Properties

Label 729.2.e.t.325.1
Level $729$
Weight $2$
Character 729.325
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 325.1
Root \(-3.10658i\) of defining polynomial
Character \(\chi\) \(=\) 729.325
Dual form 729.2.e.t.406.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62787 + 1.36594i) q^{2} +(0.436855 - 2.47753i) q^{4} +(1.94605 - 0.708303i) q^{5} +(0.841963 + 4.77501i) q^{7} +(0.547989 + 0.949144i) q^{8} +(-2.20040 + 3.81121i) q^{10} +(-3.89924 - 1.41921i) q^{11} +(-0.931522 - 0.781640i) q^{13} +(-7.89299 - 6.62301i) q^{14} +(2.53953 + 0.924313i) q^{16} +(-1.18182 + 2.04697i) q^{17} +(0.919003 + 1.59176i) q^{19} +(-0.904700 - 5.13081i) q^{20} +(8.28601 - 3.01586i) q^{22} +(-0.747307 + 4.23819i) q^{23} +(-0.544815 + 0.457154i) q^{25} +2.58407 q^{26} +12.1980 q^{28} +(2.28421 - 1.91668i) q^{29} +(0.255886 - 1.45120i) q^{31} +(-7.45634 + 2.71388i) q^{32} +(-0.872200 - 4.94649i) q^{34} +(5.02066 + 8.69603i) q^{35} +(-4.48554 + 7.76918i) q^{37} +(-3.67027 - 1.33587i) q^{38} +(1.73869 + 1.45894i) q^{40} +(1.73166 + 1.45304i) q^{41} +(5.15408 + 1.87593i) q^{43} +(-5.21953 + 9.04050i) q^{44} +(-4.57260 - 7.91998i) q^{46} +(1.24734 + 7.07400i) q^{47} +(-15.5140 + 5.64663i) q^{49} +(0.262440 - 1.48837i) q^{50} +(-2.34347 + 1.96641i) q^{52} -6.32803 q^{53} -8.59334 q^{55} +(-4.07079 + 3.41580i) q^{56} +(-1.10031 + 6.24019i) q^{58} +(-0.246441 + 0.0896971i) q^{59} +(-0.773708 - 4.38792i) q^{61} +(1.56571 + 2.71188i) q^{62} +(5.72840 - 9.92188i) q^{64} +(-2.36642 - 0.861308i) q^{65} +(3.16461 + 2.65542i) q^{67} +(4.55514 + 3.82222i) q^{68} +(-20.0512 - 7.29805i) q^{70} +(-1.54276 + 2.67213i) q^{71} +(-6.38003 - 11.0505i) q^{73} +(-3.31040 - 18.7742i) q^{74} +(4.34510 - 1.58149i) q^{76} +(3.49372 - 19.8139i) q^{77} +(3.48735 - 2.92623i) q^{79} +5.59674 q^{80} -4.80368 q^{82} +(-6.47542 + 5.43352i) q^{83} +(-0.850000 + 4.82059i) q^{85} +(-10.9526 + 3.98641i) q^{86} +(-0.789708 - 4.47866i) q^{88} +(-8.48158 - 14.6905i) q^{89} +(2.94803 - 5.10614i) q^{91} +(10.1738 + 3.70295i) q^{92} +(-11.6932 - 9.81174i) q^{94} +(2.91587 + 2.44671i) q^{95} +(4.80161 + 1.74764i) q^{97} +(17.5417 - 30.3831i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 3 q^{4} + 6 q^{5} + 6 q^{7} + 6 q^{8} - 6 q^{10} - 15 q^{11} - 3 q^{13} - 21 q^{14} + 9 q^{16} - 9 q^{17} - 12 q^{19} - 3 q^{20} + 33 q^{22} + 15 q^{23} - 12 q^{25} - 48 q^{26} + 6 q^{28}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62787 + 1.36594i −1.15108 + 0.965867i −0.999744 0.0226162i \(-0.992800\pi\)
−0.151331 + 0.988483i \(0.548356\pi\)
\(3\) 0 0
\(4\) 0.436855 2.47753i 0.218427 1.23876i
\(5\) 1.94605 0.708303i 0.870299 0.316763i 0.132011 0.991248i \(-0.457857\pi\)
0.738288 + 0.674485i \(0.235634\pi\)
\(6\) 0 0
\(7\) 0.841963 + 4.77501i 0.318232 + 1.80478i 0.553495 + 0.832853i \(0.313294\pi\)
−0.235263 + 0.971932i \(0.575595\pi\)
\(8\) 0.547989 + 0.949144i 0.193743 + 0.335573i
\(9\) 0 0
\(10\) −2.20040 + 3.81121i −0.695829 + 1.20521i
\(11\) −3.89924 1.41921i −1.17567 0.427908i −0.320997 0.947080i \(-0.604018\pi\)
−0.854669 + 0.519173i \(0.826240\pi\)
\(12\) 0 0
\(13\) −0.931522 0.781640i −0.258358 0.216788i 0.504404 0.863468i \(-0.331712\pi\)
−0.762761 + 0.646680i \(0.776157\pi\)
\(14\) −7.89299 6.62301i −2.10949 1.77007i
\(15\) 0 0
\(16\) 2.53953 + 0.924313i 0.634882 + 0.231078i
\(17\) −1.18182 + 2.04697i −0.286633 + 0.496463i −0.973004 0.230789i \(-0.925869\pi\)
0.686371 + 0.727252i \(0.259203\pi\)
\(18\) 0 0
\(19\) 0.919003 + 1.59176i 0.210834 + 0.365175i 0.951976 0.306174i \(-0.0990488\pi\)
−0.741142 + 0.671348i \(0.765715\pi\)
\(20\) −0.904700 5.13081i −0.202297 1.14728i
\(21\) 0 0
\(22\) 8.28601 3.01586i 1.76658 0.642983i
\(23\) −0.747307 + 4.23819i −0.155824 + 0.883723i 0.802204 + 0.597050i \(0.203661\pi\)
−0.958028 + 0.286673i \(0.907451\pi\)
\(24\) 0 0
\(25\) −0.544815 + 0.457154i −0.108963 + 0.0914309i
\(26\) 2.58407 0.506777
\(27\) 0 0
\(28\) 12.1980 2.30521
\(29\) 2.28421 1.91668i 0.424167 0.355918i −0.405579 0.914060i \(-0.632930\pi\)
0.829745 + 0.558142i \(0.188486\pi\)
\(30\) 0 0
\(31\) 0.255886 1.45120i 0.0459584 0.260643i −0.953168 0.302443i \(-0.902198\pi\)
0.999126 + 0.0417995i \(0.0133091\pi\)
\(32\) −7.45634 + 2.71388i −1.31811 + 0.479752i
\(33\) 0 0
\(34\) −0.872200 4.94649i −0.149581 0.848316i
\(35\) 5.02066 + 8.69603i 0.848646 + 1.46990i
\(36\) 0 0
\(37\) −4.48554 + 7.76918i −0.737418 + 1.27725i 0.216236 + 0.976341i \(0.430622\pi\)
−0.953654 + 0.300905i \(0.902711\pi\)
\(38\) −3.67027 1.33587i −0.595396 0.216706i
\(39\) 0 0
\(40\) 1.73869 + 1.45894i 0.274912 + 0.230678i
\(41\) 1.73166 + 1.45304i 0.270440 + 0.226926i 0.767914 0.640553i \(-0.221295\pi\)
−0.497474 + 0.867479i \(0.665739\pi\)
\(42\) 0 0
\(43\) 5.15408 + 1.87593i 0.785990 + 0.286077i 0.703668 0.710529i \(-0.251544\pi\)
0.0823218 + 0.996606i \(0.473766\pi\)
\(44\) −5.21953 + 9.04050i −0.786874 + 1.36291i
\(45\) 0 0
\(46\) −4.57260 7.91998i −0.674194 1.16774i
\(47\) 1.24734 + 7.07400i 0.181943 + 1.03185i 0.929821 + 0.368013i \(0.119962\pi\)
−0.747878 + 0.663836i \(0.768927\pi\)
\(48\) 0 0
\(49\) −15.5140 + 5.64663i −2.21628 + 0.806661i
\(50\) 0.262440 1.48837i 0.0371147 0.210488i
\(51\) 0 0
\(52\) −2.34347 + 1.96641i −0.324981 + 0.272692i
\(53\) −6.32803 −0.869222 −0.434611 0.900618i \(-0.643114\pi\)
−0.434611 + 0.900618i \(0.643114\pi\)
\(54\) 0 0
\(55\) −8.59334 −1.15873
\(56\) −4.07079 + 3.41580i −0.543982 + 0.456455i
\(57\) 0 0
\(58\) −1.10031 + 6.24019i −0.144478 + 0.819377i
\(59\) −0.246441 + 0.0896971i −0.0320839 + 0.0116776i −0.358012 0.933717i \(-0.616545\pi\)
0.325928 + 0.945394i \(0.394323\pi\)
\(60\) 0 0
\(61\) −0.773708 4.38792i −0.0990631 0.561815i −0.993426 0.114473i \(-0.963482\pi\)
0.894363 0.447342i \(-0.147629\pi\)
\(62\) 1.56571 + 2.71188i 0.198845 + 0.344410i
\(63\) 0 0
\(64\) 5.72840 9.92188i 0.716050 1.24024i
\(65\) −2.36642 0.861308i −0.293519 0.106832i
\(66\) 0 0
\(67\) 3.16461 + 2.65542i 0.386619 + 0.324411i 0.815294 0.579047i \(-0.196575\pi\)
−0.428676 + 0.903458i \(0.641020\pi\)
\(68\) 4.55514 + 3.82222i 0.552392 + 0.463512i
\(69\) 0 0
\(70\) −20.0512 7.29805i −2.39658 0.872284i
\(71\) −1.54276 + 2.67213i −0.183091 + 0.317124i −0.942932 0.332986i \(-0.891944\pi\)
0.759840 + 0.650110i \(0.225277\pi\)
\(72\) 0 0
\(73\) −6.38003 11.0505i −0.746726 1.29337i −0.949384 0.314118i \(-0.898291\pi\)
0.202658 0.979250i \(-0.435042\pi\)
\(74\) −3.31040 18.7742i −0.384826 2.18245i
\(75\) 0 0
\(76\) 4.34510 1.58149i 0.498417 0.181409i
\(77\) 3.49372 19.8139i 0.398146 2.25800i
\(78\) 0 0
\(79\) 3.48735 2.92623i 0.392357 0.329227i −0.425174 0.905112i \(-0.639787\pi\)
0.817531 + 0.575885i \(0.195342\pi\)
\(80\) 5.59674 0.625734
\(81\) 0 0
\(82\) −4.80368 −0.530478
\(83\) −6.47542 + 5.43352i −0.710769 + 0.596406i −0.924815 0.380417i \(-0.875780\pi\)
0.214045 + 0.976824i \(0.431336\pi\)
\(84\) 0 0
\(85\) −0.850000 + 4.82059i −0.0921954 + 0.522866i
\(86\) −10.9526 + 3.98641i −1.18105 + 0.429866i
\(87\) 0 0
\(88\) −0.789708 4.47866i −0.0841831 0.477426i
\(89\) −8.48158 14.6905i −0.899046 1.55719i −0.828716 0.559670i \(-0.810928\pi\)
−0.0703304 0.997524i \(-0.522405\pi\)
\(90\) 0 0
\(91\) 2.94803 5.10614i 0.309038 0.535269i
\(92\) 10.1738 + 3.70295i 1.06069 + 0.386059i
\(93\) 0 0
\(94\) −11.6932 9.81174i −1.20606 1.01200i
\(95\) 2.91587 + 2.44671i 0.299162 + 0.251027i
\(96\) 0 0
\(97\) 4.80161 + 1.74764i 0.487530 + 0.177446i 0.574077 0.818801i \(-0.305361\pi\)
−0.0865469 + 0.996248i \(0.527583\pi\)
\(98\) 17.5417 30.3831i 1.77198 3.06916i
\(99\) 0 0
\(100\) 0.894607 + 1.54951i 0.0894607 + 0.154951i
\(101\) 3.22636 + 18.2976i 0.321035 + 1.82068i 0.536186 + 0.844100i \(0.319864\pi\)
−0.215151 + 0.976581i \(0.569025\pi\)
\(102\) 0 0
\(103\) −8.46266 + 3.08015i −0.833850 + 0.303497i −0.723438 0.690389i \(-0.757439\pi\)
−0.110412 + 0.993886i \(0.535217\pi\)
\(104\) 0.231425 1.31248i 0.0226931 0.128699i
\(105\) 0 0
\(106\) 10.3012 8.64372i 1.00054 0.839552i
\(107\) 7.42680 0.717976 0.358988 0.933342i \(-0.383122\pi\)
0.358988 + 0.933342i \(0.383122\pi\)
\(108\) 0 0
\(109\) −5.62396 −0.538678 −0.269339 0.963045i \(-0.586805\pi\)
−0.269339 + 0.963045i \(0.586805\pi\)
\(110\) 13.9888 11.7380i 1.33378 1.11918i
\(111\) 0 0
\(112\) −2.27541 + 12.9045i −0.215006 + 1.21936i
\(113\) 2.25777 0.821761i 0.212393 0.0773048i −0.233632 0.972325i \(-0.575061\pi\)
0.446026 + 0.895020i \(0.352839\pi\)
\(114\) 0 0
\(115\) 1.54763 + 8.77703i 0.144317 + 0.818463i
\(116\) −3.75075 6.49649i −0.348249 0.603184i
\(117\) 0 0
\(118\) 0.278652 0.482639i 0.0256520 0.0444305i
\(119\) −10.7694 3.91972i −0.987225 0.359321i
\(120\) 0 0
\(121\) 4.76346 + 3.99702i 0.433042 + 0.363365i
\(122\) 7.25313 + 6.08610i 0.656668 + 0.551010i
\(123\) 0 0
\(124\) −3.48360 1.26793i −0.312837 0.113863i
\(125\) −5.91378 + 10.2430i −0.528945 + 0.916159i
\(126\) 0 0
\(127\) 4.61735 + 7.99748i 0.409723 + 0.709662i 0.994859 0.101274i \(-0.0322919\pi\)
−0.585135 + 0.810936i \(0.698959\pi\)
\(128\) 1.47189 + 8.34752i 0.130098 + 0.737824i
\(129\) 0 0
\(130\) 5.02872 1.83030i 0.441048 0.160528i
\(131\) −2.66359 + 15.1060i −0.232719 + 1.31981i 0.614646 + 0.788803i \(0.289299\pi\)
−0.847365 + 0.531011i \(0.821812\pi\)
\(132\) 0 0
\(133\) −6.82691 + 5.72845i −0.591968 + 0.496720i
\(134\) −8.77871 −0.758365
\(135\) 0 0
\(136\) −2.59049 −0.222133
\(137\) −2.79144 + 2.34230i −0.238489 + 0.200116i −0.754197 0.656649i \(-0.771974\pi\)
0.515708 + 0.856765i \(0.327529\pi\)
\(138\) 0 0
\(139\) 2.30527 13.0739i 0.195531 1.10891i −0.716130 0.697967i \(-0.754088\pi\)
0.911661 0.410943i \(-0.134801\pi\)
\(140\) 23.7380 8.63991i 2.00622 0.730206i
\(141\) 0 0
\(142\) −1.13858 6.45719i −0.0955472 0.541875i
\(143\) 2.52292 + 4.36983i 0.210977 + 0.365423i
\(144\) 0 0
\(145\) 3.08759 5.34786i 0.256410 0.444115i
\(146\) 25.4802 + 9.27405i 2.10876 + 0.767526i
\(147\) 0 0
\(148\) 17.2888 + 14.5071i 1.42113 + 1.19247i
\(149\) 6.82621 + 5.72787i 0.559225 + 0.469245i 0.878051 0.478568i \(-0.158844\pi\)
−0.318826 + 0.947813i \(0.603288\pi\)
\(150\) 0 0
\(151\) 0.669440 + 0.243656i 0.0544783 + 0.0198285i 0.369116 0.929384i \(-0.379661\pi\)
−0.314637 + 0.949212i \(0.601883\pi\)
\(152\) −1.00721 + 1.74453i −0.0816953 + 0.141500i
\(153\) 0 0
\(154\) 21.3773 + 37.0265i 1.72263 + 2.98368i
\(155\) −0.529924 3.00535i −0.0425645 0.241395i
\(156\) 0 0
\(157\) 12.9847 4.72605i 1.03629 0.377180i 0.232820 0.972520i \(-0.425205\pi\)
0.803474 + 0.595340i \(0.202983\pi\)
\(158\) −1.67987 + 9.52702i −0.133643 + 0.757929i
\(159\) 0 0
\(160\) −12.5881 + 10.5627i −0.995179 + 0.835054i
\(161\) −20.8666 −1.64452
\(162\) 0 0
\(163\) −1.19321 −0.0934597 −0.0467298 0.998908i \(-0.514880\pi\)
−0.0467298 + 0.998908i \(0.514880\pi\)
\(164\) 4.35642 3.65547i 0.340180 0.285445i
\(165\) 0 0
\(166\) 3.11924 17.6901i 0.242100 1.37302i
\(167\) 22.4928 8.18670i 1.74054 0.633506i 0.741255 0.671223i \(-0.234231\pi\)
0.999288 + 0.0377169i \(0.0120085\pi\)
\(168\) 0 0
\(169\) −2.00065 11.3463i −0.153896 0.872790i
\(170\) −5.20096 9.00832i −0.398895 0.690907i
\(171\) 0 0
\(172\) 6.89926 11.9499i 0.526063 0.911169i
\(173\) 8.58879 + 3.12607i 0.652994 + 0.237670i 0.647209 0.762313i \(-0.275936\pi\)
0.00578525 + 0.999983i \(0.498158\pi\)
\(174\) 0 0
\(175\) −2.64163 2.21659i −0.199689 0.167559i
\(176\) −8.59045 7.20824i −0.647530 0.543342i
\(177\) 0 0
\(178\) 33.8733 + 12.3289i 2.53891 + 0.924088i
\(179\) −5.30038 + 9.18052i −0.396169 + 0.686184i −0.993250 0.115997i \(-0.962994\pi\)
0.597081 + 0.802181i \(0.296327\pi\)
\(180\) 0 0
\(181\) 0.731460 + 1.26693i 0.0543690 + 0.0941699i 0.891929 0.452176i \(-0.149352\pi\)
−0.837560 + 0.546345i \(0.816019\pi\)
\(182\) 2.17569 + 12.3389i 0.161273 + 0.914624i
\(183\) 0 0
\(184\) −4.43217 + 1.61318i −0.326744 + 0.118925i
\(185\) −3.22614 + 18.2963i −0.237190 + 1.34517i
\(186\) 0 0
\(187\) 7.51328 6.30439i 0.549425 0.461023i
\(188\) 18.0709 1.31796
\(189\) 0 0
\(190\) −8.08871 −0.586817
\(191\) 9.51601 7.98488i 0.688555 0.577766i −0.229937 0.973205i \(-0.573852\pi\)
0.918492 + 0.395439i \(0.129408\pi\)
\(192\) 0 0
\(193\) 3.60725 20.4577i 0.259655 1.47258i −0.524179 0.851608i \(-0.675628\pi\)
0.783834 0.620970i \(-0.213261\pi\)
\(194\) −10.2036 + 3.71380i −0.732574 + 0.266635i
\(195\) 0 0
\(196\) 7.21231 + 40.9031i 0.515165 + 2.92165i
\(197\) 7.09433 + 12.2877i 0.505450 + 0.875465i 0.999980 + 0.00630469i \(0.00200686\pi\)
−0.494530 + 0.869161i \(0.664660\pi\)
\(198\) 0 0
\(199\) −10.1643 + 17.6051i −0.720529 + 1.24799i 0.240259 + 0.970709i \(0.422768\pi\)
−0.960788 + 0.277284i \(0.910566\pi\)
\(200\) −0.732458 0.266593i −0.0517926 0.0188510i
\(201\) 0 0
\(202\) −30.2456 25.3790i −2.12807 1.78566i
\(203\) 11.0754 + 9.29334i 0.777339 + 0.652265i
\(204\) 0 0
\(205\) 4.39909 + 1.60114i 0.307246 + 0.111828i
\(206\) 9.56876 16.5736i 0.666687 1.15474i
\(207\) 0 0
\(208\) −1.64315 2.84601i −0.113932 0.197336i
\(209\) −1.32438 7.51092i −0.0916091 0.519541i
\(210\) 0 0
\(211\) 9.26849 3.37345i 0.638069 0.232238i −0.00267052 0.999996i \(-0.500850\pi\)
0.640740 + 0.767758i \(0.278628\pi\)
\(212\) −2.76443 + 15.6779i −0.189862 + 1.07676i
\(213\) 0 0
\(214\) −12.0898 + 10.1446i −0.826445 + 0.693470i
\(215\) 11.3588 0.774665
\(216\) 0 0
\(217\) 7.14494 0.485030
\(218\) 9.15506 7.68201i 0.620059 0.520291i
\(219\) 0 0
\(220\) −3.75404 + 21.2902i −0.253098 + 1.43539i
\(221\) 2.70088 0.983041i 0.181681 0.0661265i
\(222\) 0 0
\(223\) 2.61712 + 14.8424i 0.175255 + 0.993922i 0.937849 + 0.347044i \(0.112815\pi\)
−0.762594 + 0.646878i \(0.776074\pi\)
\(224\) −19.2368 33.3191i −1.28531 2.22623i
\(225\) 0 0
\(226\) −2.55287 + 4.42170i −0.169814 + 0.294127i
\(227\) 21.3240 + 7.76131i 1.41533 + 0.515136i 0.932688 0.360684i \(-0.117457\pi\)
0.482637 + 0.875820i \(0.339679\pi\)
\(228\) 0 0
\(229\) 6.67738 + 5.60299i 0.441254 + 0.370256i 0.836178 0.548458i \(-0.184785\pi\)
−0.394925 + 0.918714i \(0.629229\pi\)
\(230\) −14.5083 12.1739i −0.956646 0.802721i
\(231\) 0 0
\(232\) 3.07092 + 1.11772i 0.201616 + 0.0733822i
\(233\) 11.7945 20.4286i 0.772682 1.33832i −0.163406 0.986559i \(-0.552248\pi\)
0.936088 0.351766i \(-0.114419\pi\)
\(234\) 0 0
\(235\) 7.43792 + 12.8829i 0.485196 + 0.840385i
\(236\) 0.114568 + 0.649748i 0.00745775 + 0.0422950i
\(237\) 0 0
\(238\) 22.8852 8.32953i 1.48343 0.539923i
\(239\) 1.72858 9.80329i 0.111813 0.634122i −0.876466 0.481463i \(-0.840105\pi\)
0.988279 0.152658i \(-0.0487834\pi\)
\(240\) 0 0
\(241\) 4.37676 3.67253i 0.281932 0.236569i −0.490845 0.871247i \(-0.663312\pi\)
0.772776 + 0.634678i \(0.218867\pi\)
\(242\) −13.2140 −0.849427
\(243\) 0 0
\(244\) −11.2092 −0.717594
\(245\) −26.1914 + 21.9772i −1.67331 + 1.40407i
\(246\) 0 0
\(247\) 0.388111 2.20109i 0.0246949 0.140052i
\(248\) 1.51762 0.552369i 0.0963690 0.0350754i
\(249\) 0 0
\(250\) −4.36446 24.7521i −0.276033 1.56546i
\(251\) 3.64483 + 6.31303i 0.230060 + 0.398475i 0.957825 0.287351i \(-0.0927745\pi\)
−0.727766 + 0.685826i \(0.759441\pi\)
\(252\) 0 0
\(253\) 8.92881 15.4651i 0.561349 0.972285i
\(254\) −18.4405 6.71180i −1.15706 0.421136i
\(255\) 0 0
\(256\) 3.75456 + 3.15045i 0.234660 + 0.196903i
\(257\) −17.8052 14.9404i −1.11066 0.931954i −0.112564 0.993644i \(-0.535906\pi\)
−0.998095 + 0.0616904i \(0.980351\pi\)
\(258\) 0 0
\(259\) −40.8746 14.8771i −2.53982 0.924420i
\(260\) −3.16770 + 5.48661i −0.196452 + 0.340265i
\(261\) 0 0
\(262\) −16.2979 28.2288i −1.00689 1.74398i
\(263\) −4.75789 26.9833i −0.293384 1.66386i −0.673698 0.739007i \(-0.735295\pi\)
0.380314 0.924858i \(-0.375816\pi\)
\(264\) 0 0
\(265\) −12.3146 + 4.48216i −0.756483 + 0.275337i
\(266\) 3.28855 18.6503i 0.201634 1.14352i
\(267\) 0 0
\(268\) 7.96136 6.68037i 0.486317 0.408069i
\(269\) 9.41973 0.574331 0.287166 0.957881i \(-0.407287\pi\)
0.287166 + 0.957881i \(0.407287\pi\)
\(270\) 0 0
\(271\) 26.2797 1.59638 0.798189 0.602408i \(-0.205792\pi\)
0.798189 + 0.602408i \(0.205792\pi\)
\(272\) −4.89331 + 4.10597i −0.296700 + 0.248961i
\(273\) 0 0
\(274\) 1.34465 7.62590i 0.0812334 0.460697i
\(275\) 2.77317 1.00935i 0.167228 0.0608661i
\(276\) 0 0
\(277\) 0.0650854 + 0.369118i 0.00391060 + 0.0221781i 0.986701 0.162548i \(-0.0519713\pi\)
−0.982790 + 0.184726i \(0.940860\pi\)
\(278\) 14.1054 + 24.4314i 0.845989 + 1.46530i
\(279\) 0 0
\(280\) −5.50253 + 9.53065i −0.328839 + 0.569566i
\(281\) −13.1384 4.78198i −0.783771 0.285269i −0.0810267 0.996712i \(-0.525820\pi\)
−0.702744 + 0.711443i \(0.748042\pi\)
\(282\) 0 0
\(283\) 11.9211 + 10.0030i 0.708636 + 0.594616i 0.924216 0.381870i \(-0.124720\pi\)
−0.215580 + 0.976486i \(0.569164\pi\)
\(284\) 5.94632 + 4.98955i 0.352849 + 0.296075i
\(285\) 0 0
\(286\) −10.0759 3.66733i −0.595801 0.216854i
\(287\) −5.48027 + 9.49211i −0.323490 + 0.560301i
\(288\) 0 0
\(289\) 5.70661 + 9.88413i 0.335683 + 0.581420i
\(290\) 2.27868 + 12.9231i 0.133809 + 0.758868i
\(291\) 0 0
\(292\) −30.1652 + 10.9792i −1.76528 + 0.642510i
\(293\) 4.27595 24.2501i 0.249804 1.41671i −0.559263 0.828990i \(-0.688916\pi\)
0.809066 0.587717i \(-0.199973\pi\)
\(294\) 0 0
\(295\) −0.416053 + 0.349110i −0.0242235 + 0.0203259i
\(296\) −9.83210 −0.571479
\(297\) 0 0
\(298\) −18.9361 −1.09694
\(299\) 4.00887 3.36384i 0.231839 0.194536i
\(300\) 0 0
\(301\) −4.61805 + 26.1903i −0.266180 + 1.50958i
\(302\) −1.42258 + 0.517777i −0.0818603 + 0.0297947i
\(303\) 0 0
\(304\) 0.862551 + 4.89177i 0.0494707 + 0.280562i
\(305\) −4.61365 7.99107i −0.264177 0.457567i
\(306\) 0 0
\(307\) 10.1956 17.6593i 0.581893 1.00787i −0.413362 0.910567i \(-0.635646\pi\)
0.995255 0.0973012i \(-0.0310210\pi\)
\(308\) −47.5631 17.3116i −2.71016 0.986418i
\(309\) 0 0
\(310\) 4.96778 + 4.16846i 0.282151 + 0.236753i
\(311\) 16.9901 + 14.2564i 0.963421 + 0.808406i 0.981506 0.191430i \(-0.0613125\pi\)
−0.0180851 + 0.999836i \(0.505757\pi\)
\(312\) 0 0
\(313\) 10.4983 + 3.82106i 0.593398 + 0.215979i 0.621223 0.783634i \(-0.286636\pi\)
−0.0278253 + 0.999613i \(0.508858\pi\)
\(314\) −14.6819 + 25.4298i −0.828547 + 1.43508i
\(315\) 0 0
\(316\) −5.72635 9.91833i −0.322132 0.557950i
\(317\) 4.37883 + 24.8336i 0.245939 + 1.39479i 0.818301 + 0.574790i \(0.194916\pi\)
−0.572361 + 0.820002i \(0.693973\pi\)
\(318\) 0 0
\(319\) −11.6268 + 4.23182i −0.650978 + 0.236937i
\(320\) 4.12004 23.3659i 0.230317 1.30619i
\(321\) 0 0
\(322\) 33.9680 28.5026i 1.89296 1.58839i
\(323\) −4.34438 −0.241728
\(324\) 0 0
\(325\) 0.864837 0.0479725
\(326\) 1.94239 1.62986i 0.107579 0.0902696i
\(327\) 0 0
\(328\) −0.430211 + 2.43985i −0.0237544 + 0.134718i
\(329\) −32.7282 + 11.9121i −1.80437 + 0.656735i
\(330\) 0 0
\(331\) −4.54362 25.7682i −0.249740 1.41635i −0.809221 0.587504i \(-0.800111\pi\)
0.559481 0.828843i \(-0.311000\pi\)
\(332\) 10.6329 + 18.4167i 0.583555 + 1.01075i
\(333\) 0 0
\(334\) −25.4327 + 44.0507i −1.39161 + 2.41035i
\(335\) 8.03932 + 2.92607i 0.439235 + 0.159869i
\(336\) 0 0
\(337\) 8.38516 + 7.03599i 0.456769 + 0.383275i 0.841940 0.539570i \(-0.181413\pi\)
−0.385172 + 0.922845i \(0.625858\pi\)
\(338\) 18.7551 + 15.7374i 1.02015 + 0.856004i
\(339\) 0 0
\(340\) 11.5718 + 4.21180i 0.627570 + 0.228417i
\(341\) −3.05732 + 5.29543i −0.165563 + 0.286763i
\(342\) 0 0
\(343\) −23.0545 39.9316i −1.24483 2.15611i
\(344\) 1.04385 + 5.91996i 0.0562805 + 0.319183i
\(345\) 0 0
\(346\) −18.2514 + 6.64298i −0.981203 + 0.357129i
\(347\) 0.610092 3.46000i 0.0327514 0.185743i −0.964043 0.265746i \(-0.914382\pi\)
0.996795 + 0.0800030i \(0.0254930\pi\)
\(348\) 0 0
\(349\) −22.3661 + 18.7674i −1.19723 + 1.00459i −0.197524 + 0.980298i \(0.563290\pi\)
−0.999705 + 0.0242965i \(0.992265\pi\)
\(350\) 7.32796 0.391696
\(351\) 0 0
\(352\) 32.9256 1.75494
\(353\) −19.2100 + 16.1191i −1.02244 + 0.857931i −0.989932 0.141540i \(-0.954795\pi\)
−0.0325100 + 0.999471i \(0.510350\pi\)
\(354\) 0 0
\(355\) −1.10960 + 6.29283i −0.0588912 + 0.333989i
\(356\) −40.1014 + 14.5957i −2.12537 + 0.773572i
\(357\) 0 0
\(358\) −3.91176 22.1847i −0.206743 1.17250i
\(359\) −2.10362 3.64358i −0.111025 0.192301i 0.805159 0.593059i \(-0.202080\pi\)
−0.916184 + 0.400758i \(0.868747\pi\)
\(360\) 0 0
\(361\) 7.81087 13.5288i 0.411098 0.712043i
\(362\) −2.92127 1.06325i −0.153538 0.0558834i
\(363\) 0 0
\(364\) −11.3627 9.53447i −0.595569 0.499742i
\(365\) −20.2430 16.9859i −1.05957 0.889081i
\(366\) 0 0
\(367\) −16.4415 5.98420i −0.858237 0.312373i −0.124843 0.992177i \(-0.539843\pi\)
−0.733394 + 0.679804i \(0.762065\pi\)
\(368\) −5.81522 + 10.0723i −0.303139 + 0.525053i
\(369\) 0 0
\(370\) −19.7400 34.1907i −1.02623 1.77749i
\(371\) −5.32797 30.2164i −0.276614 1.56876i
\(372\) 0 0
\(373\) 27.8662 10.1425i 1.44286 0.525157i 0.502270 0.864711i \(-0.332499\pi\)
0.940586 + 0.339554i \(0.110276\pi\)
\(374\) −3.61918 + 20.5254i −0.187144 + 1.06134i
\(375\) 0 0
\(376\) −6.03072 + 5.06038i −0.311011 + 0.260969i
\(377\) −3.62594 −0.186745
\(378\) 0 0
\(379\) 20.9523 1.07625 0.538124 0.842865i \(-0.319133\pi\)
0.538124 + 0.842865i \(0.319133\pi\)
\(380\) 7.33560 6.15530i 0.376308 0.315760i
\(381\) 0 0
\(382\) −4.58391 + 25.9966i −0.234533 + 1.33010i
\(383\) −9.29993 + 3.38490i −0.475204 + 0.172960i −0.568508 0.822678i \(-0.692479\pi\)
0.0933043 + 0.995638i \(0.470257\pi\)
\(384\) 0 0
\(385\) −7.23528 41.0333i −0.368744 2.09125i
\(386\) 22.0719 + 38.2297i 1.12343 + 1.94584i
\(387\) 0 0
\(388\) 6.42745 11.1327i 0.326304 0.565175i
\(389\) 19.8414 + 7.22167i 1.00600 + 0.366153i 0.791895 0.610658i \(-0.209095\pi\)
0.214104 + 0.976811i \(0.431317\pi\)
\(390\) 0 0
\(391\) −7.79227 6.53849i −0.394072 0.330665i
\(392\) −13.8609 11.6307i −0.700083 0.587440i
\(393\) 0 0
\(394\) −28.3330 10.3124i −1.42739 0.519529i
\(395\) 4.71388 8.16468i 0.237181 0.410810i
\(396\) 0 0
\(397\) 4.88955 + 8.46894i 0.245399 + 0.425044i 0.962244 0.272189i \(-0.0877476\pi\)
−0.716845 + 0.697233i \(0.754414\pi\)
\(398\) −7.50142 42.5426i −0.376012 2.13247i
\(399\) 0 0
\(400\) −1.80613 + 0.657377i −0.0903064 + 0.0328688i
\(401\) −3.32351 + 18.8486i −0.165968 + 0.941252i 0.782092 + 0.623163i \(0.214153\pi\)
−0.948061 + 0.318090i \(0.896959\pi\)
\(402\) 0 0
\(403\) −1.37268 + 1.15181i −0.0683780 + 0.0573759i
\(404\) 46.7423 2.32552
\(405\) 0 0
\(406\) −30.7234 −1.52478
\(407\) 28.5163 23.9280i 1.41350 1.18607i
\(408\) 0 0
\(409\) 2.60395 14.7677i 0.128757 0.730218i −0.850248 0.526382i \(-0.823548\pi\)
0.979005 0.203836i \(-0.0653408\pi\)
\(410\) −9.34819 + 3.40246i −0.461674 + 0.168036i
\(411\) 0 0
\(412\) 3.93421 + 22.3120i 0.193825 + 1.09924i
\(413\) −0.635799 1.10124i −0.0312856 0.0541883i
\(414\) 0 0
\(415\) −8.75289 + 15.1604i −0.429662 + 0.744197i
\(416\) 9.06702 + 3.30013i 0.444547 + 0.161802i
\(417\) 0 0
\(418\) 12.4154 + 10.4177i 0.607257 + 0.509549i
\(419\) 4.45210 + 3.73575i 0.217499 + 0.182504i 0.745027 0.667034i \(-0.232437\pi\)
−0.527528 + 0.849538i \(0.676881\pi\)
\(420\) 0 0
\(421\) 12.5106 + 4.55349i 0.609730 + 0.221924i 0.628385 0.777902i \(-0.283716\pi\)
−0.0186551 + 0.999826i \(0.505938\pi\)
\(422\) −10.4799 + 18.1518i −0.510154 + 0.883613i
\(423\) 0 0
\(424\) −3.46769 6.00621i −0.168406 0.291687i
\(425\) −0.291908 1.65549i −0.0141596 0.0803033i
\(426\) 0 0
\(427\) 20.3009 7.38893i 0.982430 0.357575i
\(428\) 3.24444 18.4001i 0.156826 0.889403i
\(429\) 0 0
\(430\) −18.4906 + 15.5155i −0.891697 + 0.748223i
\(431\) −36.4166 −1.75413 −0.877064 0.480374i \(-0.840501\pi\)
−0.877064 + 0.480374i \(0.840501\pi\)
\(432\) 0 0
\(433\) −10.8761 −0.522674 −0.261337 0.965248i \(-0.584163\pi\)
−0.261337 + 0.965248i \(0.584163\pi\)
\(434\) −11.6310 + 9.75957i −0.558306 + 0.468475i
\(435\) 0 0
\(436\) −2.45686 + 13.9335i −0.117662 + 0.667295i
\(437\) −7.43296 + 2.70537i −0.355567 + 0.129416i
\(438\) 0 0
\(439\) 1.64154 + 9.30965i 0.0783465 + 0.444325i 0.998595 + 0.0529907i \(0.0168754\pi\)
−0.920248 + 0.391335i \(0.872014\pi\)
\(440\) −4.70906 8.15632i −0.224495 0.388837i
\(441\) 0 0
\(442\) −3.05390 + 5.28951i −0.145259 + 0.251596i
\(443\) −15.5274 5.65151i −0.737729 0.268511i −0.0542962 0.998525i \(-0.517292\pi\)
−0.683433 + 0.730013i \(0.739514\pi\)
\(444\) 0 0
\(445\) −26.9109 22.5809i −1.27570 1.07044i
\(446\) −24.5342 20.5866i −1.16173 0.974806i
\(447\) 0 0
\(448\) 52.2002 + 18.9993i 2.46623 + 0.897633i
\(449\) 2.37181 4.10809i 0.111933 0.193873i −0.804617 0.593794i \(-0.797629\pi\)
0.916549 + 0.399921i \(0.130963\pi\)
\(450\) 0 0
\(451\) −4.69001 8.12334i −0.220844 0.382513i
\(452\) −1.04962 5.95268i −0.0493699 0.279990i
\(453\) 0 0
\(454\) −45.3142 + 16.4930i −2.12670 + 0.774055i
\(455\) 2.12031 12.0249i 0.0994017 0.563735i
\(456\) 0 0
\(457\) −17.1659 + 14.4039i −0.802989 + 0.673788i −0.948923 0.315506i \(-0.897826\pi\)
0.145934 + 0.989294i \(0.453381\pi\)
\(458\) −18.5232 −0.865534
\(459\) 0 0
\(460\) 22.4214 1.04540
\(461\) −11.4311 + 9.59184i −0.532400 + 0.446737i −0.868929 0.494936i \(-0.835191\pi\)
0.336529 + 0.941673i \(0.390747\pi\)
\(462\) 0 0
\(463\) −2.57818 + 14.6216i −0.119818 + 0.679524i 0.864433 + 0.502748i \(0.167678\pi\)
−0.984251 + 0.176776i \(0.943433\pi\)
\(464\) 7.57242 2.75614i 0.351541 0.127950i
\(465\) 0 0
\(466\) 8.70450 + 49.3657i 0.403228 + 2.28682i
\(467\) 7.67571 + 13.2947i 0.355190 + 0.615206i 0.987150 0.159794i \(-0.0510830\pi\)
−0.631961 + 0.775000i \(0.717750\pi\)
\(468\) 0 0
\(469\) −10.0152 + 17.3468i −0.462458 + 0.801001i
\(470\) −29.7052 10.8118i −1.37020 0.498711i
\(471\) 0 0
\(472\) −0.220182 0.184755i −0.0101347 0.00850403i
\(473\) −17.4347 14.6294i −0.801647 0.672662i
\(474\) 0 0
\(475\) −1.22837 0.447089i −0.0563614 0.0205139i
\(476\) −14.4159 + 24.9690i −0.660750 + 1.14445i
\(477\) 0 0
\(478\) 10.5768 + 18.3196i 0.483772 + 0.837918i
\(479\) 1.81438 + 10.2899i 0.0829012 + 0.470156i 0.997790 + 0.0664497i \(0.0211672\pi\)
−0.914889 + 0.403706i \(0.867722\pi\)
\(480\) 0 0
\(481\) 10.2511 3.73109i 0.467409 0.170123i
\(482\) −2.10830 + 11.9568i −0.0960306 + 0.544617i
\(483\) 0 0
\(484\) 11.9837 10.0555i 0.544712 0.457068i
\(485\) 10.5820 0.480505
\(486\) 0 0
\(487\) −16.1649 −0.732500 −0.366250 0.930516i \(-0.619359\pi\)
−0.366250 + 0.930516i \(0.619359\pi\)
\(488\) 3.74078 3.13889i 0.169337 0.142091i
\(489\) 0 0
\(490\) 12.6165 71.5519i 0.569957 3.23239i
\(491\) 10.1274 3.68607i 0.457043 0.166350i −0.103231 0.994657i \(-0.532918\pi\)
0.560274 + 0.828307i \(0.310696\pi\)
\(492\) 0 0
\(493\) 1.22386 + 6.94087i 0.0551200 + 0.312601i
\(494\) 2.37477 + 4.11322i 0.106846 + 0.185062i
\(495\) 0 0
\(496\) 1.99119 3.44885i 0.0894071 0.154858i
\(497\) −14.0584 5.11684i −0.630605 0.229522i
\(498\) 0 0
\(499\) −14.6982 12.3333i −0.657983 0.552114i 0.251498 0.967858i \(-0.419077\pi\)
−0.909482 + 0.415744i \(0.863521\pi\)
\(500\) 22.7938 + 19.1263i 1.01937 + 0.855352i
\(501\) 0 0
\(502\) −14.5565 5.29815i −0.649690 0.236468i
\(503\) 6.01253 10.4140i 0.268086 0.464338i −0.700282 0.713866i \(-0.746942\pi\)
0.968367 + 0.249529i \(0.0802757\pi\)
\(504\) 0 0
\(505\) 19.2389 + 33.3228i 0.856120 + 1.48284i
\(506\) 6.58959 + 37.3714i 0.292943 + 1.66136i
\(507\) 0 0
\(508\) 21.8311 7.94586i 0.968598 0.352541i
\(509\) −2.59657 + 14.7259i −0.115091 + 0.652712i 0.871615 + 0.490192i \(0.163073\pi\)
−0.986705 + 0.162520i \(0.948038\pi\)
\(510\) 0 0
\(511\) 47.3947 39.7689i 2.09662 1.75927i
\(512\) −27.3678 −1.20950
\(513\) 0 0
\(514\) 49.3922 2.17860
\(515\) −14.2870 + 11.9883i −0.629562 + 0.528266i
\(516\) 0 0
\(517\) 5.17581 29.3535i 0.227632 1.29097i
\(518\) 86.8597 31.6143i 3.81640 1.38905i
\(519\) 0 0
\(520\) −0.479268 2.71806i −0.0210173 0.119195i
\(521\) −18.7094 32.4056i −0.819673 1.41972i −0.905923 0.423442i \(-0.860822\pi\)
0.0862502 0.996274i \(-0.472512\pi\)
\(522\) 0 0
\(523\) 4.22489 7.31773i 0.184742 0.319982i −0.758748 0.651385i \(-0.774188\pi\)
0.943489 + 0.331403i \(0.107522\pi\)
\(524\) 36.2619 + 13.1982i 1.58411 + 0.576568i
\(525\) 0 0
\(526\) 44.6029 + 37.4263i 1.94478 + 1.63186i
\(527\) 2.66815 + 2.23885i 0.116227 + 0.0975256i
\(528\) 0 0
\(529\) 4.20916 + 1.53201i 0.183007 + 0.0666091i
\(530\) 13.9242 24.1175i 0.604829 1.04760i
\(531\) 0 0
\(532\) 11.2100 + 19.4163i 0.486017 + 0.841805i
\(533\) −0.477330 2.70707i −0.0206754 0.117256i
\(534\) 0 0
\(535\) 14.4529 5.26043i 0.624854 0.227428i
\(536\) −0.786209 + 4.45881i −0.0339591 + 0.192591i
\(537\) 0 0
\(538\) −15.3341 + 12.8668i −0.661098 + 0.554727i
\(539\) 68.5065 2.95078
\(540\) 0 0
\(541\) 12.6259 0.542828 0.271414 0.962463i \(-0.412509\pi\)
0.271414 + 0.962463i \(0.412509\pi\)
\(542\) −42.7798 + 35.8965i −1.83755 + 1.54189i
\(543\) 0 0
\(544\) 3.25680 18.4702i 0.139634 0.791904i
\(545\) −10.9445 + 3.98347i −0.468811 + 0.170633i
\(546\) 0 0
\(547\) 5.45169 + 30.9181i 0.233098 + 1.32196i 0.846583 + 0.532256i \(0.178656\pi\)
−0.613486 + 0.789706i \(0.710233\pi\)
\(548\) 4.58365 + 7.93912i 0.195804 + 0.339142i
\(549\) 0 0
\(550\) −3.13563 + 5.43107i −0.133704 + 0.231582i
\(551\) 5.15008 + 1.87448i 0.219401 + 0.0798554i
\(552\) 0 0
\(553\) 16.9090 + 14.1883i 0.719044 + 0.603349i
\(554\) −0.610144 0.511971i −0.0259225 0.0217516i
\(555\) 0 0
\(556\) −31.3838 11.4228i −1.33097 0.484433i
\(557\) 7.96515 13.7960i 0.337494 0.584557i −0.646467 0.762942i \(-0.723754\pi\)
0.983961 + 0.178385i \(0.0570874\pi\)
\(558\) 0 0
\(559\) −3.33484 5.77610i −0.141048 0.244303i
\(560\) 4.71225 + 26.7245i 0.199129 + 1.12932i
\(561\) 0 0
\(562\) 27.9195 10.1619i 1.17771 0.428652i
\(563\) −4.31704 + 24.4832i −0.181942 + 1.03184i 0.747881 + 0.663833i \(0.231072\pi\)
−0.929822 + 0.368009i \(0.880040\pi\)
\(564\) 0 0
\(565\) 3.81167 3.19837i 0.160358 0.134557i
\(566\) −33.0695 −1.39001
\(567\) 0 0
\(568\) −3.38165 −0.141891
\(569\) 14.7004 12.3351i 0.616273 0.517114i −0.280357 0.959896i \(-0.590453\pi\)
0.896629 + 0.442782i \(0.146008\pi\)
\(570\) 0 0
\(571\) −3.53882 + 20.0696i −0.148095 + 0.839888i 0.816735 + 0.577013i \(0.195782\pi\)
−0.964830 + 0.262875i \(0.915329\pi\)
\(572\) 11.9285 4.34162i 0.498756 0.181532i
\(573\) 0 0
\(574\) −4.04452 22.9376i −0.168815 0.957398i
\(575\) −1.53036 2.65066i −0.0638205 0.110540i
\(576\) 0 0
\(577\) −11.6495 + 20.1776i −0.484976 + 0.840004i −0.999851 0.0172619i \(-0.994505\pi\)
0.514875 + 0.857265i \(0.327838\pi\)
\(578\) −22.7907 8.29515i −0.947970 0.345033i
\(579\) 0 0
\(580\) −11.9006 9.98581i −0.494147 0.414638i
\(581\) −31.3972 26.3454i −1.30257 1.09299i
\(582\) 0 0
\(583\) 24.6745 + 8.98079i 1.02191 + 0.371946i
\(584\) 6.99237 12.1111i 0.289346 0.501163i
\(585\) 0 0
\(586\) 26.1636 + 45.3167i 1.08081 + 1.87201i
\(587\) −6.40923 36.3485i −0.264537 1.50026i −0.770350 0.637621i \(-0.779918\pi\)
0.505813 0.862643i \(-0.331193\pi\)
\(588\) 0 0
\(589\) 2.54512 0.926348i 0.104870 0.0381695i
\(590\) 0.200415 1.13661i 0.00825094 0.0467934i
\(591\) 0 0
\(592\) −18.5723 + 15.5840i −0.763318 + 0.640500i
\(593\) 4.36830 0.179385 0.0896923 0.995970i \(-0.471412\pi\)
0.0896923 + 0.995970i \(0.471412\pi\)
\(594\) 0 0
\(595\) −23.7340 −0.973000
\(596\) 17.1730 14.4099i 0.703434 0.590251i
\(597\) 0 0
\(598\) −1.93109 + 10.9518i −0.0789682 + 0.447851i
\(599\) 29.3237 10.6729i 1.19813 0.436085i 0.335561 0.942019i \(-0.391074\pi\)
0.862572 + 0.505934i \(0.168852\pi\)
\(600\) 0 0
\(601\) 7.62960 + 43.2696i 0.311218 + 1.76500i 0.592686 + 0.805433i \(0.298067\pi\)
−0.281468 + 0.959571i \(0.590821\pi\)
\(602\) −28.2568 48.9422i −1.15166 1.99474i
\(603\) 0 0
\(604\) 0.896114 1.55211i 0.0364623 0.0631546i
\(605\) 12.1010 + 4.40441i 0.491977 + 0.179065i
\(606\) 0 0
\(607\) 13.2975 + 11.1579i 0.539729 + 0.452886i 0.871445 0.490493i \(-0.163183\pi\)
−0.331716 + 0.943379i \(0.607628\pi\)
\(608\) −11.1723 9.37463i −0.453095 0.380192i
\(609\) 0 0
\(610\) 18.4257 + 6.70642i 0.746036 + 0.271535i
\(611\) 4.36740 7.56456i 0.176686 0.306029i
\(612\) 0 0
\(613\) 0.599024 + 1.03754i 0.0241944 + 0.0419059i 0.877869 0.478901i \(-0.158965\pi\)
−0.853675 + 0.520807i \(0.825631\pi\)
\(614\) 7.52449 + 42.6735i 0.303664 + 1.72216i
\(615\) 0 0
\(616\) 20.7207 7.54173i 0.834862 0.303865i
\(617\) 4.51723 25.6185i 0.181857 1.03136i −0.748070 0.663619i \(-0.769020\pi\)
0.929927 0.367743i \(-0.119869\pi\)
\(618\) 0 0
\(619\) 7.37804 6.19091i 0.296549 0.248834i −0.482357 0.875974i \(-0.660219\pi\)
0.778906 + 0.627141i \(0.215775\pi\)
\(620\) −7.67733 −0.308329
\(621\) 0 0
\(622\) −47.1311 −1.88978
\(623\) 63.0063 52.8685i 2.52429 2.11813i
\(624\) 0 0
\(625\) −3.63587 + 20.6201i −0.145435 + 0.824802i
\(626\) −22.3092 + 8.11987i −0.891653 + 0.324535i
\(627\) 0 0
\(628\) −6.03648 34.2346i −0.240882 1.36611i
\(629\) −10.6022 18.3635i −0.422737 0.732202i
\(630\) 0 0
\(631\) 7.08366 12.2693i 0.281996 0.488431i −0.689880 0.723924i \(-0.742337\pi\)
0.971876 + 0.235492i \(0.0756702\pi\)
\(632\) 4.68844 + 1.70645i 0.186496 + 0.0678791i
\(633\) 0 0
\(634\) −41.0494 34.4445i −1.63028 1.36797i
\(635\) 14.6502 + 12.2930i 0.581376 + 0.487833i
\(636\) 0 0
\(637\) 18.8652 + 6.86638i 0.747468 + 0.272056i
\(638\) 13.1465 22.7704i 0.520476 0.901490i
\(639\) 0 0
\(640\) 8.77695 + 15.2021i 0.346939 + 0.600917i
\(641\) 3.85515 + 21.8636i 0.152269 + 0.863561i 0.961240 + 0.275713i \(0.0889138\pi\)
−0.808971 + 0.587849i \(0.799975\pi\)
\(642\) 0 0
\(643\) −20.2380 + 7.36602i −0.798107 + 0.290487i −0.708702 0.705508i \(-0.750719\pi\)
−0.0894054 + 0.995995i \(0.528497\pi\)
\(644\) −9.11568 + 51.6976i −0.359208 + 2.03717i
\(645\) 0 0
\(646\) 7.07207 5.93417i 0.278247 0.233477i
\(647\) 13.4037 0.526952 0.263476 0.964666i \(-0.415131\pi\)
0.263476 + 0.964666i \(0.415131\pi\)
\(648\) 0 0
\(649\) 1.08823 0.0427168
\(650\) −1.40784 + 1.18132i −0.0552200 + 0.0463351i
\(651\) 0 0
\(652\) −0.521261 + 2.95622i −0.0204142 + 0.115774i
\(653\) 17.7704 6.46790i 0.695409 0.253108i 0.0299599 0.999551i \(-0.490462\pi\)
0.665450 + 0.746443i \(0.268240\pi\)
\(654\) 0 0
\(655\) 5.51614 + 31.2836i 0.215533 + 1.22235i
\(656\) 3.05455 + 5.29063i 0.119260 + 0.206564i
\(657\) 0 0
\(658\) 37.0059 64.0962i 1.44264 2.49873i
\(659\) 0.0264819 + 0.00963862i 0.00103159 + 0.000375467i 0.342536 0.939505i \(-0.388714\pi\)
−0.341504 + 0.939880i \(0.610936\pi\)
\(660\) 0 0
\(661\) −34.5040 28.9523i −1.34205 1.12611i −0.981095 0.193529i \(-0.938007\pi\)
−0.360954 0.932583i \(-0.617549\pi\)
\(662\) 42.5943 + 35.7408i 1.65547 + 1.38911i
\(663\) 0 0
\(664\) −8.70565 3.16860i −0.337845 0.122965i
\(665\) −9.22800 + 15.9834i −0.357846 + 0.619808i
\(666\) 0 0
\(667\) 6.41623 + 11.1132i 0.248438 + 0.430306i
\(668\) −10.4567 59.3029i −0.404582 2.29450i
\(669\) 0 0
\(670\) −17.0838 + 6.21799i −0.660005 + 0.240222i
\(671\) −3.21049 + 18.2076i −0.123940 + 0.702897i
\(672\) 0 0
\(673\) −7.47636 + 6.27341i −0.288192 + 0.241822i −0.775409 0.631459i \(-0.782456\pi\)
0.487217 + 0.873281i \(0.338012\pi\)
\(674\) −23.2607 −0.895968
\(675\) 0 0
\(676\) −28.9847 −1.11480
\(677\) 31.3165 26.2776i 1.20359 1.00993i 0.204070 0.978956i \(-0.434583\pi\)
0.999520 0.0309756i \(-0.00986142\pi\)
\(678\) 0 0
\(679\) −4.30224 + 24.3992i −0.165105 + 0.936356i
\(680\) −5.04122 + 1.83486i −0.193322 + 0.0703635i
\(681\) 0 0
\(682\) −2.25634 12.7964i −0.0863999 0.489998i
\(683\) 22.0126 + 38.1269i 0.842287 + 1.45888i 0.887957 + 0.459927i \(0.152125\pi\)
−0.0456696 + 0.998957i \(0.514542\pi\)
\(684\) 0 0
\(685\) −3.77322 + 6.53541i −0.144167 + 0.249705i
\(686\) 92.0740 + 33.5122i 3.51540 + 1.27950i
\(687\) 0 0
\(688\) 11.3550 + 9.52797i 0.432905 + 0.363250i
\(689\) 5.89470 + 4.94624i 0.224570 + 0.188437i
\(690\) 0 0
\(691\) −20.2519 7.37108i −0.770418 0.280409i −0.0732468 0.997314i \(-0.523336\pi\)
−0.697171 + 0.716905i \(0.745558\pi\)
\(692\) 11.4970 19.9133i 0.437049 0.756991i
\(693\) 0 0
\(694\) 3.73302 + 6.46577i 0.141703 + 0.245437i
\(695\) −4.77408 27.0752i −0.181091 1.02702i
\(696\) 0 0
\(697\) −5.02084 + 1.82743i −0.190178 + 0.0692190i
\(698\) 10.7739 61.1016i 0.407796 2.31273i
\(699\) 0 0
\(700\) −6.64568 + 5.57639i −0.251183 + 0.210768i
\(701\) −12.8521 −0.485419 −0.242709 0.970099i \(-0.578036\pi\)
−0.242709 + 0.970099i \(0.578036\pi\)
\(702\) 0 0
\(703\) −16.4889 −0.621891
\(704\) −36.4177 + 30.5580i −1.37254 + 1.15170i
\(705\) 0 0
\(706\) 9.25353 52.4794i 0.348261 1.97509i
\(707\) −84.6548 + 30.8118i −3.18377 + 1.15880i
\(708\) 0 0
\(709\) −8.63235 48.9565i −0.324195 1.83860i −0.515276 0.857025i \(-0.672310\pi\)
0.191081 0.981574i \(-0.438801\pi\)
\(710\) −6.78937 11.7595i −0.254800 0.441327i
\(711\) 0 0
\(712\) 9.29562 16.1005i 0.348368 0.603392i
\(713\) 5.95923 + 2.16898i 0.223175 + 0.0812290i
\(714\) 0 0
\(715\) 8.00489 + 6.71690i 0.299366 + 0.251198i
\(716\) 20.4295 + 17.1424i 0.763486 + 0.640641i
\(717\) 0 0
\(718\) 8.40133 + 3.05784i 0.313535 + 0.114117i
\(719\) 2.81873 4.88218i 0.105121 0.182075i −0.808667 0.588267i \(-0.799810\pi\)
0.913788 + 0.406192i \(0.133144\pi\)
\(720\) 0 0
\(721\) −21.8330 37.8159i −0.813104 1.40834i
\(722\) 5.76453 + 32.6923i 0.214534 + 1.21668i
\(723\) 0 0
\(724\) 3.45839 1.25875i 0.128530 0.0467811i
\(725\) −0.368254 + 2.08847i −0.0136766 + 0.0775638i
\(726\) 0 0
\(727\) −34.7894 + 29.1917i −1.29027 + 1.08266i −0.298525 + 0.954402i \(0.596495\pi\)
−0.991741 + 0.128260i \(0.959061\pi\)
\(728\) 6.46195 0.239496
\(729\) 0 0
\(730\) 56.1546 2.07837
\(731\) −9.93117 + 8.33324i −0.367317 + 0.308216i
\(732\) 0 0
\(733\) −4.45700 + 25.2769i −0.164623 + 0.933624i 0.784829 + 0.619712i \(0.212751\pi\)
−0.949452 + 0.313912i \(0.898360\pi\)
\(734\) 34.9386 12.7166i 1.28961 0.469378i
\(735\) 0 0
\(736\) −5.92978 33.6295i −0.218575 1.23960i
\(737\) −8.57098 14.8454i −0.315716 0.546837i
\(738\) 0 0
\(739\) 7.22763 12.5186i 0.265873 0.460505i −0.701919 0.712256i \(-0.747673\pi\)
0.967792 + 0.251752i \(0.0810066\pi\)
\(740\) 43.9203 + 15.9857i 1.61454 + 0.587645i
\(741\) 0 0
\(742\) 49.9471 + 41.9106i 1.83362 + 1.53859i
\(743\) 26.6535 + 22.3650i 0.977824 + 0.820492i 0.983760 0.179491i \(-0.0574450\pi\)
−0.00593583 + 0.999982i \(0.501889\pi\)
\(744\) 0 0
\(745\) 17.3412 + 6.31168i 0.635332 + 0.231242i
\(746\) −31.5084 + 54.5742i −1.15360 + 1.99810i
\(747\) 0 0
\(748\) −12.3371 21.3685i −0.451089 0.781308i
\(749\) 6.25310 + 35.4631i 0.228483 + 1.29579i
\(750\) 0 0
\(751\) −17.0258 + 6.19687i −0.621279 + 0.226127i −0.633431 0.773799i \(-0.718354\pi\)
0.0121520 + 0.999926i \(0.496132\pi\)
\(752\) −3.37094 + 19.1176i −0.122926 + 0.697146i
\(753\) 0 0
\(754\) 5.90254 4.95282i 0.214958 0.180371i
\(755\) 1.47535 0.0536933
\(756\) 0 0
\(757\) −37.0045 −1.34495 −0.672475 0.740120i \(-0.734769\pi\)
−0.672475 + 0.740120i \(0.734769\pi\)
\(758\) −34.1076 + 28.6197i −1.23884 + 1.03951i
\(759\) 0 0
\(760\) −0.724413 + 4.10835i −0.0262772 + 0.149026i
\(761\) 11.6939 4.25624i 0.423905 0.154289i −0.121254 0.992621i \(-0.538692\pi\)
0.545159 + 0.838333i \(0.316469\pi\)
\(762\) 0 0
\(763\) −4.73517 26.8545i −0.171425 0.972197i
\(764\) −15.6257 27.0644i −0.565316 0.979156i
\(765\) 0 0
\(766\) 10.5155 18.2133i 0.379939 0.658074i
\(767\) 0.299676 + 0.109073i 0.0108207 + 0.00393840i
\(768\) 0 0
\(769\) −31.3202 26.2807i −1.12943 0.947707i −0.130391 0.991463i \(-0.541623\pi\)
−0.999042 + 0.0437551i \(0.986068\pi\)
\(770\) 67.8272 + 56.9138i 2.44432 + 2.05103i
\(771\) 0 0
\(772\) −49.1087 17.8741i −1.76746 0.643303i
\(773\) 18.2081 31.5374i 0.654900 1.13432i −0.327019 0.945018i \(-0.606044\pi\)
0.981919 0.189302i \(-0.0606226\pi\)
\(774\) 0 0
\(775\) 0.524012 + 0.907615i 0.0188231 + 0.0326025i
\(776\) 0.972463 + 5.51511i 0.0349094 + 0.197981i
\(777\) 0 0
\(778\) −42.1635 + 15.3463i −1.51164 + 0.550190i
\(779\) −0.721484 + 4.09174i −0.0258498 + 0.146602i
\(780\) 0 0
\(781\) 9.80789 8.22980i 0.350954 0.294485i
\(782\) 21.6160 0.772985
\(783\) 0 0
\(784\) −44.6174 −1.59348
\(785\) 21.9214 18.3942i 0.782409 0.656519i
\(786\) 0 0
\(787\) 3.18595 18.0684i 0.113567 0.644070i −0.873883 0.486136i \(-0.838406\pi\)
0.987450 0.157933i \(-0.0504831\pi\)
\(788\) 33.5424 12.2084i 1.19490 0.434908i
\(789\) 0 0
\(790\) 3.47891 + 19.7299i 0.123774 + 0.701958i
\(791\) 5.82488 + 10.0890i 0.207109 + 0.358723i
\(792\) 0 0
\(793\) −2.70904 + 4.69220i −0.0962009 + 0.166625i
\(794\) −19.5276 7.10747i −0.693009 0.252235i
\(795\) 0 0
\(796\) 39.1768 + 32.8733i 1.38859 + 1.16516i
\(797\) 2.65429 + 2.22721i 0.0940196 + 0.0788918i 0.688586 0.725155i \(-0.258232\pi\)
−0.594566 + 0.804047i \(0.702676\pi\)
\(798\) 0 0
\(799\) −15.9544 5.80693i −0.564426 0.205434i
\(800\) 2.82166 4.88726i 0.0997608 0.172791i
\(801\) 0 0
\(802\) −20.3358 35.2227i −0.718083 1.24376i
\(803\) 9.19428 + 52.1433i 0.324459 + 1.84010i
\(804\) 0 0
\(805\) −40.6074 + 14.7799i −1.43122 + 0.520922i
\(806\) 0.661226 3.75000i 0.0232907 0.132088i
\(807\) 0 0
\(808\) −15.5991 + 13.0892i −0.548773 + 0.460475i
\(809\) −24.8406 −0.873348 −0.436674 0.899620i \(-0.643844\pi\)
−0.436674 + 0.899620i \(0.643844\pi\)
\(810\) 0 0
\(811\) −40.3286 −1.41613 −0.708063 0.706149i \(-0.750431\pi\)
−0.708063 + 0.706149i \(0.750431\pi\)
\(812\) 27.8628 23.3797i 0.977794 0.820466i
\(813\) 0 0
\(814\) −13.7364 + 77.9033i −0.481462 + 2.73051i
\(815\) −2.32205 + 0.845157i −0.0813379 + 0.0296046i
\(816\) 0 0
\(817\) 1.75058 + 9.92805i 0.0612451 + 0.347338i
\(818\) 15.9330 + 27.5968i 0.557084 + 0.964898i
\(819\) 0 0
\(820\) 5.88862 10.1994i 0.205640 0.356178i
\(821\) −37.7584 13.7429i −1.31778 0.479631i −0.415031 0.909807i \(-0.636229\pi\)
−0.902745 + 0.430176i \(0.858452\pi\)
\(822\) 0 0
\(823\) −36.7359 30.8251i −1.28053 1.07450i −0.993170 0.116675i \(-0.962776\pi\)
−0.287364 0.957821i \(-0.592779\pi\)
\(824\) −7.56095 6.34439i −0.263398 0.221017i
\(825\) 0 0
\(826\) 2.53922 + 0.924200i 0.0883507 + 0.0321570i
\(827\) 2.50024 4.33054i 0.0869419 0.150588i −0.819275 0.573401i \(-0.805624\pi\)
0.906217 + 0.422813i \(0.138957\pi\)
\(828\) 0 0
\(829\) −14.8519 25.7242i −0.515826 0.893438i −0.999831 0.0183722i \(-0.994152\pi\)
0.484005 0.875065i \(-0.339182\pi\)
\(830\) −6.45976 36.6351i −0.224222 1.27162i
\(831\) 0 0
\(832\) −13.0915 + 4.76490i −0.453865 + 0.165193i
\(833\) 6.77624 38.4299i 0.234783 1.33152i
\(834\) 0 0
\(835\) 37.9734 31.8634i 1.31412 1.10268i
\(836\) −19.1871 −0.663599
\(837\) 0 0
\(838\) −12.3502 −0.426632
\(839\) −19.8440 + 16.6511i −0.685092 + 0.574860i −0.917489 0.397761i \(-0.869787\pi\)
0.232398 + 0.972621i \(0.425343\pi\)
\(840\) 0 0
\(841\) −3.49185 + 19.8033i −0.120409 + 0.682871i
\(842\) −26.5854 + 9.67630i −0.916194 + 0.333467i
\(843\) 0 0
\(844\) −4.30884 24.4366i −0.148316 0.841144i
\(845\) −11.9300 20.6633i −0.410403 0.710840i
\(846\) 0 0
\(847\) −15.0751 + 26.1109i −0.517988 + 0.897182i
\(848\) −16.0702 5.84908i −0.551853 0.200858i
\(849\) 0 0
\(850\) 2.73650 + 2.29619i 0.0938611 + 0.0787588i
\(851\) −29.5752 24.8165i −1.01382 0.850700i
\(852\) 0 0
\(853\) 4.69063 + 1.70725i 0.160604 + 0.0584551i 0.421071 0.907028i \(-0.361654\pi\)
−0.260467 + 0.965483i \(0.583877\pi\)
\(854\) −22.9543 + 39.7580i −0.785481 + 1.36049i
\(855\) 0 0
\(856\) 4.06980 + 7.04911i 0.139103 + 0.240934i
\(857\) −2.54968 14.4599i −0.0870954 0.493942i −0.996885 0.0788722i \(-0.974868\pi\)
0.909789 0.415070i \(-0.136243\pi\)
\(858\) 0 0
\(859\) 16.4304 5.98017i 0.560598 0.204041i −0.0461511 0.998934i \(-0.514696\pi\)
0.606749 + 0.794894i \(0.292473\pi\)
\(860\) 4.96215 28.1418i 0.169208 0.959626i
\(861\) 0 0
\(862\) 59.2814 49.7430i 2.01913 1.69425i
\(863\) 6.33263 0.215565 0.107783 0.994174i \(-0.465625\pi\)
0.107783 + 0.994174i \(0.465625\pi\)
\(864\) 0 0
\(865\) 18.9284 0.643585
\(866\) 17.7049 14.8562i 0.601637 0.504833i
\(867\) 0 0
\(868\) 3.12130 17.7018i 0.105944 0.600838i
\(869\) −17.7509 + 6.46082i −0.602160 + 0.219168i
\(870\) 0 0
\(871\) −0.872319 4.94717i −0.0295574 0.167628i
\(872\) −3.08187 5.33795i −0.104365 0.180766i
\(873\) 0 0
\(874\) 8.40448 14.5570i 0.284286 0.492397i
\(875\) −53.8895 19.6142i −1.82180 0.663080i
\(876\) 0 0
\(877\) 24.9202 + 20.9105i 0.841495 + 0.706098i 0.957899 0.287104i \(-0.0926925\pi\)
−0.116405 + 0.993202i \(0.537137\pi\)
\(878\) −15.3887 12.9126i −0.519342 0.435780i
\(879\) 0 0
\(880\) −21.8230 7.94294i −0.735655 0.267756i
\(881\) 16.6800 28.8906i 0.561963 0.973348i −0.435363 0.900255i \(-0.643380\pi\)
0.997325 0.0730926i \(-0.0232869\pi\)
\(882\) 0 0
\(883\) 27.4256 + 47.5025i 0.922944 + 1.59859i 0.794835 + 0.606826i \(0.207557\pi\)
0.128109 + 0.991760i \(0.459109\pi\)
\(884\) −1.25562 7.12096i −0.0422310 0.239504i
\(885\) 0 0
\(886\) 32.9962 12.0096i 1.10853 0.403471i
\(887\) 3.65490 20.7280i 0.122720 0.695978i −0.859917 0.510435i \(-0.829485\pi\)
0.982636 0.185543i \(-0.0594044\pi\)
\(888\) 0 0
\(889\) −34.3004 + 28.7815i −1.15040 + 0.965299i
\(890\) 74.6516 2.50233
\(891\) 0 0
\(892\) 37.9158 1.26951
\(893\) −10.1138 + 8.48649i −0.338446 + 0.283990i
\(894\) 0 0
\(895\) −3.81219 + 21.6200i −0.127427 + 0.722677i
\(896\) −38.6202 + 14.0566i −1.29021 + 0.469598i
\(897\) 0 0
\(898\) 1.75043 + 9.92718i 0.0584126 + 0.331274i
\(899\) −2.19698 3.80529i −0.0732735 0.126914i
\(900\) 0 0
\(901\) 7.47859 12.9533i 0.249148 0.431537i
\(902\) 18.7307 + 6.81742i 0.623665 + 0.226995i
\(903\) 0 0
\(904\) 2.01720 + 1.69263i 0.0670911 + 0.0562962i
\(905\) 2.32082 + 1.94740i 0.0771468 + 0.0647339i
\(906\) 0 0
\(907\) −13.9432 5.07491i −0.462976 0.168509i 0.0999919 0.994988i \(-0.468118\pi\)
−0.562968 + 0.826479i \(0.690341\pi\)
\(908\) 28.5444 49.4403i 0.947278 1.64073i
\(909\) 0 0
\(910\) 12.9737 + 22.4711i 0.430074 + 0.744911i
\(911\) 3.13080 + 17.7556i 0.103728 + 0.588270i 0.991721 + 0.128413i \(0.0409883\pi\)
−0.887993 + 0.459857i \(0.847901\pi\)
\(912\) 0 0
\(913\) 32.9605 11.9967i 1.09083 0.397031i
\(914\) 8.26892 46.8954i 0.273512 1.55116i
\(915\) 0 0
\(916\) 16.7986 14.0957i 0.555041 0.465735i
\(917\) −74.3738 −2.45604
\(918\) 0 0
\(919\) 13.4881 0.444932 0.222466 0.974940i \(-0.428589\pi\)
0.222466 + 0.974940i \(0.428589\pi\)
\(920\) −7.48259 + 6.27864i −0.246694 + 0.207001i
\(921\) 0 0
\(922\) 5.50642 31.2285i 0.181344 1.02846i
\(923\) 3.52575 1.28327i 0.116052 0.0422393i
\(924\) 0 0
\(925\) −1.10793 6.28336i −0.0364284 0.206595i
\(926\) −15.7753 27.3237i −0.518410 0.897912i
\(927\) 0 0
\(928\) −11.8302 + 20.4905i −0.388344 + 0.672632i
\(929\) 35.3523 + 12.8672i 1.15987 + 0.422159i 0.849052 0.528310i \(-0.177174\pi\)
0.310820 + 0.950469i \(0.399396\pi\)
\(930\) 0 0
\(931\) −23.2455 19.5053i −0.761839 0.639259i
\(932\) −45.4600 38.1455i −1.48909 1.24950i
\(933\) 0 0
\(934\) −30.6549 11.1575i −1.00306 0.365083i
\(935\) 10.1558 17.5903i 0.332129 0.575265i
\(936\) 0 0
\(937\) −2.07229 3.58931i −0.0676988 0.117258i 0.830189 0.557482i \(-0.188232\pi\)
−0.897888 + 0.440224i \(0.854899\pi\)
\(938\) −7.39135 41.9185i −0.241336 1.36869i
\(939\) 0 0
\(940\) 35.1669 12.7997i 1.14702 0.417480i
\(941\) −0.613035 + 3.47669i −0.0199844 + 0.113337i −0.993168 0.116692i \(-0.962771\pi\)
0.973184 + 0.230029i \(0.0738821\pi\)
\(942\) 0 0
\(943\) −7.45233 + 6.25325i −0.242681 + 0.203634i
\(944\) −0.708752 −0.0230679
\(945\) 0 0
\(946\) 48.3643 1.57246
\(947\) −10.9200 + 9.16299i −0.354853 + 0.297757i −0.802735 0.596335i \(-0.796623\pi\)
0.447882 + 0.894093i \(0.352178\pi\)
\(948\) 0 0
\(949\) −2.69440 + 15.2807i −0.0874639 + 0.496033i
\(950\) 2.61032 0.950077i 0.0846898 0.0308246i
\(951\) 0 0
\(952\) −2.18110 12.3696i −0.0706899 0.400902i
\(953\) −5.82130 10.0828i −0.188570 0.326613i 0.756204 0.654336i \(-0.227052\pi\)
−0.944774 + 0.327723i \(0.893719\pi\)
\(954\) 0 0
\(955\) 12.8629 22.2792i 0.416233 0.720938i
\(956\) −23.5328 8.56523i −0.761104 0.277019i
\(957\) 0 0
\(958\) −17.0089 14.2722i −0.549534 0.461114i
\(959\) −13.5348 11.3570i −0.437061 0.366738i
\(960\) 0 0
\(961\) 27.0900 + 9.85994i 0.873870 + 0.318063i
\(962\) −11.5909 + 20.0761i −0.373707 + 0.647279i
\(963\) 0 0
\(964\) −7.18680 12.4479i −0.231471 0.400920i
\(965\) −7.47039 42.3667i −0.240480 1.36383i
\(966\) 0 0
\(967\) −27.3151 + 9.94189i −0.878395 + 0.319709i −0.741562 0.670885i \(-0.765915\pi\)
−0.136833 + 0.990594i \(0.543692\pi\)
\(968\) −1.18342 + 6.71153i −0.0380367 + 0.215717i
\(969\) 0 0
\(970\) −17.2261 + 14.4544i −0.553098 + 0.464104i
\(971\) 47.5792 1.52689 0.763444 0.645874i \(-0.223507\pi\)
0.763444 + 0.645874i \(0.223507\pi\)
\(972\) 0 0
\(973\) 64.3687 2.06357
\(974\) 26.3143 22.0803i 0.843163 0.707498i
\(975\) 0 0
\(976\) 2.09095 11.8584i 0.0669298 0.379578i
\(977\) −5.74744 + 2.09190i −0.183877 + 0.0669258i −0.432318 0.901721i \(-0.642304\pi\)
0.248441 + 0.968647i \(0.420082\pi\)
\(978\) 0 0
\(979\) 12.2228 + 69.3191i 0.390643 + 2.21545i
\(980\) 43.0073 + 74.4908i 1.37382 + 2.37952i
\(981\) 0 0
\(982\) −11.4511 + 19.8339i −0.365419 + 0.632924i
\(983\) −10.0094 3.64313i −0.319251 0.116198i 0.177424 0.984135i \(-0.443224\pi\)
−0.496675 + 0.867937i \(0.665446\pi\)
\(984\) 0 0
\(985\) 22.5093 + 18.8876i 0.717208 + 0.601809i
\(986\) −11.4731 9.62708i −0.365378 0.306589i
\(987\) 0 0
\(988\) −5.28371 1.92311i −0.168097 0.0611824i
\(989\) −11.8022 + 20.4421i −0.375289 + 0.650020i
\(990\) 0 0
\(991\) −11.9928 20.7721i −0.380964 0.659849i 0.610236 0.792219i \(-0.291074\pi\)
−0.991200 + 0.132371i \(0.957741\pi\)
\(992\) 2.03042 + 11.5151i 0.0644659 + 0.365604i
\(993\) 0 0
\(994\) 29.8745 10.8734i 0.947561 0.344884i
\(995\) −7.31048 + 41.4598i −0.231758 + 1.31436i
\(996\) 0 0
\(997\) 3.30485 2.77310i 0.104666 0.0878250i −0.588953 0.808167i \(-0.700460\pi\)
0.693619 + 0.720342i \(0.256015\pi\)
\(998\) 40.7733 1.29066
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.e.t.325.1 12
3.2 odd 2 729.2.e.k.325.2 12
9.2 odd 6 729.2.e.l.568.1 12
9.4 even 3 729.2.e.j.82.1 12
9.5 odd 6 729.2.e.u.82.2 12
9.7 even 3 729.2.e.s.568.2 12
27.2 odd 18 729.2.e.l.163.1 12
27.4 even 9 729.2.a.b.1.2 6
27.5 odd 18 729.2.c.a.244.2 12
27.7 even 9 729.2.e.j.649.1 12
27.11 odd 18 729.2.e.k.406.2 12
27.13 even 9 729.2.c.d.487.5 12
27.14 odd 18 729.2.c.a.487.2 12
27.16 even 9 inner 729.2.e.t.406.1 12
27.20 odd 18 729.2.e.u.649.2 12
27.22 even 9 729.2.c.d.244.5 12
27.23 odd 18 729.2.a.e.1.5 yes 6
27.25 even 9 729.2.e.s.163.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.2.a.b.1.2 6 27.4 even 9
729.2.a.e.1.5 yes 6 27.23 odd 18
729.2.c.a.244.2 12 27.5 odd 18
729.2.c.a.487.2 12 27.14 odd 18
729.2.c.d.244.5 12 27.22 even 9
729.2.c.d.487.5 12 27.13 even 9
729.2.e.j.82.1 12 9.4 even 3
729.2.e.j.649.1 12 27.7 even 9
729.2.e.k.325.2 12 3.2 odd 2
729.2.e.k.406.2 12 27.11 odd 18
729.2.e.l.163.1 12 27.2 odd 18
729.2.e.l.568.1 12 9.2 odd 6
729.2.e.s.163.2 12 27.25 even 9
729.2.e.s.568.2 12 9.7 even 3
729.2.e.t.325.1 12 1.1 even 1 trivial
729.2.e.t.406.1 12 27.16 even 9 inner
729.2.e.u.82.2 12 9.5 odd 6
729.2.e.u.649.2 12 27.20 odd 18