Properties

Label 7225.2.a.bx.1.15
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.555780 q^{2} -2.50339 q^{3} -1.69111 q^{4} -1.39134 q^{6} +4.03587 q^{7} -2.05144 q^{8} +3.26698 q^{9} +O(q^{10})\) \(q+0.555780 q^{2} -2.50339 q^{3} -1.69111 q^{4} -1.39134 q^{6} +4.03587 q^{7} -2.05144 q^{8} +3.26698 q^{9} +0.420560 q^{11} +4.23351 q^{12} +4.96035 q^{13} +2.24306 q^{14} +2.24207 q^{16} +1.81572 q^{18} -5.04055 q^{19} -10.1034 q^{21} +0.233739 q^{22} -8.05347 q^{23} +5.13557 q^{24} +2.75686 q^{26} -0.668350 q^{27} -6.82510 q^{28} -0.185558 q^{29} -3.41416 q^{31} +5.34898 q^{32} -1.05283 q^{33} -5.52481 q^{36} +3.81527 q^{37} -2.80144 q^{38} -12.4177 q^{39} +3.90854 q^{41} -5.61525 q^{42} -5.15014 q^{43} -0.711213 q^{44} -4.47596 q^{46} -6.56400 q^{47} -5.61277 q^{48} +9.28828 q^{49} -8.38849 q^{52} -0.871603 q^{53} -0.371456 q^{54} -8.27937 q^{56} +12.6185 q^{57} -0.103129 q^{58} -14.3445 q^{59} +3.41024 q^{61} -1.89752 q^{62} +13.1851 q^{63} -1.51128 q^{64} -0.585140 q^{66} +7.21621 q^{67} +20.1610 q^{69} -7.48836 q^{71} -6.70202 q^{72} +3.58559 q^{73} +2.12045 q^{74} +8.52413 q^{76} +1.69733 q^{77} -6.90151 q^{78} +14.0842 q^{79} -8.12779 q^{81} +2.17229 q^{82} -13.6689 q^{83} +17.0859 q^{84} -2.86234 q^{86} +0.464523 q^{87} -0.862755 q^{88} +15.1176 q^{89} +20.0193 q^{91} +13.6193 q^{92} +8.54699 q^{93} -3.64814 q^{94} -13.3906 q^{96} -10.1591 q^{97} +5.16224 q^{98} +1.37396 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{2} + 24 q^{4} - 24 q^{8} + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 8 q^{2} + 24 q^{4} - 24 q^{8} + 24 q^{9} - 16 q^{13} + 24 q^{16} - 40 q^{18} - 16 q^{21} - 16 q^{26} - 56 q^{32} - 48 q^{33} + 24 q^{36} - 48 q^{38} - 32 q^{43} - 88 q^{47} + 16 q^{49} - 48 q^{52} - 48 q^{53} - 8 q^{59} + 72 q^{64} + 32 q^{66} - 40 q^{67} - 48 q^{69} - 120 q^{72} + 32 q^{76} - 120 q^{77} - 24 q^{81} - 104 q^{83} + 40 q^{84} - 16 q^{86} - 64 q^{87} + 16 q^{89} + 72 q^{93} + 112 q^{94} - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.555780 0.392996 0.196498 0.980504i \(-0.437043\pi\)
0.196498 + 0.980504i \(0.437043\pi\)
\(3\) −2.50339 −1.44533 −0.722667 0.691196i \(-0.757084\pi\)
−0.722667 + 0.691196i \(0.757084\pi\)
\(4\) −1.69111 −0.845554
\(5\) 0 0
\(6\) −1.39134 −0.568010
\(7\) 4.03587 1.52542 0.762709 0.646742i \(-0.223869\pi\)
0.762709 + 0.646742i \(0.223869\pi\)
\(8\) −2.05144 −0.725295
\(9\) 3.26698 1.08899
\(10\) 0 0
\(11\) 0.420560 0.126804 0.0634018 0.997988i \(-0.479805\pi\)
0.0634018 + 0.997988i \(0.479805\pi\)
\(12\) 4.23351 1.22211
\(13\) 4.96035 1.37575 0.687877 0.725828i \(-0.258543\pi\)
0.687877 + 0.725828i \(0.258543\pi\)
\(14\) 2.24306 0.599482
\(15\) 0 0
\(16\) 2.24207 0.560517
\(17\) 0 0
\(18\) 1.81572 0.427969
\(19\) −5.04055 −1.15638 −0.578191 0.815901i \(-0.696241\pi\)
−0.578191 + 0.815901i \(0.696241\pi\)
\(20\) 0 0
\(21\) −10.1034 −2.20474
\(22\) 0.233739 0.0498333
\(23\) −8.05347 −1.67927 −0.839633 0.543155i \(-0.817230\pi\)
−0.839633 + 0.543155i \(0.817230\pi\)
\(24\) 5.13557 1.04829
\(25\) 0 0
\(26\) 2.75686 0.540665
\(27\) −0.668350 −0.128624
\(28\) −6.82510 −1.28982
\(29\) −0.185558 −0.0344572 −0.0172286 0.999852i \(-0.505484\pi\)
−0.0172286 + 0.999852i \(0.505484\pi\)
\(30\) 0 0
\(31\) −3.41416 −0.613201 −0.306601 0.951838i \(-0.599192\pi\)
−0.306601 + 0.951838i \(0.599192\pi\)
\(32\) 5.34898 0.945575
\(33\) −1.05283 −0.183274
\(34\) 0 0
\(35\) 0 0
\(36\) −5.52481 −0.920802
\(37\) 3.81527 0.627227 0.313614 0.949551i \(-0.398460\pi\)
0.313614 + 0.949551i \(0.398460\pi\)
\(38\) −2.80144 −0.454453
\(39\) −12.4177 −1.98842
\(40\) 0 0
\(41\) 3.90854 0.610411 0.305206 0.952287i \(-0.401275\pi\)
0.305206 + 0.952287i \(0.401275\pi\)
\(42\) −5.61525 −0.866453
\(43\) −5.15014 −0.785389 −0.392694 0.919669i \(-0.628457\pi\)
−0.392694 + 0.919669i \(0.628457\pi\)
\(44\) −0.711213 −0.107219
\(45\) 0 0
\(46\) −4.47596 −0.659944
\(47\) −6.56400 −0.957458 −0.478729 0.877963i \(-0.658902\pi\)
−0.478729 + 0.877963i \(0.658902\pi\)
\(48\) −5.61277 −0.810134
\(49\) 9.28828 1.32690
\(50\) 0 0
\(51\) 0 0
\(52\) −8.38849 −1.16327
\(53\) −0.871603 −0.119724 −0.0598619 0.998207i \(-0.519066\pi\)
−0.0598619 + 0.998207i \(0.519066\pi\)
\(54\) −0.371456 −0.0505487
\(55\) 0 0
\(56\) −8.27937 −1.10638
\(57\) 12.6185 1.67136
\(58\) −0.103129 −0.0135415
\(59\) −14.3445 −1.86749 −0.933746 0.357937i \(-0.883480\pi\)
−0.933746 + 0.357937i \(0.883480\pi\)
\(60\) 0 0
\(61\) 3.41024 0.436637 0.218318 0.975878i \(-0.429943\pi\)
0.218318 + 0.975878i \(0.429943\pi\)
\(62\) −1.89752 −0.240985
\(63\) 13.1851 1.66117
\(64\) −1.51128 −0.188910
\(65\) 0 0
\(66\) −0.585140 −0.0720257
\(67\) 7.21621 0.881601 0.440800 0.897605i \(-0.354695\pi\)
0.440800 + 0.897605i \(0.354695\pi\)
\(68\) 0 0
\(69\) 20.1610 2.42710
\(70\) 0 0
\(71\) −7.48836 −0.888705 −0.444352 0.895852i \(-0.646566\pi\)
−0.444352 + 0.895852i \(0.646566\pi\)
\(72\) −6.70202 −0.789841
\(73\) 3.58559 0.419662 0.209831 0.977738i \(-0.432709\pi\)
0.209831 + 0.977738i \(0.432709\pi\)
\(74\) 2.12045 0.246498
\(75\) 0 0
\(76\) 8.52413 0.977784
\(77\) 1.69733 0.193428
\(78\) −6.90151 −0.781442
\(79\) 14.0842 1.58459 0.792296 0.610137i \(-0.208886\pi\)
0.792296 + 0.610137i \(0.208886\pi\)
\(80\) 0 0
\(81\) −8.12779 −0.903088
\(82\) 2.17229 0.239889
\(83\) −13.6689 −1.50035 −0.750177 0.661237i \(-0.770032\pi\)
−0.750177 + 0.661237i \(0.770032\pi\)
\(84\) 17.0859 1.86423
\(85\) 0 0
\(86\) −2.86234 −0.308654
\(87\) 0.464523 0.0498021
\(88\) −0.862755 −0.0919700
\(89\) 15.1176 1.60246 0.801231 0.598355i \(-0.204179\pi\)
0.801231 + 0.598355i \(0.204179\pi\)
\(90\) 0 0
\(91\) 20.0193 2.09860
\(92\) 13.6193 1.41991
\(93\) 8.54699 0.886281
\(94\) −3.64814 −0.376277
\(95\) 0 0
\(96\) −13.3906 −1.36667
\(97\) −10.1591 −1.03150 −0.515751 0.856738i \(-0.672487\pi\)
−0.515751 + 0.856738i \(0.672487\pi\)
\(98\) 5.16224 0.521465
\(99\) 1.37396 0.138088
\(100\) 0 0
\(101\) −0.340331 −0.0338642 −0.0169321 0.999857i \(-0.505390\pi\)
−0.0169321 + 0.999857i \(0.505390\pi\)
\(102\) 0 0
\(103\) 0.688204 0.0678107 0.0339054 0.999425i \(-0.489206\pi\)
0.0339054 + 0.999425i \(0.489206\pi\)
\(104\) −10.1759 −0.997827
\(105\) 0 0
\(106\) −0.484419 −0.0470510
\(107\) 9.68440 0.936226 0.468113 0.883669i \(-0.344934\pi\)
0.468113 + 0.883669i \(0.344934\pi\)
\(108\) 1.13025 0.108759
\(109\) 10.4494 1.00087 0.500436 0.865774i \(-0.333173\pi\)
0.500436 + 0.865774i \(0.333173\pi\)
\(110\) 0 0
\(111\) −9.55113 −0.906553
\(112\) 9.04870 0.855022
\(113\) 9.01565 0.848121 0.424061 0.905634i \(-0.360604\pi\)
0.424061 + 0.905634i \(0.360604\pi\)
\(114\) 7.01310 0.656837
\(115\) 0 0
\(116\) 0.313798 0.0291354
\(117\) 16.2054 1.49819
\(118\) −7.97237 −0.733916
\(119\) 0 0
\(120\) 0 0
\(121\) −10.8231 −0.983921
\(122\) 1.89534 0.171596
\(123\) −9.78461 −0.882248
\(124\) 5.77372 0.518495
\(125\) 0 0
\(126\) 7.32802 0.652832
\(127\) −13.6042 −1.20718 −0.603590 0.797295i \(-0.706264\pi\)
−0.603590 + 0.797295i \(0.706264\pi\)
\(128\) −11.5379 −1.01982
\(129\) 12.8928 1.13515
\(130\) 0 0
\(131\) 13.5224 1.18145 0.590727 0.806871i \(-0.298841\pi\)
0.590727 + 0.806871i \(0.298841\pi\)
\(132\) 1.78044 0.154968
\(133\) −20.3430 −1.76397
\(134\) 4.01063 0.346465
\(135\) 0 0
\(136\) 0 0
\(137\) 8.57682 0.732768 0.366384 0.930464i \(-0.380596\pi\)
0.366384 + 0.930464i \(0.380596\pi\)
\(138\) 11.2051 0.953840
\(139\) 13.1182 1.11267 0.556336 0.830958i \(-0.312207\pi\)
0.556336 + 0.830958i \(0.312207\pi\)
\(140\) 0 0
\(141\) 16.4323 1.38385
\(142\) −4.16188 −0.349257
\(143\) 2.08612 0.174450
\(144\) 7.32478 0.610398
\(145\) 0 0
\(146\) 1.99280 0.164925
\(147\) −23.2522 −1.91781
\(148\) −6.45204 −0.530355
\(149\) −8.25712 −0.676450 −0.338225 0.941065i \(-0.609826\pi\)
−0.338225 + 0.941065i \(0.609826\pi\)
\(150\) 0 0
\(151\) 6.34217 0.516118 0.258059 0.966129i \(-0.416917\pi\)
0.258059 + 0.966129i \(0.416917\pi\)
\(152\) 10.3404 0.838718
\(153\) 0 0
\(154\) 0.943340 0.0760165
\(155\) 0 0
\(156\) 20.9997 1.68132
\(157\) −21.7433 −1.73531 −0.867653 0.497169i \(-0.834373\pi\)
−0.867653 + 0.497169i \(0.834373\pi\)
\(158\) 7.82769 0.622738
\(159\) 2.18196 0.173041
\(160\) 0 0
\(161\) −32.5028 −2.56158
\(162\) −4.51726 −0.354910
\(163\) −13.5699 −1.06288 −0.531440 0.847096i \(-0.678349\pi\)
−0.531440 + 0.847096i \(0.678349\pi\)
\(164\) −6.60976 −0.516136
\(165\) 0 0
\(166\) −7.59688 −0.589633
\(167\) −15.9981 −1.23797 −0.618986 0.785402i \(-0.712456\pi\)
−0.618986 + 0.785402i \(0.712456\pi\)
\(168\) 20.7265 1.59909
\(169\) 11.6051 0.892697
\(170\) 0 0
\(171\) −16.4674 −1.25929
\(172\) 8.70944 0.664089
\(173\) −2.51999 −0.191591 −0.0957955 0.995401i \(-0.530539\pi\)
−0.0957955 + 0.995401i \(0.530539\pi\)
\(174\) 0.258173 0.0195720
\(175\) 0 0
\(176\) 0.942923 0.0710755
\(177\) 35.9099 2.69915
\(178\) 8.40206 0.629761
\(179\) 7.45781 0.557423 0.278711 0.960375i \(-0.410093\pi\)
0.278711 + 0.960375i \(0.410093\pi\)
\(180\) 0 0
\(181\) 16.3032 1.21181 0.605904 0.795538i \(-0.292812\pi\)
0.605904 + 0.795538i \(0.292812\pi\)
\(182\) 11.1263 0.824740
\(183\) −8.53718 −0.631086
\(184\) 16.5212 1.21796
\(185\) 0 0
\(186\) 4.75024 0.348305
\(187\) 0 0
\(188\) 11.1004 0.809583
\(189\) −2.69738 −0.196205
\(190\) 0 0
\(191\) 4.90447 0.354875 0.177437 0.984132i \(-0.443219\pi\)
0.177437 + 0.984132i \(0.443219\pi\)
\(192\) 3.78332 0.273038
\(193\) 6.29053 0.452802 0.226401 0.974034i \(-0.427304\pi\)
0.226401 + 0.974034i \(0.427304\pi\)
\(194\) −5.64624 −0.405376
\(195\) 0 0
\(196\) −15.7075 −1.12196
\(197\) −22.8122 −1.62530 −0.812650 0.582752i \(-0.801976\pi\)
−0.812650 + 0.582752i \(0.801976\pi\)
\(198\) 0.763619 0.0542680
\(199\) −23.4002 −1.65880 −0.829398 0.558658i \(-0.811317\pi\)
−0.829398 + 0.558658i \(0.811317\pi\)
\(200\) 0 0
\(201\) −18.0650 −1.27421
\(202\) −0.189149 −0.0133085
\(203\) −0.748887 −0.0525615
\(204\) 0 0
\(205\) 0 0
\(206\) 0.382490 0.0266493
\(207\) −26.3105 −1.82871
\(208\) 11.1214 0.771133
\(209\) −2.11986 −0.146633
\(210\) 0 0
\(211\) −1.80689 −0.124392 −0.0621959 0.998064i \(-0.519810\pi\)
−0.0621959 + 0.998064i \(0.519810\pi\)
\(212\) 1.47398 0.101233
\(213\) 18.7463 1.28448
\(214\) 5.38239 0.367933
\(215\) 0 0
\(216\) 1.37108 0.0932904
\(217\) −13.7791 −0.935388
\(218\) 5.80757 0.393338
\(219\) −8.97614 −0.606552
\(220\) 0 0
\(221\) 0 0
\(222\) −5.30832 −0.356271
\(223\) 8.89829 0.595874 0.297937 0.954586i \(-0.403702\pi\)
0.297937 + 0.954586i \(0.403702\pi\)
\(224\) 21.5878 1.44240
\(225\) 0 0
\(226\) 5.01072 0.333308
\(227\) 16.6329 1.10397 0.551983 0.833855i \(-0.313871\pi\)
0.551983 + 0.833855i \(0.313871\pi\)
\(228\) −21.3392 −1.41323
\(229\) 1.37325 0.0907468 0.0453734 0.998970i \(-0.485552\pi\)
0.0453734 + 0.998970i \(0.485552\pi\)
\(230\) 0 0
\(231\) −4.24908 −0.279569
\(232\) 0.380661 0.0249916
\(233\) 1.66320 0.108960 0.0544800 0.998515i \(-0.482650\pi\)
0.0544800 + 0.998515i \(0.482650\pi\)
\(234\) 9.00661 0.588780
\(235\) 0 0
\(236\) 24.2581 1.57907
\(237\) −35.2582 −2.29027
\(238\) 0 0
\(239\) −18.0943 −1.17042 −0.585212 0.810880i \(-0.698989\pi\)
−0.585212 + 0.810880i \(0.698989\pi\)
\(240\) 0 0
\(241\) 7.01381 0.451799 0.225900 0.974151i \(-0.427468\pi\)
0.225900 + 0.974151i \(0.427468\pi\)
\(242\) −6.01528 −0.386677
\(243\) 22.3521 1.43389
\(244\) −5.76709 −0.369200
\(245\) 0 0
\(246\) −5.43809 −0.346720
\(247\) −25.0029 −1.59090
\(248\) 7.00396 0.444752
\(249\) 34.2186 2.16851
\(250\) 0 0
\(251\) −5.17763 −0.326809 −0.163405 0.986559i \(-0.552248\pi\)
−0.163405 + 0.986559i \(0.552248\pi\)
\(252\) −22.2975 −1.40461
\(253\) −3.38697 −0.212937
\(254\) −7.56096 −0.474417
\(255\) 0 0
\(256\) −3.38998 −0.211874
\(257\) −2.70058 −0.168457 −0.0842287 0.996446i \(-0.526843\pi\)
−0.0842287 + 0.996446i \(0.526843\pi\)
\(258\) 7.16557 0.446109
\(259\) 15.3980 0.956783
\(260\) 0 0
\(261\) −0.606212 −0.0375236
\(262\) 7.51545 0.464306
\(263\) −24.3885 −1.50386 −0.751931 0.659242i \(-0.770877\pi\)
−0.751931 + 0.659242i \(0.770877\pi\)
\(264\) 2.15981 0.132927
\(265\) 0 0
\(266\) −11.3063 −0.693231
\(267\) −37.8453 −2.31610
\(268\) −12.2034 −0.745442
\(269\) −7.65414 −0.466681 −0.233340 0.972395i \(-0.574966\pi\)
−0.233340 + 0.972395i \(0.574966\pi\)
\(270\) 0 0
\(271\) 0.0146097 0.000887478 0 0.000443739 1.00000i \(-0.499859\pi\)
0.000443739 1.00000i \(0.499859\pi\)
\(272\) 0 0
\(273\) −50.1163 −3.03318
\(274\) 4.76683 0.287974
\(275\) 0 0
\(276\) −34.0945 −2.05225
\(277\) −2.43015 −0.146014 −0.0730068 0.997331i \(-0.523259\pi\)
−0.0730068 + 0.997331i \(0.523259\pi\)
\(278\) 7.29083 0.437275
\(279\) −11.1540 −0.667772
\(280\) 0 0
\(281\) 7.50385 0.447642 0.223821 0.974630i \(-0.428147\pi\)
0.223821 + 0.974630i \(0.428147\pi\)
\(282\) 9.13273 0.543846
\(283\) −8.59847 −0.511126 −0.255563 0.966792i \(-0.582261\pi\)
−0.255563 + 0.966792i \(0.582261\pi\)
\(284\) 12.6636 0.751448
\(285\) 0 0
\(286\) 1.15943 0.0685583
\(287\) 15.7744 0.931131
\(288\) 17.4750 1.02972
\(289\) 0 0
\(290\) 0 0
\(291\) 25.4323 1.49087
\(292\) −6.06362 −0.354847
\(293\) −20.6490 −1.20633 −0.603164 0.797617i \(-0.706094\pi\)
−0.603164 + 0.797617i \(0.706094\pi\)
\(294\) −12.9231 −0.753691
\(295\) 0 0
\(296\) −7.82682 −0.454925
\(297\) −0.281081 −0.0163100
\(298\) −4.58914 −0.265842
\(299\) −39.9480 −2.31025
\(300\) 0 0
\(301\) −20.7853 −1.19805
\(302\) 3.52485 0.202832
\(303\) 0.851981 0.0489450
\(304\) −11.3013 −0.648172
\(305\) 0 0
\(306\) 0 0
\(307\) −29.4692 −1.68190 −0.840949 0.541115i \(-0.818002\pi\)
−0.840949 + 0.541115i \(0.818002\pi\)
\(308\) −2.87036 −0.163554
\(309\) −1.72284 −0.0980092
\(310\) 0 0
\(311\) 4.29068 0.243302 0.121651 0.992573i \(-0.461181\pi\)
0.121651 + 0.992573i \(0.461181\pi\)
\(312\) 25.4742 1.44219
\(313\) 10.5224 0.594761 0.297381 0.954759i \(-0.403887\pi\)
0.297381 + 0.954759i \(0.403887\pi\)
\(314\) −12.0845 −0.681968
\(315\) 0 0
\(316\) −23.8178 −1.33986
\(317\) −15.2781 −0.858105 −0.429052 0.903280i \(-0.641152\pi\)
−0.429052 + 0.903280i \(0.641152\pi\)
\(318\) 1.21269 0.0680044
\(319\) −0.0780381 −0.00436929
\(320\) 0 0
\(321\) −24.2439 −1.35316
\(322\) −18.0644 −1.00669
\(323\) 0 0
\(324\) 13.7450 0.763610
\(325\) 0 0
\(326\) −7.54190 −0.417707
\(327\) −26.1590 −1.44660
\(328\) −8.01815 −0.442728
\(329\) −26.4915 −1.46052
\(330\) 0 0
\(331\) −12.7193 −0.699114 −0.349557 0.936915i \(-0.613668\pi\)
−0.349557 + 0.936915i \(0.613668\pi\)
\(332\) 23.1156 1.26863
\(333\) 12.4644 0.683046
\(334\) −8.89144 −0.486518
\(335\) 0 0
\(336\) −22.6525 −1.23579
\(337\) 1.89743 0.103360 0.0516798 0.998664i \(-0.483542\pi\)
0.0516798 + 0.998664i \(0.483542\pi\)
\(338\) 6.44986 0.350826
\(339\) −22.5697 −1.22582
\(340\) 0 0
\(341\) −1.43586 −0.0777561
\(342\) −9.15224 −0.494896
\(343\) 9.23521 0.498654
\(344\) 10.5652 0.569638
\(345\) 0 0
\(346\) −1.40056 −0.0752944
\(347\) −25.5714 −1.37275 −0.686373 0.727250i \(-0.740798\pi\)
−0.686373 + 0.727250i \(0.740798\pi\)
\(348\) −0.785560 −0.0421104
\(349\) 15.3328 0.820746 0.410373 0.911918i \(-0.365399\pi\)
0.410373 + 0.911918i \(0.365399\pi\)
\(350\) 0 0
\(351\) −3.31525 −0.176955
\(352\) 2.24957 0.119902
\(353\) −20.0627 −1.06783 −0.533915 0.845538i \(-0.679280\pi\)
−0.533915 + 0.845538i \(0.679280\pi\)
\(354\) 19.9580 1.06075
\(355\) 0 0
\(356\) −25.5655 −1.35497
\(357\) 0 0
\(358\) 4.14490 0.219065
\(359\) −16.7709 −0.885137 −0.442568 0.896735i \(-0.645933\pi\)
−0.442568 + 0.896735i \(0.645933\pi\)
\(360\) 0 0
\(361\) 6.40719 0.337221
\(362\) 9.06099 0.476235
\(363\) 27.0945 1.42210
\(364\) −33.8549 −1.77448
\(365\) 0 0
\(366\) −4.74479 −0.248014
\(367\) 9.66088 0.504294 0.252147 0.967689i \(-0.418863\pi\)
0.252147 + 0.967689i \(0.418863\pi\)
\(368\) −18.0564 −0.941256
\(369\) 12.7691 0.664733
\(370\) 0 0
\(371\) −3.51768 −0.182629
\(372\) −14.4539 −0.749399
\(373\) −8.84764 −0.458113 −0.229057 0.973413i \(-0.573564\pi\)
−0.229057 + 0.973413i \(0.573564\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 13.4657 0.694440
\(377\) −0.920430 −0.0474046
\(378\) −1.49915 −0.0771078
\(379\) −9.05019 −0.464877 −0.232438 0.972611i \(-0.574670\pi\)
−0.232438 + 0.972611i \(0.574670\pi\)
\(380\) 0 0
\(381\) 34.0568 1.74478
\(382\) 2.72580 0.139464
\(383\) −16.4906 −0.842631 −0.421315 0.906914i \(-0.638431\pi\)
−0.421315 + 0.906914i \(0.638431\pi\)
\(384\) 28.8839 1.47398
\(385\) 0 0
\(386\) 3.49615 0.177949
\(387\) −16.8254 −0.855282
\(388\) 17.1802 0.872192
\(389\) −26.3924 −1.33815 −0.669074 0.743196i \(-0.733309\pi\)
−0.669074 + 0.743196i \(0.733309\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −19.0544 −0.962392
\(393\) −33.8518 −1.70760
\(394\) −12.6785 −0.638736
\(395\) 0 0
\(396\) −2.32352 −0.116761
\(397\) −0.897712 −0.0450549 −0.0225274 0.999746i \(-0.507171\pi\)
−0.0225274 + 0.999746i \(0.507171\pi\)
\(398\) −13.0054 −0.651900
\(399\) 50.9266 2.54952
\(400\) 0 0
\(401\) −15.2264 −0.760371 −0.380186 0.924910i \(-0.624140\pi\)
−0.380186 + 0.924910i \(0.624140\pi\)
\(402\) −10.0402 −0.500758
\(403\) −16.9354 −0.843614
\(404\) 0.575536 0.0286340
\(405\) 0 0
\(406\) −0.416216 −0.0206565
\(407\) 1.60455 0.0795346
\(408\) 0 0
\(409\) 5.69707 0.281702 0.140851 0.990031i \(-0.455016\pi\)
0.140851 + 0.990031i \(0.455016\pi\)
\(410\) 0 0
\(411\) −21.4712 −1.05909
\(412\) −1.16383 −0.0573377
\(413\) −57.8925 −2.84870
\(414\) −14.6229 −0.718674
\(415\) 0 0
\(416\) 26.5328 1.30088
\(417\) −32.8400 −1.60818
\(418\) −1.17817 −0.0576263
\(419\) −2.42262 −0.118353 −0.0591764 0.998248i \(-0.518847\pi\)
−0.0591764 + 0.998248i \(0.518847\pi\)
\(420\) 0 0
\(421\) 35.5336 1.73180 0.865901 0.500215i \(-0.166746\pi\)
0.865901 + 0.500215i \(0.166746\pi\)
\(422\) −1.00424 −0.0488854
\(423\) −21.4445 −1.04266
\(424\) 1.78804 0.0868351
\(425\) 0 0
\(426\) 10.4188 0.504793
\(427\) 13.7633 0.666053
\(428\) −16.3774 −0.791630
\(429\) −5.22239 −0.252139
\(430\) 0 0
\(431\) 11.1438 0.536778 0.268389 0.963311i \(-0.413509\pi\)
0.268389 + 0.963311i \(0.413509\pi\)
\(432\) −1.49849 −0.0720959
\(433\) −24.2605 −1.16589 −0.582944 0.812513i \(-0.698099\pi\)
−0.582944 + 0.812513i \(0.698099\pi\)
\(434\) −7.65816 −0.367603
\(435\) 0 0
\(436\) −17.6711 −0.846292
\(437\) 40.5940 1.94187
\(438\) −4.98876 −0.238372
\(439\) 18.9055 0.902312 0.451156 0.892445i \(-0.351012\pi\)
0.451156 + 0.892445i \(0.351012\pi\)
\(440\) 0 0
\(441\) 30.3446 1.44498
\(442\) 0 0
\(443\) 8.80318 0.418252 0.209126 0.977889i \(-0.432938\pi\)
0.209126 + 0.977889i \(0.432938\pi\)
\(444\) 16.1520 0.766540
\(445\) 0 0
\(446\) 4.94549 0.234176
\(447\) 20.6708 0.977697
\(448\) −6.09932 −0.288166
\(449\) −37.8204 −1.78486 −0.892428 0.451190i \(-0.851000\pi\)
−0.892428 + 0.451190i \(0.851000\pi\)
\(450\) 0 0
\(451\) 1.64377 0.0774023
\(452\) −15.2464 −0.717133
\(453\) −15.8769 −0.745964
\(454\) 9.24425 0.433854
\(455\) 0 0
\(456\) −25.8861 −1.21223
\(457\) −1.10481 −0.0516807 −0.0258404 0.999666i \(-0.508226\pi\)
−0.0258404 + 0.999666i \(0.508226\pi\)
\(458\) 0.763223 0.0356631
\(459\) 0 0
\(460\) 0 0
\(461\) 5.67143 0.264145 0.132072 0.991240i \(-0.457837\pi\)
0.132072 + 0.991240i \(0.457837\pi\)
\(462\) −2.36155 −0.109869
\(463\) −8.91271 −0.414209 −0.207104 0.978319i \(-0.566404\pi\)
−0.207104 + 0.978319i \(0.566404\pi\)
\(464\) −0.416032 −0.0193138
\(465\) 0 0
\(466\) 0.924374 0.0428208
\(467\) 10.4339 0.482822 0.241411 0.970423i \(-0.422390\pi\)
0.241411 + 0.970423i \(0.422390\pi\)
\(468\) −27.4050 −1.26680
\(469\) 29.1237 1.34481
\(470\) 0 0
\(471\) 54.4321 2.50810
\(472\) 29.4269 1.35448
\(473\) −2.16594 −0.0995901
\(474\) −19.5958 −0.900064
\(475\) 0 0
\(476\) 0 0
\(477\) −2.84751 −0.130378
\(478\) −10.0565 −0.459972
\(479\) −33.0306 −1.50921 −0.754603 0.656181i \(-0.772171\pi\)
−0.754603 + 0.656181i \(0.772171\pi\)
\(480\) 0 0
\(481\) 18.9251 0.862910
\(482\) 3.89814 0.177555
\(483\) 81.3673 3.70234
\(484\) 18.3031 0.831959
\(485\) 0 0
\(486\) 12.4228 0.563512
\(487\) −25.3479 −1.14862 −0.574312 0.818636i \(-0.694730\pi\)
−0.574312 + 0.818636i \(0.694730\pi\)
\(488\) −6.99592 −0.316690
\(489\) 33.9709 1.53622
\(490\) 0 0
\(491\) 26.0273 1.17460 0.587298 0.809371i \(-0.300192\pi\)
0.587298 + 0.809371i \(0.300192\pi\)
\(492\) 16.5468 0.745989
\(493\) 0 0
\(494\) −13.8961 −0.625216
\(495\) 0 0
\(496\) −7.65478 −0.343710
\(497\) −30.2221 −1.35565
\(498\) 19.0180 0.852216
\(499\) 18.2209 0.815679 0.407840 0.913054i \(-0.366282\pi\)
0.407840 + 0.913054i \(0.366282\pi\)
\(500\) 0 0
\(501\) 40.0496 1.78929
\(502\) −2.87762 −0.128435
\(503\) 20.0595 0.894407 0.447204 0.894432i \(-0.352420\pi\)
0.447204 + 0.894432i \(0.352420\pi\)
\(504\) −27.0485 −1.20484
\(505\) 0 0
\(506\) −1.88241 −0.0836833
\(507\) −29.0520 −1.29025
\(508\) 23.0062 1.02074
\(509\) −8.75911 −0.388241 −0.194120 0.980978i \(-0.562185\pi\)
−0.194120 + 0.980978i \(0.562185\pi\)
\(510\) 0 0
\(511\) 14.4710 0.640159
\(512\) 21.1917 0.936551
\(513\) 3.36886 0.148739
\(514\) −1.50093 −0.0662030
\(515\) 0 0
\(516\) −21.8032 −0.959831
\(517\) −2.76056 −0.121409
\(518\) 8.55788 0.376011
\(519\) 6.30852 0.276913
\(520\) 0 0
\(521\) −20.5856 −0.901870 −0.450935 0.892557i \(-0.648909\pi\)
−0.450935 + 0.892557i \(0.648909\pi\)
\(522\) −0.336921 −0.0147466
\(523\) 36.8267 1.61032 0.805159 0.593059i \(-0.202080\pi\)
0.805159 + 0.593059i \(0.202080\pi\)
\(524\) −22.8678 −0.998984
\(525\) 0 0
\(526\) −13.5547 −0.591011
\(527\) 0 0
\(528\) −2.36051 −0.102728
\(529\) 41.8584 1.81993
\(530\) 0 0
\(531\) −46.8631 −2.03368
\(532\) 34.4023 1.49153
\(533\) 19.3877 0.839775
\(534\) −21.0337 −0.910215
\(535\) 0 0
\(536\) −14.8037 −0.639421
\(537\) −18.6698 −0.805663
\(538\) −4.25401 −0.183404
\(539\) 3.90628 0.168255
\(540\) 0 0
\(541\) −39.3467 −1.69165 −0.845823 0.533464i \(-0.820890\pi\)
−0.845823 + 0.533464i \(0.820890\pi\)
\(542\) 0.00811979 0.000348775 0
\(543\) −40.8133 −1.75147
\(544\) 0 0
\(545\) 0 0
\(546\) −27.8536 −1.19203
\(547\) 16.4348 0.702702 0.351351 0.936244i \(-0.385722\pi\)
0.351351 + 0.936244i \(0.385722\pi\)
\(548\) −14.5043 −0.619595
\(549\) 11.1412 0.475494
\(550\) 0 0
\(551\) 0.935313 0.0398457
\(552\) −41.3592 −1.76036
\(553\) 56.8419 2.41716
\(554\) −1.35063 −0.0573827
\(555\) 0 0
\(556\) −22.1843 −0.940824
\(557\) −8.41654 −0.356620 −0.178310 0.983974i \(-0.557063\pi\)
−0.178310 + 0.983974i \(0.557063\pi\)
\(558\) −6.19916 −0.262431
\(559\) −25.5465 −1.08050
\(560\) 0 0
\(561\) 0 0
\(562\) 4.17049 0.175921
\(563\) −12.6973 −0.535126 −0.267563 0.963540i \(-0.586218\pi\)
−0.267563 + 0.963540i \(0.586218\pi\)
\(564\) −27.7888 −1.17012
\(565\) 0 0
\(566\) −4.77886 −0.200870
\(567\) −32.8027 −1.37759
\(568\) 15.3619 0.644573
\(569\) 16.8526 0.706499 0.353249 0.935529i \(-0.385077\pi\)
0.353249 + 0.935529i \(0.385077\pi\)
\(570\) 0 0
\(571\) 4.03344 0.168794 0.0843972 0.996432i \(-0.473104\pi\)
0.0843972 + 0.996432i \(0.473104\pi\)
\(572\) −3.52786 −0.147507
\(573\) −12.2778 −0.512913
\(574\) 8.76707 0.365931
\(575\) 0 0
\(576\) −4.93731 −0.205721
\(577\) 12.3496 0.514119 0.257060 0.966396i \(-0.417246\pi\)
0.257060 + 0.966396i \(0.417246\pi\)
\(578\) 0 0
\(579\) −15.7477 −0.654451
\(580\) 0 0
\(581\) −55.1659 −2.28867
\(582\) 14.1347 0.585904
\(583\) −0.366561 −0.0151814
\(584\) −7.35564 −0.304378
\(585\) 0 0
\(586\) −11.4763 −0.474082
\(587\) 36.6844 1.51413 0.757064 0.653341i \(-0.226633\pi\)
0.757064 + 0.653341i \(0.226633\pi\)
\(588\) 39.3220 1.62161
\(589\) 17.2093 0.709095
\(590\) 0 0
\(591\) 57.1078 2.34910
\(592\) 8.55410 0.351571
\(593\) 17.1445 0.704041 0.352021 0.935992i \(-0.385495\pi\)
0.352021 + 0.935992i \(0.385495\pi\)
\(594\) −0.156219 −0.00640976
\(595\) 0 0
\(596\) 13.9637 0.571975
\(597\) 58.5799 2.39752
\(598\) −22.2023 −0.907920
\(599\) 19.1061 0.780654 0.390327 0.920676i \(-0.372362\pi\)
0.390327 + 0.920676i \(0.372362\pi\)
\(600\) 0 0
\(601\) 3.60770 0.147161 0.0735807 0.997289i \(-0.476557\pi\)
0.0735807 + 0.997289i \(0.476557\pi\)
\(602\) −11.5521 −0.470827
\(603\) 23.5752 0.960057
\(604\) −10.7253 −0.436406
\(605\) 0 0
\(606\) 0.473514 0.0192352
\(607\) 24.0681 0.976893 0.488447 0.872594i \(-0.337564\pi\)
0.488447 + 0.872594i \(0.337564\pi\)
\(608\) −26.9618 −1.09345
\(609\) 1.87476 0.0759690
\(610\) 0 0
\(611\) −32.5597 −1.31723
\(612\) 0 0
\(613\) −1.37144 −0.0553919 −0.0276959 0.999616i \(-0.508817\pi\)
−0.0276959 + 0.999616i \(0.508817\pi\)
\(614\) −16.3784 −0.660978
\(615\) 0 0
\(616\) −3.48197 −0.140293
\(617\) −9.37017 −0.377229 −0.188614 0.982051i \(-0.560400\pi\)
−0.188614 + 0.982051i \(0.560400\pi\)
\(618\) −0.957522 −0.0385172
\(619\) −26.7267 −1.07424 −0.537118 0.843507i \(-0.680487\pi\)
−0.537118 + 0.843507i \(0.680487\pi\)
\(620\) 0 0
\(621\) 5.38254 0.215994
\(622\) 2.38467 0.0956168
\(623\) 61.0127 2.44442
\(624\) −27.8413 −1.11454
\(625\) 0 0
\(626\) 5.84814 0.233739
\(627\) 5.30683 0.211934
\(628\) 36.7703 1.46730
\(629\) 0 0
\(630\) 0 0
\(631\) −0.0544273 −0.00216672 −0.00108336 0.999999i \(-0.500345\pi\)
−0.00108336 + 0.999999i \(0.500345\pi\)
\(632\) −28.8929 −1.14930
\(633\) 4.52337 0.179788
\(634\) −8.49127 −0.337231
\(635\) 0 0
\(636\) −3.68994 −0.146316
\(637\) 46.0731 1.82548
\(638\) −0.0433720 −0.00171711
\(639\) −24.4643 −0.967793
\(640\) 0 0
\(641\) −35.0538 −1.38454 −0.692272 0.721637i \(-0.743390\pi\)
−0.692272 + 0.721637i \(0.743390\pi\)
\(642\) −13.4742 −0.531786
\(643\) 31.7691 1.25285 0.626425 0.779481i \(-0.284517\pi\)
0.626425 + 0.779481i \(0.284517\pi\)
\(644\) 54.9658 2.16596
\(645\) 0 0
\(646\) 0 0
\(647\) −47.2437 −1.85734 −0.928671 0.370904i \(-0.879048\pi\)
−0.928671 + 0.370904i \(0.879048\pi\)
\(648\) 16.6737 0.655005
\(649\) −6.03271 −0.236805
\(650\) 0 0
\(651\) 34.4946 1.35195
\(652\) 22.9483 0.898723
\(653\) −18.2590 −0.714530 −0.357265 0.934003i \(-0.616291\pi\)
−0.357265 + 0.934003i \(0.616291\pi\)
\(654\) −14.5386 −0.568506
\(655\) 0 0
\(656\) 8.76320 0.342146
\(657\) 11.7140 0.457008
\(658\) −14.7234 −0.573979
\(659\) 31.0240 1.20852 0.604261 0.796786i \(-0.293468\pi\)
0.604261 + 0.796786i \(0.293468\pi\)
\(660\) 0 0
\(661\) −26.5079 −1.03104 −0.515519 0.856878i \(-0.672401\pi\)
−0.515519 + 0.856878i \(0.672401\pi\)
\(662\) −7.06911 −0.274749
\(663\) 0 0
\(664\) 28.0409 1.08820
\(665\) 0 0
\(666\) 6.92747 0.268434
\(667\) 1.49438 0.0578627
\(668\) 27.0546 1.04677
\(669\) −22.2759 −0.861237
\(670\) 0 0
\(671\) 1.43421 0.0553671
\(672\) −54.0428 −2.08475
\(673\) −42.1664 −1.62539 −0.812697 0.582687i \(-0.802001\pi\)
−0.812697 + 0.582687i \(0.802001\pi\)
\(674\) 1.05455 0.0406199
\(675\) 0 0
\(676\) −19.6254 −0.754824
\(677\) −9.02111 −0.346710 −0.173355 0.984859i \(-0.555461\pi\)
−0.173355 + 0.984859i \(0.555461\pi\)
\(678\) −12.5438 −0.481741
\(679\) −41.0009 −1.57347
\(680\) 0 0
\(681\) −41.6388 −1.59560
\(682\) −0.798022 −0.0305578
\(683\) 32.1144 1.22883 0.614413 0.788985i \(-0.289393\pi\)
0.614413 + 0.788985i \(0.289393\pi\)
\(684\) 27.8481 1.06480
\(685\) 0 0
\(686\) 5.13274 0.195969
\(687\) −3.43778 −0.131159
\(688\) −11.5470 −0.440223
\(689\) −4.32345 −0.164711
\(690\) 0 0
\(691\) −8.79278 −0.334493 −0.167247 0.985915i \(-0.553488\pi\)
−0.167247 + 0.985915i \(0.553488\pi\)
\(692\) 4.26157 0.162001
\(693\) 5.54513 0.210642
\(694\) −14.2121 −0.539483
\(695\) 0 0
\(696\) −0.952944 −0.0361212
\(697\) 0 0
\(698\) 8.52166 0.322549
\(699\) −4.16365 −0.157484
\(700\) 0 0
\(701\) 19.0206 0.718399 0.359199 0.933261i \(-0.383050\pi\)
0.359199 + 0.933261i \(0.383050\pi\)
\(702\) −1.84255 −0.0695425
\(703\) −19.2311 −0.725314
\(704\) −0.635583 −0.0239544
\(705\) 0 0
\(706\) −11.1504 −0.419652
\(707\) −1.37353 −0.0516570
\(708\) −60.7275 −2.28228
\(709\) −21.9528 −0.824454 −0.412227 0.911081i \(-0.635249\pi\)
−0.412227 + 0.911081i \(0.635249\pi\)
\(710\) 0 0
\(711\) 46.0126 1.72561
\(712\) −31.0129 −1.16226
\(713\) 27.4959 1.02973
\(714\) 0 0
\(715\) 0 0
\(716\) −12.6120 −0.471331
\(717\) 45.2972 1.69166
\(718\) −9.32095 −0.347855
\(719\) 36.9733 1.37887 0.689436 0.724346i \(-0.257858\pi\)
0.689436 + 0.724346i \(0.257858\pi\)
\(720\) 0 0
\(721\) 2.77750 0.103440
\(722\) 3.56099 0.132526
\(723\) −17.5583 −0.653001
\(724\) −27.5705 −1.02465
\(725\) 0 0
\(726\) 15.0586 0.558877
\(727\) −44.1513 −1.63748 −0.818741 0.574163i \(-0.805328\pi\)
−0.818741 + 0.574163i \(0.805328\pi\)
\(728\) −41.0686 −1.52210
\(729\) −31.5727 −1.16936
\(730\) 0 0
\(731\) 0 0
\(732\) 14.4373 0.533618
\(733\) 5.30089 0.195793 0.0978965 0.995197i \(-0.468789\pi\)
0.0978965 + 0.995197i \(0.468789\pi\)
\(734\) 5.36932 0.198185
\(735\) 0 0
\(736\) −43.0779 −1.58787
\(737\) 3.03485 0.111790
\(738\) 7.09681 0.261237
\(739\) 2.64136 0.0971642 0.0485821 0.998819i \(-0.484530\pi\)
0.0485821 + 0.998819i \(0.484530\pi\)
\(740\) 0 0
\(741\) 62.5921 2.29938
\(742\) −1.95506 −0.0717723
\(743\) 11.7618 0.431497 0.215748 0.976449i \(-0.430781\pi\)
0.215748 + 0.976449i \(0.430781\pi\)
\(744\) −17.5337 −0.642815
\(745\) 0 0
\(746\) −4.91734 −0.180037
\(747\) −44.6559 −1.63387
\(748\) 0 0
\(749\) 39.0850 1.42814
\(750\) 0 0
\(751\) 15.3736 0.560990 0.280495 0.959855i \(-0.409501\pi\)
0.280495 + 0.959855i \(0.409501\pi\)
\(752\) −14.7169 −0.536671
\(753\) 12.9617 0.472349
\(754\) −0.511556 −0.0186298
\(755\) 0 0
\(756\) 4.56156 0.165902
\(757\) 6.04560 0.219731 0.109866 0.993946i \(-0.464958\pi\)
0.109866 + 0.993946i \(0.464958\pi\)
\(758\) −5.02991 −0.182695
\(759\) 8.47891 0.307765
\(760\) 0 0
\(761\) −13.0506 −0.473084 −0.236542 0.971621i \(-0.576014\pi\)
−0.236542 + 0.971621i \(0.576014\pi\)
\(762\) 18.9281 0.685691
\(763\) 42.1725 1.52675
\(764\) −8.29399 −0.300066
\(765\) 0 0
\(766\) −9.16515 −0.331150
\(767\) −71.1536 −2.56921
\(768\) 8.48645 0.306228
\(769\) −33.3051 −1.20101 −0.600507 0.799620i \(-0.705034\pi\)
−0.600507 + 0.799620i \(0.705034\pi\)
\(770\) 0 0
\(771\) 6.76061 0.243477
\(772\) −10.6380 −0.382869
\(773\) 10.2351 0.368131 0.184065 0.982914i \(-0.441074\pi\)
0.184065 + 0.982914i \(0.441074\pi\)
\(774\) −9.35121 −0.336122
\(775\) 0 0
\(776\) 20.8409 0.748144
\(777\) −38.5472 −1.38287
\(778\) −14.6684 −0.525886
\(779\) −19.7012 −0.705869
\(780\) 0 0
\(781\) −3.14930 −0.112691
\(782\) 0 0
\(783\) 0.124017 0.00443202
\(784\) 20.8249 0.743748
\(785\) 0 0
\(786\) −18.8141 −0.671078
\(787\) 2.89479 0.103188 0.0515941 0.998668i \(-0.483570\pi\)
0.0515941 + 0.998668i \(0.483570\pi\)
\(788\) 38.5779 1.37428
\(789\) 61.0541 2.17358
\(790\) 0 0
\(791\) 36.3860 1.29374
\(792\) −2.81860 −0.100155
\(793\) 16.9160 0.600705
\(794\) −0.498930 −0.0177064
\(795\) 0 0
\(796\) 39.5723 1.40260
\(797\) −17.3882 −0.615923 −0.307961 0.951399i \(-0.599647\pi\)
−0.307961 + 0.951399i \(0.599647\pi\)
\(798\) 28.3040 1.00195
\(799\) 0 0
\(800\) 0 0
\(801\) 49.3889 1.74507
\(802\) −8.46254 −0.298823
\(803\) 1.50796 0.0532146
\(804\) 30.5499 1.07741
\(805\) 0 0
\(806\) −9.41237 −0.331537
\(807\) 19.1613 0.674510
\(808\) 0.698169 0.0245615
\(809\) −37.8663 −1.33131 −0.665654 0.746261i \(-0.731847\pi\)
−0.665654 + 0.746261i \(0.731847\pi\)
\(810\) 0 0
\(811\) −4.46329 −0.156727 −0.0783636 0.996925i \(-0.524970\pi\)
−0.0783636 + 0.996925i \(0.524970\pi\)
\(812\) 1.26645 0.0444436
\(813\) −0.0365739 −0.00128270
\(814\) 0.891777 0.0312568
\(815\) 0 0
\(816\) 0 0
\(817\) 25.9596 0.908210
\(818\) 3.16632 0.110708
\(819\) 65.4028 2.28536
\(820\) 0 0
\(821\) 3.36602 0.117475 0.0587375 0.998273i \(-0.481293\pi\)
0.0587375 + 0.998273i \(0.481293\pi\)
\(822\) −11.9332 −0.416219
\(823\) −12.1803 −0.424579 −0.212289 0.977207i \(-0.568092\pi\)
−0.212289 + 0.977207i \(0.568092\pi\)
\(824\) −1.41181 −0.0491828
\(825\) 0 0
\(826\) −32.1755 −1.11953
\(827\) 18.4858 0.642816 0.321408 0.946941i \(-0.395844\pi\)
0.321408 + 0.946941i \(0.395844\pi\)
\(828\) 44.4939 1.54627
\(829\) −27.8002 −0.965540 −0.482770 0.875747i \(-0.660369\pi\)
−0.482770 + 0.875747i \(0.660369\pi\)
\(830\) 0 0
\(831\) 6.08362 0.211038
\(832\) −7.49646 −0.259893
\(833\) 0 0
\(834\) −18.2518 −0.632009
\(835\) 0 0
\(836\) 3.58491 0.123987
\(837\) 2.28186 0.0788724
\(838\) −1.34644 −0.0465121
\(839\) −39.9107 −1.37787 −0.688935 0.724823i \(-0.741922\pi\)
−0.688935 + 0.724823i \(0.741922\pi\)
\(840\) 0 0
\(841\) −28.9656 −0.998813
\(842\) 19.7489 0.680591
\(843\) −18.7851 −0.646993
\(844\) 3.05565 0.105180
\(845\) 0 0
\(846\) −11.9184 −0.409763
\(847\) −43.6808 −1.50089
\(848\) −1.95419 −0.0671072
\(849\) 21.5254 0.738749
\(850\) 0 0
\(851\) −30.7262 −1.05328
\(852\) −31.7020 −1.08609
\(853\) −41.6170 −1.42494 −0.712469 0.701703i \(-0.752423\pi\)
−0.712469 + 0.701703i \(0.752423\pi\)
\(854\) 7.64937 0.261756
\(855\) 0 0
\(856\) −19.8670 −0.679040
\(857\) −10.6131 −0.362538 −0.181269 0.983434i \(-0.558020\pi\)
−0.181269 + 0.983434i \(0.558020\pi\)
\(858\) −2.90250 −0.0990897
\(859\) 45.3309 1.54667 0.773335 0.633998i \(-0.218587\pi\)
0.773335 + 0.633998i \(0.218587\pi\)
\(860\) 0 0
\(861\) −39.4894 −1.34580
\(862\) 6.19350 0.210952
\(863\) −8.98488 −0.305849 −0.152925 0.988238i \(-0.548869\pi\)
−0.152925 + 0.988238i \(0.548869\pi\)
\(864\) −3.57499 −0.121624
\(865\) 0 0
\(866\) −13.4835 −0.458189
\(867\) 0 0
\(868\) 23.3020 0.790921
\(869\) 5.92323 0.200932
\(870\) 0 0
\(871\) 35.7949 1.21287
\(872\) −21.4364 −0.725927
\(873\) −33.1896 −1.12330
\(874\) 22.5613 0.763148
\(875\) 0 0
\(876\) 15.1796 0.512872
\(877\) 11.7160 0.395622 0.197811 0.980240i \(-0.436617\pi\)
0.197811 + 0.980240i \(0.436617\pi\)
\(878\) 10.5073 0.354605
\(879\) 51.6926 1.74355
\(880\) 0 0
\(881\) 4.31806 0.145479 0.0727396 0.997351i \(-0.476826\pi\)
0.0727396 + 0.997351i \(0.476826\pi\)
\(882\) 16.8649 0.567871
\(883\) −29.8534 −1.00465 −0.502323 0.864680i \(-0.667521\pi\)
−0.502323 + 0.864680i \(0.667521\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 4.89263 0.164371
\(887\) 11.4344 0.383928 0.191964 0.981402i \(-0.438514\pi\)
0.191964 + 0.981402i \(0.438514\pi\)
\(888\) 19.5936 0.657518
\(889\) −54.9050 −1.84145
\(890\) 0 0
\(891\) −3.41822 −0.114515
\(892\) −15.0480 −0.503844
\(893\) 33.0862 1.10719
\(894\) 11.4884 0.384231
\(895\) 0 0
\(896\) −46.5655 −1.55564
\(897\) 100.006 3.33909
\(898\) −21.0198 −0.701441
\(899\) 0.633523 0.0211292
\(900\) 0 0
\(901\) 0 0
\(902\) 0.913577 0.0304188
\(903\) 52.0338 1.73158
\(904\) −18.4951 −0.615138
\(905\) 0 0
\(906\) −8.82408 −0.293161
\(907\) −34.2774 −1.13816 −0.569081 0.822282i \(-0.692701\pi\)
−0.569081 + 0.822282i \(0.692701\pi\)
\(908\) −28.1281 −0.933463
\(909\) −1.11185 −0.0368778
\(910\) 0 0
\(911\) −24.2471 −0.803342 −0.401671 0.915784i \(-0.631570\pi\)
−0.401671 + 0.915784i \(0.631570\pi\)
\(912\) 28.2915 0.936825
\(913\) −5.74858 −0.190250
\(914\) −0.614030 −0.0203103
\(915\) 0 0
\(916\) −2.32231 −0.0767313
\(917\) 54.5745 1.80221
\(918\) 0 0
\(919\) −42.9958 −1.41830 −0.709151 0.705057i \(-0.750921\pi\)
−0.709151 + 0.705057i \(0.750921\pi\)
\(920\) 0 0
\(921\) 73.7731 2.43091
\(922\) 3.15207 0.103808
\(923\) −37.1449 −1.22264
\(924\) 7.18565 0.236391
\(925\) 0 0
\(926\) −4.95350 −0.162782
\(927\) 2.24835 0.0738454
\(928\) −0.992544 −0.0325819
\(929\) 29.4737 0.967001 0.483500 0.875344i \(-0.339365\pi\)
0.483500 + 0.875344i \(0.339365\pi\)
\(930\) 0 0
\(931\) −46.8181 −1.53440
\(932\) −2.81265 −0.0921316
\(933\) −10.7413 −0.351653
\(934\) 5.79894 0.189747
\(935\) 0 0
\(936\) −33.2444 −1.08663
\(937\) −22.9716 −0.750450 −0.375225 0.926934i \(-0.622435\pi\)
−0.375225 + 0.926934i \(0.622435\pi\)
\(938\) 16.1864 0.528504
\(939\) −26.3417 −0.859629
\(940\) 0 0
\(941\) 6.91682 0.225482 0.112741 0.993624i \(-0.464037\pi\)
0.112741 + 0.993624i \(0.464037\pi\)
\(942\) 30.2523 0.985672
\(943\) −31.4773 −1.02504
\(944\) −32.1613 −1.04676
\(945\) 0 0
\(946\) −1.20379 −0.0391385
\(947\) 39.4991 1.28355 0.641774 0.766894i \(-0.278199\pi\)
0.641774 + 0.766894i \(0.278199\pi\)
\(948\) 59.6254 1.93654
\(949\) 17.7858 0.577351
\(950\) 0 0
\(951\) 38.2471 1.24025
\(952\) 0 0
\(953\) 30.8702 0.999983 0.499992 0.866030i \(-0.333336\pi\)
0.499992 + 0.866030i \(0.333336\pi\)
\(954\) −1.58259 −0.0512381
\(955\) 0 0
\(956\) 30.5995 0.989658
\(957\) 0.195360 0.00631509
\(958\) −18.3577 −0.593112
\(959\) 34.6150 1.11778
\(960\) 0 0
\(961\) −19.3435 −0.623984
\(962\) 10.5182 0.339120
\(963\) 31.6387 1.01954
\(964\) −11.8611 −0.382021
\(965\) 0 0
\(966\) 45.2223 1.45500
\(967\) −12.1454 −0.390569 −0.195285 0.980747i \(-0.562563\pi\)
−0.195285 + 0.980747i \(0.562563\pi\)
\(968\) 22.2030 0.713633
\(969\) 0 0
\(970\) 0 0
\(971\) 59.3265 1.90388 0.951939 0.306287i \(-0.0990867\pi\)
0.951939 + 0.306287i \(0.0990867\pi\)
\(972\) −37.7998 −1.21243
\(973\) 52.9434 1.69729
\(974\) −14.0879 −0.451404
\(975\) 0 0
\(976\) 7.64599 0.244742
\(977\) 2.28110 0.0729788 0.0364894 0.999334i \(-0.488382\pi\)
0.0364894 + 0.999334i \(0.488382\pi\)
\(978\) 18.8804 0.603727
\(979\) 6.35786 0.203198
\(980\) 0 0
\(981\) 34.1380 1.08994
\(982\) 14.4654 0.461611
\(983\) 0.541983 0.0172866 0.00864328 0.999963i \(-0.497249\pi\)
0.00864328 + 0.999963i \(0.497249\pi\)
\(984\) 20.0726 0.639890
\(985\) 0 0
\(986\) 0 0
\(987\) 66.3186 2.11094
\(988\) 42.2826 1.34519
\(989\) 41.4765 1.31888
\(990\) 0 0
\(991\) −12.9204 −0.410430 −0.205215 0.978717i \(-0.565789\pi\)
−0.205215 + 0.978717i \(0.565789\pi\)
\(992\) −18.2623 −0.579828
\(993\) 31.8413 1.01045
\(994\) −16.7968 −0.532763
\(995\) 0 0
\(996\) −57.8673 −1.83360
\(997\) 12.3411 0.390847 0.195424 0.980719i \(-0.437392\pi\)
0.195424 + 0.980719i \(0.437392\pi\)
\(998\) 10.1268 0.320558
\(999\) −2.54994 −0.0806765
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bx.1.15 24
5.4 even 2 7225.2.a.cb.1.10 24
17.3 odd 16 425.2.m.c.26.4 24
17.6 odd 16 425.2.m.c.376.4 yes 24
17.16 even 2 inner 7225.2.a.bx.1.16 24
85.3 even 16 425.2.n.e.349.3 24
85.23 even 16 425.2.n.d.274.4 24
85.37 even 16 425.2.n.d.349.4 24
85.54 odd 16 425.2.m.d.26.3 yes 24
85.57 even 16 425.2.n.e.274.3 24
85.74 odd 16 425.2.m.d.376.3 yes 24
85.84 even 2 7225.2.a.cb.1.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.26.4 24 17.3 odd 16
425.2.m.c.376.4 yes 24 17.6 odd 16
425.2.m.d.26.3 yes 24 85.54 odd 16
425.2.m.d.376.3 yes 24 85.74 odd 16
425.2.n.d.274.4 24 85.23 even 16
425.2.n.d.349.4 24 85.37 even 16
425.2.n.e.274.3 24 85.57 even 16
425.2.n.e.349.3 24 85.3 even 16
7225.2.a.bx.1.15 24 1.1 even 1 trivial
7225.2.a.bx.1.16 24 17.16 even 2 inner
7225.2.a.cb.1.9 24 85.84 even 2
7225.2.a.cb.1.10 24 5.4 even 2