Properties

Label 729.2.e.s.163.2
Level $729$
Weight $2$
Character 729.163
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 163.2
Root \(-3.10658i\) of defining polynomial
Character \(\chi\) \(=\) 729.163
Dual form 729.2.e.s.568.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.99687 - 0.726803i) q^{2} +(1.92717 - 1.61709i) q^{4} +(-0.359615 - 2.03948i) q^{5} +(3.71430 + 3.11667i) q^{7} +(0.547989 - 0.949144i) q^{8} +(-2.20040 - 3.81121i) q^{10} +(0.720551 - 4.08645i) q^{11} +(1.14268 + 0.415902i) q^{13} +(9.68219 + 3.52403i) q^{14} +(-0.469286 + 2.66145i) q^{16} +(-1.18182 - 2.04697i) q^{17} +(0.919003 - 1.59176i) q^{19} +(-3.99106 - 3.34890i) q^{20} +(-1.53119 - 8.68382i) q^{22} +(-3.29673 + 2.76628i) q^{23} +(0.668315 - 0.243247i) q^{25} +2.58407 q^{26} +12.1980 q^{28} +(-2.80199 + 1.01984i) q^{29} +(1.12883 - 0.947203i) q^{31} +(1.37788 + 7.81432i) q^{32} +(-3.84769 - 3.22859i) q^{34} +(5.02066 - 8.69603i) q^{35} +(-4.48554 - 7.76918i) q^{37} +(0.678238 - 3.84648i) q^{38} +(-2.13282 - 0.776284i) q^{40} +(-2.12420 - 0.773145i) q^{41} +(-0.952435 + 5.40153i) q^{43} +(-5.21953 - 9.04050i) q^{44} +(-4.57260 + 7.91998i) q^{46} +(5.50260 + 4.61723i) q^{47} +(2.86687 + 16.2588i) q^{49} +(1.15775 - 0.971466i) q^{50} +(2.87470 - 1.04630i) q^{52} -6.32803 q^{53} -8.59334 q^{55} +(4.99356 - 1.81751i) q^{56} +(-4.85400 + 4.07299i) q^{58} +(0.0455404 + 0.258272i) q^{59} +(-3.41319 - 2.86401i) q^{61} +(1.56571 - 2.71188i) q^{62} +(5.72840 + 9.92188i) q^{64} +(0.437297 - 2.48004i) q^{65} +(-3.88197 - 1.41292i) q^{67} +(-5.58771 - 2.03376i) q^{68} +(3.70532 - 21.0139i) q^{70} +(-1.54276 - 2.67213i) q^{71} +(-6.38003 + 11.0505i) q^{73} +(-14.6037 - 12.2540i) q^{74} +(-0.802942 - 4.55371i) q^{76} +(15.4124 - 12.9326i) q^{77} +(-4.27786 + 1.55701i) q^{79} +5.59674 q^{80} -4.80368 q^{82} +(7.94328 - 2.89112i) q^{83} +(-3.74975 + 3.14642i) q^{85} +(2.02395 + 11.4784i) q^{86} +(-3.48378 - 2.92323i) q^{88} +(-8.48158 + 14.6905i) q^{89} +(2.94803 + 5.10614i) q^{91} +(-1.88004 + 10.6622i) q^{92} +(14.3438 + 5.22072i) q^{94} +(-3.57685 - 1.30187i) q^{95} +(-0.887302 + 5.03214i) q^{97} +(17.5417 + 30.3831i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 3 q^{4} - 12 q^{5} - 3 q^{7} + 6 q^{8} - 6 q^{10} + 3 q^{11} + 6 q^{13} + 6 q^{14} + 27 q^{16} - 9 q^{17} - 12 q^{19} - 39 q^{20} - 39 q^{22} - 21 q^{23} + 6 q^{25} - 48 q^{26} + 6 q^{28}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.99687 0.726803i 1.41200 0.513927i 0.480286 0.877112i \(-0.340533\pi\)
0.931717 + 0.363185i \(0.118311\pi\)
\(3\) 0 0
\(4\) 1.92717 1.61709i 0.963587 0.808546i
\(5\) −0.359615 2.03948i −0.160825 0.912082i −0.953266 0.302134i \(-0.902301\pi\)
0.792441 0.609949i \(-0.208810\pi\)
\(6\) 0 0
\(7\) 3.71430 + 3.11667i 1.40387 + 1.17799i 0.959349 + 0.282222i \(0.0910716\pi\)
0.444524 + 0.895767i \(0.353373\pi\)
\(8\) 0.547989 0.949144i 0.193743 0.335573i
\(9\) 0 0
\(10\) −2.20040 3.81121i −0.695829 1.20521i
\(11\) 0.720551 4.08645i 0.217254 1.23211i −0.659697 0.751532i \(-0.729315\pi\)
0.876951 0.480579i \(-0.159573\pi\)
\(12\) 0 0
\(13\) 1.14268 + 0.415902i 0.316923 + 0.115350i 0.495583 0.868560i \(-0.334954\pi\)
−0.178661 + 0.983911i \(0.557176\pi\)
\(14\) 9.68219 + 3.52403i 2.58767 + 0.941836i
\(15\) 0 0
\(16\) −0.469286 + 2.66145i −0.117322 + 0.665363i
\(17\) −1.18182 2.04697i −0.286633 0.496463i 0.686371 0.727252i \(-0.259203\pi\)
−0.973004 + 0.230789i \(0.925869\pi\)
\(18\) 0 0
\(19\) 0.919003 1.59176i 0.210834 0.365175i −0.741142 0.671348i \(-0.765715\pi\)
0.951976 + 0.306174i \(0.0990488\pi\)
\(20\) −3.99106 3.34890i −0.892429 0.748837i
\(21\) 0 0
\(22\) −1.53119 8.68382i −0.326451 1.85140i
\(23\) −3.29673 + 2.76628i −0.687415 + 0.576809i −0.918162 0.396204i \(-0.870327\pi\)
0.230748 + 0.973014i \(0.425883\pi\)
\(24\) 0 0
\(25\) 0.668315 0.243247i 0.133663 0.0486494i
\(26\) 2.58407 0.506777
\(27\) 0 0
\(28\) 12.1980 2.30521
\(29\) −2.80199 + 1.01984i −0.520317 + 0.189380i −0.588810 0.808272i \(-0.700403\pi\)
0.0684925 + 0.997652i \(0.478181\pi\)
\(30\) 0 0
\(31\) 1.12883 0.947203i 0.202744 0.170123i −0.535762 0.844369i \(-0.679976\pi\)
0.738507 + 0.674246i \(0.235531\pi\)
\(32\) 1.37788 + 7.81432i 0.243576 + 1.38139i
\(33\) 0 0
\(34\) −3.84769 3.22859i −0.659873 0.553699i
\(35\) 5.02066 8.69603i 0.848646 1.46990i
\(36\) 0 0
\(37\) −4.48554 7.76918i −0.737418 1.27725i −0.953654 0.300905i \(-0.902711\pi\)
0.216236 0.976341i \(-0.430622\pi\)
\(38\) 0.678238 3.84648i 0.110025 0.623981i
\(39\) 0 0
\(40\) −2.13282 0.776284i −0.337229 0.122741i
\(41\) −2.12420 0.773145i −0.331744 0.120745i 0.170778 0.985310i \(-0.445372\pi\)
−0.502522 + 0.864565i \(0.667594\pi\)
\(42\) 0 0
\(43\) −0.952435 + 5.40153i −0.145245 + 0.823726i 0.821925 + 0.569596i \(0.192900\pi\)
−0.967170 + 0.254130i \(0.918211\pi\)
\(44\) −5.21953 9.04050i −0.786874 1.36291i
\(45\) 0 0
\(46\) −4.57260 + 7.91998i −0.674194 + 1.16774i
\(47\) 5.50260 + 4.61723i 0.802636 + 0.673492i 0.948838 0.315763i \(-0.102260\pi\)
−0.146202 + 0.989255i \(0.546705\pi\)
\(48\) 0 0
\(49\) 2.86687 + 16.2588i 0.409552 + 2.32269i
\(50\) 1.15775 0.971466i 0.163730 0.137386i
\(51\) 0 0
\(52\) 2.87470 1.04630i 0.398649 0.145096i
\(53\) −6.32803 −0.869222 −0.434611 0.900618i \(-0.643114\pi\)
−0.434611 + 0.900618i \(0.643114\pi\)
\(54\) 0 0
\(55\) −8.59334 −1.15873
\(56\) 4.99356 1.81751i 0.667293 0.242875i
\(57\) 0 0
\(58\) −4.85400 + 4.07299i −0.637362 + 0.534810i
\(59\) 0.0455404 + 0.258272i 0.00592886 + 0.0336242i 0.987629 0.156811i \(-0.0501213\pi\)
−0.981700 + 0.190435i \(0.939010\pi\)
\(60\) 0 0
\(61\) −3.41319 2.86401i −0.437014 0.366699i 0.397576 0.917569i \(-0.369851\pi\)
−0.834591 + 0.550870i \(0.814296\pi\)
\(62\) 1.56571 2.71188i 0.198845 0.344410i
\(63\) 0 0
\(64\) 5.72840 + 9.92188i 0.716050 + 1.24024i
\(65\) 0.437297 2.48004i 0.0542401 0.307611i
\(66\) 0 0
\(67\) −3.88197 1.41292i −0.474258 0.172616i 0.0938223 0.995589i \(-0.470091\pi\)
−0.568080 + 0.822973i \(0.692314\pi\)
\(68\) −5.58771 2.03376i −0.677609 0.246630i
\(69\) 0 0
\(70\) 3.70532 21.0139i 0.442870 2.51164i
\(71\) −1.54276 2.67213i −0.183091 0.317124i 0.759840 0.650110i \(-0.225277\pi\)
−0.942932 + 0.332986i \(0.891944\pi\)
\(72\) 0 0
\(73\) −6.38003 + 11.0505i −0.746726 + 1.29337i 0.202658 + 0.979250i \(0.435042\pi\)
−0.949384 + 0.314118i \(0.898291\pi\)
\(74\) −14.6037 12.2540i −1.69765 1.42450i
\(75\) 0 0
\(76\) −0.802942 4.55371i −0.0921038 0.522346i
\(77\) 15.4124 12.9326i 1.75641 1.47380i
\(78\) 0 0
\(79\) −4.27786 + 1.55701i −0.481297 + 0.175178i −0.571263 0.820767i \(-0.693546\pi\)
0.0899659 + 0.995945i \(0.471324\pi\)
\(80\) 5.59674 0.625734
\(81\) 0 0
\(82\) −4.80368 −0.530478
\(83\) 7.94328 2.89112i 0.871888 0.317341i 0.132956 0.991122i \(-0.457553\pi\)
0.738931 + 0.673781i \(0.235331\pi\)
\(84\) 0 0
\(85\) −3.74975 + 3.14642i −0.406718 + 0.341277i
\(86\) 2.02395 + 11.4784i 0.218248 + 1.23775i
\(87\) 0 0
\(88\) −3.48378 2.92323i −0.371372 0.311618i
\(89\) −8.48158 + 14.6905i −0.899046 + 1.55719i −0.0703304 + 0.997524i \(0.522405\pi\)
−0.828716 + 0.559670i \(0.810928\pi\)
\(90\) 0 0
\(91\) 2.94803 + 5.10614i 0.309038 + 0.535269i
\(92\) −1.88004 + 10.6622i −0.196007 + 1.11161i
\(93\) 0 0
\(94\) 14.3438 + 5.22072i 1.47945 + 0.538476i
\(95\) −3.57685 1.30187i −0.366977 0.133569i
\(96\) 0 0
\(97\) −0.887302 + 5.03214i −0.0900919 + 0.510937i 0.906049 + 0.423172i \(0.139083\pi\)
−0.996141 + 0.0877646i \(0.972028\pi\)
\(98\) 17.5417 + 30.3831i 1.77198 + 3.06916i
\(99\) 0 0
\(100\) 0.894607 1.54951i 0.0894607 0.154951i
\(101\) 14.2330 + 11.9429i 1.41624 + 1.18836i 0.953319 + 0.301964i \(0.0976422\pi\)
0.462918 + 0.886401i \(0.346802\pi\)
\(102\) 0 0
\(103\) 1.56384 + 8.86895i 0.154089 + 0.873884i 0.959614 + 0.281321i \(0.0907726\pi\)
−0.805524 + 0.592563i \(0.798116\pi\)
\(104\) 1.02093 0.856659i 0.100110 0.0840024i
\(105\) 0 0
\(106\) −12.6363 + 4.59923i −1.22734 + 0.446717i
\(107\) 7.42680 0.717976 0.358988 0.933342i \(-0.383122\pi\)
0.358988 + 0.933342i \(0.383122\pi\)
\(108\) 0 0
\(109\) −5.62396 −0.538678 −0.269339 0.963045i \(-0.586805\pi\)
−0.269339 + 0.963045i \(0.586805\pi\)
\(110\) −17.1598 + 6.24567i −1.63612 + 0.595501i
\(111\) 0 0
\(112\) −10.0379 + 8.42283i −0.948495 + 0.795882i
\(113\) −0.417219 2.36617i −0.0392487 0.222590i 0.958874 0.283831i \(-0.0916054\pi\)
−0.998123 + 0.0612406i \(0.980494\pi\)
\(114\) 0 0
\(115\) 6.82732 + 5.72880i 0.636651 + 0.534214i
\(116\) −3.75075 + 6.49649i −0.348249 + 0.603184i
\(117\) 0 0
\(118\) 0.278652 + 0.482639i 0.0256520 + 0.0444305i
\(119\) 1.99010 11.2864i 0.182432 1.03462i
\(120\) 0 0
\(121\) −5.84325 2.12677i −0.531205 0.193343i
\(122\) −8.89728 3.23835i −0.805522 0.293186i
\(123\) 0 0
\(124\) 0.643744 3.65085i 0.0578099 0.327856i
\(125\) −5.91378 10.2430i −0.528945 0.916159i
\(126\) 0 0
\(127\) 4.61735 7.99748i 0.409723 0.709662i −0.585135 0.810936i \(-0.698959\pi\)
0.994859 + 0.101274i \(0.0322919\pi\)
\(128\) 6.49322 + 5.44846i 0.573925 + 0.481580i
\(129\) 0 0
\(130\) −0.929269 5.27015i −0.0815023 0.462223i
\(131\) −11.7504 + 9.85972i −1.02663 + 0.861448i −0.990447 0.137897i \(-0.955966\pi\)
−0.0361871 + 0.999345i \(0.511521\pi\)
\(132\) 0 0
\(133\) 8.37444 3.04805i 0.726156 0.264299i
\(134\) −8.77871 −0.758365
\(135\) 0 0
\(136\) −2.59049 −0.222133
\(137\) 3.42421 1.24631i 0.292550 0.106480i −0.191576 0.981478i \(-0.561360\pi\)
0.484126 + 0.874998i \(0.339138\pi\)
\(138\) 0 0
\(139\) 10.1697 8.53335i 0.862579 0.723789i −0.0999433 0.994993i \(-0.531866\pi\)
0.962522 + 0.271204i \(0.0874217\pi\)
\(140\) −4.38660 24.8776i −0.370735 2.10254i
\(141\) 0 0
\(142\) −5.02280 4.21463i −0.421504 0.353684i
\(143\) 2.52292 4.36983i 0.210977 0.365423i
\(144\) 0 0
\(145\) 3.08759 + 5.34786i 0.256410 + 0.444115i
\(146\) −4.70856 + 26.7036i −0.389683 + 2.21000i
\(147\) 0 0
\(148\) −21.2079 7.71904i −1.74328 0.634501i
\(149\) −8.37359 3.04774i −0.685991 0.249680i −0.0245732 0.999698i \(-0.507823\pi\)
−0.661418 + 0.750018i \(0.730045\pi\)
\(150\) 0 0
\(151\) −0.123708 + 0.701581i −0.0100672 + 0.0570938i −0.989428 0.145028i \(-0.953673\pi\)
0.979360 + 0.202122i \(0.0647838\pi\)
\(152\) −1.00721 1.74453i −0.0816953 0.141500i
\(153\) 0 0
\(154\) 21.3773 37.0265i 1.72263 2.98368i
\(155\) −2.33775 1.96160i −0.187772 0.157560i
\(156\) 0 0
\(157\) −2.39948 13.6081i −0.191499 1.08605i −0.917316 0.398159i \(-0.869649\pi\)
0.725817 0.687888i \(-0.241462\pi\)
\(158\) −7.41071 + 6.21832i −0.589564 + 0.494703i
\(159\) 0 0
\(160\) 15.4416 5.62029i 1.22077 0.444323i
\(161\) −20.8666 −1.64452
\(162\) 0 0
\(163\) −1.19321 −0.0934597 −0.0467298 0.998908i \(-0.514880\pi\)
−0.0467298 + 0.998908i \(0.514880\pi\)
\(164\) −5.34395 + 1.94504i −0.417292 + 0.151882i
\(165\) 0 0
\(166\) 13.7604 11.5464i 1.06802 0.896173i
\(167\) −4.15650 23.5727i −0.321640 1.82411i −0.532308 0.846551i \(-0.678675\pi\)
0.210669 0.977558i \(-0.432436\pi\)
\(168\) 0 0
\(169\) −8.82583 7.40575i −0.678910 0.569673i
\(170\) −5.20096 + 9.00832i −0.398895 + 0.690907i
\(171\) 0 0
\(172\) 6.89926 + 11.9499i 0.526063 + 0.911169i
\(173\) −1.58714 + 9.00115i −0.120668 + 0.684344i 0.863118 + 0.505002i \(0.168508\pi\)
−0.983787 + 0.179343i \(0.942603\pi\)
\(174\) 0 0
\(175\) 3.24044 + 1.17942i 0.244954 + 0.0891561i
\(176\) 10.5377 + 3.83543i 0.794313 + 0.289106i
\(177\) 0 0
\(178\) −6.25953 + 35.4996i −0.469172 + 2.66081i
\(179\) −5.30038 9.18052i −0.396169 0.686184i 0.597081 0.802181i \(-0.296327\pi\)
−0.993250 + 0.115997i \(0.962994\pi\)
\(180\) 0 0
\(181\) 0.731460 1.26693i 0.0543690 0.0941699i −0.837560 0.546345i \(-0.816019\pi\)
0.891929 + 0.452176i \(0.149352\pi\)
\(182\) 9.59800 + 8.05368i 0.711451 + 0.596978i
\(183\) 0 0
\(184\) 0.819031 + 4.64496i 0.0603798 + 0.342431i
\(185\) −14.2320 + 11.9421i −1.04636 + 0.877999i
\(186\) 0 0
\(187\) −9.21640 + 3.35450i −0.673970 + 0.245305i
\(188\) 18.0709 1.31796
\(189\) 0 0
\(190\) −8.08871 −0.586817
\(191\) −11.6731 + 4.24867i −0.844637 + 0.307423i −0.727852 0.685734i \(-0.759481\pi\)
−0.116785 + 0.993157i \(0.537259\pi\)
\(192\) 0 0
\(193\) 15.9133 13.3528i 1.14546 0.961157i 0.145859 0.989305i \(-0.453406\pi\)
0.999604 + 0.0281484i \(0.00896109\pi\)
\(194\) 1.88554 + 10.6934i 0.135374 + 0.767745i
\(195\) 0 0
\(196\) 31.8169 + 26.6976i 2.27264 + 1.90697i
\(197\) 7.09433 12.2877i 0.505450 0.875465i −0.494530 0.869161i \(-0.664660\pi\)
0.999980 0.00630469i \(-0.00200686\pi\)
\(198\) 0 0
\(199\) −10.1643 17.6051i −0.720529 1.24799i −0.960788 0.277284i \(-0.910566\pi\)
0.240259 0.970709i \(-0.422768\pi\)
\(200\) 0.135353 0.767624i 0.00957089 0.0542792i
\(201\) 0 0
\(202\) 37.1017 + 13.5039i 2.61046 + 0.950132i
\(203\) −13.5860 4.94488i −0.953547 0.347063i
\(204\) 0 0
\(205\) −0.812919 + 4.61029i −0.0567767 + 0.321997i
\(206\) 9.56876 + 16.5736i 0.666687 + 1.15474i
\(207\) 0 0
\(208\) −1.64315 + 2.84601i −0.113932 + 0.197336i
\(209\) −5.84246 4.90240i −0.404131 0.339106i
\(210\) 0 0
\(211\) −1.71275 9.71347i −0.117910 0.668703i −0.985268 0.171018i \(-0.945294\pi\)
0.867358 0.497685i \(-0.165817\pi\)
\(212\) −12.1952 + 10.2330i −0.837571 + 0.702805i
\(213\) 0 0
\(214\) 14.8304 5.39782i 1.01378 0.368987i
\(215\) 11.3588 0.774665
\(216\) 0 0
\(217\) 7.14494 0.485030
\(218\) −11.2303 + 4.08751i −0.760615 + 0.276841i
\(219\) 0 0
\(220\) −16.5609 + 13.8962i −1.11653 + 0.936883i
\(221\) −0.499103 2.83055i −0.0335733 0.190404i
\(222\) 0 0
\(223\) 11.5453 + 9.68770i 0.773134 + 0.648736i 0.941509 0.336987i \(-0.109408\pi\)
−0.168376 + 0.985723i \(0.553852\pi\)
\(224\) −19.2368 + 33.3191i −1.28531 + 2.22623i
\(225\) 0 0
\(226\) −2.55287 4.42170i −0.169814 0.294127i
\(227\) −3.94052 + 22.3478i −0.261542 + 1.48328i 0.517164 + 0.855886i \(0.326988\pi\)
−0.778705 + 0.627390i \(0.784123\pi\)
\(228\) 0 0
\(229\) −8.19102 2.98129i −0.541278 0.197009i 0.0568892 0.998381i \(-0.481882\pi\)
−0.598167 + 0.801371i \(0.704104\pi\)
\(230\) 17.7970 + 6.47758i 1.17350 + 0.427119i
\(231\) 0 0
\(232\) −0.567483 + 3.21836i −0.0372571 + 0.211296i
\(233\) 11.7945 + 20.4286i 0.772682 + 1.33832i 0.936088 + 0.351766i \(0.114419\pi\)
−0.163406 + 0.986559i \(0.552248\pi\)
\(234\) 0 0
\(235\) 7.43792 12.8829i 0.485196 0.840385i
\(236\) 0.505414 + 0.424093i 0.0328997 + 0.0276061i
\(237\) 0 0
\(238\) −4.22901 23.9839i −0.274126 1.55465i
\(239\) 7.62560 6.39864i 0.493259 0.413894i −0.361933 0.932204i \(-0.617883\pi\)
0.855193 + 0.518310i \(0.173439\pi\)
\(240\) 0 0
\(241\) −5.36889 + 1.95411i −0.345840 + 0.125876i −0.509100 0.860708i \(-0.670022\pi\)
0.163259 + 0.986583i \(0.447799\pi\)
\(242\) −13.2140 −0.849427
\(243\) 0 0
\(244\) −11.2092 −0.717594
\(245\) 32.1285 11.6938i 2.05262 0.747091i
\(246\) 0 0
\(247\) 1.71214 1.43666i 0.108941 0.0914124i
\(248\) −0.280445 1.59048i −0.0178083 0.100996i
\(249\) 0 0
\(250\) −19.2537 16.1558i −1.21771 1.02178i
\(251\) 3.64483 6.31303i 0.230060 0.398475i −0.727766 0.685826i \(-0.759441\pi\)
0.957825 + 0.287351i \(0.0927745\pi\)
\(252\) 0 0
\(253\) 8.92881 + 15.4651i 0.561349 + 0.972285i
\(254\) 3.40767 19.3259i 0.213816 1.21261i
\(255\) 0 0
\(256\) −4.60565 1.67632i −0.287853 0.104770i
\(257\) 21.8413 + 7.94960i 1.36243 + 0.495882i 0.916803 0.399339i \(-0.130760\pi\)
0.445622 + 0.895221i \(0.352982\pi\)
\(258\) 0 0
\(259\) 7.55332 42.8370i 0.469340 2.66176i
\(260\) −3.16770 5.48661i −0.196452 0.340265i
\(261\) 0 0
\(262\) −16.2979 + 28.2288i −1.00689 + 1.74398i
\(263\) −20.9893 17.6121i −1.29426 1.08601i −0.991107 0.133067i \(-0.957517\pi\)
−0.303150 0.952943i \(-0.598038\pi\)
\(264\) 0 0
\(265\) 2.27565 + 12.9059i 0.139792 + 0.792802i
\(266\) 14.5074 12.1731i 0.889504 0.746382i
\(267\) 0 0
\(268\) −9.76605 + 3.55455i −0.596556 + 0.217129i
\(269\) 9.41973 0.574331 0.287166 0.957881i \(-0.407287\pi\)
0.287166 + 0.957881i \(0.407287\pi\)
\(270\) 0 0
\(271\) 26.2797 1.59638 0.798189 0.602408i \(-0.205792\pi\)
0.798189 + 0.602408i \(0.205792\pi\)
\(272\) 6.00253 2.18474i 0.363957 0.132469i
\(273\) 0 0
\(274\) 5.93190 4.97745i 0.358359 0.300699i
\(275\) −0.512460 2.90631i −0.0309025 0.175257i
\(276\) 0 0
\(277\) 0.287123 + 0.240924i 0.0172515 + 0.0144757i 0.651373 0.758758i \(-0.274193\pi\)
−0.634121 + 0.773234i \(0.718638\pi\)
\(278\) 14.1054 24.4314i 0.845989 1.46530i
\(279\) 0 0
\(280\) −5.50253 9.53065i −0.328839 0.569566i
\(281\) 2.42788 13.7692i 0.144835 0.821400i −0.822665 0.568527i \(-0.807513\pi\)
0.967500 0.252873i \(-0.0813755\pi\)
\(282\) 0 0
\(283\) −14.6234 5.32248i −0.869270 0.316389i −0.131399 0.991330i \(-0.541947\pi\)
−0.737872 + 0.674941i \(0.764169\pi\)
\(284\) −7.29424 2.65488i −0.432833 0.157538i
\(285\) 0 0
\(286\) 1.86195 10.5597i 0.110100 0.624406i
\(287\) −5.48027 9.49211i −0.323490 0.560301i
\(288\) 0 0
\(289\) 5.70661 9.88413i 0.335683 0.581420i
\(290\) 10.0524 + 8.43493i 0.590295 + 0.495316i
\(291\) 0 0
\(292\) 5.57430 + 31.6134i 0.326211 + 1.85003i
\(293\) 18.8633 15.8281i 1.10200 0.924690i 0.104445 0.994531i \(-0.466693\pi\)
0.997558 + 0.0698405i \(0.0222490\pi\)
\(294\) 0 0
\(295\) 0.510364 0.185757i 0.0297145 0.0108152i
\(296\) −9.83210 −0.571479
\(297\) 0 0
\(298\) −18.9361 −1.09694
\(299\) −4.91760 + 1.78986i −0.284392 + 0.103510i
\(300\) 0 0
\(301\) −20.3724 + 17.0945i −1.17425 + 0.985309i
\(302\) 0.262882 + 1.49088i 0.0151272 + 0.0857904i
\(303\) 0 0
\(304\) 3.80512 + 3.19288i 0.218239 + 0.183124i
\(305\) −4.61365 + 7.99107i −0.264177 + 0.457567i
\(306\) 0 0
\(307\) 10.1956 + 17.6593i 0.581893 + 1.00787i 0.995255 + 0.0973012i \(0.0310210\pi\)
−0.413362 + 0.910567i \(0.635646\pi\)
\(308\) 8.78931 49.8466i 0.500817 2.84028i
\(309\) 0 0
\(310\) −6.09388 2.21799i −0.346109 0.125973i
\(311\) −20.8415 7.58567i −1.18181 0.430144i −0.324970 0.945724i \(-0.605354\pi\)
−0.856841 + 0.515580i \(0.827576\pi\)
\(312\) 0 0
\(313\) −1.94000 + 11.0023i −0.109656 + 0.621887i 0.879603 + 0.475709i \(0.157808\pi\)
−0.989258 + 0.146178i \(0.953303\pi\)
\(314\) −14.6819 25.4298i −0.828547 1.43508i
\(315\) 0 0
\(316\) −5.72635 + 9.91833i −0.322132 + 0.557950i
\(317\) 19.3171 + 16.2090i 1.08496 + 0.910386i 0.996323 0.0856786i \(-0.0273058\pi\)
0.0886327 + 0.996064i \(0.471750\pi\)
\(318\) 0 0
\(319\) 2.14855 + 12.1851i 0.120296 + 0.682232i
\(320\) 18.1754 15.2510i 1.01604 0.852557i
\(321\) 0 0
\(322\) −41.6680 + 15.1659i −2.32206 + 0.845162i
\(323\) −4.34438 −0.241728
\(324\) 0 0
\(325\) 0.864837 0.0479725
\(326\) −2.38270 + 0.867231i −0.131965 + 0.0480315i
\(327\) 0 0
\(328\) −1.89786 + 1.59250i −0.104792 + 0.0879309i
\(329\) 6.04793 + 34.2995i 0.333433 + 1.89099i
\(330\) 0 0
\(331\) −20.0441 16.8190i −1.10172 0.924455i −0.104183 0.994558i \(-0.533223\pi\)
−0.997540 + 0.0701033i \(0.977667\pi\)
\(332\) 10.6329 18.4167i 0.583555 1.01075i
\(333\) 0 0
\(334\) −25.4327 44.0507i −1.39161 2.41035i
\(335\) −1.48561 + 8.42530i −0.0811674 + 0.460323i
\(336\) 0 0
\(337\) −10.2859 3.74377i −0.560310 0.203936i 0.0463114 0.998927i \(-0.485253\pi\)
−0.606621 + 0.794991i \(0.707476\pi\)
\(338\) −23.0066 8.37372i −1.25139 0.455470i
\(339\) 0 0
\(340\) −2.13838 + 12.1274i −0.115970 + 0.657700i
\(341\) −3.05732 5.29543i −0.165563 0.286763i
\(342\) 0 0
\(343\) −23.0545 + 39.9316i −1.24483 + 2.15611i
\(344\) 4.60491 + 3.86398i 0.248280 + 0.208332i
\(345\) 0 0
\(346\) 3.37273 + 19.1277i 0.181319 + 1.02831i
\(347\) 2.69140 2.25836i 0.144482 0.121235i −0.567682 0.823248i \(-0.692160\pi\)
0.712164 + 0.702013i \(0.247715\pi\)
\(348\) 0 0
\(349\) 27.4361 9.98591i 1.46862 0.534534i 0.520894 0.853622i \(-0.325599\pi\)
0.947725 + 0.319088i \(0.103377\pi\)
\(350\) 7.32796 0.391696
\(351\) 0 0
\(352\) 32.9256 1.75494
\(353\) 23.5645 8.57677i 1.25421 0.456496i 0.372389 0.928077i \(-0.378539\pi\)
0.881823 + 0.471581i \(0.156317\pi\)
\(354\) 0 0
\(355\) −4.89495 + 4.10735i −0.259797 + 0.217996i
\(356\) 7.41044 + 42.0267i 0.392753 + 2.22741i
\(357\) 0 0
\(358\) −17.2566 14.4800i −0.912040 0.765293i
\(359\) −2.10362 + 3.64358i −0.111025 + 0.192301i −0.916184 0.400758i \(-0.868747\pi\)
0.805159 + 0.593059i \(0.202080\pi\)
\(360\) 0 0
\(361\) 7.81087 + 13.5288i 0.411098 + 0.712043i
\(362\) 0.539828 3.06152i 0.0283727 0.160910i
\(363\) 0 0
\(364\) 13.9385 + 5.07318i 0.730574 + 0.265907i
\(365\) 24.8317 + 9.03799i 1.29975 + 0.473070i
\(366\) 0 0
\(367\) 3.03826 17.2308i 0.158596 0.899441i −0.796829 0.604205i \(-0.793491\pi\)
0.955424 0.295236i \(-0.0953983\pi\)
\(368\) −5.81522 10.0723i −0.303139 0.525053i
\(369\) 0 0
\(370\) −19.7400 + 34.1907i −1.02623 + 1.77749i
\(371\) −23.5042 19.7224i −1.22028 1.02393i
\(372\) 0 0
\(373\) −5.14946 29.2040i −0.266629 1.51213i −0.764356 0.644794i \(-0.776943\pi\)
0.497727 0.867334i \(-0.334168\pi\)
\(374\) −15.9659 + 13.3970i −0.825579 + 0.692743i
\(375\) 0 0
\(376\) 7.39778 2.69257i 0.381511 0.138859i
\(377\) −3.62594 −0.186745
\(378\) 0 0
\(379\) 20.9523 1.07625 0.538124 0.842865i \(-0.319133\pi\)
0.538124 + 0.842865i \(0.319133\pi\)
\(380\) −8.99844 + 3.27517i −0.461610 + 0.168012i
\(381\) 0 0
\(382\) −20.2218 + 16.9681i −1.03464 + 0.868164i
\(383\) 1.71856 + 9.74642i 0.0878142 + 0.498019i 0.996714 + 0.0810039i \(0.0258126\pi\)
−0.908900 + 0.417015i \(0.863076\pi\)
\(384\) 0 0
\(385\) −31.9182 26.7826i −1.62670 1.36497i
\(386\) 22.0719 38.2297i 1.12343 1.94584i
\(387\) 0 0
\(388\) 6.42745 + 11.1327i 0.326304 + 0.565175i
\(389\) −3.66654 + 20.7940i −0.185901 + 1.05430i 0.738891 + 0.673825i \(0.235350\pi\)
−0.924792 + 0.380472i \(0.875761\pi\)
\(390\) 0 0
\(391\) 9.55863 + 3.47906i 0.483401 + 0.175943i
\(392\) 17.0030 + 6.18857i 0.858779 + 0.312570i
\(393\) 0 0
\(394\) 5.23572 29.6932i 0.263772 1.49592i
\(395\) 4.71388 + 8.16468i 0.237181 + 0.410810i
\(396\) 0 0
\(397\) 4.88955 8.46894i 0.245399 0.425044i −0.716845 0.697233i \(-0.754414\pi\)
0.962244 + 0.272189i \(0.0877476\pi\)
\(398\) −33.0923 27.7677i −1.65877 1.39187i
\(399\) 0 0
\(400\) 0.333759 + 1.89284i 0.0166880 + 0.0946421i
\(401\) −14.6616 + 12.3025i −0.732164 + 0.614359i −0.930721 0.365731i \(-0.880819\pi\)
0.198556 + 0.980089i \(0.436375\pi\)
\(402\) 0 0
\(403\) 1.68384 0.612867i 0.0838780 0.0305291i
\(404\) 46.7423 2.32552
\(405\) 0 0
\(406\) −30.7234 −1.52478
\(407\) −34.9804 + 12.7318i −1.73392 + 0.631094i
\(408\) 0 0
\(409\) 11.4873 9.63896i 0.568009 0.476616i −0.312976 0.949761i \(-0.601326\pi\)
0.880984 + 0.473145i \(0.156881\pi\)
\(410\) 1.72748 + 9.79700i 0.0853139 + 0.483839i
\(411\) 0 0
\(412\) 17.3557 + 14.5631i 0.855053 + 0.717475i
\(413\) −0.635799 + 1.10124i −0.0312856 + 0.0541883i
\(414\) 0 0
\(415\) −8.75289 15.1604i −0.429662 0.744197i
\(416\) −1.67552 + 9.50233i −0.0821490 + 0.465890i
\(417\) 0 0
\(418\) −15.2297 5.54317i −0.744911 0.271125i
\(419\) −5.46131 1.98775i −0.266802 0.0971081i 0.205155 0.978729i \(-0.434230\pi\)
−0.471957 + 0.881621i \(0.656452\pi\)
\(420\) 0 0
\(421\) −2.31187 + 13.1113i −0.112674 + 0.639003i 0.875202 + 0.483757i \(0.160728\pi\)
−0.987876 + 0.155246i \(0.950383\pi\)
\(422\) −10.4799 18.1518i −0.510154 0.883613i
\(423\) 0 0
\(424\) −3.46769 + 6.00621i −0.168406 + 0.291687i
\(425\) −1.28775 1.08055i −0.0624649 0.0524143i
\(426\) 0 0
\(427\) −3.75146 21.2756i −0.181546 1.02960i
\(428\) 14.3127 12.0098i 0.691833 0.580516i
\(429\) 0 0
\(430\) 22.6821 8.25561i 1.09383 0.398121i
\(431\) −36.4166 −1.75413 −0.877064 0.480374i \(-0.840501\pi\)
−0.877064 + 0.480374i \(0.840501\pi\)
\(432\) 0 0
\(433\) −10.8761 −0.522674 −0.261337 0.965248i \(-0.584163\pi\)
−0.261337 + 0.965248i \(0.584163\pi\)
\(434\) 14.2675 5.19296i 0.684864 0.249270i
\(435\) 0 0
\(436\) −10.8384 + 9.09446i −0.519063 + 0.435546i
\(437\) 1.37355 + 7.78982i 0.0657060 + 0.372637i
\(438\) 0 0
\(439\) 7.24162 + 6.07644i 0.345624 + 0.290013i 0.799030 0.601291i \(-0.205347\pi\)
−0.453406 + 0.891304i \(0.649791\pi\)
\(440\) −4.70906 + 8.15632i −0.224495 + 0.388837i
\(441\) 0 0
\(442\) −3.05390 5.28951i −0.145259 0.251596i
\(443\) 2.86935 16.2729i 0.136327 0.773148i −0.837600 0.546284i \(-0.816042\pi\)
0.973927 0.226863i \(-0.0728471\pi\)
\(444\) 0 0
\(445\) 33.0111 + 12.0151i 1.56488 + 0.569569i
\(446\) 30.0957 + 10.9539i 1.42507 + 0.518683i
\(447\) 0 0
\(448\) −9.64620 + 54.7063i −0.455740 + 2.58463i
\(449\) 2.37181 + 4.10809i 0.111933 + 0.193873i 0.916549 0.399921i \(-0.130963\pi\)
−0.804617 + 0.593794i \(0.797629\pi\)
\(450\) 0 0
\(451\) −4.69001 + 8.12334i −0.220844 + 0.382513i
\(452\) −4.63036 3.88533i −0.217794 0.182751i
\(453\) 0 0
\(454\) 8.37372 + 47.4897i 0.392998 + 2.22880i
\(455\) 9.35370 7.84869i 0.438508 0.367952i
\(456\) 0 0
\(457\) 21.0571 7.66417i 0.985012 0.358515i 0.201225 0.979545i \(-0.435508\pi\)
0.783787 + 0.621030i \(0.213286\pi\)
\(458\) −18.5232 −0.865534
\(459\) 0 0
\(460\) 22.4214 1.04540
\(461\) 14.0223 5.10371i 0.653085 0.237704i 0.00583713 0.999983i \(-0.498142\pi\)
0.647248 + 0.762279i \(0.275920\pi\)
\(462\) 0 0
\(463\) −11.3736 + 9.54358i −0.528576 + 0.443528i −0.867609 0.497247i \(-0.834344\pi\)
0.339033 + 0.940774i \(0.389900\pi\)
\(464\) −1.39933 7.93597i −0.0649621 0.368418i
\(465\) 0 0
\(466\) 38.3997 + 32.2212i 1.77883 + 1.49262i
\(467\) 7.67571 13.2947i 0.355190 0.615206i −0.631961 0.775000i \(-0.717750\pi\)
0.987150 + 0.159794i \(0.0510830\pi\)
\(468\) 0 0
\(469\) −10.0152 17.3468i −0.462458 0.801001i
\(470\) 5.48929 31.1313i 0.253202 1.43598i
\(471\) 0 0
\(472\) 0.270093 + 0.0983060i 0.0124321 + 0.00452490i
\(473\) 21.3868 + 7.78416i 0.983366 + 0.357916i
\(474\) 0 0
\(475\) 0.226993 1.28734i 0.0104152 0.0590673i
\(476\) −14.4159 24.9690i −0.660750 1.14445i
\(477\) 0 0
\(478\) 10.5768 18.3196i 0.483772 0.837918i
\(479\) 8.00410 + 6.71624i 0.365717 + 0.306873i 0.807064 0.590464i \(-0.201055\pi\)
−0.441348 + 0.897336i \(0.645499\pi\)
\(480\) 0 0
\(481\) −1.89432 10.7432i −0.0863737 0.489850i
\(482\) −9.30073 + 7.80424i −0.423637 + 0.355473i
\(483\) 0 0
\(484\) −14.7001 + 5.35041i −0.668188 + 0.243201i
\(485\) 10.5820 0.480505
\(486\) 0 0
\(487\) −16.1649 −0.732500 −0.366250 0.930516i \(-0.619359\pi\)
−0.366250 + 0.930516i \(0.619359\pi\)
\(488\) −4.58875 + 1.67017i −0.207723 + 0.0756049i
\(489\) 0 0
\(490\) 55.6575 46.7022i 2.51435 2.10979i
\(491\) −1.87147 10.6136i −0.0844581 0.478985i −0.997472 0.0710576i \(-0.977363\pi\)
0.913014 0.407928i \(-0.133749\pi\)
\(492\) 0 0
\(493\) 5.39904 + 4.53033i 0.243160 + 0.204036i
\(494\) 2.37477 4.11322i 0.106846 0.185062i
\(495\) 0 0
\(496\) 1.99119 + 3.44885i 0.0894071 + 0.154858i
\(497\) 2.59789 14.7333i 0.116531 0.660881i
\(498\) 0 0
\(499\) 18.0301 + 6.56240i 0.807136 + 0.293774i 0.712440 0.701733i \(-0.247590\pi\)
0.0946959 + 0.995506i \(0.469812\pi\)
\(500\) −27.9607 10.1769i −1.25044 0.455123i
\(501\) 0 0
\(502\) 2.68994 15.2554i 0.120058 0.680882i
\(503\) 6.01253 + 10.4140i 0.268086 + 0.464338i 0.968367 0.249529i \(-0.0802757\pi\)
−0.700282 + 0.713866i \(0.746942\pi\)
\(504\) 0 0
\(505\) 19.2389 33.3228i 0.856120 1.48284i
\(506\) 29.0698 + 24.3925i 1.29231 + 1.08438i
\(507\) 0 0
\(508\) −4.03422 22.8792i −0.178990 1.01510i
\(509\) −11.4547 + 9.61162i −0.507720 + 0.426027i −0.860326 0.509744i \(-0.829740\pi\)
0.352606 + 0.935772i \(0.385296\pi\)
\(510\) 0 0
\(511\) −58.1382 + 21.1606i −2.57188 + 0.936088i
\(512\) −27.3678 −1.20950
\(513\) 0 0
\(514\) 49.3922 2.17860
\(515\) 17.5257 6.37882i 0.772273 0.281084i
\(516\) 0 0
\(517\) 22.8330 19.1591i 1.00419 0.842618i
\(518\) −16.0510 91.0299i −0.705241 3.99962i
\(519\) 0 0
\(520\) −2.11428 1.77409i −0.0927172 0.0777990i
\(521\) −18.7094 + 32.4056i −0.819673 + 1.41972i 0.0862502 + 0.996274i \(0.472512\pi\)
−0.905923 + 0.423442i \(0.860822\pi\)
\(522\) 0 0
\(523\) 4.22489 + 7.31773i 0.184742 + 0.319982i 0.943489 0.331403i \(-0.107522\pi\)
−0.758748 + 0.651385i \(0.774188\pi\)
\(524\) −6.70092 + 38.0028i −0.292731 + 1.66016i
\(525\) 0 0
\(526\) −54.7136 19.9141i −2.38562 0.868296i
\(527\) −3.27297 1.19126i −0.142573 0.0518923i
\(528\) 0 0
\(529\) −0.777821 + 4.41124i −0.0338183 + 0.191793i
\(530\) 13.9242 + 24.1175i 0.604829 + 1.04760i
\(531\) 0 0
\(532\) 11.2100 19.4163i 0.486017 0.841805i
\(533\) −2.10573 1.76692i −0.0912092 0.0765336i
\(534\) 0 0
\(535\) −2.67079 15.1468i −0.115468 0.654853i
\(536\) −3.46834 + 2.91028i −0.149809 + 0.125705i
\(537\) 0 0
\(538\) 18.8100 6.84628i 0.810957 0.295164i
\(539\) 68.5065 2.95078
\(540\) 0 0
\(541\) 12.6259 0.542828 0.271414 0.962463i \(-0.412509\pi\)
0.271414 + 0.962463i \(0.412509\pi\)
\(542\) 52.4772 19.1001i 2.25409 0.820422i
\(543\) 0 0
\(544\) 14.3673 12.0556i 0.615992 0.516879i
\(545\) 2.02246 + 11.4699i 0.0866327 + 0.491319i
\(546\) 0 0
\(547\) 24.0500 + 20.1804i 1.02830 + 0.862850i 0.990648 0.136441i \(-0.0435665\pi\)
0.0376558 + 0.999291i \(0.488011\pi\)
\(548\) 4.58365 7.93912i 0.195804 0.339142i
\(549\) 0 0
\(550\) −3.13563 5.43107i −0.133704 0.231582i
\(551\) −0.951697 + 5.39734i −0.0405437 + 0.229934i
\(552\) 0 0
\(553\) −20.7420 7.54945i −0.882038 0.321035i
\(554\) 0.748452 + 0.272414i 0.0317987 + 0.0115738i
\(555\) 0 0
\(556\) 5.79948 32.8905i 0.245953 1.39487i
\(557\) 7.96515 + 13.7960i 0.337494 + 0.584557i 0.983961 0.178385i \(-0.0570874\pi\)
−0.646467 + 0.762942i \(0.723754\pi\)
\(558\) 0 0
\(559\) −3.33484 + 5.77610i −0.141048 + 0.244303i
\(560\) 20.7880 + 17.4432i 0.878452 + 0.737108i
\(561\) 0 0
\(562\) −5.15931 29.2599i −0.217632 1.23425i
\(563\) −19.0445 + 15.9802i −0.802631 + 0.673487i −0.948837 0.315767i \(-0.897738\pi\)
0.146206 + 0.989254i \(0.453294\pi\)
\(564\) 0 0
\(565\) −4.67571 + 1.70182i −0.196708 + 0.0715960i
\(566\) −33.0695 −1.39001
\(567\) 0 0
\(568\) −3.38165 −0.141891
\(569\) −18.0327 + 6.56337i −0.755970 + 0.275151i −0.691116 0.722744i \(-0.742881\pi\)
−0.0648545 + 0.997895i \(0.520658\pi\)
\(570\) 0 0
\(571\) −15.6114 + 13.0995i −0.653317 + 0.548198i −0.908075 0.418807i \(-0.862448\pi\)
0.254759 + 0.967005i \(0.418004\pi\)
\(572\) −2.20430 12.5012i −0.0921664 0.522702i
\(573\) 0 0
\(574\) −17.8423 14.9715i −0.744723 0.624897i
\(575\) −1.53036 + 2.65066i −0.0638205 + 0.110540i
\(576\) 0 0
\(577\) −11.6495 20.1776i −0.484976 0.840004i 0.514875 0.857265i \(-0.327838\pi\)
−0.999851 + 0.0172619i \(0.994505\pi\)
\(578\) 4.21156 23.8849i 0.175178 0.993483i
\(579\) 0 0
\(580\) 14.5983 + 5.31334i 0.606161 + 0.220624i
\(581\) 38.5143 + 14.0181i 1.59784 + 0.581568i
\(582\) 0 0
\(583\) −4.55967 + 25.8592i −0.188842 + 1.07098i
\(584\) 6.99237 + 12.1111i 0.289346 + 0.501163i
\(585\) 0 0
\(586\) 26.1636 45.3167i 1.08081 1.87201i
\(587\) −28.2741 23.7248i −1.16700 0.979228i −0.167021 0.985953i \(-0.553415\pi\)
−0.999977 + 0.00672500i \(0.997859\pi\)
\(588\) 0 0
\(589\) −0.470319 2.66731i −0.0193792 0.109905i
\(590\) 0.884124 0.741868i 0.0363988 0.0305422i
\(591\) 0 0
\(592\) 22.7823 8.29209i 0.936348 0.340803i
\(593\) 4.36830 0.179385 0.0896923 0.995970i \(-0.471412\pi\)
0.0896923 + 0.995970i \(0.471412\pi\)
\(594\) 0 0
\(595\) −23.7340 −0.973000
\(596\) −21.0658 + 7.66733i −0.862890 + 0.314066i
\(597\) 0 0
\(598\) −8.51896 + 7.14826i −0.348366 + 0.292314i
\(599\) −5.41880 30.7315i −0.221406 1.25566i −0.869438 0.494043i \(-0.835519\pi\)
0.648032 0.761613i \(-0.275592\pi\)
\(600\) 0 0
\(601\) 33.6578 + 28.2422i 1.37293 + 1.15202i 0.971747 + 0.236027i \(0.0758452\pi\)
0.401183 + 0.915998i \(0.368599\pi\)
\(602\) −28.2568 + 48.9422i −1.15166 + 1.99474i
\(603\) 0 0
\(604\) 0.896114 + 1.55211i 0.0364623 + 0.0631546i
\(605\) −2.23618 + 12.6820i −0.0909136 + 0.515597i
\(606\) 0 0
\(607\) −16.3118 5.93701i −0.662075 0.240976i −0.0109432 0.999940i \(-0.503483\pi\)
−0.651132 + 0.758964i \(0.725706\pi\)
\(608\) 13.7048 + 4.98814i 0.555803 + 0.202296i
\(609\) 0 0
\(610\) −3.40494 + 19.3104i −0.137862 + 0.781854i
\(611\) 4.36740 + 7.56456i 0.176686 + 0.306029i
\(612\) 0 0
\(613\) 0.599024 1.03754i 0.0241944 0.0419059i −0.853675 0.520807i \(-0.825631\pi\)
0.877869 + 0.478901i \(0.158965\pi\)
\(614\) 33.1941 + 27.8532i 1.33961 + 1.12406i
\(615\) 0 0
\(616\) −3.82903 21.7155i −0.154276 0.874944i
\(617\) 19.9277 16.7213i 0.802257 0.673174i −0.146489 0.989212i \(-0.546797\pi\)
0.948746 + 0.316038i \(0.102353\pi\)
\(618\) 0 0
\(619\) −9.05051 + 3.29412i −0.363771 + 0.132402i −0.517437 0.855721i \(-0.673114\pi\)
0.153667 + 0.988123i \(0.450892\pi\)
\(620\) −7.67733 −0.308329
\(621\) 0 0
\(622\) −47.1311 −1.88978
\(623\) −77.2886 + 28.1308i −3.09650 + 1.12704i
\(624\) 0 0
\(625\) −16.0396 + 13.4588i −0.641582 + 0.538351i
\(626\) 4.12256 + 23.3802i 0.164771 + 0.934462i
\(627\) 0 0
\(628\) −26.6298 22.3451i −1.06264 0.891665i
\(629\) −10.6022 + 18.3635i −0.422737 + 0.732202i
\(630\) 0 0
\(631\) 7.08366 + 12.2693i 0.281996 + 0.488431i 0.971876 0.235492i \(-0.0756702\pi\)
−0.689880 + 0.723924i \(0.742337\pi\)
\(632\) −0.866389 + 4.91354i −0.0344631 + 0.195450i
\(633\) 0 0
\(634\) 50.3545 + 18.3275i 1.99983 + 0.727879i
\(635\) −17.9712 6.54096i −0.713163 0.259570i
\(636\) 0 0
\(637\) −3.48615 + 19.7710i −0.138126 + 0.783354i
\(638\) 13.1465 + 22.7704i 0.520476 + 0.901490i
\(639\) 0 0
\(640\) 8.77695 15.2021i 0.346939 0.600917i
\(641\) 17.0069 + 14.2705i 0.671732 + 0.563650i 0.913577 0.406665i \(-0.133308\pi\)
−0.241846 + 0.970315i \(0.577753\pi\)
\(642\) 0 0
\(643\) 3.73982 + 21.2096i 0.147484 + 0.836425i 0.965339 + 0.261000i \(0.0840522\pi\)
−0.817855 + 0.575425i \(0.804837\pi\)
\(644\) −40.2136 + 33.7432i −1.58464 + 1.32967i
\(645\) 0 0
\(646\) −8.67518 + 3.15751i −0.341321 + 0.124231i
\(647\) 13.4037 0.526952 0.263476 0.964666i \(-0.415131\pi\)
0.263476 + 0.964666i \(0.415131\pi\)
\(648\) 0 0
\(649\) 1.08823 0.0427168
\(650\) 1.72697 0.628566i 0.0677374 0.0246544i
\(651\) 0 0
\(652\) −2.29953 + 1.92953i −0.0900565 + 0.0755664i
\(653\) −3.28384 18.6236i −0.128506 0.728796i −0.979163 0.203075i \(-0.934907\pi\)
0.850657 0.525722i \(-0.176205\pi\)
\(654\) 0 0
\(655\) 24.3343 + 20.4189i 0.950820 + 0.797832i
\(656\) 3.05455 5.29063i 0.119260 0.206564i
\(657\) 0 0
\(658\) 37.0059 + 64.0962i 1.44264 + 2.49873i
\(659\) −0.00489366 + 0.0277533i −0.000190630 + 0.00108112i −0.984903 0.173108i \(-0.944619\pi\)
0.984712 + 0.174189i \(0.0557303\pi\)
\(660\) 0 0
\(661\) 42.3254 + 15.4052i 1.64627 + 0.599192i 0.988118 0.153696i \(-0.0491177\pi\)
0.658148 + 0.752888i \(0.271340\pi\)
\(662\) −52.2496 19.0173i −2.03074 0.739128i
\(663\) 0 0
\(664\) 1.60874 9.12361i 0.0624312 0.354065i
\(665\) −9.22800 15.9834i −0.357846 0.619808i
\(666\) 0 0
\(667\) 6.41623 11.1132i 0.248438 0.430306i
\(668\) −46.1295 38.7072i −1.78480 1.49763i
\(669\) 0 0
\(670\) 3.15696 + 17.9040i 0.121964 + 0.691692i
\(671\) −14.1630 + 11.8842i −0.546757 + 0.458783i
\(672\) 0 0
\(673\) 9.17111 3.33801i 0.353520 0.128671i −0.159155 0.987254i \(-0.550877\pi\)
0.512675 + 0.858583i \(0.328655\pi\)
\(674\) −23.2607 −0.895968
\(675\) 0 0
\(676\) −28.9847 −1.11480
\(677\) −38.4153 + 13.9820i −1.47642 + 0.537374i −0.949836 0.312748i \(-0.898750\pi\)
−0.526586 + 0.850122i \(0.676528\pi\)
\(678\) 0 0
\(679\) −18.9792 + 15.9255i −0.728356 + 0.611163i
\(680\) 0.931581 + 5.28326i 0.0357245 + 0.202604i
\(681\) 0 0
\(682\) −9.95380 8.35223i −0.381151 0.319823i
\(683\) 22.0126 38.1269i 0.842287 1.45888i −0.0456696 0.998957i \(-0.514542\pi\)
0.887957 0.459927i \(-0.152125\pi\)
\(684\) 0 0
\(685\) −3.77322 6.53541i −0.144167 0.249705i
\(686\) −17.0146 + 96.4945i −0.649620 + 3.68418i
\(687\) 0 0
\(688\) −13.9290 5.06973i −0.531036 0.193281i
\(689\) −7.23092 2.63184i −0.275476 0.100265i
\(690\) 0 0
\(691\) 3.74240 21.2242i 0.142368 0.807406i −0.827076 0.562090i \(-0.809997\pi\)
0.969443 0.245316i \(-0.0788916\pi\)
\(692\) 11.4970 + 19.9133i 0.437049 + 0.756991i
\(693\) 0 0
\(694\) 3.73302 6.46577i 0.141703 0.245437i
\(695\) −21.0607 17.6721i −0.798880 0.670340i
\(696\) 0 0
\(697\) 0.927813 + 5.26189i 0.0351434 + 0.199308i
\(698\) 47.5286 39.8812i 1.79898 1.50953i
\(699\) 0 0
\(700\) 8.15213 2.96713i 0.308122 0.112147i
\(701\) −12.8521 −0.485419 −0.242709 0.970099i \(-0.578036\pi\)
−0.242709 + 0.970099i \(0.578036\pi\)
\(702\) 0 0
\(703\) −16.4889 −0.621891
\(704\) 44.6729 16.2596i 1.68367 0.612806i
\(705\) 0 0
\(706\) 40.8217 34.2535i 1.53634 1.28915i
\(707\) 15.6436 + 88.7191i 0.588337 + 3.33663i
\(708\) 0 0
\(709\) −38.0814 31.9541i −1.43018 1.20006i −0.945609 0.325306i \(-0.894533\pi\)
−0.484567 0.874754i \(-0.661023\pi\)
\(710\) −6.78937 + 11.7595i −0.254800 + 0.441327i
\(711\) 0 0
\(712\) 9.29562 + 16.1005i 0.348368 + 0.603392i
\(713\) −1.10122 + 6.24534i −0.0412411 + 0.233890i
\(714\) 0 0
\(715\) −9.81945 3.57399i −0.367227 0.133660i
\(716\) −25.0605 9.12127i −0.936554 0.340878i
\(717\) 0 0
\(718\) −1.55250 + 8.80469i −0.0579389 + 0.328588i
\(719\) 2.81873 + 4.88218i 0.105121 + 0.182075i 0.913788 0.406192i \(-0.133144\pi\)
−0.808667 + 0.588267i \(0.799810\pi\)
\(720\) 0 0
\(721\) −21.8330 + 37.8159i −0.813104 + 1.40834i
\(722\) 25.4301 + 21.3384i 0.946410 + 0.794132i
\(723\) 0 0
\(724\) −0.639084 3.62442i −0.0237514 0.134701i
\(725\) −1.62454 + 1.36315i −0.0603340 + 0.0506262i
\(726\) 0 0
\(727\) 42.6755 15.5326i 1.58275 0.576072i 0.606947 0.794743i \(-0.292394\pi\)
0.975799 + 0.218670i \(0.0701719\pi\)
\(728\) 6.46195 0.239496
\(729\) 0 0
\(730\) 56.1546 2.07837
\(731\) 12.1824 4.43402i 0.450582 0.163998i
\(732\) 0 0
\(733\) −19.6620 + 16.4983i −0.726231 + 0.609380i −0.929101 0.369826i \(-0.879417\pi\)
0.202870 + 0.979206i \(0.434973\pi\)
\(734\) −6.45639 36.6160i −0.238310 1.35152i
\(735\) 0 0
\(736\) −26.1591 21.9501i −0.964236 0.809090i
\(737\) −8.57098 + 14.8454i −0.315716 + 0.546837i
\(738\) 0 0
\(739\) 7.22763 + 12.5186i 0.265873 + 0.460505i 0.967792 0.251752i \(-0.0810066\pi\)
−0.701919 + 0.712256i \(0.747673\pi\)
\(740\) −8.11614 + 46.0289i −0.298355 + 1.69206i
\(741\) 0 0
\(742\) −61.2692 22.3002i −2.24926 0.818664i
\(743\) −32.6954 11.9002i −1.19948 0.436574i −0.336436 0.941706i \(-0.609222\pi\)
−0.863042 + 0.505132i \(0.831444\pi\)
\(744\) 0 0
\(745\) −3.20452 + 18.1738i −0.117405 + 0.665835i
\(746\) −31.5084 54.5742i −1.15360 1.99810i
\(747\) 0 0
\(748\) −12.3371 + 21.3685i −0.451089 + 0.781308i
\(749\) 27.5854 + 23.1469i 1.00795 + 0.845768i
\(750\) 0 0
\(751\) 3.14624 + 17.8432i 0.114808 + 0.651107i 0.986845 + 0.161668i \(0.0516874\pi\)
−0.872037 + 0.489439i \(0.837202\pi\)
\(752\) −14.8708 + 12.4781i −0.542283 + 0.455030i
\(753\) 0 0
\(754\) −7.24054 + 2.63534i −0.263685 + 0.0959735i
\(755\) 1.47535 0.0536933
\(756\) 0 0
\(757\) −37.0045 −1.34495 −0.672475 0.740120i \(-0.734769\pi\)
−0.672475 + 0.740120i \(0.734769\pi\)
\(758\) 41.8391 15.2282i 1.51967 0.553113i
\(759\) 0 0
\(760\) −3.19573 + 2.68154i −0.115921 + 0.0972696i
\(761\) −2.16095 12.2554i −0.0783344 0.444256i −0.998597 0.0529549i \(-0.983136\pi\)
0.920263 0.391302i \(-0.127975\pi\)
\(762\) 0 0
\(763\) −20.8891 17.5280i −0.756235 0.634557i
\(764\) −15.6257 + 27.0644i −0.565316 + 0.979156i
\(765\) 0 0
\(766\) 10.5155 + 18.2133i 0.379939 + 0.658074i
\(767\) −0.0553778 + 0.314063i −0.00199958 + 0.0113402i
\(768\) 0 0
\(769\) 38.4199 + 13.9837i 1.38546 + 0.504265i 0.923828 0.382809i \(-0.125043\pi\)
0.461628 + 0.887074i \(0.347265\pi\)
\(770\) −83.2024 30.2832i −2.99841 1.09133i
\(771\) 0 0
\(772\) 9.07492 51.4664i 0.326613 1.85232i
\(773\) 18.2081 + 31.5374i 0.654900 + 1.13432i 0.981919 + 0.189302i \(0.0606226\pi\)
−0.327019 + 0.945018i \(0.606044\pi\)
\(774\) 0 0
\(775\) 0.524012 0.907615i 0.0188231 0.0326025i
\(776\) 4.29000 + 3.59974i 0.154002 + 0.129223i
\(777\) 0 0
\(778\) 7.79150 + 44.1878i 0.279339 + 1.58421i
\(779\) −3.18281 + 2.67069i −0.114036 + 0.0956875i
\(780\) 0 0
\(781\) −12.0312 + 4.37898i −0.430509 + 0.156692i
\(782\) 21.6160 0.772985
\(783\) 0 0
\(784\) −44.6174 −1.59348
\(785\) −26.8906 + 9.78737i −0.959766 + 0.349326i
\(786\) 0 0
\(787\) 14.0547 11.7933i 0.500997 0.420387i −0.356951 0.934123i \(-0.616184\pi\)
0.857948 + 0.513737i \(0.171739\pi\)
\(788\) −6.19839 35.1528i −0.220808 1.25227i
\(789\) 0 0
\(790\) 15.3471 + 12.8778i 0.546027 + 0.458171i
\(791\) 5.82488 10.0890i 0.207109 0.358723i
\(792\) 0 0
\(793\) −2.70904 4.69220i −0.0962009 0.166625i
\(794\) 3.60856 20.4651i 0.128063 0.726281i
\(795\) 0 0
\(796\) −48.0575 17.4915i −1.70335 0.619969i
\(797\) −3.25596 1.18507i −0.115332 0.0419775i 0.283709 0.958910i \(-0.408435\pi\)
−0.399042 + 0.916933i \(0.630657\pi\)
\(798\) 0 0
\(799\) 2.94825 16.7204i 0.104302 0.591525i
\(800\) 2.82166 + 4.88726i 0.0997608 + 0.172791i
\(801\) 0 0
\(802\) −20.3358 + 35.2227i −0.718083 + 1.24376i
\(803\) 40.5603 + 34.0341i 1.43134 + 1.20104i
\(804\) 0 0
\(805\) 7.50394 + 42.5570i 0.264479 + 1.49994i
\(806\) 2.91698 2.44764i 0.102746 0.0862143i
\(807\) 0 0
\(808\) 19.1351 6.96460i 0.673170 0.245014i
\(809\) −24.8406 −0.873348 −0.436674 0.899620i \(-0.643844\pi\)
−0.436674 + 0.899620i \(0.643844\pi\)
\(810\) 0 0
\(811\) −40.3286 −1.41613 −0.708063 0.706149i \(-0.750431\pi\)
−0.708063 + 0.706149i \(0.750431\pi\)
\(812\) −34.1788 + 12.4401i −1.19944 + 0.436561i
\(813\) 0 0
\(814\) −60.5980 + 50.8477i −2.12396 + 1.78221i
\(815\) 0.429097 + 2.43353i 0.0150306 + 0.0852429i
\(816\) 0 0
\(817\) 7.72265 + 6.48007i 0.270181 + 0.226709i
\(818\) 15.9330 27.5968i 0.557084 0.964898i
\(819\) 0 0
\(820\) 5.88862 + 10.1994i 0.205640 + 0.356178i
\(821\) 6.97747 39.5712i 0.243515 1.38104i −0.580400 0.814331i \(-0.697104\pi\)
0.823916 0.566713i \(-0.191785\pi\)
\(822\) 0 0
\(823\) 45.0633 + 16.4017i 1.57081 + 0.571727i 0.973180 0.230046i \(-0.0738876\pi\)
0.597628 + 0.801773i \(0.296110\pi\)
\(824\) 9.27488 + 3.37578i 0.323106 + 0.117601i
\(825\) 0 0
\(826\) −0.469229 + 2.66113i −0.0163266 + 0.0925925i
\(827\) 2.50024 + 4.33054i 0.0869419 + 0.150588i 0.906217 0.422813i \(-0.138957\pi\)
−0.819275 + 0.573401i \(0.805624\pi\)
\(828\) 0 0
\(829\) −14.8519 + 25.7242i −0.515826 + 0.893438i 0.484005 + 0.875065i \(0.339182\pi\)
−0.999831 + 0.0183722i \(0.994152\pi\)
\(830\) −28.4971 23.9119i −0.989148 0.829993i
\(831\) 0 0
\(832\) 2.41920 + 13.7200i 0.0838708 + 0.475655i
\(833\) 29.8932 25.0834i 1.03574 0.869087i
\(834\) 0 0
\(835\) −46.5812 + 16.9542i −1.61201 + 0.586723i
\(836\) −19.1871 −0.663599
\(837\) 0 0
\(838\) −12.3502 −0.426632
\(839\) 24.3423 8.85987i 0.840389 0.305877i 0.114274 0.993449i \(-0.463546\pi\)
0.726116 + 0.687573i \(0.241324\pi\)
\(840\) 0 0
\(841\) −15.4042 + 12.9257i −0.531179 + 0.445712i
\(842\) 4.91279 + 27.8618i 0.169306 + 0.960181i
\(843\) 0 0
\(844\) −19.0083 15.9499i −0.654294 0.549018i
\(845\) −11.9300 + 20.6633i −0.410403 + 0.710840i
\(846\) 0 0
\(847\) −15.0751 26.1109i −0.517988 0.897182i
\(848\) 2.96966 16.8418i 0.101978 0.578348i
\(849\) 0 0
\(850\) −3.35681 1.22178i −0.115138 0.0419067i
\(851\) 36.2793 + 13.2046i 1.24364 + 0.452648i
\(852\) 0 0
\(853\) −0.866793 + 4.91583i −0.0296784 + 0.168315i −0.996045 0.0888556i \(-0.971679\pi\)
0.966366 + 0.257170i \(0.0827901\pi\)
\(854\) −22.9543 39.7580i −0.785481 1.36049i
\(855\) 0 0
\(856\) 4.06980 7.04911i 0.139103 0.240934i
\(857\) −11.2478 9.43806i −0.384219 0.322398i 0.430137 0.902764i \(-0.358465\pi\)
−0.814356 + 0.580366i \(0.802910\pi\)
\(858\) 0 0
\(859\) −3.03621 17.2192i −0.103594 0.587512i −0.991772 0.128013i \(-0.959140\pi\)
0.888178 0.459499i \(-0.151971\pi\)
\(860\) 21.8904 18.3682i 0.746457 0.626352i
\(861\) 0 0
\(862\) −72.7194 + 26.4677i −2.47683 + 0.901493i
\(863\) 6.33263 0.215565 0.107783 0.994174i \(-0.465625\pi\)
0.107783 + 0.994174i \(0.465625\pi\)
\(864\) 0 0
\(865\) 18.9284 0.643585
\(866\) −21.7183 + 7.90480i −0.738017 + 0.268616i
\(867\) 0 0
\(868\) 13.7695 11.5540i 0.467369 0.392169i
\(869\) 3.28024 + 18.6032i 0.111275 + 0.631070i
\(870\) 0 0
\(871\) −3.84821 3.22903i −0.130392 0.109412i
\(872\) −3.08187 + 5.33795i −0.104365 + 0.180766i
\(873\) 0 0
\(874\) 8.40448 + 14.5570i 0.284286 + 0.492397i
\(875\) 9.95838 56.4768i 0.336655 1.90926i
\(876\) 0 0
\(877\) −30.5691 11.1263i −1.03225 0.375707i −0.230310 0.973117i \(-0.573974\pi\)
−0.801936 + 0.597410i \(0.796196\pi\)
\(878\) 18.8770 + 6.87066i 0.637067 + 0.231873i
\(879\) 0 0
\(880\) 4.03274 22.8708i 0.135944 0.770974i
\(881\) 16.6800 + 28.8906i 0.561963 + 0.973348i 0.997325 + 0.0730926i \(0.0232869\pi\)
−0.435363 + 0.900255i \(0.643380\pi\)
\(882\) 0 0
\(883\) 27.4256 47.5025i 0.922944 1.59859i 0.128109 0.991760i \(-0.459109\pi\)
0.794835 0.606826i \(-0.207557\pi\)
\(884\) −5.53912 4.64788i −0.186301 0.156325i
\(885\) 0 0
\(886\) −6.09745 34.5803i −0.204848 1.16175i
\(887\) 16.1235 13.5292i 0.541374 0.454267i −0.330633 0.943759i \(-0.607262\pi\)
0.872008 + 0.489492i \(0.162818\pi\)
\(888\) 0 0
\(889\) 42.0757 15.3143i 1.41117 0.513625i
\(890\) 74.6516 2.50233
\(891\) 0 0
\(892\) 37.9158 1.26951
\(893\) 12.4064 4.51557i 0.415165 0.151108i
\(894\) 0 0
\(895\) −16.8174 + 14.1115i −0.562143 + 0.471694i
\(896\) 7.13673 + 40.4744i 0.238421 + 1.35215i
\(897\) 0 0
\(898\) 7.72198 + 6.47951i 0.257686 + 0.216224i
\(899\) −2.19698 + 3.80529i −0.0732735 + 0.126914i
\(900\) 0 0
\(901\) 7.47859 + 12.9533i 0.249148 + 0.431537i
\(902\) −3.46130 + 19.6300i −0.115249 + 0.653607i
\(903\) 0 0
\(904\) −2.47446 0.900631i −0.0822995 0.0299546i
\(905\) −2.84691 1.03619i −0.0946346 0.0344442i
\(906\) 0 0
\(907\) 2.57660 14.6126i 0.0855545 0.485204i −0.911681 0.410899i \(-0.865215\pi\)
0.997236 0.0743051i \(-0.0236739\pi\)
\(908\) 28.5444 + 49.4403i 0.947278 + 1.64073i
\(909\) 0 0
\(910\) 12.9737 22.4711i 0.430074 0.744911i
\(911\) 13.8114 + 11.5892i 0.457593 + 0.383966i 0.842244 0.539096i \(-0.181234\pi\)
−0.384652 + 0.923062i \(0.625678\pi\)
\(912\) 0 0
\(913\) −6.09086 34.5430i −0.201578 1.14321i
\(914\) 36.4781 30.6088i 1.20659 1.01245i
\(915\) 0 0
\(916\) −20.6065 + 7.50017i −0.680859 + 0.247812i
\(917\) −74.3738 −2.45604
\(918\) 0 0
\(919\) 13.4881 0.444932 0.222466 0.974940i \(-0.428589\pi\)
0.222466 + 0.974940i \(0.428589\pi\)
\(920\) 9.17876 3.34079i 0.302615 0.110143i
\(921\) 0 0
\(922\) 24.2914 20.3829i 0.799996 0.671276i
\(923\) −0.651533 3.69503i −0.0214455 0.121623i
\(924\) 0 0
\(925\) −4.88758 4.10117i −0.160703 0.134846i
\(926\) −15.7753 + 27.3237i −0.518410 + 0.897912i
\(927\) 0 0
\(928\) −11.8302 20.4905i −0.388344 0.672632i
\(929\) −6.53284 + 37.0496i −0.214336 + 1.21556i 0.667720 + 0.744413i \(0.267270\pi\)
−0.882056 + 0.471145i \(0.843841\pi\)
\(930\) 0 0
\(931\) 28.5148 + 10.3785i 0.934534 + 0.340143i
\(932\) 55.7650 + 20.2968i 1.82664 + 0.664844i
\(933\) 0 0
\(934\) 5.66479 32.1266i 0.185358 1.05121i
\(935\) 10.1558 + 17.5903i 0.332129 + 0.575265i
\(936\) 0 0
\(937\) −2.07229 + 3.58931i −0.0676988 + 0.117258i −0.897888 0.440224i \(-0.854899\pi\)
0.830189 + 0.557482i \(0.188232\pi\)
\(938\) −32.6068 27.3603i −1.06465 0.893346i
\(939\) 0 0
\(940\) −6.49858 36.8553i −0.211960 1.20209i
\(941\) −2.70439 + 2.26925i −0.0881605 + 0.0739754i −0.685803 0.727787i \(-0.740549\pi\)
0.597642 + 0.801763i \(0.296104\pi\)
\(942\) 0 0
\(943\) 9.14163 3.32728i 0.297693 0.108351i
\(944\) −0.708752 −0.0230679
\(945\) 0 0
\(946\) 48.3643 1.57246
\(947\) 13.3954 4.87552i 0.435292 0.158433i −0.115074 0.993357i \(-0.536711\pi\)
0.550366 + 0.834924i \(0.314488\pi\)
\(948\) 0 0
\(949\) −11.8863 + 9.97377i −0.385845 + 0.323762i
\(950\) −0.482367 2.73564i −0.0156500 0.0887558i
\(951\) 0 0
\(952\) −9.62187 8.07371i −0.311847 0.261670i
\(953\) −5.82130 + 10.0828i −0.188570 + 0.326613i −0.944774 0.327723i \(-0.893719\pi\)
0.756204 + 0.654336i \(0.227052\pi\)
\(954\) 0 0
\(955\) 12.8629 + 22.2792i 0.416233 + 0.720938i
\(956\) 4.34868 24.6626i 0.140646 0.797645i
\(957\) 0 0
\(958\) 20.8646 + 7.59408i 0.674103 + 0.245353i
\(959\) 16.6029 + 6.04295i 0.536135 + 0.195137i
\(960\) 0 0
\(961\) −5.00602 + 28.3906i −0.161485 + 0.915825i
\(962\) −11.5909 20.0761i −0.373707 0.647279i
\(963\) 0 0
\(964\) −7.18680 + 12.4479i −0.231471 + 0.400920i
\(965\) −32.9554 27.6529i −1.06087 0.890178i
\(966\) 0 0
\(967\) 5.04763 + 28.6265i 0.162321 + 0.920567i 0.951784 + 0.306769i \(0.0992479\pi\)
−0.789463 + 0.613798i \(0.789641\pi\)
\(968\) −5.22065 + 4.38064i −0.167798 + 0.140799i
\(969\) 0 0
\(970\) 21.1310 7.69105i 0.678475 0.246945i
\(971\) 47.5792 1.52689 0.763444 0.645874i \(-0.223507\pi\)
0.763444 + 0.645874i \(0.223507\pi\)
\(972\) 0 0
\(973\) 64.3687 2.06357
\(974\) −32.2792 + 11.7487i −1.03429 + 0.376452i
\(975\) 0 0
\(976\) 9.22419 7.74001i 0.295259 0.247752i
\(977\) 1.06208 + 6.02338i 0.0339791 + 0.192705i 0.997072 0.0764625i \(-0.0243626\pi\)
−0.963093 + 0.269168i \(0.913251\pi\)
\(978\) 0 0
\(979\) 53.9207 + 45.2448i 1.72331 + 1.44603i
\(980\) 43.0073 74.4908i 1.37382 2.37952i
\(981\) 0 0
\(982\) −11.4511 19.8339i −0.365419 0.632924i
\(983\) 1.84967 10.4900i 0.0589952 0.334579i −0.940997 0.338414i \(-0.890110\pi\)
0.999993 + 0.00383514i \(0.00122077\pi\)
\(984\) 0 0
\(985\) −27.6118 10.0499i −0.879785 0.320216i
\(986\) 14.0739 + 5.12246i 0.448203 + 0.163132i
\(987\) 0 0
\(988\) 0.976390 5.53738i 0.0310631 0.176168i
\(989\) −11.8022 20.4421i −0.375289 0.650020i
\(990\) 0 0
\(991\) −11.9928 + 20.7721i −0.380964 + 0.659849i −0.991200 0.132371i \(-0.957741\pi\)
0.610236 + 0.792219i \(0.291074\pi\)
\(992\) 8.95714 + 7.51593i 0.284389 + 0.238631i
\(993\) 0 0
\(994\) −5.52058 31.3088i −0.175102 0.993054i
\(995\) −32.2500 + 27.0610i −1.02239 + 0.857890i
\(996\) 0 0
\(997\) −4.05400 + 1.47554i −0.128392 + 0.0467307i −0.405417 0.914132i \(-0.632874\pi\)
0.277025 + 0.960863i \(0.410651\pi\)
\(998\) 40.7733 1.29066
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.e.s.163.2 12
3.2 odd 2 729.2.e.l.163.1 12
9.2 odd 6 729.2.e.k.406.2 12
9.4 even 3 729.2.e.j.649.1 12
9.5 odd 6 729.2.e.u.649.2 12
9.7 even 3 729.2.e.t.406.1 12
27.2 odd 18 729.2.a.e.1.5 yes 6
27.4 even 9 inner 729.2.e.s.568.2 12
27.5 odd 18 729.2.e.u.82.2 12
27.7 even 9 729.2.c.d.487.5 12
27.11 odd 18 729.2.c.a.244.2 12
27.13 even 9 729.2.e.t.325.1 12
27.14 odd 18 729.2.e.k.325.2 12
27.16 even 9 729.2.c.d.244.5 12
27.20 odd 18 729.2.c.a.487.2 12
27.22 even 9 729.2.e.j.82.1 12
27.23 odd 18 729.2.e.l.568.1 12
27.25 even 9 729.2.a.b.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.2.a.b.1.2 6 27.25 even 9
729.2.a.e.1.5 yes 6 27.2 odd 18
729.2.c.a.244.2 12 27.11 odd 18
729.2.c.a.487.2 12 27.20 odd 18
729.2.c.d.244.5 12 27.16 even 9
729.2.c.d.487.5 12 27.7 even 9
729.2.e.j.82.1 12 27.22 even 9
729.2.e.j.649.1 12 9.4 even 3
729.2.e.k.325.2 12 27.14 odd 18
729.2.e.k.406.2 12 9.2 odd 6
729.2.e.l.163.1 12 3.2 odd 2
729.2.e.l.568.1 12 27.23 odd 18
729.2.e.s.163.2 12 1.1 even 1 trivial
729.2.e.s.568.2 12 27.4 even 9 inner
729.2.e.t.325.1 12 27.13 even 9
729.2.e.t.406.1 12 9.7 even 3
729.2.e.u.82.2 12 27.5 odd 18
729.2.e.u.649.2 12 9.5 odd 6