Properties

Label 7225.2.a.j.1.2
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1445)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155 q^{2} +1.56155 q^{3} +0.438447 q^{4} +2.43845 q^{6} +0.438447 q^{7} -2.43845 q^{8} -0.561553 q^{9} +4.56155 q^{11} +0.684658 q^{12} -7.12311 q^{13} +0.684658 q^{14} -4.68466 q^{16} -0.876894 q^{18} -0.561553 q^{19} +0.684658 q^{21} +7.12311 q^{22} +1.56155 q^{23} -3.80776 q^{24} -11.1231 q^{26} -5.56155 q^{27} +0.192236 q^{28} -3.43845 q^{29} -2.43845 q^{32} +7.12311 q^{33} -0.246211 q^{36} +10.0000 q^{37} -0.876894 q^{38} -11.1231 q^{39} +7.00000 q^{41} +1.06913 q^{42} -9.12311 q^{43} +2.00000 q^{44} +2.43845 q^{46} -5.12311 q^{47} -7.31534 q^{48} -6.80776 q^{49} -3.12311 q^{52} +1.12311 q^{53} -8.68466 q^{54} -1.06913 q^{56} -0.876894 q^{57} -5.36932 q^{58} +0.561553 q^{59} -7.43845 q^{61} -0.246211 q^{63} +5.56155 q^{64} +11.1231 q^{66} -3.56155 q^{67} +2.43845 q^{69} -13.6847 q^{71} +1.36932 q^{72} -6.87689 q^{73} +15.6155 q^{74} -0.246211 q^{76} +2.00000 q^{77} -17.3693 q^{78} -9.43845 q^{79} -7.00000 q^{81} +10.9309 q^{82} -7.56155 q^{83} +0.300187 q^{84} -14.2462 q^{86} -5.36932 q^{87} -11.1231 q^{88} +17.4924 q^{89} -3.12311 q^{91} +0.684658 q^{92} -8.00000 q^{94} -3.80776 q^{96} -16.2462 q^{97} -10.6307 q^{98} -2.56155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} + 5 q^{4} + 9 q^{6} + 5 q^{7} - 9 q^{8} + 3 q^{9} + 5 q^{11} - 11 q^{12} - 6 q^{13} - 11 q^{14} + 3 q^{16} - 10 q^{18} + 3 q^{19} - 11 q^{21} + 6 q^{22} - q^{23} + 13 q^{24} - 14 q^{26}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.56155 1.10418 0.552092 0.833783i \(-0.313830\pi\)
0.552092 + 0.833783i \(0.313830\pi\)
\(3\) 1.56155 0.901563 0.450781 0.892634i \(-0.351145\pi\)
0.450781 + 0.892634i \(0.351145\pi\)
\(4\) 0.438447 0.219224
\(5\) 0 0
\(6\) 2.43845 0.995492
\(7\) 0.438447 0.165717 0.0828587 0.996561i \(-0.473595\pi\)
0.0828587 + 0.996561i \(0.473595\pi\)
\(8\) −2.43845 −0.862121
\(9\) −0.561553 −0.187184
\(10\) 0 0
\(11\) 4.56155 1.37536 0.687680 0.726014i \(-0.258629\pi\)
0.687680 + 0.726014i \(0.258629\pi\)
\(12\) 0.684658 0.197644
\(13\) −7.12311 −1.97559 −0.987797 0.155747i \(-0.950222\pi\)
−0.987797 + 0.155747i \(0.950222\pi\)
\(14\) 0.684658 0.182983
\(15\) 0 0
\(16\) −4.68466 −1.17116
\(17\) 0 0
\(18\) −0.876894 −0.206686
\(19\) −0.561553 −0.128829 −0.0644145 0.997923i \(-0.520518\pi\)
−0.0644145 + 0.997923i \(0.520518\pi\)
\(20\) 0 0
\(21\) 0.684658 0.149405
\(22\) 7.12311 1.51865
\(23\) 1.56155 0.325606 0.162803 0.986659i \(-0.447946\pi\)
0.162803 + 0.986659i \(0.447946\pi\)
\(24\) −3.80776 −0.777257
\(25\) 0 0
\(26\) −11.1231 −2.18142
\(27\) −5.56155 −1.07032
\(28\) 0.192236 0.0363292
\(29\) −3.43845 −0.638504 −0.319252 0.947670i \(-0.603432\pi\)
−0.319252 + 0.947670i \(0.603432\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −2.43845 −0.431061
\(33\) 7.12311 1.23997
\(34\) 0 0
\(35\) 0 0
\(36\) −0.246211 −0.0410352
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) −0.876894 −0.142251
\(39\) −11.1231 −1.78112
\(40\) 0 0
\(41\) 7.00000 1.09322 0.546608 0.837389i \(-0.315919\pi\)
0.546608 + 0.837389i \(0.315919\pi\)
\(42\) 1.06913 0.164970
\(43\) −9.12311 −1.39126 −0.695630 0.718400i \(-0.744875\pi\)
−0.695630 + 0.718400i \(0.744875\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 2.43845 0.359529
\(47\) −5.12311 −0.747282 −0.373641 0.927573i \(-0.621891\pi\)
−0.373641 + 0.927573i \(0.621891\pi\)
\(48\) −7.31534 −1.05588
\(49\) −6.80776 −0.972538
\(50\) 0 0
\(51\) 0 0
\(52\) −3.12311 −0.433097
\(53\) 1.12311 0.154270 0.0771352 0.997021i \(-0.475423\pi\)
0.0771352 + 0.997021i \(0.475423\pi\)
\(54\) −8.68466 −1.18183
\(55\) 0 0
\(56\) −1.06913 −0.142869
\(57\) −0.876894 −0.116147
\(58\) −5.36932 −0.705026
\(59\) 0.561553 0.0731079 0.0365540 0.999332i \(-0.488362\pi\)
0.0365540 + 0.999332i \(0.488362\pi\)
\(60\) 0 0
\(61\) −7.43845 −0.952396 −0.476198 0.879338i \(-0.657985\pi\)
−0.476198 + 0.879338i \(0.657985\pi\)
\(62\) 0 0
\(63\) −0.246211 −0.0310197
\(64\) 5.56155 0.695194
\(65\) 0 0
\(66\) 11.1231 1.36916
\(67\) −3.56155 −0.435113 −0.217556 0.976048i \(-0.569809\pi\)
−0.217556 + 0.976048i \(0.569809\pi\)
\(68\) 0 0
\(69\) 2.43845 0.293555
\(70\) 0 0
\(71\) −13.6847 −1.62407 −0.812035 0.583609i \(-0.801640\pi\)
−0.812035 + 0.583609i \(0.801640\pi\)
\(72\) 1.36932 0.161376
\(73\) −6.87689 −0.804880 −0.402440 0.915446i \(-0.631838\pi\)
−0.402440 + 0.915446i \(0.631838\pi\)
\(74\) 15.6155 1.81527
\(75\) 0 0
\(76\) −0.246211 −0.0282424
\(77\) 2.00000 0.227921
\(78\) −17.3693 −1.96669
\(79\) −9.43845 −1.06191 −0.530954 0.847401i \(-0.678166\pi\)
−0.530954 + 0.847401i \(0.678166\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 10.9309 1.20711
\(83\) −7.56155 −0.829988 −0.414994 0.909824i \(-0.636216\pi\)
−0.414994 + 0.909824i \(0.636216\pi\)
\(84\) 0.300187 0.0327530
\(85\) 0 0
\(86\) −14.2462 −1.53621
\(87\) −5.36932 −0.575651
\(88\) −11.1231 −1.18573
\(89\) 17.4924 1.85419 0.927097 0.374823i \(-0.122296\pi\)
0.927097 + 0.374823i \(0.122296\pi\)
\(90\) 0 0
\(91\) −3.12311 −0.327390
\(92\) 0.684658 0.0713806
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) −3.80776 −0.388628
\(97\) −16.2462 −1.64955 −0.824776 0.565459i \(-0.808699\pi\)
−0.824776 + 0.565459i \(0.808699\pi\)
\(98\) −10.6307 −1.07386
\(99\) −2.56155 −0.257446
\(100\) 0 0
\(101\) −14.3693 −1.42980 −0.714900 0.699226i \(-0.753528\pi\)
−0.714900 + 0.699226i \(0.753528\pi\)
\(102\) 0 0
\(103\) −13.8078 −1.36052 −0.680260 0.732971i \(-0.738133\pi\)
−0.680260 + 0.732971i \(0.738133\pi\)
\(104\) 17.3693 1.70320
\(105\) 0 0
\(106\) 1.75379 0.170343
\(107\) −2.87689 −0.278120 −0.139060 0.990284i \(-0.544408\pi\)
−0.139060 + 0.990284i \(0.544408\pi\)
\(108\) −2.43845 −0.234640
\(109\) −5.80776 −0.556283 −0.278141 0.960540i \(-0.589718\pi\)
−0.278141 + 0.960540i \(0.589718\pi\)
\(110\) 0 0
\(111\) 15.6155 1.48216
\(112\) −2.05398 −0.194082
\(113\) 8.24621 0.775738 0.387869 0.921714i \(-0.373211\pi\)
0.387869 + 0.921714i \(0.373211\pi\)
\(114\) −1.36932 −0.128248
\(115\) 0 0
\(116\) −1.50758 −0.139975
\(117\) 4.00000 0.369800
\(118\) 0.876894 0.0807247
\(119\) 0 0
\(120\) 0 0
\(121\) 9.80776 0.891615
\(122\) −11.6155 −1.05162
\(123\) 10.9309 0.985603
\(124\) 0 0
\(125\) 0 0
\(126\) −0.384472 −0.0342515
\(127\) −14.4384 −1.28121 −0.640603 0.767873i \(-0.721315\pi\)
−0.640603 + 0.767873i \(0.721315\pi\)
\(128\) 13.5616 1.19868
\(129\) −14.2462 −1.25431
\(130\) 0 0
\(131\) 12.8078 1.11902 0.559510 0.828824i \(-0.310989\pi\)
0.559510 + 0.828824i \(0.310989\pi\)
\(132\) 3.12311 0.271831
\(133\) −0.246211 −0.0213492
\(134\) −5.56155 −0.480445
\(135\) 0 0
\(136\) 0 0
\(137\) −11.1231 −0.950311 −0.475156 0.879902i \(-0.657608\pi\)
−0.475156 + 0.879902i \(0.657608\pi\)
\(138\) 3.80776 0.324138
\(139\) 16.5616 1.40473 0.702366 0.711816i \(-0.252127\pi\)
0.702366 + 0.711816i \(0.252127\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) −21.3693 −1.79327
\(143\) −32.4924 −2.71715
\(144\) 2.63068 0.219224
\(145\) 0 0
\(146\) −10.7386 −0.888736
\(147\) −10.6307 −0.876804
\(148\) 4.38447 0.360401
\(149\) −14.6847 −1.20301 −0.601507 0.798867i \(-0.705433\pi\)
−0.601507 + 0.798867i \(0.705433\pi\)
\(150\) 0 0
\(151\) 21.0540 1.71335 0.856674 0.515858i \(-0.172527\pi\)
0.856674 + 0.515858i \(0.172527\pi\)
\(152\) 1.36932 0.111066
\(153\) 0 0
\(154\) 3.12311 0.251667
\(155\) 0 0
\(156\) −4.87689 −0.390464
\(157\) −3.12311 −0.249251 −0.124625 0.992204i \(-0.539773\pi\)
−0.124625 + 0.992204i \(0.539773\pi\)
\(158\) −14.7386 −1.17254
\(159\) 1.75379 0.139084
\(160\) 0 0
\(161\) 0.684658 0.0539586
\(162\) −10.9309 −0.858810
\(163\) −6.43845 −0.504298 −0.252149 0.967688i \(-0.581137\pi\)
−0.252149 + 0.967688i \(0.581137\pi\)
\(164\) 3.06913 0.239659
\(165\) 0 0
\(166\) −11.8078 −0.916460
\(167\) 7.36932 0.570255 0.285127 0.958490i \(-0.407964\pi\)
0.285127 + 0.958490i \(0.407964\pi\)
\(168\) −1.66950 −0.128805
\(169\) 37.7386 2.90297
\(170\) 0 0
\(171\) 0.315342 0.0241148
\(172\) −4.00000 −0.304997
\(173\) 0.246211 0.0187191 0.00935955 0.999956i \(-0.497021\pi\)
0.00935955 + 0.999956i \(0.497021\pi\)
\(174\) −8.38447 −0.635625
\(175\) 0 0
\(176\) −21.3693 −1.61077
\(177\) 0.876894 0.0659114
\(178\) 27.3153 2.04737
\(179\) 7.43845 0.555976 0.277988 0.960585i \(-0.410333\pi\)
0.277988 + 0.960585i \(0.410333\pi\)
\(180\) 0 0
\(181\) −1.31534 −0.0977686 −0.0488843 0.998804i \(-0.515567\pi\)
−0.0488843 + 0.998804i \(0.515567\pi\)
\(182\) −4.87689 −0.361499
\(183\) −11.6155 −0.858645
\(184\) −3.80776 −0.280712
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −2.24621 −0.163822
\(189\) −2.43845 −0.177371
\(190\) 0 0
\(191\) 19.6847 1.42433 0.712166 0.702011i \(-0.247714\pi\)
0.712166 + 0.702011i \(0.247714\pi\)
\(192\) 8.68466 0.626761
\(193\) 1.12311 0.0808429 0.0404215 0.999183i \(-0.487130\pi\)
0.0404215 + 0.999183i \(0.487130\pi\)
\(194\) −25.3693 −1.82141
\(195\) 0 0
\(196\) −2.98485 −0.213203
\(197\) 15.6155 1.11256 0.556280 0.830995i \(-0.312228\pi\)
0.556280 + 0.830995i \(0.312228\pi\)
\(198\) −4.00000 −0.284268
\(199\) −9.68466 −0.686527 −0.343264 0.939239i \(-0.611532\pi\)
−0.343264 + 0.939239i \(0.611532\pi\)
\(200\) 0 0
\(201\) −5.56155 −0.392282
\(202\) −22.4384 −1.57876
\(203\) −1.50758 −0.105811
\(204\) 0 0
\(205\) 0 0
\(206\) −21.5616 −1.50226
\(207\) −0.876894 −0.0609484
\(208\) 33.3693 2.31375
\(209\) −2.56155 −0.177186
\(210\) 0 0
\(211\) −7.12311 −0.490375 −0.245187 0.969476i \(-0.578849\pi\)
−0.245187 + 0.969476i \(0.578849\pi\)
\(212\) 0.492423 0.0338197
\(213\) −21.3693 −1.46420
\(214\) −4.49242 −0.307096
\(215\) 0 0
\(216\) 13.5616 0.922747
\(217\) 0 0
\(218\) −9.06913 −0.614239
\(219\) −10.7386 −0.725650
\(220\) 0 0
\(221\) 0 0
\(222\) 24.3845 1.63658
\(223\) −10.6847 −0.715498 −0.357749 0.933818i \(-0.616456\pi\)
−0.357749 + 0.933818i \(0.616456\pi\)
\(224\) −1.06913 −0.0714343
\(225\) 0 0
\(226\) 12.8769 0.856558
\(227\) 22.0540 1.46377 0.731887 0.681426i \(-0.238640\pi\)
0.731887 + 0.681426i \(0.238640\pi\)
\(228\) −0.384472 −0.0254623
\(229\) 1.87689 0.124029 0.0620143 0.998075i \(-0.480248\pi\)
0.0620143 + 0.998075i \(0.480248\pi\)
\(230\) 0 0
\(231\) 3.12311 0.205485
\(232\) 8.38447 0.550468
\(233\) 6.24621 0.409203 0.204601 0.978845i \(-0.434410\pi\)
0.204601 + 0.978845i \(0.434410\pi\)
\(234\) 6.24621 0.408328
\(235\) 0 0
\(236\) 0.246211 0.0160270
\(237\) −14.7386 −0.957377
\(238\) 0 0
\(239\) −15.0540 −0.973761 −0.486880 0.873469i \(-0.661865\pi\)
−0.486880 + 0.873469i \(0.661865\pi\)
\(240\) 0 0
\(241\) 15.4924 0.997955 0.498977 0.866615i \(-0.333709\pi\)
0.498977 + 0.866615i \(0.333709\pi\)
\(242\) 15.3153 0.984507
\(243\) 5.75379 0.369106
\(244\) −3.26137 −0.208788
\(245\) 0 0
\(246\) 17.0691 1.08829
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) −11.8078 −0.748287
\(250\) 0 0
\(251\) −13.6847 −0.863768 −0.431884 0.901929i \(-0.642151\pi\)
−0.431884 + 0.901929i \(0.642151\pi\)
\(252\) −0.107951 −0.00680025
\(253\) 7.12311 0.447826
\(254\) −22.5464 −1.41469
\(255\) 0 0
\(256\) 10.0540 0.628373
\(257\) 26.2462 1.63719 0.818597 0.574369i \(-0.194752\pi\)
0.818597 + 0.574369i \(0.194752\pi\)
\(258\) −22.2462 −1.38499
\(259\) 4.38447 0.272438
\(260\) 0 0
\(261\) 1.93087 0.119518
\(262\) 20.0000 1.23560
\(263\) 19.8078 1.22140 0.610700 0.791862i \(-0.290888\pi\)
0.610700 + 0.791862i \(0.290888\pi\)
\(264\) −17.3693 −1.06901
\(265\) 0 0
\(266\) −0.384472 −0.0235735
\(267\) 27.3153 1.67167
\(268\) −1.56155 −0.0953870
\(269\) 14.6847 0.895339 0.447670 0.894199i \(-0.352254\pi\)
0.447670 + 0.894199i \(0.352254\pi\)
\(270\) 0 0
\(271\) −4.80776 −0.292051 −0.146025 0.989281i \(-0.546648\pi\)
−0.146025 + 0.989281i \(0.546648\pi\)
\(272\) 0 0
\(273\) −4.87689 −0.295163
\(274\) −17.3693 −1.04932
\(275\) 0 0
\(276\) 1.06913 0.0643541
\(277\) −4.00000 −0.240337 −0.120168 0.992754i \(-0.538343\pi\)
−0.120168 + 0.992754i \(0.538343\pi\)
\(278\) 25.8617 1.55108
\(279\) 0 0
\(280\) 0 0
\(281\) −9.24621 −0.551583 −0.275791 0.961218i \(-0.588940\pi\)
−0.275791 + 0.961218i \(0.588940\pi\)
\(282\) −12.4924 −0.743913
\(283\) −22.0540 −1.31097 −0.655486 0.755207i \(-0.727536\pi\)
−0.655486 + 0.755207i \(0.727536\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) −50.7386 −3.00024
\(287\) 3.06913 0.181165
\(288\) 1.36932 0.0806878
\(289\) 0 0
\(290\) 0 0
\(291\) −25.3693 −1.48718
\(292\) −3.01515 −0.176449
\(293\) 8.63068 0.504210 0.252105 0.967700i \(-0.418877\pi\)
0.252105 + 0.967700i \(0.418877\pi\)
\(294\) −16.6004 −0.968153
\(295\) 0 0
\(296\) −24.3845 −1.41732
\(297\) −25.3693 −1.47208
\(298\) −22.9309 −1.32835
\(299\) −11.1231 −0.643266
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 32.8769 1.89185
\(303\) −22.4384 −1.28906
\(304\) 2.63068 0.150880
\(305\) 0 0
\(306\) 0 0
\(307\) −1.75379 −0.100094 −0.0500470 0.998747i \(-0.515937\pi\)
−0.0500470 + 0.998747i \(0.515937\pi\)
\(308\) 0.876894 0.0499657
\(309\) −21.5616 −1.22659
\(310\) 0 0
\(311\) 23.1231 1.31119 0.655596 0.755112i \(-0.272418\pi\)
0.655596 + 0.755112i \(0.272418\pi\)
\(312\) 27.1231 1.53554
\(313\) −18.2462 −1.03134 −0.515668 0.856788i \(-0.672456\pi\)
−0.515668 + 0.856788i \(0.672456\pi\)
\(314\) −4.87689 −0.275219
\(315\) 0 0
\(316\) −4.13826 −0.232795
\(317\) −6.24621 −0.350822 −0.175411 0.984495i \(-0.556125\pi\)
−0.175411 + 0.984495i \(0.556125\pi\)
\(318\) 2.73863 0.153575
\(319\) −15.6847 −0.878172
\(320\) 0 0
\(321\) −4.49242 −0.250743
\(322\) 1.06913 0.0595803
\(323\) 0 0
\(324\) −3.06913 −0.170507
\(325\) 0 0
\(326\) −10.0540 −0.556838
\(327\) −9.06913 −0.501524
\(328\) −17.0691 −0.942485
\(329\) −2.24621 −0.123838
\(330\) 0 0
\(331\) 21.9309 1.20543 0.602715 0.797957i \(-0.294086\pi\)
0.602715 + 0.797957i \(0.294086\pi\)
\(332\) −3.31534 −0.181953
\(333\) −5.61553 −0.307729
\(334\) 11.5076 0.629667
\(335\) 0 0
\(336\) −3.20739 −0.174978
\(337\) −1.75379 −0.0955350 −0.0477675 0.998858i \(-0.515211\pi\)
−0.0477675 + 0.998858i \(0.515211\pi\)
\(338\) 58.9309 3.20542
\(339\) 12.8769 0.699377
\(340\) 0 0
\(341\) 0 0
\(342\) 0.492423 0.0266272
\(343\) −6.05398 −0.326884
\(344\) 22.2462 1.19944
\(345\) 0 0
\(346\) 0.384472 0.0206693
\(347\) −15.3693 −0.825068 −0.412534 0.910942i \(-0.635356\pi\)
−0.412534 + 0.910942i \(0.635356\pi\)
\(348\) −2.35416 −0.126196
\(349\) 12.1231 0.648935 0.324467 0.945897i \(-0.394815\pi\)
0.324467 + 0.945897i \(0.394815\pi\)
\(350\) 0 0
\(351\) 39.6155 2.11452
\(352\) −11.1231 −0.592864
\(353\) −13.6155 −0.724681 −0.362341 0.932046i \(-0.618022\pi\)
−0.362341 + 0.932046i \(0.618022\pi\)
\(354\) 1.36932 0.0727784
\(355\) 0 0
\(356\) 7.66950 0.406483
\(357\) 0 0
\(358\) 11.6155 0.613900
\(359\) 2.06913 0.109205 0.0546023 0.998508i \(-0.482611\pi\)
0.0546023 + 0.998508i \(0.482611\pi\)
\(360\) 0 0
\(361\) −18.6847 −0.983403
\(362\) −2.05398 −0.107955
\(363\) 15.3153 0.803847
\(364\) −1.36932 −0.0717717
\(365\) 0 0
\(366\) −18.1383 −0.948102
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) −7.31534 −0.381339
\(369\) −3.93087 −0.204633
\(370\) 0 0
\(371\) 0.492423 0.0255653
\(372\) 0 0
\(373\) −18.2462 −0.944753 −0.472377 0.881397i \(-0.656604\pi\)
−0.472377 + 0.881397i \(0.656604\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.4924 0.644247
\(377\) 24.4924 1.26142
\(378\) −3.80776 −0.195850
\(379\) 30.1771 1.55009 0.775046 0.631904i \(-0.217727\pi\)
0.775046 + 0.631904i \(0.217727\pi\)
\(380\) 0 0
\(381\) −22.5464 −1.15509
\(382\) 30.7386 1.57273
\(383\) 28.3002 1.44607 0.723036 0.690810i \(-0.242746\pi\)
0.723036 + 0.690810i \(0.242746\pi\)
\(384\) 21.1771 1.08069
\(385\) 0 0
\(386\) 1.75379 0.0892655
\(387\) 5.12311 0.260422
\(388\) −7.12311 −0.361621
\(389\) −5.68466 −0.288224 −0.144112 0.989561i \(-0.546032\pi\)
−0.144112 + 0.989561i \(0.546032\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 16.6004 0.838445
\(393\) 20.0000 1.00887
\(394\) 24.3845 1.22847
\(395\) 0 0
\(396\) −1.12311 −0.0564382
\(397\) −23.8617 −1.19759 −0.598793 0.800904i \(-0.704353\pi\)
−0.598793 + 0.800904i \(0.704353\pi\)
\(398\) −15.1231 −0.758053
\(399\) −0.384472 −0.0192477
\(400\) 0 0
\(401\) 15.2462 0.761359 0.380680 0.924707i \(-0.375690\pi\)
0.380680 + 0.924707i \(0.375690\pi\)
\(402\) −8.68466 −0.433151
\(403\) 0 0
\(404\) −6.30019 −0.313446
\(405\) 0 0
\(406\) −2.35416 −0.116835
\(407\) 45.6155 2.26108
\(408\) 0 0
\(409\) −9.00000 −0.445021 −0.222511 0.974930i \(-0.571425\pi\)
−0.222511 + 0.974930i \(0.571425\pi\)
\(410\) 0 0
\(411\) −17.3693 −0.856765
\(412\) −6.05398 −0.298258
\(413\) 0.246211 0.0121153
\(414\) −1.36932 −0.0672983
\(415\) 0 0
\(416\) 17.3693 0.851601
\(417\) 25.8617 1.26645
\(418\) −4.00000 −0.195646
\(419\) 13.3693 0.653134 0.326567 0.945174i \(-0.394108\pi\)
0.326567 + 0.945174i \(0.394108\pi\)
\(420\) 0 0
\(421\) −36.7386 −1.79053 −0.895266 0.445533i \(-0.853014\pi\)
−0.895266 + 0.445533i \(0.853014\pi\)
\(422\) −11.1231 −0.541464
\(423\) 2.87689 0.139879
\(424\) −2.73863 −0.133000
\(425\) 0 0
\(426\) −33.3693 −1.61675
\(427\) −3.26137 −0.157829
\(428\) −1.26137 −0.0609704
\(429\) −50.7386 −2.44968
\(430\) 0 0
\(431\) 32.9848 1.58882 0.794412 0.607379i \(-0.207779\pi\)
0.794412 + 0.607379i \(0.207779\pi\)
\(432\) 26.0540 1.25352
\(433\) −2.24621 −0.107946 −0.0539730 0.998542i \(-0.517188\pi\)
−0.0539730 + 0.998542i \(0.517188\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.54640 −0.121950
\(437\) −0.876894 −0.0419475
\(438\) −16.7689 −0.801251
\(439\) −15.4384 −0.736837 −0.368418 0.929660i \(-0.620101\pi\)
−0.368418 + 0.929660i \(0.620101\pi\)
\(440\) 0 0
\(441\) 3.82292 0.182044
\(442\) 0 0
\(443\) 13.3153 0.632631 0.316315 0.948654i \(-0.397554\pi\)
0.316315 + 0.948654i \(0.397554\pi\)
\(444\) 6.84658 0.324925
\(445\) 0 0
\(446\) −16.6847 −0.790041
\(447\) −22.9309 −1.08459
\(448\) 2.43845 0.115206
\(449\) −10.3153 −0.486811 −0.243406 0.969925i \(-0.578265\pi\)
−0.243406 + 0.969925i \(0.578265\pi\)
\(450\) 0 0
\(451\) 31.9309 1.50357
\(452\) 3.61553 0.170060
\(453\) 32.8769 1.54469
\(454\) 34.4384 1.61628
\(455\) 0 0
\(456\) 2.13826 0.100133
\(457\) 24.2462 1.13419 0.567095 0.823652i \(-0.308067\pi\)
0.567095 + 0.823652i \(0.308067\pi\)
\(458\) 2.93087 0.136951
\(459\) 0 0
\(460\) 0 0
\(461\) 13.8078 0.643092 0.321546 0.946894i \(-0.395798\pi\)
0.321546 + 0.946894i \(0.395798\pi\)
\(462\) 4.87689 0.226894
\(463\) −18.9309 −0.879792 −0.439896 0.898049i \(-0.644985\pi\)
−0.439896 + 0.898049i \(0.644985\pi\)
\(464\) 16.1080 0.747793
\(465\) 0 0
\(466\) 9.75379 0.451836
\(467\) −11.8078 −0.546398 −0.273199 0.961958i \(-0.588082\pi\)
−0.273199 + 0.961958i \(0.588082\pi\)
\(468\) 1.75379 0.0810689
\(469\) −1.56155 −0.0721058
\(470\) 0 0
\(471\) −4.87689 −0.224715
\(472\) −1.36932 −0.0630279
\(473\) −41.6155 −1.91348
\(474\) −23.0152 −1.05712
\(475\) 0 0
\(476\) 0 0
\(477\) −0.630683 −0.0288770
\(478\) −23.5076 −1.07521
\(479\) −20.3153 −0.928232 −0.464116 0.885775i \(-0.653628\pi\)
−0.464116 + 0.885775i \(0.653628\pi\)
\(480\) 0 0
\(481\) −71.2311 −3.24786
\(482\) 24.1922 1.10193
\(483\) 1.06913 0.0486471
\(484\) 4.30019 0.195463
\(485\) 0 0
\(486\) 8.98485 0.407561
\(487\) 22.3002 1.01052 0.505259 0.862968i \(-0.331397\pi\)
0.505259 + 0.862968i \(0.331397\pi\)
\(488\) 18.1383 0.821080
\(489\) −10.0540 −0.454656
\(490\) 0 0
\(491\) 22.7386 1.02618 0.513090 0.858335i \(-0.328501\pi\)
0.513090 + 0.858335i \(0.328501\pi\)
\(492\) 4.79261 0.216068
\(493\) 0 0
\(494\) 6.24621 0.281030
\(495\) 0 0
\(496\) 0 0
\(497\) −6.00000 −0.269137
\(498\) −18.4384 −0.826247
\(499\) −31.0540 −1.39017 −0.695083 0.718929i \(-0.744633\pi\)
−0.695083 + 0.718929i \(0.744633\pi\)
\(500\) 0 0
\(501\) 11.5076 0.514121
\(502\) −21.3693 −0.953759
\(503\) −20.6847 −0.922283 −0.461142 0.887327i \(-0.652560\pi\)
−0.461142 + 0.887327i \(0.652560\pi\)
\(504\) 0.600373 0.0267427
\(505\) 0 0
\(506\) 11.1231 0.494482
\(507\) 58.9309 2.61721
\(508\) −6.33050 −0.280870
\(509\) −15.8769 −0.703731 −0.351865 0.936051i \(-0.614453\pi\)
−0.351865 + 0.936051i \(0.614453\pi\)
\(510\) 0 0
\(511\) −3.01515 −0.133383
\(512\) −11.4233 −0.504843
\(513\) 3.12311 0.137888
\(514\) 40.9848 1.80776
\(515\) 0 0
\(516\) −6.24621 −0.274974
\(517\) −23.3693 −1.02778
\(518\) 6.84658 0.300822
\(519\) 0.384472 0.0168764
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 3.01515 0.131970
\(523\) −2.19224 −0.0958598 −0.0479299 0.998851i \(-0.515262\pi\)
−0.0479299 + 0.998851i \(0.515262\pi\)
\(524\) 5.61553 0.245315
\(525\) 0 0
\(526\) 30.9309 1.34865
\(527\) 0 0
\(528\) −33.3693 −1.45221
\(529\) −20.5616 −0.893981
\(530\) 0 0
\(531\) −0.315342 −0.0136847
\(532\) −0.107951 −0.00468025
\(533\) −49.8617 −2.15975
\(534\) 42.6543 1.84583
\(535\) 0 0
\(536\) 8.68466 0.375120
\(537\) 11.6155 0.501247
\(538\) 22.9309 0.988620
\(539\) −31.0540 −1.33759
\(540\) 0 0
\(541\) 1.87689 0.0806940 0.0403470 0.999186i \(-0.487154\pi\)
0.0403470 + 0.999186i \(0.487154\pi\)
\(542\) −7.50758 −0.322478
\(543\) −2.05398 −0.0881445
\(544\) 0 0
\(545\) 0 0
\(546\) −7.61553 −0.325915
\(547\) −16.0540 −0.686418 −0.343209 0.939259i \(-0.611514\pi\)
−0.343209 + 0.939259i \(0.611514\pi\)
\(548\) −4.87689 −0.208331
\(549\) 4.17708 0.178273
\(550\) 0 0
\(551\) 1.93087 0.0822578
\(552\) −5.94602 −0.253080
\(553\) −4.13826 −0.175977
\(554\) −6.24621 −0.265376
\(555\) 0 0
\(556\) 7.26137 0.307951
\(557\) 15.7538 0.667509 0.333755 0.942660i \(-0.391684\pi\)
0.333755 + 0.942660i \(0.391684\pi\)
\(558\) 0 0
\(559\) 64.9848 2.74857
\(560\) 0 0
\(561\) 0 0
\(562\) −14.4384 −0.609049
\(563\) −8.49242 −0.357913 −0.178956 0.983857i \(-0.557272\pi\)
−0.178956 + 0.983857i \(0.557272\pi\)
\(564\) −3.50758 −0.147696
\(565\) 0 0
\(566\) −34.4384 −1.44756
\(567\) −3.06913 −0.128891
\(568\) 33.3693 1.40015
\(569\) −3.24621 −0.136088 −0.0680441 0.997682i \(-0.521676\pi\)
−0.0680441 + 0.997682i \(0.521676\pi\)
\(570\) 0 0
\(571\) −10.5616 −0.441987 −0.220994 0.975275i \(-0.570930\pi\)
−0.220994 + 0.975275i \(0.570930\pi\)
\(572\) −14.2462 −0.595664
\(573\) 30.7386 1.28412
\(574\) 4.79261 0.200040
\(575\) 0 0
\(576\) −3.12311 −0.130129
\(577\) −28.9848 −1.20665 −0.603327 0.797494i \(-0.706159\pi\)
−0.603327 + 0.797494i \(0.706159\pi\)
\(578\) 0 0
\(579\) 1.75379 0.0728850
\(580\) 0 0
\(581\) −3.31534 −0.137544
\(582\) −39.6155 −1.64212
\(583\) 5.12311 0.212177
\(584\) 16.7689 0.693904
\(585\) 0 0
\(586\) 13.4773 0.556741
\(587\) 37.6695 1.55479 0.777393 0.629015i \(-0.216541\pi\)
0.777393 + 0.629015i \(0.216541\pi\)
\(588\) −4.66099 −0.192216
\(589\) 0 0
\(590\) 0 0
\(591\) 24.3845 1.00304
\(592\) −46.8466 −1.92538
\(593\) −24.0000 −0.985562 −0.492781 0.870153i \(-0.664020\pi\)
−0.492781 + 0.870153i \(0.664020\pi\)
\(594\) −39.6155 −1.62544
\(595\) 0 0
\(596\) −6.43845 −0.263729
\(597\) −15.1231 −0.618948
\(598\) −17.3693 −0.710284
\(599\) −13.6847 −0.559140 −0.279570 0.960125i \(-0.590192\pi\)
−0.279570 + 0.960125i \(0.590192\pi\)
\(600\) 0 0
\(601\) −5.80776 −0.236904 −0.118452 0.992960i \(-0.537793\pi\)
−0.118452 + 0.992960i \(0.537793\pi\)
\(602\) −6.24621 −0.254577
\(603\) 2.00000 0.0814463
\(604\) 9.23106 0.375606
\(605\) 0 0
\(606\) −35.0388 −1.42335
\(607\) −38.2462 −1.55237 −0.776183 0.630508i \(-0.782847\pi\)
−0.776183 + 0.630508i \(0.782847\pi\)
\(608\) 1.36932 0.0555331
\(609\) −2.35416 −0.0953955
\(610\) 0 0
\(611\) 36.4924 1.47633
\(612\) 0 0
\(613\) −30.0000 −1.21169 −0.605844 0.795583i \(-0.707165\pi\)
−0.605844 + 0.795583i \(0.707165\pi\)
\(614\) −2.73863 −0.110522
\(615\) 0 0
\(616\) −4.87689 −0.196496
\(617\) −8.00000 −0.322068 −0.161034 0.986949i \(-0.551483\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(618\) −33.6695 −1.35439
\(619\) 17.4384 0.700910 0.350455 0.936580i \(-0.386027\pi\)
0.350455 + 0.936580i \(0.386027\pi\)
\(620\) 0 0
\(621\) −8.68466 −0.348503
\(622\) 36.1080 1.44780
\(623\) 7.66950 0.307272
\(624\) 52.1080 2.08599
\(625\) 0 0
\(626\) −28.4924 −1.13879
\(627\) −4.00000 −0.159745
\(628\) −1.36932 −0.0546417
\(629\) 0 0
\(630\) 0 0
\(631\) 33.4384 1.33116 0.665582 0.746325i \(-0.268183\pi\)
0.665582 + 0.746325i \(0.268183\pi\)
\(632\) 23.0152 0.915494
\(633\) −11.1231 −0.442104
\(634\) −9.75379 −0.387372
\(635\) 0 0
\(636\) 0.768944 0.0304906
\(637\) 48.4924 1.92134
\(638\) −24.4924 −0.969664
\(639\) 7.68466 0.304000
\(640\) 0 0
\(641\) 28.9309 1.14270 0.571350 0.820706i \(-0.306420\pi\)
0.571350 + 0.820706i \(0.306420\pi\)
\(642\) −7.01515 −0.276866
\(643\) 16.6847 0.657979 0.328989 0.944334i \(-0.393292\pi\)
0.328989 + 0.944334i \(0.393292\pi\)
\(644\) 0.300187 0.0118290
\(645\) 0 0
\(646\) 0 0
\(647\) −5.80776 −0.228327 −0.114163 0.993462i \(-0.536419\pi\)
−0.114163 + 0.993462i \(0.536419\pi\)
\(648\) 17.0691 0.670539
\(649\) 2.56155 0.100550
\(650\) 0 0
\(651\) 0 0
\(652\) −2.82292 −0.110554
\(653\) 46.7386 1.82902 0.914512 0.404559i \(-0.132575\pi\)
0.914512 + 0.404559i \(0.132575\pi\)
\(654\) −14.1619 −0.553775
\(655\) 0 0
\(656\) −32.7926 −1.28034
\(657\) 3.86174 0.150661
\(658\) −3.50758 −0.136740
\(659\) 45.3002 1.76464 0.882322 0.470646i \(-0.155979\pi\)
0.882322 + 0.470646i \(0.155979\pi\)
\(660\) 0 0
\(661\) −3.06913 −0.119375 −0.0596877 0.998217i \(-0.519010\pi\)
−0.0596877 + 0.998217i \(0.519010\pi\)
\(662\) 34.2462 1.33102
\(663\) 0 0
\(664\) 18.4384 0.715551
\(665\) 0 0
\(666\) −8.76894 −0.339790
\(667\) −5.36932 −0.207901
\(668\) 3.23106 0.125013
\(669\) −16.6847 −0.645066
\(670\) 0 0
\(671\) −33.9309 −1.30989
\(672\) −1.66950 −0.0644025
\(673\) 30.2462 1.16591 0.582953 0.812506i \(-0.301897\pi\)
0.582953 + 0.812506i \(0.301897\pi\)
\(674\) −2.73863 −0.105488
\(675\) 0 0
\(676\) 16.5464 0.636400
\(677\) 0.384472 0.0147765 0.00738823 0.999973i \(-0.497648\pi\)
0.00738823 + 0.999973i \(0.497648\pi\)
\(678\) 20.1080 0.772241
\(679\) −7.12311 −0.273360
\(680\) 0 0
\(681\) 34.4384 1.31968
\(682\) 0 0
\(683\) −9.31534 −0.356442 −0.178221 0.983991i \(-0.557034\pi\)
−0.178221 + 0.983991i \(0.557034\pi\)
\(684\) 0.138261 0.00528653
\(685\) 0 0
\(686\) −9.45360 −0.360940
\(687\) 2.93087 0.111820
\(688\) 42.7386 1.62940
\(689\) −8.00000 −0.304776
\(690\) 0 0
\(691\) 5.36932 0.204258 0.102129 0.994771i \(-0.467434\pi\)
0.102129 + 0.994771i \(0.467434\pi\)
\(692\) 0.107951 0.00410367
\(693\) −1.12311 −0.0426633
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) 13.0928 0.496281
\(697\) 0 0
\(698\) 18.9309 0.716544
\(699\) 9.75379 0.368922
\(700\) 0 0
\(701\) 25.8769 0.977357 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(702\) 61.8617 2.33482
\(703\) −5.61553 −0.211794
\(704\) 25.3693 0.956142
\(705\) 0 0
\(706\) −21.2614 −0.800182
\(707\) −6.30019 −0.236943
\(708\) 0.384472 0.0144493
\(709\) 28.8617 1.08393 0.541963 0.840403i \(-0.317681\pi\)
0.541963 + 0.840403i \(0.317681\pi\)
\(710\) 0 0
\(711\) 5.30019 0.198773
\(712\) −42.6543 −1.59854
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 3.26137 0.121883
\(717\) −23.5076 −0.877907
\(718\) 3.23106 0.120582
\(719\) −10.8078 −0.403062 −0.201531 0.979482i \(-0.564592\pi\)
−0.201531 + 0.979482i \(0.564592\pi\)
\(720\) 0 0
\(721\) −6.05398 −0.225462
\(722\) −29.1771 −1.08586
\(723\) 24.1922 0.899719
\(724\) −0.576708 −0.0214332
\(725\) 0 0
\(726\) 23.9157 0.887595
\(727\) −22.7386 −0.843329 −0.421665 0.906752i \(-0.638554\pi\)
−0.421665 + 0.906752i \(0.638554\pi\)
\(728\) 7.61553 0.282250
\(729\) 29.9848 1.11055
\(730\) 0 0
\(731\) 0 0
\(732\) −5.09280 −0.188235
\(733\) −14.2462 −0.526196 −0.263098 0.964769i \(-0.584744\pi\)
−0.263098 + 0.964769i \(0.584744\pi\)
\(734\) 12.4924 0.461104
\(735\) 0 0
\(736\) −3.80776 −0.140356
\(737\) −16.2462 −0.598437
\(738\) −6.13826 −0.225952
\(739\) −11.1231 −0.409170 −0.204585 0.978849i \(-0.565584\pi\)
−0.204585 + 0.978849i \(0.565584\pi\)
\(740\) 0 0
\(741\) 6.24621 0.229460
\(742\) 0.768944 0.0282288
\(743\) 44.9309 1.64835 0.824177 0.566332i \(-0.191638\pi\)
0.824177 + 0.566332i \(0.191638\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −28.4924 −1.04318
\(747\) 4.24621 0.155361
\(748\) 0 0
\(749\) −1.26137 −0.0460893
\(750\) 0 0
\(751\) 26.7386 0.975707 0.487853 0.872926i \(-0.337780\pi\)
0.487853 + 0.872926i \(0.337780\pi\)
\(752\) 24.0000 0.875190
\(753\) −21.3693 −0.778741
\(754\) 38.2462 1.39284
\(755\) 0 0
\(756\) −1.06913 −0.0388839
\(757\) 11.5076 0.418250 0.209125 0.977889i \(-0.432938\pi\)
0.209125 + 0.977889i \(0.432938\pi\)
\(758\) 47.1231 1.71159
\(759\) 11.1231 0.403743
\(760\) 0 0
\(761\) −21.1922 −0.768218 −0.384109 0.923288i \(-0.625491\pi\)
−0.384109 + 0.923288i \(0.625491\pi\)
\(762\) −35.2074 −1.27543
\(763\) −2.54640 −0.0921858
\(764\) 8.63068 0.312247
\(765\) 0 0
\(766\) 44.1922 1.59673
\(767\) −4.00000 −0.144432
\(768\) 15.6998 0.566518
\(769\) −28.9309 −1.04327 −0.521637 0.853168i \(-0.674678\pi\)
−0.521637 + 0.853168i \(0.674678\pi\)
\(770\) 0 0
\(771\) 40.9848 1.47603
\(772\) 0.492423 0.0177227
\(773\) −8.38447 −0.301568 −0.150784 0.988567i \(-0.548180\pi\)
−0.150784 + 0.988567i \(0.548180\pi\)
\(774\) 8.00000 0.287554
\(775\) 0 0
\(776\) 39.6155 1.42211
\(777\) 6.84658 0.245620
\(778\) −8.87689 −0.318252
\(779\) −3.93087 −0.140838
\(780\) 0 0
\(781\) −62.4233 −2.23368
\(782\) 0 0
\(783\) 19.1231 0.683404
\(784\) 31.8920 1.13900
\(785\) 0 0
\(786\) 31.2311 1.11397
\(787\) −5.31534 −0.189471 −0.0947357 0.995502i \(-0.530201\pi\)
−0.0947357 + 0.995502i \(0.530201\pi\)
\(788\) 6.84658 0.243899
\(789\) 30.9309 1.10117
\(790\) 0 0
\(791\) 3.61553 0.128553
\(792\) 6.24621 0.221949
\(793\) 52.9848 1.88155
\(794\) −37.2614 −1.32236
\(795\) 0 0
\(796\) −4.24621 −0.150503
\(797\) −12.2462 −0.433783 −0.216892 0.976196i \(-0.569592\pi\)
−0.216892 + 0.976196i \(0.569592\pi\)
\(798\) −0.600373 −0.0212530
\(799\) 0 0
\(800\) 0 0
\(801\) −9.82292 −0.347076
\(802\) 23.8078 0.840681
\(803\) −31.3693 −1.10700
\(804\) −2.43845 −0.0859974
\(805\) 0 0
\(806\) 0 0
\(807\) 22.9309 0.807205
\(808\) 35.0388 1.23266
\(809\) 20.7538 0.729664 0.364832 0.931073i \(-0.381126\pi\)
0.364832 + 0.931073i \(0.381126\pi\)
\(810\) 0 0
\(811\) −42.6695 −1.49833 −0.749164 0.662384i \(-0.769545\pi\)
−0.749164 + 0.662384i \(0.769545\pi\)
\(812\) −0.660993 −0.0231963
\(813\) −7.50758 −0.263302
\(814\) 71.2311 2.49665
\(815\) 0 0
\(816\) 0 0
\(817\) 5.12311 0.179235
\(818\) −14.0540 −0.491386
\(819\) 1.75379 0.0612823
\(820\) 0 0
\(821\) −11.1771 −0.390083 −0.195041 0.980795i \(-0.562484\pi\)
−0.195041 + 0.980795i \(0.562484\pi\)
\(822\) −27.1231 −0.946027
\(823\) −12.1922 −0.424995 −0.212497 0.977162i \(-0.568160\pi\)
−0.212497 + 0.977162i \(0.568160\pi\)
\(824\) 33.6695 1.17293
\(825\) 0 0
\(826\) 0.384472 0.0133775
\(827\) 13.1771 0.458212 0.229106 0.973401i \(-0.426420\pi\)
0.229106 + 0.973401i \(0.426420\pi\)
\(828\) −0.384472 −0.0133613
\(829\) 5.63068 0.195562 0.0977809 0.995208i \(-0.468826\pi\)
0.0977809 + 0.995208i \(0.468826\pi\)
\(830\) 0 0
\(831\) −6.24621 −0.216679
\(832\) −39.6155 −1.37342
\(833\) 0 0
\(834\) 40.3845 1.39840
\(835\) 0 0
\(836\) −1.12311 −0.0388434
\(837\) 0 0
\(838\) 20.8769 0.721180
\(839\) −47.6847 −1.64626 −0.823129 0.567855i \(-0.807773\pi\)
−0.823129 + 0.567855i \(0.807773\pi\)
\(840\) 0 0
\(841\) −17.1771 −0.592313
\(842\) −57.3693 −1.97708
\(843\) −14.4384 −0.497287
\(844\) −3.12311 −0.107502
\(845\) 0 0
\(846\) 4.49242 0.154453
\(847\) 4.30019 0.147756
\(848\) −5.26137 −0.180676
\(849\) −34.4384 −1.18192
\(850\) 0 0
\(851\) 15.6155 0.535293
\(852\) −9.36932 −0.320988
\(853\) 34.9848 1.19786 0.598929 0.800802i \(-0.295593\pi\)
0.598929 + 0.800802i \(0.295593\pi\)
\(854\) −5.09280 −0.174272
\(855\) 0 0
\(856\) 7.01515 0.239773
\(857\) −20.7386 −0.708418 −0.354209 0.935166i \(-0.615250\pi\)
−0.354209 + 0.935166i \(0.615250\pi\)
\(858\) −79.2311 −2.70490
\(859\) 16.8769 0.575832 0.287916 0.957656i \(-0.407038\pi\)
0.287916 + 0.957656i \(0.407038\pi\)
\(860\) 0 0
\(861\) 4.79261 0.163332
\(862\) 51.5076 1.75436
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 13.5616 0.461373
\(865\) 0 0
\(866\) −3.50758 −0.119192
\(867\) 0 0
\(868\) 0 0
\(869\) −43.0540 −1.46051
\(870\) 0 0
\(871\) 25.3693 0.859607
\(872\) 14.1619 0.479583
\(873\) 9.12311 0.308770
\(874\) −1.36932 −0.0463178
\(875\) 0 0
\(876\) −4.70832 −0.159080
\(877\) 29.7538 1.00471 0.502357 0.864660i \(-0.332466\pi\)
0.502357 + 0.864660i \(0.332466\pi\)
\(878\) −24.1080 −0.813604
\(879\) 13.4773 0.454577
\(880\) 0 0
\(881\) 20.5616 0.692736 0.346368 0.938099i \(-0.387415\pi\)
0.346368 + 0.938099i \(0.387415\pi\)
\(882\) 5.96969 0.201010
\(883\) −28.4924 −0.958846 −0.479423 0.877584i \(-0.659154\pi\)
−0.479423 + 0.877584i \(0.659154\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.7926 0.698541
\(887\) −3.06913 −0.103051 −0.0515257 0.998672i \(-0.516408\pi\)
−0.0515257 + 0.998672i \(0.516408\pi\)
\(888\) −38.0776 −1.27780
\(889\) −6.33050 −0.212318
\(890\) 0 0
\(891\) −31.9309 −1.06972
\(892\) −4.68466 −0.156854
\(893\) 2.87689 0.0962716
\(894\) −35.8078 −1.19759
\(895\) 0 0
\(896\) 5.94602 0.198643
\(897\) −17.3693 −0.579945
\(898\) −16.1080 −0.537529
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 49.8617 1.66021
\(903\) −6.24621 −0.207861
\(904\) −20.1080 −0.668780
\(905\) 0 0
\(906\) 51.3390 1.70562
\(907\) −20.6307 −0.685031 −0.342515 0.939512i \(-0.611279\pi\)
−0.342515 + 0.939512i \(0.611279\pi\)
\(908\) 9.66950 0.320894
\(909\) 8.06913 0.267636
\(910\) 0 0
\(911\) 37.3693 1.23810 0.619050 0.785351i \(-0.287518\pi\)
0.619050 + 0.785351i \(0.287518\pi\)
\(912\) 4.10795 0.136028
\(913\) −34.4924 −1.14153
\(914\) 37.8617 1.25236
\(915\) 0 0
\(916\) 0.822919 0.0271900
\(917\) 5.61553 0.185441
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) −2.73863 −0.0902411
\(922\) 21.5616 0.710092
\(923\) 97.4773 3.20850
\(924\) 1.36932 0.0450472
\(925\) 0 0
\(926\) −29.5616 −0.971453
\(927\) 7.75379 0.254668
\(928\) 8.38447 0.275234
\(929\) −49.7386 −1.63187 −0.815936 0.578142i \(-0.803778\pi\)
−0.815936 + 0.578142i \(0.803778\pi\)
\(930\) 0 0
\(931\) 3.82292 0.125291
\(932\) 2.73863 0.0897069
\(933\) 36.1080 1.18212
\(934\) −18.4384 −0.603324
\(935\) 0 0
\(936\) −9.75379 −0.318813
\(937\) 41.2311 1.34696 0.673480 0.739205i \(-0.264799\pi\)
0.673480 + 0.739205i \(0.264799\pi\)
\(938\) −2.43845 −0.0796181
\(939\) −28.4924 −0.929815
\(940\) 0 0
\(941\) 21.1080 0.688100 0.344050 0.938951i \(-0.388201\pi\)
0.344050 + 0.938951i \(0.388201\pi\)
\(942\) −7.61553 −0.248127
\(943\) 10.9309 0.355958
\(944\) −2.63068 −0.0856214
\(945\) 0 0
\(946\) −64.9848 −2.11284
\(947\) −13.8078 −0.448692 −0.224346 0.974510i \(-0.572025\pi\)
−0.224346 + 0.974510i \(0.572025\pi\)
\(948\) −6.46211 −0.209880
\(949\) 48.9848 1.59012
\(950\) 0 0
\(951\) −9.75379 −0.316288
\(952\) 0 0
\(953\) 7.50758 0.243194 0.121597 0.992580i \(-0.461198\pi\)
0.121597 + 0.992580i \(0.461198\pi\)
\(954\) −0.984845 −0.0318855
\(955\) 0 0
\(956\) −6.60037 −0.213471
\(957\) −24.4924 −0.791728
\(958\) −31.7235 −1.02494
\(959\) −4.87689 −0.157483
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −111.231 −3.58623
\(963\) 1.61553 0.0520597
\(964\) 6.79261 0.218775
\(965\) 0 0
\(966\) 1.66950 0.0537154
\(967\) 11.4233 0.367348 0.183674 0.982987i \(-0.441201\pi\)
0.183674 + 0.982987i \(0.441201\pi\)
\(968\) −23.9157 −0.768680
\(969\) 0 0
\(970\) 0 0
\(971\) −0.0691303 −0.00221850 −0.00110925 0.999999i \(-0.500353\pi\)
−0.00110925 + 0.999999i \(0.500353\pi\)
\(972\) 2.52273 0.0809167
\(973\) 7.26137 0.232789
\(974\) 34.8229 1.11580
\(975\) 0 0
\(976\) 34.8466 1.11541
\(977\) −32.3542 −1.03510 −0.517551 0.855653i \(-0.673156\pi\)
−0.517551 + 0.855653i \(0.673156\pi\)
\(978\) −15.6998 −0.502025
\(979\) 79.7926 2.55018
\(980\) 0 0
\(981\) 3.26137 0.104127
\(982\) 35.5076 1.13309
\(983\) 8.82292 0.281407 0.140704 0.990052i \(-0.455064\pi\)
0.140704 + 0.990052i \(0.455064\pi\)
\(984\) −26.6543 −0.849710
\(985\) 0 0
\(986\) 0 0
\(987\) −3.50758 −0.111647
\(988\) 1.75379 0.0557955
\(989\) −14.2462 −0.453003
\(990\) 0 0
\(991\) 20.8769 0.663176 0.331588 0.943424i \(-0.392416\pi\)
0.331588 + 0.943424i \(0.392416\pi\)
\(992\) 0 0
\(993\) 34.2462 1.08677
\(994\) −9.36932 −0.297177
\(995\) 0 0
\(996\) −5.17708 −0.164042
\(997\) −12.9848 −0.411234 −0.205617 0.978633i \(-0.565920\pi\)
−0.205617 + 0.978633i \(0.565920\pi\)
\(998\) −48.4924 −1.53500
\(999\) −55.6155 −1.75960
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.j.1.2 2
5.4 even 2 1445.2.a.i.1.1 yes 2
17.16 even 2 7225.2.a.k.1.2 2
85.4 even 4 1445.2.d.d.866.4 4
85.64 even 4 1445.2.d.d.866.3 4
85.84 even 2 1445.2.a.h.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.h.1.1 2 85.84 even 2
1445.2.a.i.1.1 yes 2 5.4 even 2
1445.2.d.d.866.3 4 85.64 even 4
1445.2.d.d.866.4 4 85.4 even 4
7225.2.a.j.1.2 2 1.1 even 1 trivial
7225.2.a.k.1.2 2 17.16 even 2