Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7225,2,Mod(1,7225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7225.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7225 = 5^{2} \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7225.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(57.6919154604\) |
Analytic rank: | \(1\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 425) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.71078 | −1.05855 | 5.34834 | 0 | 2.86951 | −1.42176 | −9.07661 | −1.87946 | 0 | ||||||||||||||||||
1.2 | −2.71078 | 1.05855 | 5.34834 | 0 | −2.86951 | 1.42176 | −9.07661 | −1.87946 | 0 | ||||||||||||||||||
1.3 | −2.58407 | −3.08178 | 4.67741 | 0 | 7.96353 | 2.81582 | −6.91861 | 6.49736 | 0 | ||||||||||||||||||
1.4 | −2.58407 | 3.08178 | 4.67741 | 0 | −7.96353 | −2.81582 | −6.91861 | 6.49736 | 0 | ||||||||||||||||||
1.5 | −2.16291 | −2.77489 | 2.67820 | 0 | 6.00186 | −3.14227 | −1.46688 | 4.70004 | 0 | ||||||||||||||||||
1.6 | −2.16291 | 2.77489 | 2.67820 | 0 | −6.00186 | 3.14227 | −1.46688 | 4.70004 | 0 | ||||||||||||||||||
1.7 | −1.38987 | −0.110824 | −0.0682683 | 0 | 0.154031 | −1.71589 | 2.87462 | −2.98772 | 0 | ||||||||||||||||||
1.8 | −1.38987 | 0.110824 | −0.0682683 | 0 | −0.154031 | 1.71589 | 2.87462 | −2.98772 | 0 | ||||||||||||||||||
1.9 | −1.30287 | −0.334695 | −0.302521 | 0 | 0.436066 | −3.90464 | 2.99989 | −2.88798 | 0 | ||||||||||||||||||
1.10 | −1.30287 | 0.334695 | −0.302521 | 0 | −0.436066 | 3.90464 | 2.99989 | −2.88798 | 0 | ||||||||||||||||||
1.11 | −0.903848 | −2.88161 | −1.18306 | 0 | 2.60454 | −0.726991 | 2.87700 | 5.30368 | 0 | ||||||||||||||||||
1.12 | −0.903848 | 2.88161 | −1.18306 | 0 | −2.60454 | 0.726991 | 2.87700 | 5.30368 | 0 | ||||||||||||||||||
1.13 | −0.265267 | −1.80920 | −1.92963 | 0 | 0.479920 | 4.92737 | 1.04240 | 0.273187 | 0 | ||||||||||||||||||
1.14 | −0.265267 | 1.80920 | −1.92963 | 0 | −0.479920 | −4.92737 | 1.04240 | 0.273187 | 0 | ||||||||||||||||||
1.15 | 0.555780 | −2.50339 | −1.69111 | 0 | −1.39134 | 4.03587 | −2.05144 | 3.26698 | 0 | ||||||||||||||||||
1.16 | 0.555780 | 2.50339 | −1.69111 | 0 | 1.39134 | −4.03587 | −2.05144 | 3.26698 | 0 | ||||||||||||||||||
1.17 | 1.15016 | −2.05557 | −0.677141 | 0 | −2.36423 | 0.375463 | −3.07913 | 1.22538 | 0 | ||||||||||||||||||
1.18 | 1.15016 | 2.05557 | −0.677141 | 0 | 2.36423 | −0.375463 | −3.07913 | 1.22538 | 0 | ||||||||||||||||||
1.19 | 1.29691 | −1.83794 | −0.318036 | 0 | −2.38363 | −3.50681 | −3.00627 | 0.378015 | 0 | ||||||||||||||||||
1.20 | 1.29691 | 1.83794 | −0.318036 | 0 | 2.38363 | 3.50681 | −3.00627 | 0.378015 | 0 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \( -1 \) |
\(17\) | \( -1 \) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 7225.2.a.bx | 24 | |
5.b | even | 2 | 1 | 7225.2.a.cb | 24 | ||
17.b | even | 2 | 1 | inner | 7225.2.a.bx | 24 | |
17.e | odd | 16 | 2 | 425.2.m.c | ✓ | 24 | |
85.c | even | 2 | 1 | 7225.2.a.cb | 24 | ||
85.o | even | 16 | 2 | 425.2.n.e | 24 | ||
85.p | odd | 16 | 2 | 425.2.m.d | yes | 24 | |
85.r | even | 16 | 2 | 425.2.n.d | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
425.2.m.c | ✓ | 24 | 17.e | odd | 16 | 2 | |
425.2.m.d | yes | 24 | 85.p | odd | 16 | 2 | |
425.2.n.d | 24 | 85.r | even | 16 | 2 | ||
425.2.n.e | 24 | 85.o | even | 16 | 2 | ||
7225.2.a.bx | 24 | 1.a | even | 1 | 1 | trivial | |
7225.2.a.bx | 24 | 17.b | even | 2 | 1 | inner | |
7225.2.a.cb | 24 | 5.b | even | 2 | 1 | ||
7225.2.a.cb | 24 | 85.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\):
\( T_{2}^{12} + 4 T_{2}^{11} - 10 T_{2}^{10} - 52 T_{2}^{9} + 21 T_{2}^{8} + 232 T_{2}^{7} + 44 T_{2}^{6} + \cdots - 25 \) |
\( T_{3}^{24} - 48 T_{3}^{22} + 996 T_{3}^{20} - 11720 T_{3}^{18} + 86219 T_{3}^{16} - 412068 T_{3}^{14} + \cdots + 529 \) |
\( T_{7}^{24} - 92 T_{7}^{22} + 3526 T_{7}^{20} - 73340 T_{7}^{18} + 902299 T_{7}^{16} - 6705908 T_{7}^{14} + \cdots + 97969 \) |
\( T_{11}^{24} - 136 T_{11}^{22} + 7732 T_{11}^{20} - 238912 T_{11}^{18} + 4359900 T_{11}^{16} + \cdots + 3844 \) |