Properties

Label 735.2.p.d.509.2
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $16$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.721389578983833600000000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 7^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 509.2
Root \(-1.36434 + 1.59774i\) of defining polynomial
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.d.374.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22796 + 2.12688i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-2.01575 - 3.49139i) q^{4} +(1.93649 + 1.11803i) q^{5} -4.25377i q^{6} +4.98920 q^{8} +(1.50000 - 2.59808i) q^{9} +(-4.75585 + 2.74579i) q^{10} +(6.04726 + 3.49139i) q^{12} -3.87298 q^{15} +(-2.09501 + 3.62867i) q^{16} +(6.98125 - 4.03063i) q^{17} +(3.68387 + 6.38065i) q^{18} +(4.87192 + 2.81280i) q^{19} -9.01472i q^{20} +(-4.79454 + 8.30439i) q^{23} +(-7.48380 + 4.32077i) q^{24} +(2.50000 + 4.33013i) q^{25} +5.19615i q^{27} +(4.75585 - 8.23738i) q^{30} +(3.83371 - 2.21339i) q^{31} +(-0.155971 - 0.270150i) q^{32} +19.7977i q^{34} -12.0945 q^{36} +(-11.9650 + 6.90800i) q^{38} +(9.66155 + 5.57810i) q^{40} +(5.80948 - 3.35410i) q^{45} +(-11.7750 - 20.3949i) q^{46} +(0.886735 + 0.511957i) q^{47} -7.25734i q^{48} -12.2796 q^{50} +(-6.98125 + 12.0919i) q^{51} +(-4.71717 - 8.17037i) q^{53} +(-11.0516 - 6.38065i) q^{54} -9.74384 q^{57} +(7.80698 + 13.5221i) q^{60} +(3.53403 + 2.04037i) q^{61} +10.8718i q^{62} -7.61396 q^{64} +(-28.1450 - 16.2495i) q^{68} -16.6088i q^{69} +(7.48380 - 12.9623i) q^{72} +(-7.50000 - 4.33013i) q^{75} -22.6797i q^{76} +(2.91824 - 5.05454i) q^{79} +(-8.11396 + 4.68459i) q^{80} +(-4.50000 - 7.79423i) q^{81} +15.0986i q^{83} +18.0255 q^{85} +16.4748i q^{90} +38.6584 q^{92} +(-3.83371 + 6.64017i) q^{93} +(-2.17774 + 1.25732i) q^{94} +(6.28962 + 10.8939i) q^{95} +(0.467913 + 0.270150i) q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{3} - 16 q^{4} + 24 q^{9} + 48 q^{12} - 32 q^{16} + 40 q^{25} - 96 q^{36} + 128 q^{64} - 72 q^{68} - 120 q^{75} + 120 q^{80} - 72 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22796 + 2.12688i −0.868296 + 1.50393i −0.00455955 + 0.999990i \(0.501451\pi\)
−0.863737 + 0.503943i \(0.831882\pi\)
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) −2.01575 3.49139i −1.00788 1.74569i
\(5\) 1.93649 + 1.11803i 0.866025 + 0.500000i
\(6\) 4.25377i 1.73659i
\(7\) 0 0
\(8\) 4.98920 1.76395
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) −4.75585 + 2.74579i −1.50393 + 0.868296i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 6.04726 + 3.49139i 1.74569 + 1.00788i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −3.87298 −1.00000
\(16\) −2.09501 + 3.62867i −0.523754 + 0.907168i
\(17\) 6.98125 4.03063i 1.69320 0.977571i 0.741298 0.671176i \(-0.234210\pi\)
0.951904 0.306395i \(-0.0991229\pi\)
\(18\) 3.68387 + 6.38065i 0.868296 + 1.50393i
\(19\) 4.87192 + 2.81280i 1.11769 + 0.645301i 0.940811 0.338931i \(-0.110065\pi\)
0.176883 + 0.984232i \(0.443398\pi\)
\(20\) 9.01472i 2.01575i
\(21\) 0 0
\(22\) 0 0
\(23\) −4.79454 + 8.30439i −0.999731 + 1.73159i −0.479784 + 0.877387i \(0.659285\pi\)
−0.519947 + 0.854199i \(0.674048\pi\)
\(24\) −7.48380 + 4.32077i −1.52762 + 0.881974i
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 4.75585 8.23738i 0.868296 1.50393i
\(31\) 3.83371 2.21339i 0.688554 0.397537i −0.114516 0.993421i \(-0.536532\pi\)
0.803070 + 0.595885i \(0.203198\pi\)
\(32\) −0.155971 0.270150i −0.0275720 0.0477561i
\(33\) 0 0
\(34\) 19.7977i 3.39528i
\(35\) 0 0
\(36\) −12.0945 −2.01575
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −11.9650 + 6.90800i −1.94098 + 1.12063i
\(39\) 0 0
\(40\) 9.66155 + 5.57810i 1.52762 + 0.881974i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 5.80948 3.35410i 0.866025 0.500000i
\(46\) −11.7750 20.3949i −1.73613 3.00706i
\(47\) 0.886735 + 0.511957i 0.129344 + 0.0746766i 0.563276 0.826269i \(-0.309541\pi\)
−0.433932 + 0.900946i \(0.642874\pi\)
\(48\) 7.25734i 1.04751i
\(49\) 0 0
\(50\) −12.2796 −1.73659
\(51\) −6.98125 + 12.0919i −0.977571 + 1.69320i
\(52\) 0 0
\(53\) −4.71717 8.17037i −0.647953 1.12229i −0.983611 0.180303i \(-0.942292\pi\)
0.335659 0.941984i \(-0.391041\pi\)
\(54\) −11.0516 6.38065i −1.50393 0.868296i
\(55\) 0 0
\(56\) 0 0
\(57\) −9.74384 −1.29060
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 7.80698 + 13.5221i 1.00788 + 1.74569i
\(61\) 3.53403 + 2.04037i 0.452486 + 0.261243i 0.708880 0.705329i \(-0.249201\pi\)
−0.256393 + 0.966573i \(0.582534\pi\)
\(62\) 10.8718i 1.38072i
\(63\) 0 0
\(64\) −7.61396 −0.951744
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −28.1450 16.2495i −3.41308 1.97054i
\(69\) 16.6088i 1.99946i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 7.48380 12.9623i 0.881974 1.52762i
\(73\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(74\) 0 0
\(75\) −7.50000 4.33013i −0.866025 0.500000i
\(76\) 22.6797i 2.60154i
\(77\) 0 0
\(78\) 0 0
\(79\) 2.91824 5.05454i 0.328328 0.568680i −0.653852 0.756622i \(-0.726848\pi\)
0.982180 + 0.187942i \(0.0601816\pi\)
\(80\) −8.11396 + 4.68459i −0.907168 + 0.523754i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 15.0986i 1.65729i 0.559777 + 0.828643i \(0.310887\pi\)
−0.559777 + 0.828643i \(0.689113\pi\)
\(84\) 0 0
\(85\) 18.0255 1.95514
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 16.4748i 1.73659i
\(91\) 0 0
\(92\) 38.6584 4.03042
\(93\) −3.83371 + 6.64017i −0.397537 + 0.688554i
\(94\) −2.17774 + 1.25732i −0.224617 + 0.129683i
\(95\) 6.28962 + 10.8939i 0.645301 + 1.11769i
\(96\) 0.467913 + 0.270150i 0.0477561 + 0.0275720i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 10.0788 17.4569i 1.00788 1.74569i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) −17.1453 29.6966i −1.69764 2.94040i
\(103\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 23.1699 2.25046
\(107\) 1.37779 2.38641i 0.133196 0.230703i −0.791711 0.610896i \(-0.790809\pi\)
0.924907 + 0.380193i \(0.124143\pi\)
\(108\) 18.1418 10.4742i 1.74569 1.00788i
\(109\) 7.74597 + 13.4164i 0.741929 + 1.28506i 0.951616 + 0.307290i \(0.0994222\pi\)
−0.209687 + 0.977769i \(0.567244\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.4911 −1.64542 −0.822710 0.568461i \(-0.807539\pi\)
−0.822710 + 0.568461i \(0.807539\pi\)
\(114\) 11.9650 20.7240i 1.12063 1.94098i
\(115\) −18.5692 + 10.7209i −1.73159 + 0.999731i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −19.3231 −1.76395
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) −8.67927 + 5.01098i −0.785784 + 0.453673i
\(123\) 0 0
\(124\) −15.4556 8.92330i −1.38795 0.801336i
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 9.66155 16.7343i 0.853968 1.47912i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.80948 + 10.0623i −0.500000 + 0.866025i
\(136\) 34.8309 20.1096i 2.98672 1.72439i
\(137\) 1.07812 + 1.86736i 0.0921099 + 0.159539i 0.908399 0.418105i \(-0.137306\pi\)
−0.816289 + 0.577644i \(0.803972\pi\)
\(138\) 35.3249 + 20.3949i 3.00706 + 1.73613i
\(139\) 12.5883i 1.06772i 0.845572 + 0.533862i \(0.179260\pi\)
−0.845572 + 0.533862i \(0.820740\pi\)
\(140\) 0 0
\(141\) −1.77347 −0.149353
\(142\) 0 0
\(143\) 0 0
\(144\) 6.28504 + 10.8860i 0.523754 + 0.907168i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 18.4193 10.6344i 1.50393 0.868296i
\(151\) 11.0443 + 19.1292i 0.898770 + 1.55671i 0.829069 + 0.559147i \(0.188871\pi\)
0.0697008 + 0.997568i \(0.477796\pi\)
\(152\) 24.3070 + 14.0336i 1.97156 + 1.13828i
\(153\) 24.1838i 1.95514i
\(154\) 0 0
\(155\) 9.89859 0.795074
\(156\) 0 0
\(157\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(158\) 7.16695 + 12.4135i 0.570172 + 0.987566i
\(159\) 14.1515 + 8.17037i 1.12229 + 0.647953i
\(160\) 0.697523i 0.0551440i
\(161\) 0 0
\(162\) 22.1032 1.73659
\(163\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −32.1130 18.5404i −2.49245 1.43902i
\(167\) 8.94427i 0.692129i −0.938211 0.346064i \(-0.887518\pi\)
0.938211 0.346064i \(-0.112482\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) −22.1345 + 38.3382i −1.69764 + 2.94040i
\(171\) 14.6158 8.43841i 1.11769 0.645301i
\(172\) 0 0
\(173\) 5.20778 + 3.00671i 0.395940 + 0.228596i 0.684731 0.728796i \(-0.259920\pi\)
−0.288790 + 0.957392i \(0.593253\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) −23.4209 13.5221i −1.74569 1.00788i
\(181\) 5.89364i 0.438071i −0.975717 0.219036i \(-0.929709\pi\)
0.975717 0.219036i \(-0.0702911\pi\)
\(182\) 0 0
\(183\) −7.06806 −0.522486
\(184\) −23.9209 + 41.4323i −1.76347 + 3.05443i
\(185\) 0 0
\(186\) −9.41525 16.3077i −0.690359 1.19574i
\(187\) 0 0
\(188\) 4.12792i 0.301059i
\(189\) 0 0
\(190\) −30.8935 −2.24125
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 11.4209 6.59388i 0.824235 0.475872i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.3147 1.94609 0.973046 0.230610i \(-0.0740720\pi\)
0.973046 + 0.230610i \(0.0740720\pi\)
\(198\) 0 0
\(199\) 23.8953 13.7960i 1.69390 0.977971i 0.742577 0.669761i \(-0.233603\pi\)
0.951318 0.308210i \(-0.0997300\pi\)
\(200\) 12.4730 + 21.6039i 0.881974 + 1.52762i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 56.2899 3.94108
\(205\) 0 0
\(206\) 0 0
\(207\) 14.3836 + 24.9132i 0.999731 + 1.73159i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −7.74597 −0.533254 −0.266627 0.963800i \(-0.585909\pi\)
−0.266627 + 0.963800i \(0.585909\pi\)
\(212\) −19.0173 + 32.9389i −1.30611 + 2.26225i
\(213\) 0 0
\(214\) 3.38374 + 5.86081i 0.231308 + 0.400637i
\(215\) 0 0
\(216\) 25.9246i 1.76395i
\(217\) 0 0
\(218\) −38.0468 −2.57686
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 21.4783 37.2014i 1.42871 2.47460i
\(227\) −15.4919 + 8.94427i −1.02824 + 0.593652i −0.916479 0.400083i \(-0.868981\pi\)
−0.111757 + 0.993736i \(0.535648\pi\)
\(228\) 19.6412 + 34.0195i 1.30077 + 2.25300i
\(229\) 25.9369 + 14.9747i 1.71396 + 0.989555i 0.929057 + 0.369936i \(0.120620\pi\)
0.784903 + 0.619619i \(0.212713\pi\)
\(230\) 52.6593i 3.47225i
\(231\) 0 0
\(232\) 0 0
\(233\) 14.3063 24.7792i 0.937234 1.62334i 0.166632 0.986019i \(-0.446711\pi\)
0.770602 0.637317i \(-0.219956\pi\)
\(234\) 0 0
\(235\) 1.14477 + 1.98280i 0.0746766 + 0.129344i
\(236\) 0 0
\(237\) 10.1091i 0.656656i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 8.11396 14.0538i 0.523754 0.907168i
\(241\) −24.1275 + 13.9300i −1.55419 + 0.897310i −0.556393 + 0.830919i \(0.687815\pi\)
−0.997794 + 0.0663905i \(0.978852\pi\)
\(242\) −13.5075 23.3957i −0.868296 1.50393i
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) 16.4516i 1.05320i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 19.1271 11.0431i 1.21457 0.701235i
\(249\) −13.0758 22.6479i −0.828643 1.43525i
\(250\) −23.7793 13.7290i −1.50393 0.868296i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −27.0383 + 15.6106i −1.69320 + 0.977571i
\(256\) 16.1140 + 27.9102i 1.00712 + 1.74439i
\(257\) 6.00000 + 3.46410i 0.374270 + 0.216085i 0.675322 0.737523i \(-0.264005\pi\)
−0.301052 + 0.953608i \(0.597338\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.1133 27.9090i −0.993587 1.72094i −0.594717 0.803935i \(-0.702736\pi\)
−0.398870 0.917008i \(-0.630597\pi\)
\(264\) 0 0
\(265\) 21.0958i 1.29591i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) −14.2676 24.7121i −0.868296 1.50393i
\(271\) −4.40766 2.54476i −0.267746 0.154583i 0.360117 0.932907i \(-0.382737\pi\)
−0.627863 + 0.778324i \(0.716070\pi\)
\(272\) 33.7769i 2.04803i
\(273\) 0 0
\(274\) −5.29553 −0.319915
\(275\) 0 0
\(276\) −57.9877 + 33.4792i −3.49045 + 2.01521i
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) −26.7738 15.4579i −1.60579 0.927100i
\(279\) 13.2803i 0.795074i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 2.17774 3.77196i 0.129683 0.224617i
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 0 0
\(285\) −18.8689 10.8939i −1.11769 0.645301i
\(286\) 0 0
\(287\) 0 0
\(288\) −0.935825 −0.0551440
\(289\) 23.9919 41.5552i 1.41129 2.44443i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.8564i 0.809500i −0.914427 0.404750i \(-0.867359\pi\)
0.914427 0.404750i \(-0.132641\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 34.9139i 2.01575i
\(301\) 0 0
\(302\) −54.2475 −3.12159
\(303\) 0 0
\(304\) −20.4135 + 11.7857i −1.17079 + 0.675958i
\(305\) 4.56241 + 7.90233i 0.261243 + 0.452486i
\(306\) 51.4360 + 29.6966i 2.94040 + 1.69764i
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −12.1550 + 21.0531i −0.690359 + 1.19574i
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −23.5298 −1.32366
\(317\) 5.02667 8.70645i 0.282326 0.489003i −0.689631 0.724161i \(-0.742227\pi\)
0.971957 + 0.235158i \(0.0755607\pi\)
\(318\) −34.7548 + 20.0657i −1.94895 + 1.12523i
\(319\) 0 0
\(320\) −14.7444 8.51266i −0.824235 0.475872i
\(321\) 4.77282i 0.266393i
\(322\) 0 0
\(323\) 45.3495 2.52331
\(324\) −18.1418 + 31.4225i −1.00788 + 1.74569i
\(325\) 0 0
\(326\) 0 0
\(327\) −23.2379 13.4164i −1.28506 0.741929i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −11.6190 + 20.1246i −0.638635 + 1.10615i 0.347097 + 0.937829i \(0.387167\pi\)
−0.985732 + 0.168320i \(0.946166\pi\)
\(332\) 52.7151 30.4350i 2.89311 1.67034i
\(333\) 0 0
\(334\) 19.0234 + 10.9832i 1.04092 + 0.600973i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 15.9634 27.6495i 0.868296 1.50393i
\(339\) 26.2366 15.1477i 1.42498 0.822710i
\(340\) −36.3350 62.9341i −1.97054 3.41308i
\(341\) 0 0
\(342\) 41.4480i 2.24125i
\(343\) 0 0
\(344\) 0 0
\(345\) 18.5692 32.1628i 0.999731 1.73159i
\(346\) −12.7899 + 7.38423i −0.687587 + 0.396979i
\(347\) −14.5384 25.1812i −0.780461 1.35180i −0.931673 0.363297i \(-0.881651\pi\)
0.151212 0.988501i \(-0.451682\pi\)
\(348\) 0 0
\(349\) 27.3239i 1.46262i −0.682048 0.731308i \(-0.738910\pi\)
0.682048 0.731308i \(-0.261090\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 10.3923i 0.958043 0.553127i 0.0624731 0.998047i \(-0.480101\pi\)
0.895570 + 0.444920i \(0.146768\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 28.9846 16.7343i 1.52762 0.881974i
\(361\) 6.32372 + 10.9530i 0.332828 + 0.576474i
\(362\) 12.5351 + 7.23714i 0.658830 + 0.380376i
\(363\) 19.0526i 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 8.67927 15.0329i 0.453673 0.785784i
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) −20.0893 34.7956i −1.04723 1.81385i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 30.9112 1.60267
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) −9.68246 16.7705i −0.500000 0.866025i
\(376\) 4.42410 + 2.55426i 0.228156 + 0.131726i
\(377\) 0 0
\(378\) 0 0
\(379\) −30.2146 −1.55202 −0.776009 0.630722i \(-0.782759\pi\)
−0.776009 + 0.630722i \(0.782759\pi\)
\(380\) 25.3566 43.9190i 1.30077 2.25300i
\(381\) 0 0
\(382\) 0 0
\(383\) −28.8117 16.6345i −1.47221 0.849982i −0.472700 0.881224i \(-0.656720\pi\)
−0.999512 + 0.0312418i \(0.990054\pi\)
\(384\) 33.4686i 1.70794i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 77.3001i 3.90923i
\(392\) 0 0
\(393\) 0 0
\(394\) −33.5413 + 58.0952i −1.68978 + 2.92679i
\(395\) 11.3023 6.52539i 0.568680 0.328328i
\(396\) 0 0
\(397\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(398\) 67.7634i 3.39667i
\(399\) 0 0
\(400\) −20.9501 −1.04751
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 20.1246i 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) −34.8309 + 60.3288i −1.72439 + 2.98672i
\(409\) −33.4070 + 19.2876i −1.65187 + 0.953709i −0.675570 + 0.737296i \(0.736102\pi\)
−0.976302 + 0.216413i \(0.930564\pi\)
\(410\) 0 0
\(411\) −3.23435 1.86736i −0.159539 0.0921099i
\(412\) 0 0
\(413\) 0 0
\(414\) −70.6499 −3.47225
\(415\) −16.8807 + 29.2383i −0.828643 + 1.43525i
\(416\) 0 0
\(417\) −10.9018 18.8824i −0.533862 0.924676i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 37.8245 1.84345 0.921727 0.387840i \(-0.126779\pi\)
0.921727 + 0.387840i \(0.126779\pi\)
\(422\) 9.51171 16.4748i 0.463023 0.801979i
\(423\) 2.66021 1.53587i 0.129344 0.0746766i
\(424\) −23.5349 40.7636i −1.14296 1.97966i
\(425\) 34.9063 + 20.1531i 1.69320 + 0.977571i
\(426\) 0 0
\(427\) 0 0
\(428\) −11.1092 −0.536982
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) −18.8551 10.8860i −0.907168 0.523754i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 31.2279 54.0883i 1.49555 2.59036i
\(437\) −46.7172 + 26.9722i −2.23479 + 1.29026i
\(438\) 0 0
\(439\) −25.6372 14.8017i −1.22360 0.706445i −0.257916 0.966167i \(-0.583036\pi\)
−0.965683 + 0.259722i \(0.916369\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −21.0251 + 36.4165i −0.998932 + 1.73020i −0.459459 + 0.888199i \(0.651957\pi\)
−0.539474 + 0.842002i \(0.681377\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −18.4193 + 31.9032i −0.868296 + 1.50393i
\(451\) 0 0
\(452\) 35.2577 + 61.0681i 1.65838 + 2.87240i
\(453\) −33.1328 19.1292i −1.55671 0.898770i
\(454\) 43.9327i 2.06186i
\(455\) 0 0
\(456\) −48.6140 −2.27656
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) −63.6988 + 36.7765i −2.97645 + 1.71845i
\(459\) 20.9438 + 36.2757i 0.977571 + 1.69320i
\(460\) 74.8618 + 43.2215i 3.49045 + 2.01521i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) −14.8479 + 8.57243i −0.688554 + 0.397537i
\(466\) 35.1349 + 60.8554i 1.62759 + 2.81907i
\(467\) 30.9839 + 17.8885i 1.43376 + 0.827783i 0.997405 0.0719905i \(-0.0229351\pi\)
0.436357 + 0.899774i \(0.356268\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −5.62291 −0.259366
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) −21.5008 12.4135i −0.987566 0.570172i
\(475\) 28.1280i 1.29060i
\(476\) 0 0
\(477\) −28.3030 −1.29591
\(478\) 0 0
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0.604073 + 1.04628i 0.0275720 + 0.0477561i
\(481\) 0 0
\(482\) 68.4217i 3.11652i
\(483\) 0 0
\(484\) 44.3466 2.01575
\(485\) 0 0
\(486\) −33.1548 + 19.1419i −1.50393 + 0.868296i
\(487\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 17.6320 + 10.1798i 0.798163 + 0.460819i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 18.5483i 0.832845i
\(497\) 0 0
\(498\) 64.2259 2.87803
\(499\) 12.8177 22.2010i 0.573801 0.993852i −0.422370 0.906423i \(-0.638802\pi\)
0.996171 0.0874285i \(-0.0278649\pi\)
\(500\) 39.0349 22.5368i 1.74569 1.00788i
\(501\) 7.74597 + 13.4164i 0.346064 + 0.599401i
\(502\) 0 0
\(503\) 29.1733i 1.30077i −0.759604 0.650386i \(-0.774607\pi\)
0.759604 0.650386i \(-0.225393\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 19.5000 11.2583i 0.866025 0.500000i
\(508\) 0 0
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 76.6763i 3.39528i
\(511\) 0 0
\(512\) −40.5027 −1.78999
\(513\) −14.6158 + 25.3152i −0.645301 + 1.11769i
\(514\) −14.7355 + 8.50753i −0.649954 + 0.375251i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −10.4156 −0.457193
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 79.1456 3.45091
\(527\) 17.8427 30.9045i 0.777241 1.34622i
\(528\) 0 0
\(529\) −34.4753 59.7129i −1.49892 2.59621i
\(530\) 44.8683 + 25.9047i 1.94895 + 1.12523i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 5.33617 3.08084i 0.230703 0.133196i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 46.8419 2.01575
\(541\) 17.1388 29.6852i 0.736854 1.27627i −0.217051 0.976160i \(-0.569644\pi\)
0.953905 0.300108i \(-0.0970228\pi\)
\(542\) 10.8248 6.24972i 0.464966 0.268448i
\(543\) 5.10405 + 8.84047i 0.219036 + 0.379381i
\(544\) −2.17774 1.25732i −0.0933700 0.0539072i
\(545\) 34.6410i 1.48386i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 4.34644 7.52826i 0.185671 0.321591i
\(549\) 10.6021 6.12112i 0.452486 0.261243i
\(550\) 0 0
\(551\) 0 0
\(552\) 82.8645i 3.52695i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 43.9505 25.3749i 1.86392 1.07613i
\(557\) 23.4810 + 40.6703i 0.994922 + 1.72326i 0.584624 + 0.811304i \(0.301242\pi\)
0.410298 + 0.911952i \(0.365425\pi\)
\(558\) 28.2457 + 16.3077i 1.19574 + 0.690359i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 41.0008 23.6718i 1.72798 0.997648i 0.829716 0.558186i \(-0.188502\pi\)
0.898261 0.439462i \(-0.144831\pi\)
\(564\) 3.57488 + 6.19187i 0.150530 + 0.260725i
\(565\) −33.8713 19.5556i −1.42498 0.822710i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 46.3403 26.7546i 1.94098 1.12063i
\(571\) −19.3649 33.5410i −0.810397 1.40365i −0.912587 0.408883i \(-0.865918\pi\)
0.102190 0.994765i \(-0.467415\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −47.9454 −1.99946
\(576\) −11.4209 + 19.7816i −0.475872 + 0.824235i
\(577\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(578\) 58.9221 + 102.056i 2.45084 + 4.24497i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 29.4709 + 17.0151i 1.21743 + 0.702886i
\(587\) 19.1943i 0.792232i −0.918201 0.396116i \(-0.870358\pi\)
0.918201 0.396116i \(-0.129642\pi\)
\(588\) 0 0
\(589\) 24.9033 1.02612
\(590\) 0 0
\(591\) −40.9721 + 23.6552i −1.68537 + 0.973046i
\(592\) 0 0
\(593\) 3.87298 + 2.23607i 0.159044 + 0.0918243i 0.577410 0.816454i \(-0.304064\pi\)
−0.418365 + 0.908279i \(0.637397\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −23.8953 + 41.3879i −0.977971 + 1.69390i
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) −37.4190 21.6039i −1.52762 0.881974i
\(601\) 46.9644i 1.91572i −0.287237 0.957860i \(-0.592737\pi\)
0.287237 0.957860i \(-0.407263\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 44.5250 77.1196i 1.81170 3.13795i
\(605\) −21.3014 + 12.2984i −0.866025 + 0.500000i
\(606\) 0 0
\(607\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) 1.75486i 0.0711690i
\(609\) 0 0
\(610\) −22.4098 −0.907345
\(611\) 0 0
\(612\) −84.4349 + 48.7485i −3.41308 + 1.97054i
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 48.1002 1.93644 0.968220 0.250100i \(-0.0804635\pi\)
0.968220 + 0.250100i \(0.0804635\pi\)
\(618\) 0 0
\(619\) 33.1749 19.1535i 1.33341 0.769846i 0.347591 0.937646i \(-0.387000\pi\)
0.985821 + 0.167800i \(0.0536663\pi\)
\(620\) −19.9531 34.5598i −0.801336 1.38795i
\(621\) −43.1509 24.9132i −1.73159 0.999731i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −50.0135 −1.99101 −0.995504 0.0947206i \(-0.969804\pi\)
−0.995504 + 0.0947206i \(0.969804\pi\)
\(632\) 14.5597 25.2181i 0.579153 1.00312i
\(633\) 11.6190 6.70820i 0.461812 0.266627i
\(634\) 12.3451 + 21.3823i 0.490285 + 0.849199i
\(635\) 0 0
\(636\) 65.8778i 2.61222i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 37.4190 21.6039i 1.47912 0.853968i
\(641\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) −10.1512 5.86081i −0.400637 0.231308i
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −55.6872 + 96.4530i −2.19098 + 3.79489i
\(647\) 38.7298 22.3607i 1.52263 0.879089i 0.522985 0.852342i \(-0.324819\pi\)
0.999642 0.0267469i \(-0.00851482\pi\)
\(648\) −22.4514 38.8870i −0.881974 1.52762i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.8136 + 27.3899i −0.618834 + 1.07185i 0.370865 + 0.928687i \(0.379061\pi\)
−0.989699 + 0.143165i \(0.954272\pi\)
\(654\) 57.0702 32.9495i 2.23162 1.28843i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 33.0050 19.0554i 1.28374 0.741170i 0.306214 0.951963i \(-0.400938\pi\)
0.977531 + 0.210792i \(0.0676043\pi\)
\(662\) −28.5351 49.4243i −1.10905 1.92093i
\(663\) 0 0
\(664\) 75.3300i 2.92337i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −31.2279 + 18.0294i −1.20824 + 0.697580i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −22.5000 + 12.9904i −0.866025 + 0.500000i
\(676\) 26.2048 + 45.3880i 1.00788 + 1.74569i
\(677\) −36.0000 20.7846i −1.38359 0.798817i −0.391009 0.920387i \(-0.627874\pi\)
−0.992583 + 0.121569i \(0.961207\pi\)
\(678\) 74.4029i 2.85743i
\(679\) 0 0
\(680\) 89.9329 3.44877
\(681\) 15.4919 26.8328i 0.593652 1.02824i
\(682\) 0 0
\(683\) −23.8180 41.2539i −0.911369 1.57854i −0.812132 0.583473i \(-0.801693\pi\)
−0.0992365 0.995064i \(-0.531640\pi\)
\(684\) −58.9235 34.0195i −2.25300 1.30077i
\(685\) 4.82149i 0.184220i
\(686\) 0 0
\(687\) −51.8738 −1.97911
\(688\) 0 0
\(689\) 0 0
\(690\) 45.6043 + 78.9889i 1.73613 + 3.00706i
\(691\) 23.4311 + 13.5279i 0.891360 + 0.514627i 0.874387 0.485229i \(-0.161264\pi\)
0.0169730 + 0.999856i \(0.494597\pi\)
\(692\) 24.2432i 0.921587i
\(693\) 0 0
\(694\) 71.4100 2.71069
\(695\) −14.0741 + 24.3771i −0.533862 + 0.924676i
\(696\) 0 0
\(697\) 0 0
\(698\) 58.1148 + 33.5526i 2.19968 + 1.26998i
\(699\) 49.5583i 1.87447i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −3.43431 1.98280i −0.129344 0.0746766i
\(706\) 51.0452i 1.92111i
\(707\) 0 0
\(708\) 0 0
\(709\) 7.23929 12.5388i 0.271877 0.470905i −0.697465 0.716619i \(-0.745689\pi\)
0.969343 + 0.245713i \(0.0790222\pi\)
\(710\) 0 0
\(711\) −8.75472 15.1636i −0.328328 0.568680i
\(712\) 0 0
\(713\) 42.4488i 1.58972i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 28.1076i 1.04751i
\(721\) 0 0
\(722\) −31.0610 −1.15597
\(723\) 24.1275 41.7900i 0.897310 1.55419i
\(724\) −20.5770 + 11.8801i −0.764738 + 0.441522i
\(725\) 0 0
\(726\) 40.5226 + 23.3957i 1.50393 + 0.868296i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 14.2475 + 24.6773i 0.526601 + 0.912101i
\(733\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 2.99124 0.110258
\(737\) 0 0
\(738\) 0 0
\(739\) −2.00000 3.46410i −0.0735712 0.127429i 0.826893 0.562360i \(-0.190106\pi\)
−0.900464 + 0.434930i \(0.856773\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.3863 −1.07808 −0.539039 0.842281i \(-0.681212\pi\)
−0.539039 + 0.842281i \(0.681212\pi\)
\(744\) −19.1271 + 33.1292i −0.701235 + 1.21457i
\(745\) 0 0
\(746\) 0 0
\(747\) 39.2273 + 22.6479i 1.43525 + 0.828643i
\(748\) 0 0
\(749\) 0 0
\(750\) 47.5585 1.73659
\(751\) −4.00000 + 6.92820i −0.145962 + 0.252814i −0.929731 0.368238i \(-0.879961\pi\)
0.783769 + 0.621052i \(0.213294\pi\)
\(752\) −3.71545 + 2.14511i −0.135488 + 0.0782243i
\(753\) 0 0
\(754\) 0 0
\(755\) 49.3915i 1.79754i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 37.1022 64.2628i 1.34761 2.33413i
\(759\) 0 0
\(760\) 31.3802 + 54.3521i 1.13828 + 1.97156i
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 27.0383 46.8317i 0.977571 1.69320i
\(766\) 70.7591 40.8528i 2.55663 1.47607i
\(767\) 0 0
\(768\) −48.3419 27.9102i −1.74439 1.00712i
\(769\) 30.6414i 1.10496i 0.833527 + 0.552479i \(0.186318\pi\)
−0.833527 + 0.552479i \(0.813682\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) 36.6797 21.1771i 1.31928 0.761686i 0.335666 0.941981i \(-0.391039\pi\)
0.983613 + 0.180295i \(0.0577053\pi\)
\(774\) 0 0
\(775\) 19.1685 + 11.0670i 0.688554 + 0.397537i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −164.408 94.9211i −5.87922 3.39437i
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(788\) −55.0597 95.3662i −1.96142 3.39728i
\(789\) 48.3398 + 27.9090i 1.72094 + 0.993587i
\(790\) 32.0516i 1.14034i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 18.2695 + 31.6437i 0.647953 + 1.12229i
\(796\) −96.3342 55.6186i −3.41447 1.97135i
\(797\) 54.3810i 1.92627i 0.269013 + 0.963136i \(0.413302\pi\)
−0.269013 + 0.963136i \(0.586698\pi\)
\(798\) 0 0
\(799\) 8.25403 0.292007
\(800\) 0.779854 1.35075i 0.0275720 0.0477561i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 42.8027 + 24.7121i 1.50393 + 0.868296i
\(811\) 39.1490i 1.37471i −0.726323 0.687353i \(-0.758772\pi\)
0.726323 0.687353i \(-0.241228\pi\)
\(812\) 0 0
\(813\) 8.81532 0.309167
\(814\) 0 0
\(815\) 0 0
\(816\) −29.2517 50.6653i −1.02401 1.77364i
\(817\) 0 0
\(818\) 94.7371i 3.31241i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 7.94329 4.58606i 0.277054 0.159957i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −27.9141 −0.970667 −0.485334 0.874329i \(-0.661302\pi\)
−0.485334 + 0.874329i \(0.661302\pi\)
\(828\) 57.9877 100.438i 2.01521 3.49045i
\(829\) −11.8008 + 6.81319i −0.409859 + 0.236632i −0.690729 0.723114i \(-0.742710\pi\)
0.280870 + 0.959746i \(0.409377\pi\)
\(830\) −41.4576 71.8067i −1.43902 2.49245i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 53.5476 1.85420
\(835\) 10.0000 17.3205i 0.346064 0.599401i
\(836\) 0 0
\(837\) 11.5011 + 19.9205i 0.397537 + 0.688554i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) −46.4468 + 80.4483i −1.60066 + 2.77243i
\(843\) 0 0
\(844\) 15.6140 + 27.0442i 0.537455 + 0.930899i
\(845\) −25.1744 14.5344i −0.866025 0.500000i
\(846\) 7.54393i 0.259366i
\(847\) 0 0
\(848\) 39.5301 1.35747
\(849\) 0 0
\(850\) −85.7267 + 49.4944i −2.94040 + 1.69764i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 37.7377 1.29060
\(856\) 6.87409 11.9063i 0.234952 0.406948i
\(857\) −31.3593 + 18.1053i −1.07121 + 0.618466i −0.928513 0.371300i \(-0.878912\pi\)
−0.142701 + 0.989766i \(0.545579\pi\)
\(858\) 0 0
\(859\) −48.0401 27.7360i −1.63911 0.946340i −0.981141 0.193293i \(-0.938083\pi\)
−0.657967 0.753047i \(-0.728583\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.04521 + 15.6668i −0.307902 + 0.533303i −0.977903 0.209058i \(-0.932960\pi\)
0.670001 + 0.742360i \(0.266294\pi\)
\(864\) 1.40374 0.810449i 0.0477561 0.0275720i
\(865\) 6.72322 + 11.6450i 0.228596 + 0.395940i
\(866\) 0 0
\(867\) 83.1105i 2.82258i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 38.6462 + 66.9372i 1.30872 + 2.26678i
\(873\) 0 0
\(874\) 132.483i 4.48130i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 62.9628 36.3516i 2.12489 1.22681i
\(879\) 12.0000 + 20.7846i 0.404750 + 0.701047i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −51.6358 89.4358i −1.73474 3.00465i
\(887\) 30.5852 + 17.6584i 1.02695 + 0.592911i 0.916110 0.400928i \(-0.131312\pi\)
0.110841 + 0.993838i \(0.464645\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.88007 + 4.98842i 0.0963778 + 0.166931i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −30.2363 52.3708i −1.00788 1.74569i
\(901\) −65.8635 38.0263i −2.19423 1.26684i
\(902\) 0 0
\(903\) 0 0
\(904\) −87.2664 −2.90244
\(905\) 6.58930 11.4130i 0.219036 0.379381i
\(906\) 81.3712 46.9797i 2.70338 1.56080i
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 62.4558 + 36.0589i 2.07267 + 1.19666i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 20.4135 35.3572i 0.675958 1.17079i
\(913\) 0 0
\(914\) 0 0
\(915\) −13.6872 7.90233i −0.452486 0.261243i
\(916\) 120.741i 3.98940i
\(917\) 0 0
\(918\) −102.872 −3.39528
\(919\) −11.6190 + 20.1246i −0.383274 + 0.663850i −0.991528 0.129893i \(-0.958537\pi\)
0.608254 + 0.793742i \(0.291870\pi\)
\(920\) −92.6454 + 53.4888i −3.05443 + 1.76347i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 42.1063i 1.38072i
\(931\) 0 0
\(932\) −115.351 −3.77846
\(933\) 0 0
\(934\) −76.0937 + 43.9327i −2.48986 + 1.43752i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.61515 7.99367i 0.150530 0.260725i
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.7807 41.1893i 0.772768 1.33847i −0.163272 0.986581i \(-0.552205\pi\)
0.936040 0.351893i \(-0.114462\pi\)
\(948\) 35.2947 20.3774i 1.14632 0.661828i
\(949\) 0 0
\(950\) −59.8250 34.5400i −1.94098 1.12063i
\(951\) 17.4129i 0.564652i
\(952\) 0 0
\(953\) −41.4508 −1.34272 −0.671362 0.741129i \(-0.734290\pi\)
−0.671362 + 0.741129i \(0.734290\pi\)
\(954\) 34.7548 60.1971i 1.12523 1.94895i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 29.4887 0.951744
\(961\) −5.70180 + 9.87580i −0.183929 + 0.318574i
\(962\) 0 0
\(963\) −4.13338 7.15923i −0.133196 0.230703i
\(964\) 97.2700 + 56.1589i 3.13286 + 1.80876i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −27.4406 + 47.5285i −0.881974 + 1.52762i
\(969\) −68.0242 + 39.2738i −2.18525 + 1.26166i
\(970\) 0 0
\(971\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) 62.8450i 2.01575i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −14.8077 + 8.54922i −0.473983 + 0.273654i
\(977\) −13.9967 24.2431i −0.447796 0.775605i 0.550447 0.834870i \(-0.314457\pi\)
−0.998242 + 0.0592656i \(0.981124\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 46.4758 1.48386
\(982\) 0 0
\(983\) −3.00000 + 1.73205i −0.0956851 + 0.0552438i −0.547079 0.837081i \(-0.684260\pi\)
0.451394 + 0.892325i \(0.350927\pi\)
\(984\) 0 0
\(985\) 52.8947 + 30.5388i 1.68537 + 0.973046i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −16.0000 27.7128i −0.508257 0.880327i −0.999954 0.00956046i \(-0.996957\pi\)
0.491698 0.870766i \(-0.336377\pi\)
\(992\) −1.19589 0.690449i −0.0379696 0.0219218i
\(993\) 40.2492i 1.27727i
\(994\) 0 0
\(995\) 61.6975 1.95594
\(996\) −52.7151 + 91.3051i −1.67034 + 2.89311i
\(997\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(998\) 31.4792 + 54.5236i 0.996458 + 1.72592i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.d.509.2 16
3.2 odd 2 735.2.p.e.509.7 16
5.4 even 2 735.2.p.e.509.7 16
7.2 even 3 735.2.g.a.734.13 yes 16
7.3 odd 6 inner 735.2.p.d.374.2 16
7.4 even 3 735.2.p.e.374.2 16
7.5 odd 6 735.2.g.a.734.14 yes 16
7.6 odd 2 735.2.p.e.509.2 16
15.14 odd 2 CM 735.2.p.d.509.2 16
21.2 odd 6 735.2.g.a.734.4 yes 16
21.5 even 6 735.2.g.a.734.3 16
21.11 odd 6 inner 735.2.p.d.374.7 16
21.17 even 6 735.2.p.e.374.7 16
21.20 even 2 inner 735.2.p.d.509.7 16
35.4 even 6 inner 735.2.p.d.374.7 16
35.9 even 6 735.2.g.a.734.4 yes 16
35.19 odd 6 735.2.g.a.734.3 16
35.24 odd 6 735.2.p.e.374.7 16
35.34 odd 2 inner 735.2.p.d.509.7 16
105.44 odd 6 735.2.g.a.734.13 yes 16
105.59 even 6 inner 735.2.p.d.374.2 16
105.74 odd 6 735.2.p.e.374.2 16
105.89 even 6 735.2.g.a.734.14 yes 16
105.104 even 2 735.2.p.e.509.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.a.734.3 16 21.5 even 6
735.2.g.a.734.3 16 35.19 odd 6
735.2.g.a.734.4 yes 16 21.2 odd 6
735.2.g.a.734.4 yes 16 35.9 even 6
735.2.g.a.734.13 yes 16 7.2 even 3
735.2.g.a.734.13 yes 16 105.44 odd 6
735.2.g.a.734.14 yes 16 7.5 odd 6
735.2.g.a.734.14 yes 16 105.89 even 6
735.2.p.d.374.2 16 7.3 odd 6 inner
735.2.p.d.374.2 16 105.59 even 6 inner
735.2.p.d.374.7 16 21.11 odd 6 inner
735.2.p.d.374.7 16 35.4 even 6 inner
735.2.p.d.509.2 16 1.1 even 1 trivial
735.2.p.d.509.2 16 15.14 odd 2 CM
735.2.p.d.509.7 16 21.20 even 2 inner
735.2.p.d.509.7 16 35.34 odd 2 inner
735.2.p.e.374.2 16 7.4 even 3
735.2.p.e.374.2 16 105.74 odd 6
735.2.p.e.374.7 16 21.17 even 6
735.2.p.e.374.7 16 35.24 odd 6
735.2.p.e.509.2 16 7.6 odd 2
735.2.p.e.509.2 16 105.104 even 2
735.2.p.e.509.7 16 3.2 odd 2
735.2.p.e.509.7 16 5.4 even 2