Properties

Label 729.2.e.t.406.1
Level $729$
Weight $2$
Character 729.406
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 406.1
Root \(3.10658i\) of defining polynomial
Character \(\chi\) \(=\) 729.406
Dual form 729.2.e.t.325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62787 - 1.36594i) q^{2} +(0.436855 + 2.47753i) q^{4} +(1.94605 + 0.708303i) q^{5} +(0.841963 - 4.77501i) q^{7} +(0.547989 - 0.949144i) q^{8} +(-2.20040 - 3.81121i) q^{10} +(-3.89924 + 1.41921i) q^{11} +(-0.931522 + 0.781640i) q^{13} +(-7.89299 + 6.62301i) q^{14} +(2.53953 - 0.924313i) q^{16} +(-1.18182 - 2.04697i) q^{17} +(0.919003 - 1.59176i) q^{19} +(-0.904700 + 5.13081i) q^{20} +(8.28601 + 3.01586i) q^{22} +(-0.747307 - 4.23819i) q^{23} +(-0.544815 - 0.457154i) q^{25} +2.58407 q^{26} +12.1980 q^{28} +(2.28421 + 1.91668i) q^{29} +(0.255886 + 1.45120i) q^{31} +(-7.45634 - 2.71388i) q^{32} +(-0.872200 + 4.94649i) q^{34} +(5.02066 - 8.69603i) q^{35} +(-4.48554 - 7.76918i) q^{37} +(-3.67027 + 1.33587i) q^{38} +(1.73869 - 1.45894i) q^{40} +(1.73166 - 1.45304i) q^{41} +(5.15408 - 1.87593i) q^{43} +(-5.21953 - 9.04050i) q^{44} +(-4.57260 + 7.91998i) q^{46} +(1.24734 - 7.07400i) q^{47} +(-15.5140 - 5.64663i) q^{49} +(0.262440 + 1.48837i) q^{50} +(-2.34347 - 1.96641i) q^{52} -6.32803 q^{53} -8.59334 q^{55} +(-4.07079 - 3.41580i) q^{56} +(-1.10031 - 6.24019i) q^{58} +(-0.246441 - 0.0896971i) q^{59} +(-0.773708 + 4.38792i) q^{61} +(1.56571 - 2.71188i) q^{62} +(5.72840 + 9.92188i) q^{64} +(-2.36642 + 0.861308i) q^{65} +(3.16461 - 2.65542i) q^{67} +(4.55514 - 3.82222i) q^{68} +(-20.0512 + 7.29805i) q^{70} +(-1.54276 - 2.67213i) q^{71} +(-6.38003 + 11.0505i) q^{73} +(-3.31040 + 18.7742i) q^{74} +(4.34510 + 1.58149i) q^{76} +(3.49372 + 19.8139i) q^{77} +(3.48735 + 2.92623i) q^{79} +5.59674 q^{80} -4.80368 q^{82} +(-6.47542 - 5.43352i) q^{83} +(-0.850000 - 4.82059i) q^{85} +(-10.9526 - 3.98641i) q^{86} +(-0.789708 + 4.47866i) q^{88} +(-8.48158 + 14.6905i) q^{89} +(2.94803 + 5.10614i) q^{91} +(10.1738 - 3.70295i) q^{92} +(-11.6932 + 9.81174i) q^{94} +(2.91587 - 2.44671i) q^{95} +(4.80161 - 1.74764i) q^{97} +(17.5417 + 30.3831i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 3 q^{4} + 6 q^{5} + 6 q^{7} + 6 q^{8} - 6 q^{10} - 15 q^{11} - 3 q^{13} - 21 q^{14} + 9 q^{16} - 9 q^{17} - 12 q^{19} - 3 q^{20} + 33 q^{22} + 15 q^{23} - 12 q^{25} - 48 q^{26} + 6 q^{28}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62787 1.36594i −1.15108 0.965867i −0.151331 0.988483i \(-0.548356\pi\)
−0.999744 + 0.0226162i \(0.992800\pi\)
\(3\) 0 0
\(4\) 0.436855 + 2.47753i 0.218427 + 1.23876i
\(5\) 1.94605 + 0.708303i 0.870299 + 0.316763i 0.738288 0.674485i \(-0.235634\pi\)
0.132011 + 0.991248i \(0.457857\pi\)
\(6\) 0 0
\(7\) 0.841963 4.77501i 0.318232 1.80478i −0.235263 0.971932i \(-0.575595\pi\)
0.553495 0.832853i \(-0.313294\pi\)
\(8\) 0.547989 0.949144i 0.193743 0.335573i
\(9\) 0 0
\(10\) −2.20040 3.81121i −0.695829 1.20521i
\(11\) −3.89924 + 1.41921i −1.17567 + 0.427908i −0.854669 0.519173i \(-0.826240\pi\)
−0.320997 + 0.947080i \(0.604018\pi\)
\(12\) 0 0
\(13\) −0.931522 + 0.781640i −0.258358 + 0.216788i −0.762761 0.646680i \(-0.776157\pi\)
0.504404 + 0.863468i \(0.331712\pi\)
\(14\) −7.89299 + 6.62301i −2.10949 + 1.77007i
\(15\) 0 0
\(16\) 2.53953 0.924313i 0.634882 0.231078i
\(17\) −1.18182 2.04697i −0.286633 0.496463i 0.686371 0.727252i \(-0.259203\pi\)
−0.973004 + 0.230789i \(0.925869\pi\)
\(18\) 0 0
\(19\) 0.919003 1.59176i 0.210834 0.365175i −0.741142 0.671348i \(-0.765715\pi\)
0.951976 + 0.306174i \(0.0990488\pi\)
\(20\) −0.904700 + 5.13081i −0.202297 + 1.14728i
\(21\) 0 0
\(22\) 8.28601 + 3.01586i 1.76658 + 0.642983i
\(23\) −0.747307 4.23819i −0.155824 0.883723i −0.958028 0.286673i \(-0.907451\pi\)
0.802204 0.597050i \(-0.203661\pi\)
\(24\) 0 0
\(25\) −0.544815 0.457154i −0.108963 0.0914309i
\(26\) 2.58407 0.506777
\(27\) 0 0
\(28\) 12.1980 2.30521
\(29\) 2.28421 + 1.91668i 0.424167 + 0.355918i 0.829745 0.558142i \(-0.188486\pi\)
−0.405579 + 0.914060i \(0.632930\pi\)
\(30\) 0 0
\(31\) 0.255886 + 1.45120i 0.0459584 + 0.260643i 0.999126 0.0417995i \(-0.0133091\pi\)
−0.953168 + 0.302443i \(0.902198\pi\)
\(32\) −7.45634 2.71388i −1.31811 0.479752i
\(33\) 0 0
\(34\) −0.872200 + 4.94649i −0.149581 + 0.848316i
\(35\) 5.02066 8.69603i 0.848646 1.46990i
\(36\) 0 0
\(37\) −4.48554 7.76918i −0.737418 1.27725i −0.953654 0.300905i \(-0.902711\pi\)
0.216236 0.976341i \(-0.430622\pi\)
\(38\) −3.67027 + 1.33587i −0.595396 + 0.216706i
\(39\) 0 0
\(40\) 1.73869 1.45894i 0.274912 0.230678i
\(41\) 1.73166 1.45304i 0.270440 0.226926i −0.497474 0.867479i \(-0.665739\pi\)
0.767914 + 0.640553i \(0.221295\pi\)
\(42\) 0 0
\(43\) 5.15408 1.87593i 0.785990 0.286077i 0.0823218 0.996606i \(-0.473766\pi\)
0.703668 + 0.710529i \(0.251544\pi\)
\(44\) −5.21953 9.04050i −0.786874 1.36291i
\(45\) 0 0
\(46\) −4.57260 + 7.91998i −0.674194 + 1.16774i
\(47\) 1.24734 7.07400i 0.181943 1.03185i −0.747878 0.663836i \(-0.768927\pi\)
0.929821 0.368013i \(-0.119962\pi\)
\(48\) 0 0
\(49\) −15.5140 5.64663i −2.21628 0.806661i
\(50\) 0.262440 + 1.48837i 0.0371147 + 0.210488i
\(51\) 0 0
\(52\) −2.34347 1.96641i −0.324981 0.272692i
\(53\) −6.32803 −0.869222 −0.434611 0.900618i \(-0.643114\pi\)
−0.434611 + 0.900618i \(0.643114\pi\)
\(54\) 0 0
\(55\) −8.59334 −1.15873
\(56\) −4.07079 3.41580i −0.543982 0.456455i
\(57\) 0 0
\(58\) −1.10031 6.24019i −0.144478 0.819377i
\(59\) −0.246441 0.0896971i −0.0320839 0.0116776i 0.325928 0.945394i \(-0.394323\pi\)
−0.358012 + 0.933717i \(0.616545\pi\)
\(60\) 0 0
\(61\) −0.773708 + 4.38792i −0.0990631 + 0.561815i 0.894363 + 0.447342i \(0.147629\pi\)
−0.993426 + 0.114473i \(0.963482\pi\)
\(62\) 1.56571 2.71188i 0.198845 0.344410i
\(63\) 0 0
\(64\) 5.72840 + 9.92188i 0.716050 + 1.24024i
\(65\) −2.36642 + 0.861308i −0.293519 + 0.106832i
\(66\) 0 0
\(67\) 3.16461 2.65542i 0.386619 0.324411i −0.428676 0.903458i \(-0.641020\pi\)
0.815294 + 0.579047i \(0.196575\pi\)
\(68\) 4.55514 3.82222i 0.552392 0.463512i
\(69\) 0 0
\(70\) −20.0512 + 7.29805i −2.39658 + 0.872284i
\(71\) −1.54276 2.67213i −0.183091 0.317124i 0.759840 0.650110i \(-0.225277\pi\)
−0.942932 + 0.332986i \(0.891944\pi\)
\(72\) 0 0
\(73\) −6.38003 + 11.0505i −0.746726 + 1.29337i 0.202658 + 0.979250i \(0.435042\pi\)
−0.949384 + 0.314118i \(0.898291\pi\)
\(74\) −3.31040 + 18.7742i −0.384826 + 2.18245i
\(75\) 0 0
\(76\) 4.34510 + 1.58149i 0.498417 + 0.181409i
\(77\) 3.49372 + 19.8139i 0.398146 + 2.25800i
\(78\) 0 0
\(79\) 3.48735 + 2.92623i 0.392357 + 0.329227i 0.817531 0.575885i \(-0.195342\pi\)
−0.425174 + 0.905112i \(0.639787\pi\)
\(80\) 5.59674 0.625734
\(81\) 0 0
\(82\) −4.80368 −0.530478
\(83\) −6.47542 5.43352i −0.710769 0.596406i 0.214045 0.976824i \(-0.431336\pi\)
−0.924815 + 0.380417i \(0.875780\pi\)
\(84\) 0 0
\(85\) −0.850000 4.82059i −0.0921954 0.522866i
\(86\) −10.9526 3.98641i −1.18105 0.429866i
\(87\) 0 0
\(88\) −0.789708 + 4.47866i −0.0841831 + 0.477426i
\(89\) −8.48158 + 14.6905i −0.899046 + 1.55719i −0.0703304 + 0.997524i \(0.522405\pi\)
−0.828716 + 0.559670i \(0.810928\pi\)
\(90\) 0 0
\(91\) 2.94803 + 5.10614i 0.309038 + 0.535269i
\(92\) 10.1738 3.70295i 1.06069 0.386059i
\(93\) 0 0
\(94\) −11.6932 + 9.81174i −1.20606 + 1.01200i
\(95\) 2.91587 2.44671i 0.299162 0.251027i
\(96\) 0 0
\(97\) 4.80161 1.74764i 0.487530 0.177446i −0.0865469 0.996248i \(-0.527583\pi\)
0.574077 + 0.818801i \(0.305361\pi\)
\(98\) 17.5417 + 30.3831i 1.77198 + 3.06916i
\(99\) 0 0
\(100\) 0.894607 1.54951i 0.0894607 0.154951i
\(101\) 3.22636 18.2976i 0.321035 1.82068i −0.215151 0.976581i \(-0.569025\pi\)
0.536186 0.844100i \(-0.319864\pi\)
\(102\) 0 0
\(103\) −8.46266 3.08015i −0.833850 0.303497i −0.110412 0.993886i \(-0.535217\pi\)
−0.723438 + 0.690389i \(0.757439\pi\)
\(104\) 0.231425 + 1.31248i 0.0226931 + 0.128699i
\(105\) 0 0
\(106\) 10.3012 + 8.64372i 1.00054 + 0.839552i
\(107\) 7.42680 0.717976 0.358988 0.933342i \(-0.383122\pi\)
0.358988 + 0.933342i \(0.383122\pi\)
\(108\) 0 0
\(109\) −5.62396 −0.538678 −0.269339 0.963045i \(-0.586805\pi\)
−0.269339 + 0.963045i \(0.586805\pi\)
\(110\) 13.9888 + 11.7380i 1.33378 + 1.11918i
\(111\) 0 0
\(112\) −2.27541 12.9045i −0.215006 1.21936i
\(113\) 2.25777 + 0.821761i 0.212393 + 0.0773048i 0.446026 0.895020i \(-0.352839\pi\)
−0.233632 + 0.972325i \(0.575061\pi\)
\(114\) 0 0
\(115\) 1.54763 8.77703i 0.144317 0.818463i
\(116\) −3.75075 + 6.49649i −0.348249 + 0.603184i
\(117\) 0 0
\(118\) 0.278652 + 0.482639i 0.0256520 + 0.0444305i
\(119\) −10.7694 + 3.91972i −0.987225 + 0.359321i
\(120\) 0 0
\(121\) 4.76346 3.99702i 0.433042 0.363365i
\(122\) 7.25313 6.08610i 0.656668 0.551010i
\(123\) 0 0
\(124\) −3.48360 + 1.26793i −0.312837 + 0.113863i
\(125\) −5.91378 10.2430i −0.528945 0.916159i
\(126\) 0 0
\(127\) 4.61735 7.99748i 0.409723 0.709662i −0.585135 0.810936i \(-0.698959\pi\)
0.994859 + 0.101274i \(0.0322919\pi\)
\(128\) 1.47189 8.34752i 0.130098 0.737824i
\(129\) 0 0
\(130\) 5.02872 + 1.83030i 0.441048 + 0.160528i
\(131\) −2.66359 15.1060i −0.232719 1.31981i −0.847365 0.531011i \(-0.821812\pi\)
0.614646 0.788803i \(-0.289299\pi\)
\(132\) 0 0
\(133\) −6.82691 5.72845i −0.591968 0.496720i
\(134\) −8.77871 −0.758365
\(135\) 0 0
\(136\) −2.59049 −0.222133
\(137\) −2.79144 2.34230i −0.238489 0.200116i 0.515708 0.856765i \(-0.327529\pi\)
−0.754197 + 0.656649i \(0.771974\pi\)
\(138\) 0 0
\(139\) 2.30527 + 13.0739i 0.195531 + 1.10891i 0.911661 + 0.410943i \(0.134801\pi\)
−0.716130 + 0.697967i \(0.754088\pi\)
\(140\) 23.7380 + 8.63991i 2.00622 + 0.730206i
\(141\) 0 0
\(142\) −1.13858 + 6.45719i −0.0955472 + 0.541875i
\(143\) 2.52292 4.36983i 0.210977 0.365423i
\(144\) 0 0
\(145\) 3.08759 + 5.34786i 0.256410 + 0.444115i
\(146\) 25.4802 9.27405i 2.10876 0.767526i
\(147\) 0 0
\(148\) 17.2888 14.5071i 1.42113 1.19247i
\(149\) 6.82621 5.72787i 0.559225 0.469245i −0.318826 0.947813i \(-0.603288\pi\)
0.878051 + 0.478568i \(0.158844\pi\)
\(150\) 0 0
\(151\) 0.669440 0.243656i 0.0544783 0.0198285i −0.314637 0.949212i \(-0.601883\pi\)
0.369116 + 0.929384i \(0.379661\pi\)
\(152\) −1.00721 1.74453i −0.0816953 0.141500i
\(153\) 0 0
\(154\) 21.3773 37.0265i 1.72263 2.98368i
\(155\) −0.529924 + 3.00535i −0.0425645 + 0.241395i
\(156\) 0 0
\(157\) 12.9847 + 4.72605i 1.03629 + 0.377180i 0.803474 0.595340i \(-0.202983\pi\)
0.232820 + 0.972520i \(0.425205\pi\)
\(158\) −1.67987 9.52702i −0.133643 0.757929i
\(159\) 0 0
\(160\) −12.5881 10.5627i −0.995179 0.835054i
\(161\) −20.8666 −1.64452
\(162\) 0 0
\(163\) −1.19321 −0.0934597 −0.0467298 0.998908i \(-0.514880\pi\)
−0.0467298 + 0.998908i \(0.514880\pi\)
\(164\) 4.35642 + 3.65547i 0.340180 + 0.285445i
\(165\) 0 0
\(166\) 3.11924 + 17.6901i 0.242100 + 1.37302i
\(167\) 22.4928 + 8.18670i 1.74054 + 0.633506i 0.999288 0.0377169i \(-0.0120085\pi\)
0.741255 + 0.671223i \(0.234231\pi\)
\(168\) 0 0
\(169\) −2.00065 + 11.3463i −0.153896 + 0.872790i
\(170\) −5.20096 + 9.00832i −0.398895 + 0.690907i
\(171\) 0 0
\(172\) 6.89926 + 11.9499i 0.526063 + 0.911169i
\(173\) 8.58879 3.12607i 0.652994 0.237670i 0.00578525 0.999983i \(-0.498158\pi\)
0.647209 + 0.762313i \(0.275936\pi\)
\(174\) 0 0
\(175\) −2.64163 + 2.21659i −0.199689 + 0.167559i
\(176\) −8.59045 + 7.20824i −0.647530 + 0.543342i
\(177\) 0 0
\(178\) 33.8733 12.3289i 2.53891 0.924088i
\(179\) −5.30038 9.18052i −0.396169 0.686184i 0.597081 0.802181i \(-0.296327\pi\)
−0.993250 + 0.115997i \(0.962994\pi\)
\(180\) 0 0
\(181\) 0.731460 1.26693i 0.0543690 0.0941699i −0.837560 0.546345i \(-0.816019\pi\)
0.891929 + 0.452176i \(0.149352\pi\)
\(182\) 2.17569 12.3389i 0.161273 0.914624i
\(183\) 0 0
\(184\) −4.43217 1.61318i −0.326744 0.118925i
\(185\) −3.22614 18.2963i −0.237190 1.34517i
\(186\) 0 0
\(187\) 7.51328 + 6.30439i 0.549425 + 0.461023i
\(188\) 18.0709 1.31796
\(189\) 0 0
\(190\) −8.08871 −0.586817
\(191\) 9.51601 + 7.98488i 0.688555 + 0.577766i 0.918492 0.395439i \(-0.129408\pi\)
−0.229937 + 0.973205i \(0.573852\pi\)
\(192\) 0 0
\(193\) 3.60725 + 20.4577i 0.259655 + 1.47258i 0.783834 + 0.620970i \(0.213261\pi\)
−0.524179 + 0.851608i \(0.675628\pi\)
\(194\) −10.2036 3.71380i −0.732574 0.266635i
\(195\) 0 0
\(196\) 7.21231 40.9031i 0.515165 2.92165i
\(197\) 7.09433 12.2877i 0.505450 0.875465i −0.494530 0.869161i \(-0.664660\pi\)
0.999980 0.00630469i \(-0.00200686\pi\)
\(198\) 0 0
\(199\) −10.1643 17.6051i −0.720529 1.24799i −0.960788 0.277284i \(-0.910566\pi\)
0.240259 0.970709i \(-0.422768\pi\)
\(200\) −0.732458 + 0.266593i −0.0517926 + 0.0188510i
\(201\) 0 0
\(202\) −30.2456 + 25.3790i −2.12807 + 1.78566i
\(203\) 11.0754 9.29334i 0.777339 0.652265i
\(204\) 0 0
\(205\) 4.39909 1.60114i 0.307246 0.111828i
\(206\) 9.56876 + 16.5736i 0.666687 + 1.15474i
\(207\) 0 0
\(208\) −1.64315 + 2.84601i −0.113932 + 0.197336i
\(209\) −1.32438 + 7.51092i −0.0916091 + 0.519541i
\(210\) 0 0
\(211\) 9.26849 + 3.37345i 0.638069 + 0.232238i 0.640740 0.767758i \(-0.278628\pi\)
−0.00267052 + 0.999996i \(0.500850\pi\)
\(212\) −2.76443 15.6779i −0.189862 1.07676i
\(213\) 0 0
\(214\) −12.0898 10.1446i −0.826445 0.693470i
\(215\) 11.3588 0.774665
\(216\) 0 0
\(217\) 7.14494 0.485030
\(218\) 9.15506 + 7.68201i 0.620059 + 0.520291i
\(219\) 0 0
\(220\) −3.75404 21.2902i −0.253098 1.43539i
\(221\) 2.70088 + 0.983041i 0.181681 + 0.0661265i
\(222\) 0 0
\(223\) 2.61712 14.8424i 0.175255 0.993922i −0.762594 0.646878i \(-0.776074\pi\)
0.937849 0.347044i \(-0.112815\pi\)
\(224\) −19.2368 + 33.3191i −1.28531 + 2.22623i
\(225\) 0 0
\(226\) −2.55287 4.42170i −0.169814 0.294127i
\(227\) 21.3240 7.76131i 1.41533 0.515136i 0.482637 0.875820i \(-0.339679\pi\)
0.932688 + 0.360684i \(0.117457\pi\)
\(228\) 0 0
\(229\) 6.67738 5.60299i 0.441254 0.370256i −0.394925 0.918714i \(-0.629229\pi\)
0.836178 + 0.548458i \(0.184785\pi\)
\(230\) −14.5083 + 12.1739i −0.956646 + 0.802721i
\(231\) 0 0
\(232\) 3.07092 1.11772i 0.201616 0.0733822i
\(233\) 11.7945 + 20.4286i 0.772682 + 1.33832i 0.936088 + 0.351766i \(0.114419\pi\)
−0.163406 + 0.986559i \(0.552248\pi\)
\(234\) 0 0
\(235\) 7.43792 12.8829i 0.485196 0.840385i
\(236\) 0.114568 0.649748i 0.00745775 0.0422950i
\(237\) 0 0
\(238\) 22.8852 + 8.32953i 1.48343 + 0.539923i
\(239\) 1.72858 + 9.80329i 0.111813 + 0.634122i 0.988279 + 0.152658i \(0.0487834\pi\)
−0.876466 + 0.481463i \(0.840105\pi\)
\(240\) 0 0
\(241\) 4.37676 + 3.67253i 0.281932 + 0.236569i 0.772776 0.634678i \(-0.218867\pi\)
−0.490845 + 0.871247i \(0.663312\pi\)
\(242\) −13.2140 −0.849427
\(243\) 0 0
\(244\) −11.2092 −0.717594
\(245\) −26.1914 21.9772i −1.67331 1.40407i
\(246\) 0 0
\(247\) 0.388111 + 2.20109i 0.0246949 + 0.140052i
\(248\) 1.51762 + 0.552369i 0.0963690 + 0.0350754i
\(249\) 0 0
\(250\) −4.36446 + 24.7521i −0.276033 + 1.56546i
\(251\) 3.64483 6.31303i 0.230060 0.398475i −0.727766 0.685826i \(-0.759441\pi\)
0.957825 + 0.287351i \(0.0927745\pi\)
\(252\) 0 0
\(253\) 8.92881 + 15.4651i 0.561349 + 0.972285i
\(254\) −18.4405 + 6.71180i −1.15706 + 0.421136i
\(255\) 0 0
\(256\) 3.75456 3.15045i 0.234660 0.196903i
\(257\) −17.8052 + 14.9404i −1.11066 + 0.931954i −0.998095 0.0616904i \(-0.980351\pi\)
−0.112564 + 0.993644i \(0.535906\pi\)
\(258\) 0 0
\(259\) −40.8746 + 14.8771i −2.53982 + 0.924420i
\(260\) −3.16770 5.48661i −0.196452 0.340265i
\(261\) 0 0
\(262\) −16.2979 + 28.2288i −1.00689 + 1.74398i
\(263\) −4.75789 + 26.9833i −0.293384 + 1.66386i 0.380314 + 0.924858i \(0.375816\pi\)
−0.673698 + 0.739007i \(0.735295\pi\)
\(264\) 0 0
\(265\) −12.3146 4.48216i −0.756483 0.275337i
\(266\) 3.28855 + 18.6503i 0.201634 + 1.14352i
\(267\) 0 0
\(268\) 7.96136 + 6.68037i 0.486317 + 0.408069i
\(269\) 9.41973 0.574331 0.287166 0.957881i \(-0.407287\pi\)
0.287166 + 0.957881i \(0.407287\pi\)
\(270\) 0 0
\(271\) 26.2797 1.59638 0.798189 0.602408i \(-0.205792\pi\)
0.798189 + 0.602408i \(0.205792\pi\)
\(272\) −4.89331 4.10597i −0.296700 0.248961i
\(273\) 0 0
\(274\) 1.34465 + 7.62590i 0.0812334 + 0.460697i
\(275\) 2.77317 + 1.00935i 0.167228 + 0.0608661i
\(276\) 0 0
\(277\) 0.0650854 0.369118i 0.00391060 0.0221781i −0.982790 0.184726i \(-0.940860\pi\)
0.986701 + 0.162548i \(0.0519713\pi\)
\(278\) 14.1054 24.4314i 0.845989 1.46530i
\(279\) 0 0
\(280\) −5.50253 9.53065i −0.328839 0.569566i
\(281\) −13.1384 + 4.78198i −0.783771 + 0.285269i −0.702744 0.711443i \(-0.748042\pi\)
−0.0810267 + 0.996712i \(0.525820\pi\)
\(282\) 0 0
\(283\) 11.9211 10.0030i 0.708636 0.594616i −0.215580 0.976486i \(-0.569164\pi\)
0.924216 + 0.381870i \(0.124720\pi\)
\(284\) 5.94632 4.98955i 0.352849 0.296075i
\(285\) 0 0
\(286\) −10.0759 + 3.66733i −0.595801 + 0.216854i
\(287\) −5.48027 9.49211i −0.323490 0.560301i
\(288\) 0 0
\(289\) 5.70661 9.88413i 0.335683 0.581420i
\(290\) 2.27868 12.9231i 0.133809 0.758868i
\(291\) 0 0
\(292\) −30.1652 10.9792i −1.76528 0.642510i
\(293\) 4.27595 + 24.2501i 0.249804 + 1.41671i 0.809066 + 0.587717i \(0.199973\pi\)
−0.559263 + 0.828990i \(0.688916\pi\)
\(294\) 0 0
\(295\) −0.416053 0.349110i −0.0242235 0.0203259i
\(296\) −9.83210 −0.571479
\(297\) 0 0
\(298\) −18.9361 −1.09694
\(299\) 4.00887 + 3.36384i 0.231839 + 0.194536i
\(300\) 0 0
\(301\) −4.61805 26.1903i −0.266180 1.50958i
\(302\) −1.42258 0.517777i −0.0818603 0.0297947i
\(303\) 0 0
\(304\) 0.862551 4.89177i 0.0494707 0.280562i
\(305\) −4.61365 + 7.99107i −0.264177 + 0.457567i
\(306\) 0 0
\(307\) 10.1956 + 17.6593i 0.581893 + 1.00787i 0.995255 + 0.0973012i \(0.0310210\pi\)
−0.413362 + 0.910567i \(0.635646\pi\)
\(308\) −47.5631 + 17.3116i −2.71016 + 0.986418i
\(309\) 0 0
\(310\) 4.96778 4.16846i 0.282151 0.236753i
\(311\) 16.9901 14.2564i 0.963421 0.808406i −0.0180851 0.999836i \(-0.505757\pi\)
0.981506 + 0.191430i \(0.0613125\pi\)
\(312\) 0 0
\(313\) 10.4983 3.82106i 0.593398 0.215979i −0.0278253 0.999613i \(-0.508858\pi\)
0.621223 + 0.783634i \(0.286636\pi\)
\(314\) −14.6819 25.4298i −0.828547 1.43508i
\(315\) 0 0
\(316\) −5.72635 + 9.91833i −0.322132 + 0.557950i
\(317\) 4.37883 24.8336i 0.245939 1.39479i −0.572361 0.820002i \(-0.693973\pi\)
0.818301 0.574790i \(-0.194916\pi\)
\(318\) 0 0
\(319\) −11.6268 4.23182i −0.650978 0.236937i
\(320\) 4.12004 + 23.3659i 0.230317 + 1.30619i
\(321\) 0 0
\(322\) 33.9680 + 28.5026i 1.89296 + 1.58839i
\(323\) −4.34438 −0.241728
\(324\) 0 0
\(325\) 0.864837 0.0479725
\(326\) 1.94239 + 1.62986i 0.107579 + 0.0902696i
\(327\) 0 0
\(328\) −0.430211 2.43985i −0.0237544 0.134718i
\(329\) −32.7282 11.9121i −1.80437 0.656735i
\(330\) 0 0
\(331\) −4.54362 + 25.7682i −0.249740 + 1.41635i 0.559481 + 0.828843i \(0.311000\pi\)
−0.809221 + 0.587504i \(0.800111\pi\)
\(332\) 10.6329 18.4167i 0.583555 1.01075i
\(333\) 0 0
\(334\) −25.4327 44.0507i −1.39161 2.41035i
\(335\) 8.03932 2.92607i 0.439235 0.159869i
\(336\) 0 0
\(337\) 8.38516 7.03599i 0.456769 0.383275i −0.385172 0.922845i \(-0.625858\pi\)
0.841940 + 0.539570i \(0.181413\pi\)
\(338\) 18.7551 15.7374i 1.02015 0.856004i
\(339\) 0 0
\(340\) 11.5718 4.21180i 0.627570 0.228417i
\(341\) −3.05732 5.29543i −0.165563 0.286763i
\(342\) 0 0
\(343\) −23.0545 + 39.9316i −1.24483 + 2.15611i
\(344\) 1.04385 5.91996i 0.0562805 0.319183i
\(345\) 0 0
\(346\) −18.2514 6.64298i −0.981203 0.357129i
\(347\) 0.610092 + 3.46000i 0.0327514 + 0.185743i 0.996795 0.0800030i \(-0.0254930\pi\)
−0.964043 + 0.265746i \(0.914382\pi\)
\(348\) 0 0
\(349\) −22.3661 18.7674i −1.19723 1.00459i −0.999705 0.0242965i \(-0.992265\pi\)
−0.197524 0.980298i \(-0.563290\pi\)
\(350\) 7.32796 0.391696
\(351\) 0 0
\(352\) 32.9256 1.75494
\(353\) −19.2100 16.1191i −1.02244 0.857931i −0.0325100 0.999471i \(-0.510350\pi\)
−0.989932 + 0.141540i \(0.954795\pi\)
\(354\) 0 0
\(355\) −1.10960 6.29283i −0.0588912 0.333989i
\(356\) −40.1014 14.5957i −2.12537 0.773572i
\(357\) 0 0
\(358\) −3.91176 + 22.1847i −0.206743 + 1.17250i
\(359\) −2.10362 + 3.64358i −0.111025 + 0.192301i −0.916184 0.400758i \(-0.868747\pi\)
0.805159 + 0.593059i \(0.202080\pi\)
\(360\) 0 0
\(361\) 7.81087 + 13.5288i 0.411098 + 0.712043i
\(362\) −2.92127 + 1.06325i −0.153538 + 0.0558834i
\(363\) 0 0
\(364\) −11.3627 + 9.53447i −0.595569 + 0.499742i
\(365\) −20.2430 + 16.9859i −1.05957 + 0.889081i
\(366\) 0 0
\(367\) −16.4415 + 5.98420i −0.858237 + 0.312373i −0.733394 0.679804i \(-0.762065\pi\)
−0.124843 + 0.992177i \(0.539843\pi\)
\(368\) −5.81522 10.0723i −0.303139 0.525053i
\(369\) 0 0
\(370\) −19.7400 + 34.1907i −1.02623 + 1.77749i
\(371\) −5.32797 + 30.2164i −0.276614 + 1.56876i
\(372\) 0 0
\(373\) 27.8662 + 10.1425i 1.44286 + 0.525157i 0.940586 0.339554i \(-0.110276\pi\)
0.502270 + 0.864711i \(0.332499\pi\)
\(374\) −3.61918 20.5254i −0.187144 1.06134i
\(375\) 0 0
\(376\) −6.03072 5.06038i −0.311011 0.260969i
\(377\) −3.62594 −0.186745
\(378\) 0 0
\(379\) 20.9523 1.07625 0.538124 0.842865i \(-0.319133\pi\)
0.538124 + 0.842865i \(0.319133\pi\)
\(380\) 7.33560 + 6.15530i 0.376308 + 0.315760i
\(381\) 0 0
\(382\) −4.58391 25.9966i −0.234533 1.33010i
\(383\) −9.29993 3.38490i −0.475204 0.172960i 0.0933043 0.995638i \(-0.470257\pi\)
−0.568508 + 0.822678i \(0.692479\pi\)
\(384\) 0 0
\(385\) −7.23528 + 41.0333i −0.368744 + 2.09125i
\(386\) 22.0719 38.2297i 1.12343 1.94584i
\(387\) 0 0
\(388\) 6.42745 + 11.1327i 0.326304 + 0.565175i
\(389\) 19.8414 7.22167i 1.00600 0.366153i 0.214104 0.976811i \(-0.431317\pi\)
0.791895 + 0.610658i \(0.209095\pi\)
\(390\) 0 0
\(391\) −7.79227 + 6.53849i −0.394072 + 0.330665i
\(392\) −13.8609 + 11.6307i −0.700083 + 0.587440i
\(393\) 0 0
\(394\) −28.3330 + 10.3124i −1.42739 + 0.519529i
\(395\) 4.71388 + 8.16468i 0.237181 + 0.410810i
\(396\) 0 0
\(397\) 4.88955 8.46894i 0.245399 0.425044i −0.716845 0.697233i \(-0.754414\pi\)
0.962244 + 0.272189i \(0.0877476\pi\)
\(398\) −7.50142 + 42.5426i −0.376012 + 2.13247i
\(399\) 0 0
\(400\) −1.80613 0.657377i −0.0903064 0.0328688i
\(401\) −3.32351 18.8486i −0.165968 0.941252i −0.948061 0.318090i \(-0.896959\pi\)
0.782092 0.623163i \(-0.214153\pi\)
\(402\) 0 0
\(403\) −1.37268 1.15181i −0.0683780 0.0573759i
\(404\) 46.7423 2.32552
\(405\) 0 0
\(406\) −30.7234 −1.52478
\(407\) 28.5163 + 23.9280i 1.41350 + 1.18607i
\(408\) 0 0
\(409\) 2.60395 + 14.7677i 0.128757 + 0.730218i 0.979005 + 0.203836i \(0.0653408\pi\)
−0.850248 + 0.526382i \(0.823548\pi\)
\(410\) −9.34819 3.40246i −0.461674 0.168036i
\(411\) 0 0
\(412\) 3.93421 22.3120i 0.193825 1.09924i
\(413\) −0.635799 + 1.10124i −0.0312856 + 0.0541883i
\(414\) 0 0
\(415\) −8.75289 15.1604i −0.429662 0.744197i
\(416\) 9.06702 3.30013i 0.444547 0.161802i
\(417\) 0 0
\(418\) 12.4154 10.4177i 0.607257 0.509549i
\(419\) 4.45210 3.73575i 0.217499 0.182504i −0.527528 0.849538i \(-0.676881\pi\)
0.745027 + 0.667034i \(0.232437\pi\)
\(420\) 0 0
\(421\) 12.5106 4.55349i 0.609730 0.221924i −0.0186551 0.999826i \(-0.505938\pi\)
0.628385 + 0.777902i \(0.283716\pi\)
\(422\) −10.4799 18.1518i −0.510154 0.883613i
\(423\) 0 0
\(424\) −3.46769 + 6.00621i −0.168406 + 0.291687i
\(425\) −0.291908 + 1.65549i −0.0141596 + 0.0803033i
\(426\) 0 0
\(427\) 20.3009 + 7.38893i 0.982430 + 0.357575i
\(428\) 3.24444 + 18.4001i 0.156826 + 0.889403i
\(429\) 0 0
\(430\) −18.4906 15.5155i −0.891697 0.748223i
\(431\) −36.4166 −1.75413 −0.877064 0.480374i \(-0.840501\pi\)
−0.877064 + 0.480374i \(0.840501\pi\)
\(432\) 0 0
\(433\) −10.8761 −0.522674 −0.261337 0.965248i \(-0.584163\pi\)
−0.261337 + 0.965248i \(0.584163\pi\)
\(434\) −11.6310 9.75957i −0.558306 0.468475i
\(435\) 0 0
\(436\) −2.45686 13.9335i −0.117662 0.667295i
\(437\) −7.43296 2.70537i −0.355567 0.129416i
\(438\) 0 0
\(439\) 1.64154 9.30965i 0.0783465 0.444325i −0.920248 0.391335i \(-0.872014\pi\)
0.998595 0.0529907i \(-0.0168754\pi\)
\(440\) −4.70906 + 8.15632i −0.224495 + 0.388837i
\(441\) 0 0
\(442\) −3.05390 5.28951i −0.145259 0.251596i
\(443\) −15.5274 + 5.65151i −0.737729 + 0.268511i −0.683433 0.730013i \(-0.739514\pi\)
−0.0542962 + 0.998525i \(0.517292\pi\)
\(444\) 0 0
\(445\) −26.9109 + 22.5809i −1.27570 + 1.07044i
\(446\) −24.5342 + 20.5866i −1.16173 + 0.974806i
\(447\) 0 0
\(448\) 52.2002 18.9993i 2.46623 0.897633i
\(449\) 2.37181 + 4.10809i 0.111933 + 0.193873i 0.916549 0.399921i \(-0.130963\pi\)
−0.804617 + 0.593794i \(0.797629\pi\)
\(450\) 0 0
\(451\) −4.69001 + 8.12334i −0.220844 + 0.382513i
\(452\) −1.04962 + 5.95268i −0.0493699 + 0.279990i
\(453\) 0 0
\(454\) −45.3142 16.4930i −2.12670 0.774055i
\(455\) 2.12031 + 12.0249i 0.0994017 + 0.563735i
\(456\) 0 0
\(457\) −17.1659 14.4039i −0.802989 0.673788i 0.145934 0.989294i \(-0.453381\pi\)
−0.948923 + 0.315506i \(0.897826\pi\)
\(458\) −18.5232 −0.865534
\(459\) 0 0
\(460\) 22.4214 1.04540
\(461\) −11.4311 9.59184i −0.532400 0.446737i 0.336529 0.941673i \(-0.390747\pi\)
−0.868929 + 0.494936i \(0.835191\pi\)
\(462\) 0 0
\(463\) −2.57818 14.6216i −0.119818 0.679524i −0.984251 0.176776i \(-0.943433\pi\)
0.864433 0.502748i \(-0.167678\pi\)
\(464\) 7.57242 + 2.75614i 0.351541 + 0.127950i
\(465\) 0 0
\(466\) 8.70450 49.3657i 0.403228 2.28682i
\(467\) 7.67571 13.2947i 0.355190 0.615206i −0.631961 0.775000i \(-0.717750\pi\)
0.987150 + 0.159794i \(0.0510830\pi\)
\(468\) 0 0
\(469\) −10.0152 17.3468i −0.462458 0.801001i
\(470\) −29.7052 + 10.8118i −1.37020 + 0.498711i
\(471\) 0 0
\(472\) −0.220182 + 0.184755i −0.0101347 + 0.00850403i
\(473\) −17.4347 + 14.6294i −0.801647 + 0.672662i
\(474\) 0 0
\(475\) −1.22837 + 0.447089i −0.0563614 + 0.0205139i
\(476\) −14.4159 24.9690i −0.660750 1.14445i
\(477\) 0 0
\(478\) 10.5768 18.3196i 0.483772 0.837918i
\(479\) 1.81438 10.2899i 0.0829012 0.470156i −0.914889 0.403706i \(-0.867722\pi\)
0.997790 0.0664497i \(-0.0211672\pi\)
\(480\) 0 0
\(481\) 10.2511 + 3.73109i 0.467409 + 0.170123i
\(482\) −2.10830 11.9568i −0.0960306 0.544617i
\(483\) 0 0
\(484\) 11.9837 + 10.0555i 0.544712 + 0.457068i
\(485\) 10.5820 0.480505
\(486\) 0 0
\(487\) −16.1649 −0.732500 −0.366250 0.930516i \(-0.619359\pi\)
−0.366250 + 0.930516i \(0.619359\pi\)
\(488\) 3.74078 + 3.13889i 0.169337 + 0.142091i
\(489\) 0 0
\(490\) 12.6165 + 71.5519i 0.569957 + 3.23239i
\(491\) 10.1274 + 3.68607i 0.457043 + 0.166350i 0.560274 0.828307i \(-0.310696\pi\)
−0.103231 + 0.994657i \(0.532918\pi\)
\(492\) 0 0
\(493\) 1.22386 6.94087i 0.0551200 0.312601i
\(494\) 2.37477 4.11322i 0.106846 0.185062i
\(495\) 0 0
\(496\) 1.99119 + 3.44885i 0.0894071 + 0.154858i
\(497\) −14.0584 + 5.11684i −0.630605 + 0.229522i
\(498\) 0 0
\(499\) −14.6982 + 12.3333i −0.657983 + 0.552114i −0.909482 0.415744i \(-0.863521\pi\)
0.251498 + 0.967858i \(0.419077\pi\)
\(500\) 22.7938 19.1263i 1.01937 0.855352i
\(501\) 0 0
\(502\) −14.5565 + 5.29815i −0.649690 + 0.236468i
\(503\) 6.01253 + 10.4140i 0.268086 + 0.464338i 0.968367 0.249529i \(-0.0802757\pi\)
−0.700282 + 0.713866i \(0.746942\pi\)
\(504\) 0 0
\(505\) 19.2389 33.3228i 0.856120 1.48284i
\(506\) 6.58959 37.3714i 0.292943 1.66136i
\(507\) 0 0
\(508\) 21.8311 + 7.94586i 0.968598 + 0.352541i
\(509\) −2.59657 14.7259i −0.115091 0.652712i −0.986705 0.162520i \(-0.948038\pi\)
0.871615 0.490192i \(-0.163073\pi\)
\(510\) 0 0
\(511\) 47.3947 + 39.7689i 2.09662 + 1.75927i
\(512\) −27.3678 −1.20950
\(513\) 0 0
\(514\) 49.3922 2.17860
\(515\) −14.2870 11.9883i −0.629562 0.528266i
\(516\) 0 0
\(517\) 5.17581 + 29.3535i 0.227632 + 1.29097i
\(518\) 86.8597 + 31.6143i 3.81640 + 1.38905i
\(519\) 0 0
\(520\) −0.479268 + 2.71806i −0.0210173 + 0.119195i
\(521\) −18.7094 + 32.4056i −0.819673 + 1.41972i 0.0862502 + 0.996274i \(0.472512\pi\)
−0.905923 + 0.423442i \(0.860822\pi\)
\(522\) 0 0
\(523\) 4.22489 + 7.31773i 0.184742 + 0.319982i 0.943489 0.331403i \(-0.107522\pi\)
−0.758748 + 0.651385i \(0.774188\pi\)
\(524\) 36.2619 13.1982i 1.58411 0.576568i
\(525\) 0 0
\(526\) 44.6029 37.4263i 1.94478 1.63186i
\(527\) 2.66815 2.23885i 0.116227 0.0975256i
\(528\) 0 0
\(529\) 4.20916 1.53201i 0.183007 0.0666091i
\(530\) 13.9242 + 24.1175i 0.604829 + 1.04760i
\(531\) 0 0
\(532\) 11.2100 19.4163i 0.486017 0.841805i
\(533\) −0.477330 + 2.70707i −0.0206754 + 0.117256i
\(534\) 0 0
\(535\) 14.4529 + 5.26043i 0.624854 + 0.227428i
\(536\) −0.786209 4.45881i −0.0339591 0.192591i
\(537\) 0 0
\(538\) −15.3341 12.8668i −0.661098 0.554727i
\(539\) 68.5065 2.95078
\(540\) 0 0
\(541\) 12.6259 0.542828 0.271414 0.962463i \(-0.412509\pi\)
0.271414 + 0.962463i \(0.412509\pi\)
\(542\) −42.7798 35.8965i −1.83755 1.54189i
\(543\) 0 0
\(544\) 3.25680 + 18.4702i 0.139634 + 0.791904i
\(545\) −10.9445 3.98347i −0.468811 0.170633i
\(546\) 0 0
\(547\) 5.45169 30.9181i 0.233098 1.32196i −0.613486 0.789706i \(-0.710233\pi\)
0.846583 0.532256i \(-0.178656\pi\)
\(548\) 4.58365 7.93912i 0.195804 0.339142i
\(549\) 0 0
\(550\) −3.13563 5.43107i −0.133704 0.231582i
\(551\) 5.15008 1.87448i 0.219401 0.0798554i
\(552\) 0 0
\(553\) 16.9090 14.1883i 0.719044 0.603349i
\(554\) −0.610144 + 0.511971i −0.0259225 + 0.0217516i
\(555\) 0 0
\(556\) −31.3838 + 11.4228i −1.33097 + 0.484433i
\(557\) 7.96515 + 13.7960i 0.337494 + 0.584557i 0.983961 0.178385i \(-0.0570874\pi\)
−0.646467 + 0.762942i \(0.723754\pi\)
\(558\) 0 0
\(559\) −3.33484 + 5.77610i −0.141048 + 0.244303i
\(560\) 4.71225 26.7245i 0.199129 1.12932i
\(561\) 0 0
\(562\) 27.9195 + 10.1619i 1.17771 + 0.428652i
\(563\) −4.31704 24.4832i −0.181942 1.03184i −0.929822 0.368009i \(-0.880040\pi\)
0.747881 0.663833i \(-0.231072\pi\)
\(564\) 0 0
\(565\) 3.81167 + 3.19837i 0.160358 + 0.134557i
\(566\) −33.0695 −1.39001
\(567\) 0 0
\(568\) −3.38165 −0.141891
\(569\) 14.7004 + 12.3351i 0.616273 + 0.517114i 0.896629 0.442782i \(-0.146008\pi\)
−0.280357 + 0.959896i \(0.590453\pi\)
\(570\) 0 0
\(571\) −3.53882 20.0696i −0.148095 0.839888i −0.964830 0.262875i \(-0.915329\pi\)
0.816735 0.577013i \(-0.195782\pi\)
\(572\) 11.9285 + 4.34162i 0.498756 + 0.181532i
\(573\) 0 0
\(574\) −4.04452 + 22.9376i −0.168815 + 0.957398i
\(575\) −1.53036 + 2.65066i −0.0638205 + 0.110540i
\(576\) 0 0
\(577\) −11.6495 20.1776i −0.484976 0.840004i 0.514875 0.857265i \(-0.327838\pi\)
−0.999851 + 0.0172619i \(0.994505\pi\)
\(578\) −22.7907 + 8.29515i −0.947970 + 0.345033i
\(579\) 0 0
\(580\) −11.9006 + 9.98581i −0.494147 + 0.414638i
\(581\) −31.3972 + 26.3454i −1.30257 + 1.09299i
\(582\) 0 0
\(583\) 24.6745 8.98079i 1.02191 0.371946i
\(584\) 6.99237 + 12.1111i 0.289346 + 0.501163i
\(585\) 0 0
\(586\) 26.1636 45.3167i 1.08081 1.87201i
\(587\) −6.40923 + 36.3485i −0.264537 + 1.50026i 0.505813 + 0.862643i \(0.331193\pi\)
−0.770350 + 0.637621i \(0.779918\pi\)
\(588\) 0 0
\(589\) 2.54512 + 0.926348i 0.104870 + 0.0381695i
\(590\) 0.200415 + 1.13661i 0.00825094 + 0.0467934i
\(591\) 0 0
\(592\) −18.5723 15.5840i −0.763318 0.640500i
\(593\) 4.36830 0.179385 0.0896923 0.995970i \(-0.471412\pi\)
0.0896923 + 0.995970i \(0.471412\pi\)
\(594\) 0 0
\(595\) −23.7340 −0.973000
\(596\) 17.1730 + 14.4099i 0.703434 + 0.590251i
\(597\) 0 0
\(598\) −1.93109 10.9518i −0.0789682 0.447851i
\(599\) 29.3237 + 10.6729i 1.19813 + 0.436085i 0.862572 0.505934i \(-0.168852\pi\)
0.335561 + 0.942019i \(0.391074\pi\)
\(600\) 0 0
\(601\) 7.62960 43.2696i 0.311218 1.76500i −0.281468 0.959571i \(-0.590821\pi\)
0.592686 0.805433i \(-0.298067\pi\)
\(602\) −28.2568 + 48.9422i −1.15166 + 1.99474i
\(603\) 0 0
\(604\) 0.896114 + 1.55211i 0.0364623 + 0.0631546i
\(605\) 12.1010 4.40441i 0.491977 0.179065i
\(606\) 0 0
\(607\) 13.2975 11.1579i 0.539729 0.452886i −0.331716 0.943379i \(-0.607628\pi\)
0.871445 + 0.490493i \(0.163183\pi\)
\(608\) −11.1723 + 9.37463i −0.453095 + 0.380192i
\(609\) 0 0
\(610\) 18.4257 6.70642i 0.746036 0.271535i
\(611\) 4.36740 + 7.56456i 0.176686 + 0.306029i
\(612\) 0 0
\(613\) 0.599024 1.03754i 0.0241944 0.0419059i −0.853675 0.520807i \(-0.825631\pi\)
0.877869 + 0.478901i \(0.158965\pi\)
\(614\) 7.52449 42.6735i 0.303664 1.72216i
\(615\) 0 0
\(616\) 20.7207 + 7.54173i 0.834862 + 0.303865i
\(617\) 4.51723 + 25.6185i 0.181857 + 1.03136i 0.929927 + 0.367743i \(0.119869\pi\)
−0.748070 + 0.663619i \(0.769020\pi\)
\(618\) 0 0
\(619\) 7.37804 + 6.19091i 0.296549 + 0.248834i 0.778906 0.627141i \(-0.215775\pi\)
−0.482357 + 0.875974i \(0.660219\pi\)
\(620\) −7.67733 −0.308329
\(621\) 0 0
\(622\) −47.1311 −1.88978
\(623\) 63.0063 + 52.8685i 2.52429 + 2.11813i
\(624\) 0 0
\(625\) −3.63587 20.6201i −0.145435 0.824802i
\(626\) −22.3092 8.11987i −0.891653 0.324535i
\(627\) 0 0
\(628\) −6.03648 + 34.2346i −0.240882 + 1.36611i
\(629\) −10.6022 + 18.3635i −0.422737 + 0.732202i
\(630\) 0 0
\(631\) 7.08366 + 12.2693i 0.281996 + 0.488431i 0.971876 0.235492i \(-0.0756702\pi\)
−0.689880 + 0.723924i \(0.742337\pi\)
\(632\) 4.68844 1.70645i 0.186496 0.0678791i
\(633\) 0 0
\(634\) −41.0494 + 34.4445i −1.63028 + 1.36797i
\(635\) 14.6502 12.2930i 0.581376 0.487833i
\(636\) 0 0
\(637\) 18.8652 6.86638i 0.747468 0.272056i
\(638\) 13.1465 + 22.7704i 0.520476 + 0.901490i
\(639\) 0 0
\(640\) 8.77695 15.2021i 0.346939 0.600917i
\(641\) 3.85515 21.8636i 0.152269 0.863561i −0.808971 0.587849i \(-0.799975\pi\)
0.961240 0.275713i \(-0.0889138\pi\)
\(642\) 0 0
\(643\) −20.2380 7.36602i −0.798107 0.290487i −0.0894054 0.995995i \(-0.528497\pi\)
−0.708702 + 0.705508i \(0.750719\pi\)
\(644\) −9.11568 51.6976i −0.359208 2.03717i
\(645\) 0 0
\(646\) 7.07207 + 5.93417i 0.278247 + 0.233477i
\(647\) 13.4037 0.526952 0.263476 0.964666i \(-0.415131\pi\)
0.263476 + 0.964666i \(0.415131\pi\)
\(648\) 0 0
\(649\) 1.08823 0.0427168
\(650\) −1.40784 1.18132i −0.0552200 0.0463351i
\(651\) 0 0
\(652\) −0.521261 2.95622i −0.0204142 0.115774i
\(653\) 17.7704 + 6.46790i 0.695409 + 0.253108i 0.665450 0.746443i \(-0.268240\pi\)
0.0299599 + 0.999551i \(0.490462\pi\)
\(654\) 0 0
\(655\) 5.51614 31.2836i 0.215533 1.22235i
\(656\) 3.05455 5.29063i 0.119260 0.206564i
\(657\) 0 0
\(658\) 37.0059 + 64.0962i 1.44264 + 2.49873i
\(659\) 0.0264819 0.00963862i 0.00103159 0.000375467i −0.341504 0.939880i \(-0.610936\pi\)
0.342536 + 0.939505i \(0.388714\pi\)
\(660\) 0 0
\(661\) −34.5040 + 28.9523i −1.34205 + 1.12611i −0.360954 + 0.932583i \(0.617549\pi\)
−0.981095 + 0.193529i \(0.938007\pi\)
\(662\) 42.5943 35.7408i 1.65547 1.38911i
\(663\) 0 0
\(664\) −8.70565 + 3.16860i −0.337845 + 0.122965i
\(665\) −9.22800 15.9834i −0.357846 0.619808i
\(666\) 0 0
\(667\) 6.41623 11.1132i 0.248438 0.430306i
\(668\) −10.4567 + 59.3029i −0.404582 + 2.29450i
\(669\) 0 0
\(670\) −17.0838 6.21799i −0.660005 0.240222i
\(671\) −3.21049 18.2076i −0.123940 0.702897i
\(672\) 0 0
\(673\) −7.47636 6.27341i −0.288192 0.241822i 0.487217 0.873281i \(-0.338012\pi\)
−0.775409 + 0.631459i \(0.782456\pi\)
\(674\) −23.2607 −0.895968
\(675\) 0 0
\(676\) −28.9847 −1.11480
\(677\) 31.3165 + 26.2776i 1.20359 + 1.00993i 0.999520 + 0.0309756i \(0.00986142\pi\)
0.204070 + 0.978956i \(0.434583\pi\)
\(678\) 0 0
\(679\) −4.30224 24.3992i −0.165105 0.936356i
\(680\) −5.04122 1.83486i −0.193322 0.0703635i
\(681\) 0 0
\(682\) −2.25634 + 12.7964i −0.0863999 + 0.489998i
\(683\) 22.0126 38.1269i 0.842287 1.45888i −0.0456696 0.998957i \(-0.514542\pi\)
0.887957 0.459927i \(-0.152125\pi\)
\(684\) 0 0
\(685\) −3.77322 6.53541i −0.144167 0.249705i
\(686\) 92.0740 33.5122i 3.51540 1.27950i
\(687\) 0 0
\(688\) 11.3550 9.52797i 0.432905 0.363250i
\(689\) 5.89470 4.94624i 0.224570 0.188437i
\(690\) 0 0
\(691\) −20.2519 + 7.37108i −0.770418 + 0.280409i −0.697171 0.716905i \(-0.745558\pi\)
−0.0732468 + 0.997314i \(0.523336\pi\)
\(692\) 11.4970 + 19.9133i 0.437049 + 0.756991i
\(693\) 0 0
\(694\) 3.73302 6.46577i 0.141703 0.245437i
\(695\) −4.77408 + 27.0752i −0.181091 + 1.02702i
\(696\) 0 0
\(697\) −5.02084 1.82743i −0.190178 0.0692190i
\(698\) 10.7739 + 61.1016i 0.407796 + 2.31273i
\(699\) 0 0
\(700\) −6.64568 5.57639i −0.251183 0.210768i
\(701\) −12.8521 −0.485419 −0.242709 0.970099i \(-0.578036\pi\)
−0.242709 + 0.970099i \(0.578036\pi\)
\(702\) 0 0
\(703\) −16.4889 −0.621891
\(704\) −36.4177 30.5580i −1.37254 1.15170i
\(705\) 0 0
\(706\) 9.25353 + 52.4794i 0.348261 + 1.97509i
\(707\) −84.6548 30.8118i −3.18377 1.15880i
\(708\) 0 0
\(709\) −8.63235 + 48.9565i −0.324195 + 1.83860i 0.191081 + 0.981574i \(0.438801\pi\)
−0.515276 + 0.857025i \(0.672310\pi\)
\(710\) −6.78937 + 11.7595i −0.254800 + 0.441327i
\(711\) 0 0
\(712\) 9.29562 + 16.1005i 0.348368 + 0.603392i
\(713\) 5.95923 2.16898i 0.223175 0.0812290i
\(714\) 0 0
\(715\) 8.00489 6.71690i 0.299366 0.251198i
\(716\) 20.4295 17.1424i 0.763486 0.640641i
\(717\) 0 0
\(718\) 8.40133 3.05784i 0.313535 0.114117i
\(719\) 2.81873 + 4.88218i 0.105121 + 0.182075i 0.913788 0.406192i \(-0.133144\pi\)
−0.808667 + 0.588267i \(0.799810\pi\)
\(720\) 0 0
\(721\) −21.8330 + 37.8159i −0.813104 + 1.40834i
\(722\) 5.76453 32.6923i 0.214534 1.21668i
\(723\) 0 0
\(724\) 3.45839 + 1.25875i 0.128530 + 0.0467811i
\(725\) −0.368254 2.08847i −0.0136766 0.0775638i
\(726\) 0 0
\(727\) −34.7894 29.1917i −1.29027 1.08266i −0.991741 0.128260i \(-0.959061\pi\)
−0.298525 0.954402i \(-0.596495\pi\)
\(728\) 6.46195 0.239496
\(729\) 0 0
\(730\) 56.1546 2.07837
\(731\) −9.93117 8.33324i −0.367317 0.308216i
\(732\) 0 0
\(733\) −4.45700 25.2769i −0.164623 0.933624i −0.949452 0.313912i \(-0.898360\pi\)
0.784829 0.619712i \(-0.212751\pi\)
\(734\) 34.9386 + 12.7166i 1.28961 + 0.469378i
\(735\) 0 0
\(736\) −5.92978 + 33.6295i −0.218575 + 1.23960i
\(737\) −8.57098 + 14.8454i −0.315716 + 0.546837i
\(738\) 0 0
\(739\) 7.22763 + 12.5186i 0.265873 + 0.460505i 0.967792 0.251752i \(-0.0810066\pi\)
−0.701919 + 0.712256i \(0.747673\pi\)
\(740\) 43.9203 15.9857i 1.61454 0.587645i
\(741\) 0 0
\(742\) 49.9471 41.9106i 1.83362 1.53859i
\(743\) 26.6535 22.3650i 0.977824 0.820492i −0.00593583 0.999982i \(-0.501889\pi\)
0.983760 + 0.179491i \(0.0574450\pi\)
\(744\) 0 0
\(745\) 17.3412 6.31168i 0.635332 0.231242i
\(746\) −31.5084 54.5742i −1.15360 1.99810i
\(747\) 0 0
\(748\) −12.3371 + 21.3685i −0.451089 + 0.781308i
\(749\) 6.25310 35.4631i 0.228483 1.29579i
\(750\) 0 0
\(751\) −17.0258 6.19687i −0.621279 0.226127i 0.0121520 0.999926i \(-0.496132\pi\)
−0.633431 + 0.773799i \(0.718354\pi\)
\(752\) −3.37094 19.1176i −0.122926 0.697146i
\(753\) 0 0
\(754\) 5.90254 + 4.95282i 0.214958 + 0.180371i
\(755\) 1.47535 0.0536933
\(756\) 0 0
\(757\) −37.0045 −1.34495 −0.672475 0.740120i \(-0.734769\pi\)
−0.672475 + 0.740120i \(0.734769\pi\)
\(758\) −34.1076 28.6197i −1.23884 1.03951i
\(759\) 0 0
\(760\) −0.724413 4.10835i −0.0262772 0.149026i
\(761\) 11.6939 + 4.25624i 0.423905 + 0.154289i 0.545159 0.838333i \(-0.316469\pi\)
−0.121254 + 0.992621i \(0.538692\pi\)
\(762\) 0 0
\(763\) −4.73517 + 26.8545i −0.171425 + 0.972197i
\(764\) −15.6257 + 27.0644i −0.565316 + 0.979156i
\(765\) 0 0
\(766\) 10.5155 + 18.2133i 0.379939 + 0.658074i
\(767\) 0.299676 0.109073i 0.0108207 0.00393840i
\(768\) 0 0
\(769\) −31.3202 + 26.2807i −1.12943 + 0.947707i −0.999042 0.0437551i \(-0.986068\pi\)
−0.130391 + 0.991463i \(0.541623\pi\)
\(770\) 67.8272 56.9138i 2.44432 2.05103i
\(771\) 0 0
\(772\) −49.1087 + 17.8741i −1.76746 + 0.643303i
\(773\) 18.2081 + 31.5374i 0.654900 + 1.13432i 0.981919 + 0.189302i \(0.0606226\pi\)
−0.327019 + 0.945018i \(0.606044\pi\)
\(774\) 0 0
\(775\) 0.524012 0.907615i 0.0188231 0.0326025i
\(776\) 0.972463 5.51511i 0.0349094 0.197981i
\(777\) 0 0
\(778\) −42.1635 15.3463i −1.51164 0.550190i
\(779\) −0.721484 4.09174i −0.0258498 0.146602i
\(780\) 0 0
\(781\) 9.80789 + 8.22980i 0.350954 + 0.294485i
\(782\) 21.6160 0.772985
\(783\) 0 0
\(784\) −44.6174 −1.59348
\(785\) 21.9214 + 18.3942i 0.782409 + 0.656519i
\(786\) 0 0
\(787\) 3.18595 + 18.0684i 0.113567 + 0.644070i 0.987450 + 0.157933i \(0.0504831\pi\)
−0.873883 + 0.486136i \(0.838406\pi\)
\(788\) 33.5424 + 12.2084i 1.19490 + 0.434908i
\(789\) 0 0
\(790\) 3.47891 19.7299i 0.123774 0.701958i
\(791\) 5.82488 10.0890i 0.207109 0.358723i
\(792\) 0 0
\(793\) −2.70904 4.69220i −0.0962009 0.166625i
\(794\) −19.5276 + 7.10747i −0.693009 + 0.252235i
\(795\) 0 0
\(796\) 39.1768 32.8733i 1.38859 1.16516i
\(797\) 2.65429 2.22721i 0.0940196 0.0788918i −0.594566 0.804047i \(-0.702676\pi\)
0.688586 + 0.725155i \(0.258232\pi\)
\(798\) 0 0
\(799\) −15.9544 + 5.80693i −0.564426 + 0.205434i
\(800\) 2.82166 + 4.88726i 0.0997608 + 0.172791i
\(801\) 0 0
\(802\) −20.3358 + 35.2227i −0.718083 + 1.24376i
\(803\) 9.19428 52.1433i 0.324459 1.84010i
\(804\) 0 0
\(805\) −40.6074 14.7799i −1.43122 0.520922i
\(806\) 0.661226 + 3.75000i 0.0232907 + 0.132088i
\(807\) 0 0
\(808\) −15.5991 13.0892i −0.548773 0.460475i
\(809\) −24.8406 −0.873348 −0.436674 0.899620i \(-0.643844\pi\)
−0.436674 + 0.899620i \(0.643844\pi\)
\(810\) 0 0
\(811\) −40.3286 −1.41613 −0.708063 0.706149i \(-0.750431\pi\)
−0.708063 + 0.706149i \(0.750431\pi\)
\(812\) 27.8628 + 23.3797i 0.977794 + 0.820466i
\(813\) 0 0
\(814\) −13.7364 77.9033i −0.481462 2.73051i
\(815\) −2.32205 0.845157i −0.0813379 0.0296046i
\(816\) 0 0
\(817\) 1.75058 9.92805i 0.0612451 0.347338i
\(818\) 15.9330 27.5968i 0.557084 0.964898i
\(819\) 0 0
\(820\) 5.88862 + 10.1994i 0.205640 + 0.356178i
\(821\) −37.7584 + 13.7429i −1.31778 + 0.479631i −0.902745 0.430176i \(-0.858452\pi\)
−0.415031 + 0.909807i \(0.636229\pi\)
\(822\) 0 0
\(823\) −36.7359 + 30.8251i −1.28053 + 1.07450i −0.287364 + 0.957821i \(0.592779\pi\)
−0.993170 + 0.116675i \(0.962776\pi\)
\(824\) −7.56095 + 6.34439i −0.263398 + 0.221017i
\(825\) 0 0
\(826\) 2.53922 0.924200i 0.0883507 0.0321570i
\(827\) 2.50024 + 4.33054i 0.0869419 + 0.150588i 0.906217 0.422813i \(-0.138957\pi\)
−0.819275 + 0.573401i \(0.805624\pi\)
\(828\) 0 0
\(829\) −14.8519 + 25.7242i −0.515826 + 0.893438i 0.484005 + 0.875065i \(0.339182\pi\)
−0.999831 + 0.0183722i \(0.994152\pi\)
\(830\) −6.45976 + 36.6351i −0.224222 + 1.27162i
\(831\) 0 0
\(832\) −13.0915 4.76490i −0.453865 0.165193i
\(833\) 6.77624 + 38.4299i 0.234783 + 1.33152i
\(834\) 0 0
\(835\) 37.9734 + 31.8634i 1.31412 + 1.10268i
\(836\) −19.1871 −0.663599
\(837\) 0 0
\(838\) −12.3502 −0.426632
\(839\) −19.8440 16.6511i −0.685092 0.574860i 0.232398 0.972621i \(-0.425343\pi\)
−0.917489 + 0.397761i \(0.869787\pi\)
\(840\) 0 0
\(841\) −3.49185 19.8033i −0.120409 0.682871i
\(842\) −26.5854 9.67630i −0.916194 0.333467i
\(843\) 0 0
\(844\) −4.30884 + 24.4366i −0.148316 + 0.841144i
\(845\) −11.9300 + 20.6633i −0.410403 + 0.710840i
\(846\) 0 0
\(847\) −15.0751 26.1109i −0.517988 0.897182i
\(848\) −16.0702 + 5.84908i −0.551853 + 0.200858i
\(849\) 0 0
\(850\) 2.73650 2.29619i 0.0938611 0.0787588i
\(851\) −29.5752 + 24.8165i −1.01382 + 0.850700i
\(852\) 0 0
\(853\) 4.69063 1.70725i 0.160604 0.0584551i −0.260467 0.965483i \(-0.583877\pi\)
0.421071 + 0.907028i \(0.361654\pi\)
\(854\) −22.9543 39.7580i −0.785481 1.36049i
\(855\) 0 0
\(856\) 4.06980 7.04911i 0.139103 0.240934i
\(857\) −2.54968 + 14.4599i −0.0870954 + 0.493942i 0.909789 + 0.415070i \(0.136243\pi\)
−0.996885 + 0.0788722i \(0.974868\pi\)
\(858\) 0 0
\(859\) 16.4304 + 5.98017i 0.560598 + 0.204041i 0.606749 0.794894i \(-0.292473\pi\)
−0.0461511 + 0.998934i \(0.514696\pi\)
\(860\) 4.96215 + 28.1418i 0.169208 + 0.959626i
\(861\) 0 0
\(862\) 59.2814 + 49.7430i 2.01913 + 1.69425i
\(863\) 6.33263 0.215565 0.107783 0.994174i \(-0.465625\pi\)
0.107783 + 0.994174i \(0.465625\pi\)
\(864\) 0 0
\(865\) 18.9284 0.643585
\(866\) 17.7049 + 14.8562i 0.601637 + 0.504833i
\(867\) 0 0
\(868\) 3.12130 + 17.7018i 0.105944 + 0.600838i
\(869\) −17.7509 6.46082i −0.602160 0.219168i
\(870\) 0 0
\(871\) −0.872319 + 4.94717i −0.0295574 + 0.167628i
\(872\) −3.08187 + 5.33795i −0.104365 + 0.180766i
\(873\) 0 0
\(874\) 8.40448 + 14.5570i 0.284286 + 0.492397i
\(875\) −53.8895 + 19.6142i −1.82180 + 0.663080i
\(876\) 0 0
\(877\) 24.9202 20.9105i 0.841495 0.706098i −0.116405 0.993202i \(-0.537137\pi\)
0.957899 + 0.287104i \(0.0926925\pi\)
\(878\) −15.3887 + 12.9126i −0.519342 + 0.435780i
\(879\) 0 0
\(880\) −21.8230 + 7.94294i −0.735655 + 0.267756i
\(881\) 16.6800 + 28.8906i 0.561963 + 0.973348i 0.997325 + 0.0730926i \(0.0232869\pi\)
−0.435363 + 0.900255i \(0.643380\pi\)
\(882\) 0 0
\(883\) 27.4256 47.5025i 0.922944 1.59859i 0.128109 0.991760i \(-0.459109\pi\)
0.794835 0.606826i \(-0.207557\pi\)
\(884\) −1.25562 + 7.12096i −0.0422310 + 0.239504i
\(885\) 0 0
\(886\) 32.9962 + 12.0096i 1.10853 + 0.403471i
\(887\) 3.65490 + 20.7280i 0.122720 + 0.695978i 0.982636 + 0.185543i \(0.0594044\pi\)
−0.859917 + 0.510435i \(0.829485\pi\)
\(888\) 0 0
\(889\) −34.3004 28.7815i −1.15040 0.965299i
\(890\) 74.6516 2.50233
\(891\) 0 0
\(892\) 37.9158 1.26951
\(893\) −10.1138 8.48649i −0.338446 0.283990i
\(894\) 0 0
\(895\) −3.81219 21.6200i −0.127427 0.722677i
\(896\) −38.6202 14.0566i −1.29021 0.469598i
\(897\) 0 0
\(898\) 1.75043 9.92718i 0.0584126 0.331274i
\(899\) −2.19698 + 3.80529i −0.0732735 + 0.126914i
\(900\) 0 0
\(901\) 7.47859 + 12.9533i 0.249148 + 0.431537i
\(902\) 18.7307 6.81742i 0.623665 0.226995i
\(903\) 0 0
\(904\) 2.01720 1.69263i 0.0670911 0.0562962i
\(905\) 2.32082 1.94740i 0.0771468 0.0647339i
\(906\) 0 0
\(907\) −13.9432 + 5.07491i −0.462976 + 0.168509i −0.562968 0.826479i \(-0.690341\pi\)
0.0999919 + 0.994988i \(0.468118\pi\)
\(908\) 28.5444 + 49.4403i 0.947278 + 1.64073i
\(909\) 0 0
\(910\) 12.9737 22.4711i 0.430074 0.744911i
\(911\) 3.13080 17.7556i 0.103728 0.588270i −0.887993 0.459857i \(-0.847901\pi\)
0.991721 0.128413i \(-0.0409883\pi\)
\(912\) 0 0
\(913\) 32.9605 + 11.9967i 1.09083 + 0.397031i
\(914\) 8.26892 + 46.8954i 0.273512 + 1.55116i
\(915\) 0 0
\(916\) 16.7986 + 14.0957i 0.555041 + 0.465735i
\(917\) −74.3738 −2.45604
\(918\) 0 0
\(919\) 13.4881 0.444932 0.222466 0.974940i \(-0.428589\pi\)
0.222466 + 0.974940i \(0.428589\pi\)
\(920\) −7.48259 6.27864i −0.246694 0.207001i
\(921\) 0 0
\(922\) 5.50642 + 31.2285i 0.181344 + 1.02846i
\(923\) 3.52575 + 1.28327i 0.116052 + 0.0422393i
\(924\) 0 0
\(925\) −1.10793 + 6.28336i −0.0364284 + 0.206595i
\(926\) −15.7753 + 27.3237i −0.518410 + 0.897912i
\(927\) 0 0
\(928\) −11.8302 20.4905i −0.388344 0.672632i
\(929\) 35.3523 12.8672i 1.15987 0.422159i 0.310820 0.950469i \(-0.399396\pi\)
0.849052 + 0.528310i \(0.177174\pi\)
\(930\) 0 0
\(931\) −23.2455 + 19.5053i −0.761839 + 0.639259i
\(932\) −45.4600 + 38.1455i −1.48909 + 1.24950i
\(933\) 0 0
\(934\) −30.6549 + 11.1575i −1.00306 + 0.365083i
\(935\) 10.1558 + 17.5903i 0.332129 + 0.575265i
\(936\) 0 0
\(937\) −2.07229 + 3.58931i −0.0676988 + 0.117258i −0.897888 0.440224i \(-0.854899\pi\)
0.830189 + 0.557482i \(0.188232\pi\)
\(938\) −7.39135 + 41.9185i −0.241336 + 1.36869i
\(939\) 0 0
\(940\) 35.1669 + 12.7997i 1.14702 + 0.417480i
\(941\) −0.613035 3.47669i −0.0199844 0.113337i 0.973184 0.230029i \(-0.0738821\pi\)
−0.993168 + 0.116692i \(0.962771\pi\)
\(942\) 0 0
\(943\) −7.45233 6.25325i −0.242681 0.203634i
\(944\) −0.708752 −0.0230679
\(945\) 0 0
\(946\) 48.3643 1.57246
\(947\) −10.9200 9.16299i −0.354853 0.297757i 0.447882 0.894093i \(-0.352178\pi\)
−0.802735 + 0.596335i \(0.796623\pi\)
\(948\) 0 0
\(949\) −2.69440 15.2807i −0.0874639 0.496033i
\(950\) 2.61032 + 0.950077i 0.0846898 + 0.0308246i
\(951\) 0 0
\(952\) −2.18110 + 12.3696i −0.0706899 + 0.400902i
\(953\) −5.82130 + 10.0828i −0.188570 + 0.326613i −0.944774 0.327723i \(-0.893719\pi\)
0.756204 + 0.654336i \(0.227052\pi\)
\(954\) 0 0
\(955\) 12.8629 + 22.2792i 0.416233 + 0.720938i
\(956\) −23.5328 + 8.56523i −0.761104 + 0.277019i
\(957\) 0 0
\(958\) −17.0089 + 14.2722i −0.549534 + 0.461114i
\(959\) −13.5348 + 11.3570i −0.437061 + 0.366738i
\(960\) 0 0
\(961\) 27.0900 9.85994i 0.873870 0.318063i
\(962\) −11.5909 20.0761i −0.373707 0.647279i
\(963\) 0 0
\(964\) −7.18680 + 12.4479i −0.231471 + 0.400920i
\(965\) −7.47039 + 42.3667i −0.240480 + 1.36383i
\(966\) 0 0
\(967\) −27.3151 9.94189i −0.878395 0.319709i −0.136833 0.990594i \(-0.543692\pi\)
−0.741562 + 0.670885i \(0.765915\pi\)
\(968\) −1.18342 6.71153i −0.0380367 0.215717i
\(969\) 0 0
\(970\) −17.2261 14.4544i −0.553098 0.464104i
\(971\) 47.5792 1.52689 0.763444 0.645874i \(-0.223507\pi\)
0.763444 + 0.645874i \(0.223507\pi\)
\(972\) 0 0
\(973\) 64.3687 2.06357
\(974\) 26.3143 + 22.0803i 0.843163 + 0.707498i
\(975\) 0 0
\(976\) 2.09095 + 11.8584i 0.0669298 + 0.379578i
\(977\) −5.74744 2.09190i −0.183877 0.0669258i 0.248441 0.968647i \(-0.420082\pi\)
−0.432318 + 0.901721i \(0.642304\pi\)
\(978\) 0 0
\(979\) 12.2228 69.3191i 0.390643 2.21545i
\(980\) 43.0073 74.4908i 1.37382 2.37952i
\(981\) 0 0
\(982\) −11.4511 19.8339i −0.365419 0.632924i
\(983\) −10.0094 + 3.64313i −0.319251 + 0.116198i −0.496675 0.867937i \(-0.665446\pi\)
0.177424 + 0.984135i \(0.443224\pi\)
\(984\) 0 0
\(985\) 22.5093 18.8876i 0.717208 0.601809i
\(986\) −11.4731 + 9.62708i −0.365378 + 0.306589i
\(987\) 0 0
\(988\) −5.28371 + 1.92311i −0.168097 + 0.0611824i
\(989\) −11.8022 20.4421i −0.375289 0.650020i
\(990\) 0 0
\(991\) −11.9928 + 20.7721i −0.380964 + 0.659849i −0.991200 0.132371i \(-0.957741\pi\)
0.610236 + 0.792219i \(0.291074\pi\)
\(992\) 2.03042 11.5151i 0.0644659 0.365604i
\(993\) 0 0
\(994\) 29.8745 + 10.8734i 0.947561 + 0.344884i
\(995\) −7.31048 41.4598i −0.231758 1.31436i
\(996\) 0 0
\(997\) 3.30485 + 2.77310i 0.104666 + 0.0878250i 0.693619 0.720342i \(-0.256015\pi\)
−0.588953 + 0.808167i \(0.700460\pi\)
\(998\) 40.7733 1.29066
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.e.t.406.1 12
3.2 odd 2 729.2.e.k.406.2 12
9.2 odd 6 729.2.e.u.649.2 12
9.4 even 3 729.2.e.s.163.2 12
9.5 odd 6 729.2.e.l.163.1 12
9.7 even 3 729.2.e.j.649.1 12
27.2 odd 18 729.2.c.a.244.2 12
27.4 even 9 729.2.e.j.82.1 12
27.5 odd 18 729.2.e.k.325.2 12
27.7 even 9 729.2.a.b.1.2 6
27.11 odd 18 729.2.c.a.487.2 12
27.13 even 9 729.2.e.s.568.2 12
27.14 odd 18 729.2.e.l.568.1 12
27.16 even 9 729.2.c.d.487.5 12
27.20 odd 18 729.2.a.e.1.5 yes 6
27.22 even 9 inner 729.2.e.t.325.1 12
27.23 odd 18 729.2.e.u.82.2 12
27.25 even 9 729.2.c.d.244.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.2.a.b.1.2 6 27.7 even 9
729.2.a.e.1.5 yes 6 27.20 odd 18
729.2.c.a.244.2 12 27.2 odd 18
729.2.c.a.487.2 12 27.11 odd 18
729.2.c.d.244.5 12 27.25 even 9
729.2.c.d.487.5 12 27.16 even 9
729.2.e.j.82.1 12 27.4 even 9
729.2.e.j.649.1 12 9.7 even 3
729.2.e.k.325.2 12 27.5 odd 18
729.2.e.k.406.2 12 3.2 odd 2
729.2.e.l.163.1 12 9.5 odd 6
729.2.e.l.568.1 12 27.14 odd 18
729.2.e.s.163.2 12 9.4 even 3
729.2.e.s.568.2 12 27.13 even 9
729.2.e.t.325.1 12 27.22 even 9 inner
729.2.e.t.406.1 12 1.1 even 1 trivial
729.2.e.u.82.2 12 27.23 odd 18
729.2.e.u.649.2 12 9.2 odd 6