i
\(707\) 0.360762 1.34638i 0.0135678 0.0506359i
\(708\) 0 0
\(709\) 38.4069 + 22.1742i 1.44240 + 0.832771i 0.998010 0.0630617i \(-0.0200865\pi\)
0.444392 + 0.895833i \(0.353420\pi\)
\(710\) −0.142865 1.41421i −0.00536161 0.0530745i
\(711\) 0 0
\(712\) 1.67423 1.67423i 0.0627446 0.0627446i
\(713\) −1.15161 4.29788i −0.0431282 0.160957i
\(714\) 0 0
\(715\) 39.5483 28.4901i 1.47902 1.06547i
\(716\) −15.2474 + 8.80312i −0.569824 + 0.328988i
\(717\) 0 0
\(718\) −16.8683 + 4.51985i −0.629520 + 0.168679i
\(719\) −32.5269 −1.21305 −0.606525 0.795065i \(-0.707437\pi\)
−0.606525 + 0.795065i \(0.707437\pi\)
\(720\) 0 0
\(721\) 4.49490 0.167399
\(722\) −16.0304 + 4.29534i −0.596591 + 0.159856i
\(723\) 0 0
\(724\) −9.13701 + 5.27526i −0.339574 + 0.196053i
\(725\) −11.7753 + 10.4315i −0.437325 + 0.387416i
\(726\) 0 0
\(727\) −8.11447 30.2836i −0.300949 1.12316i −0.936377 0.350996i \(-0.885843\pi\)
0.635428 0.772160i \(-0.280824\pi\)
\(728\) 2.68556 2.68556i 0.0995336 0.0995336i
\(729\) 0 0
\(730\) 7.10102 + 5.79796i 0.262821 + 0.214592i
\(731\) −13.3485 7.70674i −0.493711 0.285044i
\(732\) 0 0
\(733\) −3.71385 + 13.8603i −0.137174 + 0.511941i 0.862805 + 0.505536i \(0.168705\pi\)
−0.999979 + 0.00640470i \(0.997961\pi\)
\(734\) −4.87832 8.44949i −0.180062 0.311876i
\(735\) 0 0
\(736\) 0.500000 0.866025i 0.0184302 0.0319221i
\(737\) −16.8277 16.8277i −0.619856 0.619856i
\(738\) 0 0
\(739\) 24.9444i 0.917594i 0.888541 + 0.458797i \(0.151720\pi\)
−0.888541 + 0.458797i \(0.848280\pi\)
\(740\) 3.89363 8.65099i 0.143133 0.318017i
\(741\) 0 0
\(742\) −9.90020 2.65275i −0.363448 0.0973855i
\(743\) −0.0975783 0.0261460i −0.00357980 0.000959205i 0.257029 0.966404i \(-0.417257\pi\)
−0.260609 + 0.965445i \(0.583923\pi\)
\(744\) 0 0
\(745\) −10.2306 26.9770i −0.374821 0.988360i
\(746\) 20.2918i 0.742936i
\(747\) 0 0
\(748\) 19.7980 + 19.7980i 0.723885 + 0.723885i
\(749\) −2.87659 + 4.98240i −0.105108 + 0.182053i
\(750\) 0 0
\(751\) 4.34847 + 7.53177i 0.158678 + 0.274838i 0.934392 0.356246i \(-0.115944\pi\)
−0.775714 + 0.631084i \(0.782610\pi\)
\(752\) −2.32937 + 8.69333i −0.0849434 + 0.317013i
\(753\) 0 0
\(754\) 9.43879 + 5.44949i 0.343741 + 0.198459i
\(755\) −30.5412 + 37.4052i −1.11151 + 1.36132i
\(756\) 0 0
\(757\) −22.0454 + 22.0454i −0.801254 + 0.801254i −0.983292 0.182038i \(-0.941731\pi\)
0.182038 + 0.983292i \(0.441731\pi\)
\(758\) −1.72154 6.42489i −0.0625293 0.233362i
\(759\) 0 0
\(760\) −2.02653 2.81311i −0.0735099 0.102042i
\(761\) 15.3990 8.89060i 0.558213 0.322284i −0.194215 0.980959i \(-0.562216\pi\)
0.752428 + 0.658675i \(0.228883\pi\)
\(762\) 0 0
\(763\) −21.5494 + 5.77414i −0.780141 + 0.209038i
\(764\) 3.32124 0.120158
\(765\) 0 0
\(766\) 27.7980 1.00438
\(767\) 39.5054 10.5854i 1.42646 0.382218i
\(768\) 0 0
\(769\) −17.0580 + 9.84847i −0.615129 + 0.355145i −0.774970 0.631998i \(-0.782235\pi\)
0.159841 + 0.987143i \(0.448902\pi\)
\(770\) −2.47480 + 15.2268i −0.0891855 + 0.548735i
\(771\) 0 0
\(772\) −4.48288 16.7303i −0.161342 0.602138i
\(773\) −3.11416 + 3.11416i −0.112008 + 0.112008i −0.760890 0.648881i \(-0.775237\pi\)
0.648881 + 0.760890i \(0.275237\pi\)
\(774\) 0 0
\(775\) 4.44949 + 21.7980i 0.159830 + 0.783006i
\(776\) 9.67423 + 5.58542i 0.347285 + 0.200505i
\(777\) 0 0
\(778\) 1.45579 5.43309i 0.0521927 0.194786i
\(779\) −3.04272 5.27015i −0.109017 0.188823i
\(780\) 0 0
\(781\) 2.00000 3.46410i 0.0715656 0.123955i
\(782\) 3.14626 + 3.14626i 0.112510 + 0.112510i
\(783\) 0 0
\(784\) 5.79796i 0.207070i
\(785\) 12.5395 + 5.64378i 0.447555 + 0.201435i
\(786\) 0 0
\(787\) −3.96008 1.06110i −0.141162 0.0378241i 0.187546 0.982256i \(-0.439947\pi\)
−0.328708 + 0.944432i \(0.606613\pi\)
\(788\) 9.46410 + 2.53590i 0.337145 + 0.0903376i
\(789\) 0 0
\(790\) −4.99465 2.24799i −0.177702 0.0799799i
\(791\) 15.1278i 0.537881i
\(792\) 0 0
\(793\) 13.3485 + 13.3485i 0.474018 + 0.474018i
\(794\) −10.9244 + 18.9217i −0.387694 + 0.671505i
\(795\) 0 0
\(796\) −1.77526 3.07483i −0.0629222 0.108985i
\(797\) 5.22867 19.5137i 0.185209 0.691210i −0.809377 0.587290i \(-0.800195\pi\)
0.994586 0.103920i \(-0.0331385\pi\)
\(798\) 0 0
\(799\) −34.6803 20.0227i −1.22690 0.708352i
\(800\) −2.75699 + 4.17121i −0.0974745 + 0.147474i
\(801\) 0 0
\(802\) 18.2474 18.2474i 0.644340 0.644340i
\(803\) 6.67700 + 24.9189i 0.235626 + 0.879369i
\(804\) 0 0
\(805\) −0.393292 + 2.41982i −0.0138617 + 0.0852874i
\(806\) 13.3485 7.70674i 0.470180 0.271458i
\(807\) 0 0
\(808\) 1.22803 0.329049i 0.0432019 0.0115759i
\(809\) 54.0901 1.90171 0.950853 0.309644i \(-0.100210\pi\)
0.950853 + 0.309644i \(0.100210\pi\)
\(810\) 0 0
\(811\) 43.6413 1.53245 0.766227 0.642570i \(-0.222132\pi\)
0.766227 + 0.642570i \(0.222132\pi\)
\(812\) −3.33195 + 0.892794i −0.116929 + 0.0313309i
\(813\) 0 0
\(814\) 23.1202 13.3485i 0.810364 0.467864i
\(815\) 0.830831 + 1.15331i 0.0291027 + 0.0403988i
\(816\) 0 0
\(817\) 1.39015 + 5.18811i 0.0486352 + 0.181509i
\(818\) −13.5065 + 13.5065i −0.472242 + 0.472242i
\(819\) 0 0
\(820\) −5.55051 + 6.79796i −0.193832 + 0.237395i
\(821\) 22.3207 + 12.8868i 0.778997 + 0.449754i 0.836075 0.548616i \(-0.184845\pi\)
−0.0570780 + 0.998370i \(0.518178\pi\)
\(822\) 0 0
\(823\) −12.5807 + 46.9519i −0.438536 + 1.63664i 0.293923 + 0.955829i \(0.405039\pi\)
−0.732459 + 0.680811i \(0.761627\pi\)
\(824\) 2.04989 + 3.55051i 0.0714112 + 0.123688i
\(825\) 0 0
\(826\) −6.47219 + 11.2102i −0.225196 + 0.390052i
\(827\) 27.3235 + 27.3235i 0.950133 + 0.950133i 0.998814 0.0486816i \(-0.0155020\pi\)
−0.0486816 + 0.998814i \(0.515502\pi\)
\(828\) 0 0
\(829\) 15.4495i 0.536583i 0.963338 + 0.268291i \(0.0864590\pi\)
−0.963338 + 0.268291i \(0.913541\pi\)
\(830\) 0.436496 + 1.15099i 0.0151510 + 0.0399515i
\(831\) 0 0
\(832\) 3.34607 + 0.896575i 0.116004 + 0.0310832i
\(833\) 24.9189 + 6.67700i 0.863389 + 0.231344i
\(834\) 0 0
\(835\) −9.90969 + 22.0177i −0.342939 + 0.761953i
\(836\) 9.75663i 0.337440i
\(837\) 0 0
\(838\) 8.44949 + 8.44949i 0.291883 + 0.291883i
\(839\) 10.1459 17.5732i 0.350275 0.606695i −0.636022 0.771671i \(-0.719421\pi\)
0.986298 + 0.164976i \(0.0527547\pi\)
\(840\) 0 0
\(841\) 9.55051 + 16.5420i 0.329328 + 0.570413i
\(842\) −3.85614 + 14.3913i −0.132891 + 0.495957i
\(843\) 0 0
\(844\) −16.3670 9.44949i −0.563375 0.325265i
\(845\) −1.73205 1.41421i −0.0595844 0.0486504i
\(846\) 0 0
\(847\) −22.1691 + 22.1691i −0.761740 + 0.761740i
\(848\) −2.41956 9.02993i −0.0830881 0.310089i
\(849\) 0 0
\(850\) −14.7524 16.6528i −0.506001 0.571188i
\(851\) 3.67423 2.12132i 0.125951 0.0727179i
\(852\) 0 0
\(853\) 35.8547 9.60723i 1.22764 0.328945i 0.413980 0.910286i \(-0.364138\pi\)
0.813660 + 0.581340i \(0.197472\pi\)
\(854\) −5.97469 −0.204450
\(855\) 0 0
\(856\) −5.24745 −0.179354
\(857\) −3.66855 + 0.982984i −0.125315 + 0.0335781i −0.320932 0.947102i \(-0.603996\pi\)
0.195616 + 0.980680i \(0.437329\pi\)
\(858\) 0 0
\(859\) −2.16064 + 1.24745i −0.0737202 + 0.0425624i −0.536407 0.843959i \(-0.680219\pi\)
0.462687 + 0.886522i \(0.346885\pi\)
\(860\) 6.28497 4.52761i 0.214316 0.154390i
\(861\) 0 0
\(862\) 4.02628 + 15.0263i 0.137136 + 0.511797i
\(863\) −27.7842 + 27.7842i −0.945787 + 0.945787i −0.998604 0.0528175i \(-0.983180\pi\)
0.0528175 + 0.998604i \(0.483180\pi\)
\(864\) 0 0
\(865\) 0.696938 + 6.89898i 0.0236966 + 0.234572i
\(866\) −10.4722 6.04612i −0.355860 0.205456i
\(867\) 0 0
\(868\) −1.26260 + 4.71209i −0.0428555 + 0.159939i
\(869\) −7.70674 13.3485i −0.261433 0.452816i
\(870\) 0 0
\(871\) 6.55051 11.3458i 0.221956 0.384438i
\(872\) −14.3885 14.3885i −0.487257 0.487257i
\(873\) 0 0
\(874\) 1.55051i 0.0524468i
\(875\) 2.69371 11.9582i 0.0910640 0.404262i
\(876\) 0 0
\(877\) −7.85813 2.10558i −0.265350 0.0711004i 0.123691 0.992321i \(-0.460527\pi\)
−0.389041 + 0.921220i \(0.627194\pi\)
\(878\) −9.85441 2.64048i −0.332570 0.0891120i
\(879\) 0 0
\(880\) −13.1562 + 4.98930i −0.443496 + 0.168189i
\(881\) 58.3006i 1.96420i 0.188368 + 0.982098i \(0.439680\pi\)
−0.188368 + 0.982098i \(0.560320\pi\)
\(882\) 0 0
\(883\) −40.2702 40.2702i −1.35520 1.35520i −0.879736 0.475463i \(-0.842281\pi\)
−0.475463 0.879736i \(-0.657719\pi\)
\(884\) −7.70674 + 13.3485i −0.259206 + 0.448958i
\(885\) 0 0
\(886\) 0.275255 + 0.476756i 0.00924738 + 0.0160169i
\(887\) −7.19464 + 26.8508i −0.241572 + 0.901561i 0.733503 + 0.679686i \(0.237884\pi\)
−0.975075 + 0.221874i \(0.928783\pi\)
\(888\) 0 0
\(889\) 18.9651 + 10.9495i 0.636068 + 0.367234i
\(890\) −5.26758 + 0.532134i −0.176570 + 0.0178372i
\(891\) 0 0
\(892\) −5.87628 + 5.87628i −0.196752 + 0.196752i
\(893\) 3.61171 + 13.4791i 0.120861 + 0.451061i
\(894\) 0 0
\(895\) 38.8588 + 6.31570i 1.29891 + 0.211111i
\(896\) −0.949490 + 0.548188i −0.0317202 + 0.0183137i
\(897\) 0 0
\(898\) 20.9664 5.61793i 0.699658 0.187473i
\(899\) −13.9993 −0.466902
\(900\) 0 0
\(901\) 41.5959 1.38576
\(902\) −23.8554 + 6.39204i −0.794298 + 0.212832i
\(903\) 0 0
\(904\) −11.9494 + 6.89898i −0.397431 + 0.229457i
\(905\) 23.2861 + 3.78467i 0.774056 + 0.125807i
\(906\) 0 0
\(907\) 1.71089 + 6.38512i 0.0568091 + 0.212015i 0.988496 0.151248i \(-0.0483293\pi\)
−0.931687 + 0.363263i \(0.881663\pi\)
\(908\) 10.6780 10.6780i 0.354363 0.354363i
\(909\) 0 0
\(910\) −8.44949 + 0.853572i −0.280098 + 0.0282956i
\(911\) −6.12372 3.53553i −0.202888 0.117137i 0.395114 0.918632i \(-0.370705\pi\)
−0.598002 + 0.801495i \(0.704038\pi\)
\(912\) 0 0
\(913\) −0.896575 + 3.34607i −0.0296723 + 0.110739i
\(914\) −3.07483 5.32577i −0.101706 0.176161i
\(915\) 0 0
\(916\) 8.17423 14.1582i 0.270084 0.467800i
\(917\) −8.16744 8.16744i −0.269713 0.269713i
\(918\) 0 0
\(919\) 27.3485i 0.902143i −0.892488 0.451071i \(-0.851042\pi\)
0.892488 0.451071i \(-0.148958\pi\)
\(920\) −2.09077 + 0.792893i −0.0689307 + 0.0261409i
\(921\) 0 0
\(922\) 18.2654 + 4.89419i 0.601538 + 0.161182i
\(923\) 2.12701 + 0.569930i 0.0700113 + 0.0187595i
\(924\) 0 0
\(925\) −18.9783 + 9.47753i −0.624003 + 0.311619i
\(926\) 33.0197i 1.08510i
\(927\) 0 0
\(928\) −2.22474 2.22474i −0.0730308 0.0730308i
\(929\) 23.9309 41.4495i 0.785147 1.35991i −0.143765 0.989612i \(-0.545921\pi\)
0.928912 0.370302i \(-0.120746\pi\)
\(930\) 0 0
\(931\) −4.49490 7.78539i −0.147314 0.255156i
\(932\) 4.02477 15.0206i 0.131836 0.492017i
\(933\) 0 0
\(934\) 3.46410 + 2.00000i 0.113349 + 0.0654420i
\(935\) −6.29253 62.2896i −0.205788 2.03709i
\(936\) 0 0
\(937\) −12.8990 + 12.8990i −0.421391 + 0.421391i −0.885683 0.464291i \(-0.846309\pi\)
0.464291 + 0.885683i \(0.346309\pi\)
\(938\) 1.07317 + 4.00514i 0.0350404 + 0.130773i
\(939\) 0 0
\(940\) 16.3288 11.7631i 0.532587 0.383669i
\(941\) −5.47730 + 3.16232i −0.178555 + 0.103089i −0.586613 0.809867i \(-0.699539\pi\)
0.408059 + 0.912956i \(0.366206\pi\)
\(942\) 0 0
\(943\) −3.79107 + 1.01581i −0.123454 + 0.0330795i
\(944\) −11.8065 −0.384269
\(945\) 0 0
\(946\) 21.7980 0.708713
\(947\) −39.6468 + 10.6233i −1.28835 + 0.345212i −0.837033 0.547152i \(-0.815712\pi\)
−0.451316 + 0.892364i \(0.649045\pi\)
\(948\) 0 0
\(949\) −12.2993 + 7.10102i −0.399253 + 0.230509i
\(950\) −0.468290 + 7.73839i −0.0151933 + 0.251067i
\(951\) 0 0
\(952\) −1.26260 4.71209i −0.0409211 0.152720i
\(953\) 19.6561 19.6561i 0.636724 0.636724i −0.313022 0.949746i \(-0.601341\pi\)
0.949746 + 0.313022i \(0.101341\pi\)
\(954\) 0 0
\(955\) −5.75255 4.69694i −0.186148 0.151989i
\(956\) 14.6969 + 8.48528i 0.475333 + 0.274434i
\(957\) 0 0
\(958\) −1.83013 + 6.83013i −0.0591287 + 0.220671i
\(959\) 1.20713 + 2.09082i 0.0389804 + 0.0675159i
\(960\) 0 0
\(961\) 5.60102 9.70125i 0.180678 0.312944i
\(962\) 10.3923 + 10.3923i 0.335061 + 0.335061i
\(963\) 0 0
\(964\) 19.0000i 0.611949i
\(965\) −15.8957 + 35.3175i −0.511700 + 1.13691i
\(966\) 0 0
\(967\) 48.7319 + 13.0577i 1.56711 + 0.419907i 0.934907 0.354894i \(-0.115483\pi\)
0.632206 + 0.774800i \(0.282150\pi\)
\(968\) −27.6215 7.40117i −0.887790 0.237883i
\(969\) 0 0
\(970\) −8.85729 23.3557i −0.284390 0.749905i
\(971\) 49.2117i 1.57928i −0.613570 0.789640i \(-0.710267\pi\)
0.613570 0.789640i \(-0.289733\pi\)
\(972\) 0 0
\(973\) −10.0000 10.0000i −0.320585 0.320585i
\(974\) 8.48528 14.6969i 0.271886 0.470920i
\(975\) 0 0
\(976\) −2.72474 4.71940i −0.0872170 0.151064i
\(977\) −10.9985 + 41.0469i −0.351873 + 1.31321i 0.532502 + 0.846429i \(0.321252\pi\)
−0.884374 + 0.466778i \(0.845415\pi\)
\(978\) 0 0
\(979\) −12.9029 7.44949i −0.412378 0.238087i
\(980\) −8.19955 + 10.0424i −0.261925 + 0.320791i
\(981\) 0 0
\(982\) 0.202041 0.202041i 0.00644739 0.00644739i
\(983\) −12.1122 45.2034i −0.386319 1.44176i −0.836077 0.548612i \(-0.815156\pi\)
0.449757 0.893151i \(-0.351510\pi\)
\(984\) 0 0
\(985\) −12.8060 17.7766i −0.408033 0.566408i
\(986\) 12.1237 6.99964i 0.386098 0.222914i
\(987\) 0 0
\(988\) 5.18811 1.39015i 0.165056 0.0442265i
\(989\) 3.46410 0.110152
\(990\) 0 0
\(991\) −56.7423 −1.80248 −0.901240 0.433320i \(-0.857342\pi\)
−0.901240 + 0.433320i \(0.857342\pi\)
\(992\) −4.29788 + 1.15161i −0.136458 + 0.0365637i
\(993\) 0 0
\(994\) −0.603566 + 0.348469i −0.0191440 + 0.0110528i
\(995\) −1.27364 + 7.83636i −0.0403770 + 0.248429i
\(996\) 0 0
\(997\) −10.7053 39.9528i −0.339041 1.26532i −0.899422 0.437082i \(-0.856012\pi\)
0.560381 0.828235i \(-0.310655\pi\)
\(998\) −6.29253 + 6.29253i −0.199187 + 0.199187i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.m.a.143.1 8
3.2 odd 2 90.2.l.a.83.2 yes 8
5.2 odd 4 inner 270.2.m.a.197.1 8
5.3 odd 4 1350.2.q.g.1007.2 8
5.4 even 2 1350.2.q.g.143.2 8
9.2 odd 6 810.2.f.b.323.2 8
9.4 even 3 90.2.l.a.23.2 8
9.5 odd 6 inner 270.2.m.a.233.1 8
9.7 even 3 810.2.f.b.323.3 8
12.11 even 2 720.2.cu.a.353.2 8
15.2 even 4 90.2.l.a.47.2 yes 8
15.8 even 4 450.2.p.a.407.1 8
15.14 odd 2 450.2.p.a.443.1 8
36.31 odd 6 720.2.cu.a.113.2 8
45.2 even 12 810.2.f.b.647.4 8
45.4 even 6 450.2.p.a.293.1 8
45.7 odd 12 810.2.f.b.647.1 8
45.13 odd 12 450.2.p.a.257.1 8
45.14 odd 6 1350.2.q.g.1043.2 8
45.22 odd 12 90.2.l.a.77.2 yes 8
45.23 even 12 1350.2.q.g.557.2 8
45.32 even 12 inner 270.2.m.a.17.1 8
60.47 odd 4 720.2.cu.a.497.2 8
180.67 even 12 720.2.cu.a.257.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.a.23.2 8 9.4 even 3
90.2.l.a.47.2 yes 8 15.2 even 4
90.2.l.a.77.2 yes 8 45.22 odd 12
90.2.l.a.83.2 yes 8 3.2 odd 2
270.2.m.a.17.1 8 45.32 even 12 inner
270.2.m.a.143.1 8 1.1 even 1 trivial
270.2.m.a.197.1 8 5.2 odd 4 inner
270.2.m.a.233.1 8 9.5 odd 6 inner
450.2.p.a.257.1 8 45.13 odd 12
450.2.p.a.293.1 8 45.4 even 6
450.2.p.a.407.1 8 15.8 even 4
450.2.p.a.443.1 8 15.14 odd 2
720.2.cu.a.113.2 8 36.31 odd 6
720.2.cu.a.257.2 8 180.67 even 12
720.2.cu.a.353.2 8 12.11 even 2
720.2.cu.a.497.2 8 60.47 odd 4
810.2.f.b.323.2 8 9.2 odd 6
810.2.f.b.323.3 8 9.7 even 3
810.2.f.b.647.1 8 45.7 odd 12
810.2.f.b.647.4 8 45.2 even 12
1350.2.q.g.143.2 8 5.4 even 2
1350.2.q.g.557.2 8 45.23 even 12
1350.2.q.g.1007.2 8 5.3 odd 4
1350.2.q.g.1043.2 8 45.14 odd 6