Properties

Label 735.2.g.a.734.14
Level $735$
Weight $2$
Character 735.734
Analytic conductor $5.869$
Analytic rank $0$
Dimension $16$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(734,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.734");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.721389578983833600000000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 7^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 734.14
Root \(1.22796 - 0.279124i\) of defining polynomial
Character \(\chi\) \(=\) 735.734
Dual form 735.2.g.a.734.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.45591 q^{2} +1.73205i q^{3} +4.03151 q^{4} +2.23607i q^{5} +4.25377i q^{6} +4.98920 q^{8} -3.00000 q^{9} +5.49159i q^{10} +6.98277i q^{12} -3.87298 q^{15} +4.19003 q^{16} -8.06126i q^{17} -7.36774 q^{18} +5.62561i q^{19} +9.01472i q^{20} +9.58908 q^{23} +8.64155i q^{24} -5.00000 q^{25} -5.19615i q^{27} -9.51171 q^{30} -4.42678i q^{31} +0.311942 q^{32} -19.7977i q^{34} -12.0945 q^{36} +13.8160i q^{38} +11.1562i q^{40} -6.70820i q^{45} +23.5500 q^{46} +1.02391i q^{47} +7.25734i q^{48} -12.2796 q^{50} +13.9625 q^{51} +9.43433 q^{53} -12.7613i q^{54} -9.74384 q^{57} -15.6140 q^{60} +4.08075i q^{61} -10.8718i q^{62} -7.61396 q^{64} -32.4990i q^{68} +16.6088i q^{69} -14.9676 q^{72} -8.66025i q^{75} +22.6797i q^{76} -5.83648 q^{79} +9.36919i q^{80} +9.00000 q^{81} -15.0986i q^{83} +18.0255 q^{85} -16.4748i q^{90} +38.6584 q^{92} +7.66741 q^{93} +2.51464i q^{94} -12.5792 q^{95} +0.540299i q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 32 q^{4} - 48 q^{9} + 64 q^{16} - 80 q^{25} - 96 q^{36} + 128 q^{64} + 144 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45591 1.73659 0.868296 0.496046i \(-0.165215\pi\)
0.868296 + 0.496046i \(0.165215\pi\)
\(3\) 1.73205i 1.00000i
\(4\) 4.03151 2.01575
\(5\) 2.23607i 1.00000i
\(6\) 4.25377i 1.73659i
\(7\) 0 0
\(8\) 4.98920 1.76395
\(9\) −3.00000 −1.00000
\(10\) 5.49159i 1.73659i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 6.98277i 2.01575i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −3.87298 −1.00000
\(16\) 4.19003 1.04751
\(17\) − 8.06126i − 1.95514i −0.210606 0.977571i \(-0.567544\pi\)
0.210606 0.977571i \(-0.432456\pi\)
\(18\) −7.36774 −1.73659
\(19\) 5.62561i 1.29060i 0.763928 + 0.645301i \(0.223268\pi\)
−0.763928 + 0.645301i \(0.776732\pi\)
\(20\) 9.01472i 2.01575i
\(21\) 0 0
\(22\) 0 0
\(23\) 9.58908 1.99946 0.999731 0.0231881i \(-0.00738165\pi\)
0.999731 + 0.0231881i \(0.00738165\pi\)
\(24\) 8.64155i 1.76395i
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) − 5.19615i − 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −9.51171 −1.73659
\(31\) − 4.42678i − 0.795074i −0.917586 0.397537i \(-0.869865\pi\)
0.917586 0.397537i \(-0.130135\pi\)
\(32\) 0.311942 0.0551440
\(33\) 0 0
\(34\) − 19.7977i − 3.39528i
\(35\) 0 0
\(36\) −12.0945 −2.01575
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 13.8160i 2.24125i
\(39\) 0 0
\(40\) 11.1562i 1.76395i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) − 6.70820i − 1.00000i
\(46\) 23.5500 3.47225
\(47\) 1.02391i 0.149353i 0.997208 + 0.0746766i \(0.0237924\pi\)
−0.997208 + 0.0746766i \(0.976208\pi\)
\(48\) 7.25734i 1.04751i
\(49\) 0 0
\(50\) −12.2796 −1.73659
\(51\) 13.9625 1.95514
\(52\) 0 0
\(53\) 9.43433 1.29591 0.647953 0.761681i \(-0.275625\pi\)
0.647953 + 0.761681i \(0.275625\pi\)
\(54\) − 12.7613i − 1.73659i
\(55\) 0 0
\(56\) 0 0
\(57\) −9.74384 −1.29060
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −15.6140 −2.01575
\(61\) 4.08075i 0.522486i 0.965273 + 0.261243i \(0.0841324\pi\)
−0.965273 + 0.261243i \(0.915868\pi\)
\(62\) − 10.8718i − 1.38072i
\(63\) 0 0
\(64\) −7.61396 −0.951744
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) − 32.4990i − 3.94108i
\(69\) 16.6088i 1.99946i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −14.9676 −1.76395
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) − 8.66025i − 1.00000i
\(76\) 22.6797i 2.60154i
\(77\) 0 0
\(78\) 0 0
\(79\) −5.83648 −0.656656 −0.328328 0.944564i \(-0.606485\pi\)
−0.328328 + 0.944564i \(0.606485\pi\)
\(80\) 9.36919i 1.04751i
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 15.0986i − 1.65729i −0.559777 0.828643i \(-0.689113\pi\)
0.559777 0.828643i \(-0.310887\pi\)
\(84\) 0 0
\(85\) 18.0255 1.95514
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) − 16.4748i − 1.73659i
\(91\) 0 0
\(92\) 38.6584 4.03042
\(93\) 7.66741 0.795074
\(94\) 2.51464i 0.259366i
\(95\) −12.5792 −1.29060
\(96\) 0.540299i 0.0551440i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −20.1575 −2.01575
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 34.2907 3.39528
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 23.1699 2.25046
\(107\) −2.75559 −0.266393 −0.133196 0.991090i \(-0.542524\pi\)
−0.133196 + 0.991090i \(0.542524\pi\)
\(108\) − 20.9483i − 2.01575i
\(109\) −15.4919 −1.48386 −0.741929 0.670478i \(-0.766089\pi\)
−0.741929 + 0.670478i \(0.766089\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.4911 −1.64542 −0.822710 0.568461i \(-0.807539\pi\)
−0.822710 + 0.568461i \(0.807539\pi\)
\(114\) −23.9300 −2.24125
\(115\) 21.4418i 1.99946i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −19.3231 −1.76395
\(121\) 11.0000 1.00000
\(122\) 10.0220i 0.907345i
\(123\) 0 0
\(124\) − 17.8466i − 1.60267i
\(125\) − 11.1803i − 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −19.3231 −1.70794
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 11.6190 1.00000
\(136\) − 40.2192i − 3.44877i
\(137\) −2.15624 −0.184220 −0.0921099 0.995749i \(-0.529361\pi\)
−0.0921099 + 0.995749i \(0.529361\pi\)
\(138\) 40.7897i 3.47225i
\(139\) − 12.5883i − 1.06772i −0.845572 0.533862i \(-0.820740\pi\)
0.845572 0.533862i \(-0.179260\pi\)
\(140\) 0 0
\(141\) −1.77347 −0.149353
\(142\) 0 0
\(143\) 0 0
\(144\) −12.5701 −1.04751
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) − 21.2688i − 1.73659i
\(151\) −22.0885 −1.79754 −0.898770 0.438421i \(-0.855538\pi\)
−0.898770 + 0.438421i \(0.855538\pi\)
\(152\) 28.0673i 2.27656i
\(153\) 24.1838i 1.95514i
\(154\) 0 0
\(155\) 9.89859 0.795074
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) −14.3339 −1.14034
\(159\) 16.3407i 1.29591i
\(160\) 0.697523i 0.0551440i
\(161\) 0 0
\(162\) 22.1032 1.73659
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) − 37.0808i − 2.87803i
\(167\) 8.94427i 0.692129i 0.938211 + 0.346064i \(0.112482\pi\)
−0.938211 + 0.346064i \(0.887518\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 44.2691 3.39528
\(171\) − 16.8768i − 1.29060i
\(172\) 0 0
\(173\) 6.01343i 0.457193i 0.973521 + 0.228596i \(0.0734136\pi\)
−0.973521 + 0.228596i \(0.926586\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) − 27.0442i − 2.01575i
\(181\) 5.89364i 0.438071i 0.975717 + 0.219036i \(0.0702911\pi\)
−0.975717 + 0.219036i \(0.929709\pi\)
\(182\) 0 0
\(183\) −7.06806 −0.522486
\(184\) 47.8419 3.52695
\(185\) 0 0
\(186\) 18.8305 1.38072
\(187\) 0 0
\(188\) 4.12792i 0.301059i
\(189\) 0 0
\(190\) −30.8935 −2.24125
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) − 13.1878i − 0.951744i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.3147 1.94609 0.973046 0.230610i \(-0.0740720\pi\)
0.973046 + 0.230610i \(0.0740720\pi\)
\(198\) 0 0
\(199\) − 27.5920i − 1.95594i −0.208741 0.977971i \(-0.566937\pi\)
0.208741 0.977971i \(-0.433063\pi\)
\(200\) −24.9460 −1.76395
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 56.2899 3.94108
\(205\) 0 0
\(206\) 0 0
\(207\) −28.7673 −1.99946
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −7.74597 −0.533254 −0.266627 0.963800i \(-0.585909\pi\)
−0.266627 + 0.963800i \(0.585909\pi\)
\(212\) 38.0346 2.61222
\(213\) 0 0
\(214\) −6.76748 −0.462616
\(215\) 0 0
\(216\) − 25.9246i − 1.76395i
\(217\) 0 0
\(218\) −38.0468 −2.57686
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) −42.9565 −2.85743
\(227\) 17.8885i 1.18730i 0.804722 + 0.593652i \(0.202314\pi\)
−0.804722 + 0.593652i \(0.797686\pi\)
\(228\) −39.2823 −2.60154
\(229\) 29.9494i 1.97911i 0.144155 + 0.989555i \(0.453954\pi\)
−0.144155 + 0.989555i \(0.546046\pi\)
\(230\) 52.6593i 3.47225i
\(231\) 0 0
\(232\) 0 0
\(233\) −28.6125 −1.87447 −0.937234 0.348702i \(-0.886622\pi\)
−0.937234 + 0.348702i \(0.886622\pi\)
\(234\) 0 0
\(235\) −2.28954 −0.149353
\(236\) 0 0
\(237\) − 10.1091i − 0.656656i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −16.2279 −1.04751
\(241\) 27.8600i 1.79462i 0.441401 + 0.897310i \(0.354482\pi\)
−0.441401 + 0.897310i \(0.645518\pi\)
\(242\) 27.0150 1.73659
\(243\) 15.5885i 1.00000i
\(244\) 16.4516i 1.05320i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) − 22.0861i − 1.40247i
\(249\) 26.1515 1.65729
\(250\) − 27.4579i − 1.73659i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 31.2211i 1.95514i
\(256\) −32.2279 −2.01424
\(257\) 6.92820i 0.432169i 0.976375 + 0.216085i \(0.0693287\pi\)
−0.976375 + 0.216085i \(0.930671\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 32.2265 1.98717 0.993587 0.113073i \(-0.0360693\pi\)
0.993587 + 0.113073i \(0.0360693\pi\)
\(264\) 0 0
\(265\) 21.0958i 1.29591i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 28.5351 1.73659
\(271\) − 5.08953i − 0.309167i −0.987980 0.154583i \(-0.950596\pi\)
0.987980 0.154583i \(-0.0494035\pi\)
\(272\) − 33.7769i − 2.04803i
\(273\) 0 0
\(274\) −5.29553 −0.319915
\(275\) 0 0
\(276\) 66.9584i 4.03042i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) − 30.9157i − 1.85420i
\(279\) 13.2803i 0.795074i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −4.35549 −0.259366
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) − 21.7879i − 1.29060i
\(286\) 0 0
\(287\) 0 0
\(288\) −0.935825 −0.0551440
\(289\) −47.9839 −2.82258
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.8564i 0.809500i 0.914427 + 0.404750i \(0.132641\pi\)
−0.914427 + 0.404750i \(0.867359\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) − 34.9139i − 2.01575i
\(301\) 0 0
\(302\) −54.2475 −3.12159
\(303\) 0 0
\(304\) 23.5715i 1.35192i
\(305\) −9.12483 −0.522486
\(306\) 59.3932i 3.39528i
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 24.3101 1.38072
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −23.5298 −1.32366
\(317\) −10.0533 −0.564652 −0.282326 0.959319i \(-0.591106\pi\)
−0.282326 + 0.959319i \(0.591106\pi\)
\(318\) 40.1314i 2.25046i
\(319\) 0 0
\(320\) − 17.0253i − 0.951744i
\(321\) − 4.77282i − 0.266393i
\(322\) 0 0
\(323\) 45.3495 2.52331
\(324\) 36.2836 2.01575
\(325\) 0 0
\(326\) 0 0
\(327\) − 26.8328i − 1.48386i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 23.2379 1.27727 0.638635 0.769510i \(-0.279499\pi\)
0.638635 + 0.769510i \(0.279499\pi\)
\(332\) − 60.8701i − 3.34068i
\(333\) 0 0
\(334\) 21.9663i 1.20195i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −31.9269 −1.73659
\(339\) − 30.2954i − 1.64542i
\(340\) 72.6700 3.94108
\(341\) 0 0
\(342\) − 41.4480i − 2.24125i
\(343\) 0 0
\(344\) 0 0
\(345\) −37.1384 −1.99946
\(346\) 14.7685i 0.793957i
\(347\) 29.0768 1.56092 0.780461 0.625204i \(-0.214984\pi\)
0.780461 + 0.625204i \(0.214984\pi\)
\(348\) 0 0
\(349\) 27.3239i 1.46262i 0.682048 + 0.731308i \(0.261090\pi\)
−0.682048 + 0.731308i \(0.738910\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 20.7846i − 1.10625i −0.833097 0.553127i \(-0.813435\pi\)
0.833097 0.553127i \(-0.186565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) − 33.4686i − 1.76395i
\(361\) −12.6474 −0.665655
\(362\) 14.4743i 0.760751i
\(363\) 19.0526i 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) −17.3585 −0.907345
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 40.1785 2.09445
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 30.9112 1.60267
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 19.3649 1.00000
\(376\) 5.10851i 0.263451i
\(377\) 0 0
\(378\) 0 0
\(379\) −30.2146 −1.55202 −0.776009 0.630722i \(-0.782759\pi\)
−0.776009 + 0.630722i \(0.782759\pi\)
\(380\) −50.7133 −2.60154
\(381\) 0 0
\(382\) 0 0
\(383\) − 33.2689i − 1.69996i −0.526812 0.849982i \(-0.676613\pi\)
0.526812 0.849982i \(-0.323387\pi\)
\(384\) − 33.4686i − 1.70794i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) − 77.3001i − 3.90923i
\(392\) 0 0
\(393\) 0 0
\(394\) 67.0825 3.37957
\(395\) − 13.0508i − 0.656656i
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) − 67.7634i − 3.39667i
\(399\) 0 0
\(400\) −20.9501 −1.04751
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 20.1246i 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) 69.6618 3.44877
\(409\) 38.5751i 1.90742i 0.300732 + 0.953709i \(0.402769\pi\)
−0.300732 + 0.953709i \(0.597231\pi\)
\(410\) 0 0
\(411\) − 3.73471i − 0.184220i
\(412\) 0 0
\(413\) 0 0
\(414\) −70.6499 −3.47225
\(415\) 33.7615 1.65729
\(416\) 0 0
\(417\) 21.8035 1.06772
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 37.8245 1.84345 0.921727 0.387840i \(-0.126779\pi\)
0.921727 + 0.387840i \(0.126779\pi\)
\(422\) −19.0234 −0.926045
\(423\) − 3.07174i − 0.149353i
\(424\) 47.0698 2.28591
\(425\) 40.3063i 1.95514i
\(426\) 0 0
\(427\) 0 0
\(428\) −11.1092 −0.536982
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) − 21.7720i − 1.04751i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −62.4558 −2.99109
\(437\) 53.9444i 2.58051i
\(438\) 0 0
\(439\) − 29.6033i − 1.41289i −0.707768 0.706445i \(-0.750298\pi\)
0.707768 0.706445i \(-0.249702\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 42.0502 1.99786 0.998932 0.0461968i \(-0.0147101\pi\)
0.998932 + 0.0461968i \(0.0147101\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 36.8387 1.73659
\(451\) 0 0
\(452\) −70.5153 −3.31676
\(453\) − 38.2585i − 1.79754i
\(454\) 43.9327i 2.06186i
\(455\) 0 0
\(456\) −48.6140 −2.27656
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 73.5530i 3.43691i
\(459\) −41.8875 −1.95514
\(460\) 86.4429i 4.03042i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 17.1449i 0.795074i
\(466\) −70.2698 −3.25519
\(467\) 35.7771i 1.65557i 0.561048 + 0.827783i \(0.310398\pi\)
−0.561048 + 0.827783i \(0.689602\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −5.62291 −0.259366
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) − 24.8270i − 1.14034i
\(475\) − 28.1280i − 1.29060i
\(476\) 0 0
\(477\) −28.3030 −1.29591
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) −1.20815 −0.0551440
\(481\) 0 0
\(482\) 68.4217i 3.11652i
\(483\) 0 0
\(484\) 44.3466 2.01575
\(485\) 0 0
\(486\) 38.2839i 1.73659i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 20.3597i 0.921639i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) − 18.5483i − 0.832845i
\(497\) 0 0
\(498\) 64.2259 2.87803
\(499\) −25.6355 −1.14760 −0.573801 0.818995i \(-0.694532\pi\)
−0.573801 + 0.818995i \(0.694532\pi\)
\(500\) − 45.0736i − 2.01575i
\(501\) −15.4919 −0.692129
\(502\) 0 0
\(503\) 29.1733i 1.30077i 0.759604 + 0.650386i \(0.225393\pi\)
−0.759604 + 0.650386i \(0.774607\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 22.5167i − 1.00000i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 76.6763i 3.39528i
\(511\) 0 0
\(512\) −40.5027 −1.78999
\(513\) 29.2315 1.29060
\(514\) 17.0151i 0.750502i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −10.4156 −0.457193
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 79.1456 3.45091
\(527\) −35.6854 −1.55448
\(528\) 0 0
\(529\) 68.9505 2.99785
\(530\) 51.8095i 2.25046i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 6.16168i − 0.266393i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 46.8419 2.01575
\(541\) −34.2776 −1.47371 −0.736854 0.676052i \(-0.763689\pi\)
−0.736854 + 0.676052i \(0.763689\pi\)
\(542\) − 12.4994i − 0.536897i
\(543\) −10.2081 −0.438071
\(544\) − 2.51464i − 0.107814i
\(545\) − 34.6410i − 1.48386i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −8.69288 −0.371341
\(549\) − 12.2422i − 0.522486i
\(550\) 0 0
\(551\) 0 0
\(552\) 82.8645i 3.52695i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) − 50.7497i − 2.15227i
\(557\) −46.9620 −1.98984 −0.994922 0.100647i \(-0.967909\pi\)
−0.994922 + 0.100647i \(0.967909\pi\)
\(558\) 32.6154i 1.38072i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 47.3436i − 1.99530i −0.0685449 0.997648i \(-0.521836\pi\)
0.0685449 0.997648i \(-0.478164\pi\)
\(564\) −7.14976 −0.301059
\(565\) − 39.1112i − 1.64542i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) − 53.5091i − 2.24125i
\(571\) 38.7298 1.62079 0.810397 0.585882i \(-0.199252\pi\)
0.810397 + 0.585882i \(0.199252\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −47.9454 −1.99946
\(576\) 22.8419 0.951744
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −117.844 −4.90167
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 34.0301i 1.40577i
\(587\) 19.1943i 0.792232i 0.918201 + 0.396116i \(0.129642\pi\)
−0.918201 + 0.396116i \(0.870358\pi\)
\(588\) 0 0
\(589\) 24.9033 1.02612
\(590\) 0 0
\(591\) 47.3105i 1.94609i
\(592\) 0 0
\(593\) 4.47214i 0.183649i 0.995775 + 0.0918243i \(0.0292698\pi\)
−0.995775 + 0.0918243i \(0.970730\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 47.7907 1.95594
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) − 43.2077i − 1.76395i
\(601\) 46.9644i 1.91572i 0.287237 + 0.957860i \(0.407263\pi\)
−0.287237 + 0.957860i \(0.592737\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −89.0500 −3.62339
\(605\) 24.5967i 1.00000i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 1.75486i 0.0711690i
\(609\) 0 0
\(610\) −22.4098 −0.907345
\(611\) 0 0
\(612\) 97.4970i 3.94108i
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 48.1002 1.93644 0.968220 0.250100i \(-0.0804635\pi\)
0.968220 + 0.250100i \(0.0804635\pi\)
\(618\) 0 0
\(619\) − 38.3071i − 1.53969i −0.638230 0.769846i \(-0.720333\pi\)
0.638230 0.769846i \(-0.279667\pi\)
\(620\) 39.9062 1.60267
\(621\) − 49.8263i − 1.99946i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −50.0135 −1.99101 −0.995504 0.0947206i \(-0.969804\pi\)
−0.995504 + 0.0947206i \(0.969804\pi\)
\(632\) −29.1194 −1.15831
\(633\) − 13.4164i − 0.533254i
\(634\) −24.6901 −0.980570
\(635\) 0 0
\(636\) 65.8778i 2.61222i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) − 43.2077i − 1.70794i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) − 11.7216i − 0.462616i
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 111.374 4.38196
\(647\) − 44.7214i − 1.75818i −0.476658 0.879089i \(-0.658152\pi\)
0.476658 0.879089i \(-0.341848\pi\)
\(648\) 44.9028 1.76395
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.6272 1.23767 0.618834 0.785522i \(-0.287605\pi\)
0.618834 + 0.785522i \(0.287605\pi\)
\(654\) − 65.8990i − 2.57686i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) − 38.1109i − 1.48234i −0.671317 0.741170i \(-0.734271\pi\)
0.671317 0.741170i \(-0.265729\pi\)
\(662\) 57.0702 2.21810
\(663\) 0 0
\(664\) − 75.3300i − 2.92337i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 36.0589i 1.39516i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 25.9808i 1.00000i
\(676\) −52.4096 −2.01575
\(677\) − 41.5692i − 1.59763i −0.601574 0.798817i \(-0.705459\pi\)
0.601574 0.798817i \(-0.294541\pi\)
\(678\) − 74.4029i − 2.85743i
\(679\) 0 0
\(680\) 89.9329 3.44877
\(681\) −30.9839 −1.18730
\(682\) 0 0
\(683\) 47.6359 1.82274 0.911369 0.411591i \(-0.135027\pi\)
0.911369 + 0.411591i \(0.135027\pi\)
\(684\) − 68.0390i − 2.60154i
\(685\) − 4.82149i − 0.184220i
\(686\) 0 0
\(687\) −51.8738 −1.97911
\(688\) 0 0
\(689\) 0 0
\(690\) −91.2086 −3.47225
\(691\) 27.0559i 1.02925i 0.857414 + 0.514627i \(0.172070\pi\)
−0.857414 + 0.514627i \(0.827930\pi\)
\(692\) 24.2432i 0.921587i
\(693\) 0 0
\(694\) 71.4100 2.71069
\(695\) 28.1482 1.06772
\(696\) 0 0
\(697\) 0 0
\(698\) 67.1051i 2.53997i
\(699\) − 49.5583i − 1.87447i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) − 3.96560i − 0.149353i
\(706\) − 51.0452i − 1.92111i
\(707\) 0 0
\(708\) 0 0
\(709\) −14.4786 −0.543754 −0.271877 0.962332i \(-0.587644\pi\)
−0.271877 + 0.962332i \(0.587644\pi\)
\(710\) 0 0
\(711\) 17.5094 0.656656
\(712\) 0 0
\(713\) − 42.4488i − 1.58972i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) − 28.1076i − 1.04751i
\(721\) 0 0
\(722\) −31.0610 −1.15597
\(723\) −48.2549 −1.79462
\(724\) 23.7603i 0.883043i
\(725\) 0 0
\(726\) 46.7914i 1.73659i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −28.4949 −1.05320
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 2.99124 0.110258
\(737\) 0 0
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.3863 −1.07808 −0.539039 0.842281i \(-0.681212\pi\)
−0.539039 + 0.842281i \(0.681212\pi\)
\(744\) 38.2543 1.40247
\(745\) 0 0
\(746\) 0 0
\(747\) 45.2958i 1.65729i
\(748\) 0 0
\(749\) 0 0
\(750\) 47.5585 1.73659
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 4.29023i 0.156449i
\(753\) 0 0
\(754\) 0 0
\(755\) − 49.3915i − 1.79754i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −74.2043 −2.69522
\(759\) 0 0
\(760\) −62.7603 −2.27656
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −54.0766 −1.95514
\(766\) − 81.7056i − 2.95214i
\(767\) 0 0
\(768\) − 55.8204i − 2.01424i
\(769\) − 30.6414i − 1.10496i −0.833527 0.552479i \(-0.813682\pi\)
0.833527 0.552479i \(-0.186318\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) − 42.3541i − 1.52337i −0.647947 0.761686i \(-0.724372\pi\)
0.647947 0.761686i \(-0.275628\pi\)
\(774\) 0 0
\(775\) 22.1339i 0.795074i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) − 189.842i − 6.78874i
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 110.119 3.92284
\(789\) 55.8180i 1.98717i
\(790\) − 32.0516i − 1.14034i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −36.5390 −1.29591
\(796\) − 111.237i − 3.94270i
\(797\) − 54.3810i − 1.92627i −0.269013 0.963136i \(-0.586698\pi\)
0.269013 0.963136i \(-0.413302\pi\)
\(798\) 0 0
\(799\) 8.25403 0.292007
\(800\) −1.55971 −0.0551440
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 49.4243i 1.73659i
\(811\) 39.1490i 1.37471i 0.726323 + 0.687353i \(0.241228\pi\)
−0.726323 + 0.687353i \(0.758772\pi\)
\(812\) 0 0
\(813\) 8.81532 0.309167
\(814\) 0 0
\(815\) 0 0
\(816\) 58.5033 2.04803
\(817\) 0 0
\(818\) 94.7371i 3.31241i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) − 9.17212i − 0.319915i
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −27.9141 −0.970667 −0.485334 0.874329i \(-0.661302\pi\)
−0.485334 + 0.874329i \(0.661302\pi\)
\(828\) −115.975 −4.03042
\(829\) 13.6264i 0.473264i 0.971599 + 0.236632i \(0.0760436\pi\)
−0.971599 + 0.236632i \(0.923956\pi\)
\(830\) 82.9153 2.87803
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 53.5476 1.85420
\(835\) −20.0000 −0.692129
\(836\) 0 0
\(837\) −23.0022 −0.795074
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 92.8937 3.20133
\(843\) 0 0
\(844\) −31.2279 −1.07491
\(845\) − 29.0689i − 1.00000i
\(846\) − 7.54393i − 0.259366i
\(847\) 0 0
\(848\) 39.5301 1.35747
\(849\) 0 0
\(850\) 98.9887i 3.39528i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 37.7377 1.29060
\(856\) −13.7482 −0.469903
\(857\) 36.2106i 1.23693i 0.785812 + 0.618466i \(0.212245\pi\)
−0.785812 + 0.618466i \(0.787755\pi\)
\(858\) 0 0
\(859\) − 55.4720i − 1.89268i −0.323174 0.946340i \(-0.604750\pi\)
0.323174 0.946340i \(-0.395250\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.0904 0.615805 0.307902 0.951418i \(-0.400373\pi\)
0.307902 + 0.951418i \(0.400373\pi\)
\(864\) − 1.62090i − 0.0551440i
\(865\) −13.4464 −0.457193
\(866\) 0 0
\(867\) − 83.1105i − 2.82258i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −77.2924 −2.61745
\(873\) 0 0
\(874\) 132.483i 4.48130i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) − 72.7032i − 2.45361i
\(879\) −24.0000 −0.809500
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 103.272 3.46948
\(887\) 35.3168i 1.18582i 0.805268 + 0.592911i \(0.202021\pi\)
−0.805268 + 0.592911i \(0.797979\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.76014 −0.192756
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 60.4726 2.01575
\(901\) − 76.0526i − 2.53368i
\(902\) 0 0
\(903\) 0 0
\(904\) −87.2664 −2.90244
\(905\) −13.1786 −0.438071
\(906\) − 93.9594i − 3.12159i
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 72.1178i 2.39331i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −40.8270 −1.35192
\(913\) 0 0
\(914\) 0 0
\(915\) − 15.8047i − 0.522486i
\(916\) 120.741i 3.98940i
\(917\) 0 0
\(918\) −102.872 −3.39528
\(919\) 23.2379 0.766548 0.383274 0.923635i \(-0.374797\pi\)
0.383274 + 0.923635i \(0.374797\pi\)
\(920\) 106.978i 3.52695i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 42.1063i 1.38072i
\(931\) 0 0
\(932\) −115.351 −3.77846
\(933\) 0 0
\(934\) 87.8654i 2.87504i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −9.23030 −0.301059
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −47.5614 −1.54554 −0.772768 0.634688i \(-0.781129\pi\)
−0.772768 + 0.634688i \(0.781129\pi\)
\(948\) − 40.7548i − 1.32366i
\(949\) 0 0
\(950\) − 69.0800i − 2.24125i
\(951\) − 17.4129i − 0.564652i
\(952\) 0 0
\(953\) −41.4508 −1.34272 −0.671362 0.741129i \(-0.734290\pi\)
−0.671362 + 0.741129i \(0.734290\pi\)
\(954\) −69.5097 −2.25046
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 29.4887 0.951744
\(961\) 11.4036 0.367858
\(962\) 0 0
\(963\) 8.26677 0.266393
\(964\) 112.318i 3.61751i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 54.8812 1.76395
\(969\) 78.5476i 2.52331i
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 62.8450i 2.01575i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 17.0984i 0.547308i
\(977\) 27.9935 0.895591 0.447796 0.894136i \(-0.352209\pi\)
0.447796 + 0.894136i \(0.352209\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 46.4758 1.48386
\(982\) 0 0
\(983\) 3.46410i 0.110488i 0.998473 + 0.0552438i \(0.0175936\pi\)
−0.998473 + 0.0552438i \(0.982406\pi\)
\(984\) 0 0
\(985\) 61.0776i 1.94609i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) − 1.38090i − 0.0438436i
\(993\) 40.2492i 1.27727i
\(994\) 0 0
\(995\) 61.6975 1.95594
\(996\) 105.430 3.34068
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −62.9585 −1.99292
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.g.a.734.14 yes 16
3.2 odd 2 inner 735.2.g.a.734.3 16
5.4 even 2 inner 735.2.g.a.734.3 16
7.2 even 3 735.2.p.d.374.2 16
7.3 odd 6 735.2.p.d.509.2 16
7.4 even 3 735.2.p.e.509.2 16
7.5 odd 6 735.2.p.e.374.2 16
7.6 odd 2 inner 735.2.g.a.734.13 yes 16
15.14 odd 2 CM 735.2.g.a.734.14 yes 16
21.2 odd 6 735.2.p.e.374.7 16
21.5 even 6 735.2.p.d.374.7 16
21.11 odd 6 735.2.p.d.509.7 16
21.17 even 6 735.2.p.e.509.7 16
21.20 even 2 inner 735.2.g.a.734.4 yes 16
35.4 even 6 735.2.p.d.509.7 16
35.9 even 6 735.2.p.e.374.7 16
35.19 odd 6 735.2.p.d.374.7 16
35.24 odd 6 735.2.p.e.509.7 16
35.34 odd 2 inner 735.2.g.a.734.4 yes 16
105.44 odd 6 735.2.p.d.374.2 16
105.59 even 6 735.2.p.d.509.2 16
105.74 odd 6 735.2.p.e.509.2 16
105.89 even 6 735.2.p.e.374.2 16
105.104 even 2 inner 735.2.g.a.734.13 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.a.734.3 16 3.2 odd 2 inner
735.2.g.a.734.3 16 5.4 even 2 inner
735.2.g.a.734.4 yes 16 21.20 even 2 inner
735.2.g.a.734.4 yes 16 35.34 odd 2 inner
735.2.g.a.734.13 yes 16 7.6 odd 2 inner
735.2.g.a.734.13 yes 16 105.104 even 2 inner
735.2.g.a.734.14 yes 16 1.1 even 1 trivial
735.2.g.a.734.14 yes 16 15.14 odd 2 CM
735.2.p.d.374.2 16 7.2 even 3
735.2.p.d.374.2 16 105.44 odd 6
735.2.p.d.374.7 16 21.5 even 6
735.2.p.d.374.7 16 35.19 odd 6
735.2.p.d.509.2 16 7.3 odd 6
735.2.p.d.509.2 16 105.59 even 6
735.2.p.d.509.7 16 21.11 odd 6
735.2.p.d.509.7 16 35.4 even 6
735.2.p.e.374.2 16 7.5 odd 6
735.2.p.e.374.2 16 105.89 even 6
735.2.p.e.374.7 16 21.2 odd 6
735.2.p.e.374.7 16 35.9 even 6
735.2.p.e.509.2 16 7.4 even 3
735.2.p.e.509.2 16 105.74 odd 6
735.2.p.e.509.7 16 21.17 even 6
735.2.p.e.509.7 16 35.24 odd 6