Properties

Label 735.2.p.f.374.6
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.6
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.f.509.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.322403 - 0.558418i) q^{2} +(-1.15761 - 1.28838i) q^{3} +(0.792113 - 1.37198i) q^{4} +(1.60193 + 1.56008i) q^{5} +(-0.346239 + 1.06181i) q^{6} -2.31113 q^{8} +(-0.319861 + 2.98290i) q^{9} +(0.354709 - 1.39752i) q^{10} +(3.51044 + 2.02675i) q^{11} +(-2.68460 + 0.567678i) q^{12} +4.21339 q^{13} +(0.155565 - 3.86986i) q^{15} +(-0.839111 - 1.45338i) q^{16} +(1.88498 + 1.08830i) q^{17} +(1.76883 - 0.783079i) q^{18} +(3.87634 - 2.23800i) q^{19} +(3.40930 - 0.962052i) q^{20} -2.61372i q^{22} +(0.322403 + 0.558418i) q^{23} +(2.67540 + 2.97762i) q^{24} +(0.132327 + 4.99825i) q^{25} +(-1.35841 - 2.35284i) q^{26} +(4.21339 - 3.04094i) q^{27} -1.16875i q^{29} +(-2.21115 + 1.16078i) q^{30} +(0.339111 + 0.195786i) q^{31} +(-2.85219 + 4.94014i) q^{32} +(-1.45250 - 6.86898i) q^{33} -1.40348i q^{34} +(3.83911 + 2.80164i) q^{36} +(-3.69236 + 2.13178i) q^{37} +(-2.49949 - 1.44308i) q^{38} +(-4.87748 - 5.42846i) q^{39} +(-3.70226 - 3.60554i) q^{40} -2.27971 q^{41} -6.54419i q^{43} +(5.56132 - 3.21083i) q^{44} +(-5.16594 + 4.27937i) q^{45} +(0.207887 - 0.360071i) q^{46} +(-6.75621 + 3.90070i) q^{47} +(-0.901147 + 2.76355i) q^{48} +(2.74845 - 1.68534i) q^{50} +(-0.779941 - 3.68841i) q^{51} +(3.33748 - 5.78069i) q^{52} +(3.60074 - 6.23667i) q^{53} +(-3.05653 - 1.37243i) q^{54} +(2.46157 + 8.72325i) q^{55} +(-7.37071 - 2.40346i) q^{57} +(-0.652654 + 0.376810i) q^{58} +(5.66247 - 9.80768i) q^{59} +(-5.18614 - 3.27880i) q^{60} +(-6.05456 + 3.49560i) q^{61} -0.252487i q^{62} +0.321779 q^{64} +(6.74954 + 6.57321i) q^{65} +(-3.36748 + 3.02568i) q^{66} +(7.56680 + 4.36870i) q^{67} +(2.98624 - 1.72411i) q^{68} +(0.346239 - 1.06181i) q^{69} -8.13766i q^{71} +(0.739241 - 6.89387i) q^{72} +(-2.61843 + 4.53525i) q^{73} +(2.38085 + 1.37459i) q^{74} +(6.28647 - 5.95653i) q^{75} -7.09101i q^{76} +(-1.45884 + 4.47383i) q^{78} +(-1.87634 - 3.24991i) q^{79} +(0.923194 - 3.63729i) q^{80} +(-8.79538 - 1.90823i) q^{81} +(0.734986 + 1.27303i) q^{82} -5.27461i q^{83} +(1.32178 + 4.68409i) q^{85} +(-3.65439 + 2.10987i) q^{86} +(-1.50580 + 1.35297i) q^{87} +(-8.11308 - 4.68409i) q^{88} +(0.447379 + 0.774883i) q^{89} +(4.05520 + 1.50507i) q^{90} +1.02152 q^{92} +(-0.140312 - 0.663548i) q^{93} +(4.35644 + 2.51519i) q^{94} +(9.70106 + 2.46227i) q^{95} +(9.66653 - 2.04406i) q^{96} -3.89968 q^{97} +(-7.16845 + 9.82300i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 6 q^{9} - 24 q^{15} - 12 q^{16} - 18 q^{24} - 12 q^{25} + 18 q^{30} + 84 q^{36} - 12 q^{39} + 72 q^{40} + 18 q^{45} + 36 q^{46} - 12 q^{51} + 36 q^{54} + 12 q^{60} - 36 q^{61} + 24 q^{64}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.322403 0.558418i −0.227973 0.394861i 0.729234 0.684264i \(-0.239877\pi\)
−0.957207 + 0.289403i \(0.906543\pi\)
\(3\) −1.15761 1.28838i −0.668349 0.743848i
\(4\) 0.792113 1.37198i 0.396056 0.685990i
\(5\) 1.60193 + 1.56008i 0.716403 + 0.697687i
\(6\) −0.346239 + 1.06181i −0.141351 + 0.433483i
\(7\) 0 0
\(8\) −2.31113 −0.817108
\(9\) −0.319861 + 2.98290i −0.106620 + 0.994300i
\(10\) 0.354709 1.39752i 0.112169 0.441934i
\(11\) 3.51044 + 2.02675i 1.05844 + 0.611089i 0.924999 0.379968i \(-0.124065\pi\)
0.133437 + 0.991057i \(0.457398\pi\)
\(12\) −2.68460 + 0.567678i −0.774976 + 0.163874i
\(13\) 4.21339 1.16858 0.584292 0.811543i \(-0.301372\pi\)
0.584292 + 0.811543i \(0.301372\pi\)
\(14\) 0 0
\(15\) 0.155565 3.86986i 0.0401666 0.999193i
\(16\) −0.839111 1.45338i −0.209778 0.363346i
\(17\) 1.88498 + 1.08830i 0.457176 + 0.263951i 0.710856 0.703338i \(-0.248308\pi\)
−0.253680 + 0.967288i \(0.581641\pi\)
\(18\) 1.76883 0.783079i 0.416917 0.184574i
\(19\) 3.87634 2.23800i 0.889293 0.513434i 0.0155818 0.999879i \(-0.495040\pi\)
0.873711 + 0.486445i \(0.161707\pi\)
\(20\) 3.40930 0.962052i 0.762342 0.215121i
\(21\) 0 0
\(22\) 2.61372i 0.557248i
\(23\) 0.322403 + 0.558418i 0.0672257 + 0.116438i 0.897679 0.440650i \(-0.145252\pi\)
−0.830453 + 0.557088i \(0.811919\pi\)
\(24\) 2.67540 + 2.97762i 0.546113 + 0.607804i
\(25\) 0.132327 + 4.99825i 0.0264655 + 0.999650i
\(26\) −1.35841 2.35284i −0.266406 0.461429i
\(27\) 4.21339 3.04094i 0.810868 0.585229i
\(28\) 0 0
\(29\) 1.16875i 0.217032i −0.994095 0.108516i \(-0.965390\pi\)
0.994095 0.108516i \(-0.0346099\pi\)
\(30\) −2.21115 + 1.16078i −0.403700 + 0.211929i
\(31\) 0.339111 + 0.195786i 0.0609061 + 0.0351641i 0.530144 0.847908i \(-0.322138\pi\)
−0.469238 + 0.883072i \(0.655471\pi\)
\(32\) −2.85219 + 4.94014i −0.504201 + 0.873302i
\(33\) −1.45250 6.86898i −0.252847 1.19574i
\(34\) 1.40348i 0.240695i
\(35\) 0 0
\(36\) 3.83911 + 2.80164i 0.639852 + 0.466939i
\(37\) −3.69236 + 2.13178i −0.607020 + 0.350463i −0.771798 0.635868i \(-0.780642\pi\)
0.164778 + 0.986331i \(0.447309\pi\)
\(38\) −2.49949 1.44308i −0.405470 0.234098i
\(39\) −4.87748 5.42846i −0.781022 0.869250i
\(40\) −3.70226 3.60554i −0.585378 0.570085i
\(41\) −2.27971 −0.356031 −0.178016 0.984028i \(-0.556968\pi\)
−0.178016 + 0.984028i \(0.556968\pi\)
\(42\) 0 0
\(43\) 6.54419i 0.997980i −0.866608 0.498990i \(-0.833705\pi\)
0.866608 0.498990i \(-0.166295\pi\)
\(44\) 5.56132 3.21083i 0.838401 0.484051i
\(45\) −5.16594 + 4.27937i −0.770093 + 0.637931i
\(46\) 0.207887 0.360071i 0.0306513 0.0530896i
\(47\) −6.75621 + 3.90070i −0.985494 + 0.568975i −0.903924 0.427692i \(-0.859327\pi\)
−0.0815698 + 0.996668i \(0.525993\pi\)
\(48\) −0.901147 + 2.76355i −0.130069 + 0.398884i
\(49\) 0 0
\(50\) 2.74845 1.68534i 0.388690 0.238344i
\(51\) −0.779941 3.68841i −0.109214 0.516480i
\(52\) 3.33748 5.78069i 0.462825 0.801637i
\(53\) 3.60074 6.23667i 0.494600 0.856672i −0.505381 0.862896i \(-0.668648\pi\)
0.999981 + 0.00622439i \(0.00198130\pi\)
\(54\) −3.05653 1.37243i −0.415941 0.186764i
\(55\) 2.46157 + 8.72325i 0.331918 + 1.17624i
\(56\) 0 0
\(57\) −7.37071 2.40346i −0.976274 0.318346i
\(58\) −0.652654 + 0.376810i −0.0856977 + 0.0494776i
\(59\) 5.66247 9.80768i 0.737190 1.27685i −0.216566 0.976268i \(-0.569485\pi\)
0.953756 0.300583i \(-0.0971812\pi\)
\(60\) −5.18614 3.27880i −0.669528 0.423291i
\(61\) −6.05456 + 3.49560i −0.775207 + 0.447566i −0.834729 0.550661i \(-0.814376\pi\)
0.0595220 + 0.998227i \(0.481042\pi\)
\(62\) 0.252487i 0.0320659i
\(63\) 0 0
\(64\) 0.321779 0.0402224
\(65\) 6.74954 + 6.57321i 0.837177 + 0.815307i
\(66\) −3.36748 + 3.02568i −0.414508 + 0.372436i
\(67\) 7.56680 + 4.36870i 0.924432 + 0.533721i 0.885046 0.465503i \(-0.154127\pi\)
0.0393859 + 0.999224i \(0.487460\pi\)
\(68\) 2.98624 1.72411i 0.362135 0.209079i
\(69\) 0.346239 1.06181i 0.0416822 0.127827i
\(70\) 0 0
\(71\) 8.13766i 0.965762i −0.875686 0.482881i \(-0.839590\pi\)
0.875686 0.482881i \(-0.160410\pi\)
\(72\) 0.739241 6.89387i 0.0871204 0.812450i
\(73\) −2.61843 + 4.53525i −0.306464 + 0.530810i −0.977586 0.210536i \(-0.932479\pi\)
0.671123 + 0.741346i \(0.265812\pi\)
\(74\) 2.38085 + 1.37459i 0.276769 + 0.159792i
\(75\) 6.28647 5.95653i 0.725900 0.687801i
\(76\) 7.09101i 0.813394i
\(77\) 0 0
\(78\) −1.45884 + 4.47383i −0.165181 + 0.506561i
\(79\) −1.87634 3.24991i −0.211105 0.365644i 0.740956 0.671554i \(-0.234373\pi\)
−0.952060 + 0.305910i \(0.901039\pi\)
\(80\) 0.923194 3.63729i 0.103216 0.406661i
\(81\) −8.79538 1.90823i −0.977264 0.212025i
\(82\) 0.734986 + 1.27303i 0.0811656 + 0.140583i
\(83\) 5.27461i 0.578964i −0.957183 0.289482i \(-0.906517\pi\)
0.957183 0.289482i \(-0.0934831\pi\)
\(84\) 0 0
\(85\) 1.32178 + 4.68409i 0.143367 + 0.508061i
\(86\) −3.65439 + 2.10987i −0.394064 + 0.227513i
\(87\) −1.50580 + 1.35297i −0.161439 + 0.145053i
\(88\) −8.11308 4.68409i −0.864857 0.499325i
\(89\) 0.447379 + 0.774883i 0.0474221 + 0.0821375i 0.888762 0.458369i \(-0.151566\pi\)
−0.841340 + 0.540506i \(0.818233\pi\)
\(90\) 4.05520 + 1.50507i 0.427455 + 0.158649i
\(91\) 0 0
\(92\) 1.02152 0.106501
\(93\) −0.140312 0.663548i −0.0145497 0.0688068i
\(94\) 4.35644 + 2.51519i 0.449333 + 0.259422i
\(95\) 9.70106 + 2.46227i 0.995308 + 0.252623i
\(96\) 9.66653 2.04406i 0.986586 0.208621i
\(97\) −3.89968 −0.395953 −0.197976 0.980207i \(-0.563437\pi\)
−0.197976 + 0.980207i \(0.563437\pi\)
\(98\) 0 0
\(99\) −7.16845 + 9.82300i −0.720456 + 0.987249i
\(100\) 6.96231 + 3.77763i 0.696231 + 0.377763i
\(101\) 3.29188 5.70171i 0.327555 0.567341i −0.654471 0.756087i \(-0.727109\pi\)
0.982026 + 0.188745i \(0.0604421\pi\)
\(102\) −1.80822 + 1.62469i −0.179040 + 0.160868i
\(103\) 4.90721 + 8.49954i 0.483522 + 0.837485i 0.999821 0.0189238i \(-0.00602398\pi\)
−0.516299 + 0.856408i \(0.672691\pi\)
\(104\) −9.73770 −0.954860
\(105\) 0 0
\(106\) −4.64356 −0.451022
\(107\) −9.38974 16.2635i −0.907740 1.57225i −0.817196 0.576360i \(-0.804473\pi\)
−0.0905447 0.995892i \(-0.528861\pi\)
\(108\) −0.834627 8.18946i −0.0803120 0.788031i
\(109\) −0.453002 + 0.784623i −0.0433897 + 0.0751532i −0.886905 0.461952i \(-0.847149\pi\)
0.843515 + 0.537106i \(0.180482\pi\)
\(110\) 4.07761 4.18699i 0.388784 0.399214i
\(111\) 7.02088 + 2.28939i 0.666392 + 0.217299i
\(112\) 0 0
\(113\) 8.82955 0.830614 0.415307 0.909681i \(-0.363674\pi\)
0.415307 + 0.909681i \(0.363674\pi\)
\(114\) 1.03420 + 4.89082i 0.0968618 + 0.458067i
\(115\) −0.354709 + 1.39752i −0.0330768 + 0.130319i
\(116\) −1.60351 0.925786i −0.148882 0.0859570i
\(117\) −1.34770 + 12.5681i −0.124595 + 1.16192i
\(118\) −7.30238 −0.672239
\(119\) 0 0
\(120\) −0.359530 + 8.94374i −0.0328205 + 0.816448i
\(121\) 2.71545 + 4.70330i 0.246859 + 0.427572i
\(122\) 3.90402 + 2.25398i 0.353453 + 0.204066i
\(123\) 2.63903 + 2.93714i 0.237953 + 0.264833i
\(124\) 0.537228 0.310168i 0.0482445 0.0278540i
\(125\) −7.58567 + 8.21326i −0.678483 + 0.734616i
\(126\) 0 0
\(127\) 15.8249i 1.40424i 0.712060 + 0.702118i \(0.247762\pi\)
−0.712060 + 0.702118i \(0.752238\pi\)
\(128\) 5.60064 + 9.70060i 0.495032 + 0.857420i
\(129\) −8.43142 + 7.57564i −0.742345 + 0.666998i
\(130\) 1.49453 5.88829i 0.131079 0.516437i
\(131\) 8.27814 + 14.3382i 0.723265 + 1.25273i 0.959684 + 0.281080i \(0.0906928\pi\)
−0.236419 + 0.971651i \(0.575974\pi\)
\(132\) −10.5746 3.44821i −0.920405 0.300128i
\(133\) 0 0
\(134\) 5.63392i 0.486697i
\(135\) 11.4936 + 1.70185i 0.989215 + 0.146472i
\(136\) −4.35644 2.51519i −0.373562 0.215676i
\(137\) −9.93080 + 17.2007i −0.848446 + 1.46955i 0.0341490 + 0.999417i \(0.489128\pi\)
−0.882595 + 0.470135i \(0.844205\pi\)
\(138\) −0.704563 + 0.148985i −0.0599764 + 0.0126825i
\(139\) 0.228766i 0.0194037i −0.999953 0.00970183i \(-0.996912\pi\)
0.999953 0.00970183i \(-0.00308824\pi\)
\(140\) 0 0
\(141\) 12.8467 + 4.18908i 1.08188 + 0.352784i
\(142\) −4.54422 + 2.62361i −0.381342 + 0.220168i
\(143\) 14.7909 + 8.53950i 1.23687 + 0.714109i
\(144\) 4.60369 2.03810i 0.383641 0.169842i
\(145\) 1.82335 1.87226i 0.151421 0.155483i
\(146\) 3.37675 0.279462
\(147\) 0 0
\(148\) 6.75445i 0.555212i
\(149\) −8.62438 + 4.97929i −0.706537 + 0.407919i −0.809777 0.586737i \(-0.800412\pi\)
0.103240 + 0.994656i \(0.467079\pi\)
\(150\) −5.35301 1.59008i −0.437072 0.129829i
\(151\) 2.53723 4.39461i 0.206477 0.357628i −0.744126 0.668040i \(-0.767134\pi\)
0.950602 + 0.310412i \(0.100467\pi\)
\(152\) −8.95872 + 5.17232i −0.726648 + 0.419530i
\(153\) −3.84921 + 5.27461i −0.311190 + 0.426427i
\(154\) 0 0
\(155\) 0.237789 + 0.842672i 0.0190997 + 0.0676850i
\(156\) −11.3113 + 2.39185i −0.905625 + 0.191501i
\(157\) −8.42678 + 14.5956i −0.672531 + 1.16486i 0.304653 + 0.952463i \(0.401459\pi\)
−0.977184 + 0.212394i \(0.931874\pi\)
\(158\) −1.20987 + 2.09556i −0.0962524 + 0.166714i
\(159\) −12.2035 + 2.58052i −0.967799 + 0.204648i
\(160\) −12.2760 + 3.46410i −0.970503 + 0.273861i
\(161\) 0 0
\(162\) 1.77007 + 5.52672i 0.139070 + 0.434220i
\(163\) 4.16292 2.40346i 0.326065 0.188254i −0.328028 0.944668i \(-0.606384\pi\)
0.654093 + 0.756414i \(0.273051\pi\)
\(164\) −1.80579 + 3.12772i −0.141008 + 0.244234i
\(165\) 8.38934 13.2696i 0.653109 1.03304i
\(166\) −2.94544 + 1.70055i −0.228611 + 0.131988i
\(167\) 4.45089i 0.344420i −0.985060 0.172210i \(-0.944909\pi\)
0.985060 0.172210i \(-0.0550908\pi\)
\(168\) 0 0
\(169\) 4.75268 0.365590
\(170\) 2.18953 2.24827i 0.167930 0.172434i
\(171\) 5.43585 + 12.2786i 0.415690 + 0.938966i
\(172\) −8.97849 5.18374i −0.684604 0.395256i
\(173\) 9.91963 5.72710i 0.754175 0.435423i −0.0730252 0.997330i \(-0.523265\pi\)
0.827201 + 0.561907i \(0.189932\pi\)
\(174\) 1.24100 + 0.404668i 0.0940797 + 0.0306778i
\(175\) 0 0
\(176\) 6.80268i 0.512771i
\(177\) −19.1910 + 4.05808i −1.44248 + 0.305024i
\(178\) 0.288473 0.499649i 0.0216219 0.0374503i
\(179\) 9.04522 + 5.22226i 0.676071 + 0.390330i 0.798373 0.602163i \(-0.205694\pi\)
−0.122302 + 0.992493i \(0.539028\pi\)
\(180\) 1.77920 + 10.4773i 0.132614 + 0.780933i
\(181\) 11.9616i 0.889095i −0.895755 0.444548i \(-0.853364\pi\)
0.895755 0.444548i \(-0.146636\pi\)
\(182\) 0 0
\(183\) 11.5125 + 3.75404i 0.851030 + 0.277506i
\(184\) −0.745115 1.29058i −0.0549306 0.0951426i
\(185\) −9.24062 2.34540i −0.679384 0.172437i
\(186\) −0.325300 + 0.292283i −0.0238522 + 0.0214312i
\(187\) 4.41141 + 7.64079i 0.322594 + 0.558750i
\(188\) 12.3592i 0.901385i
\(189\) 0 0
\(190\) −1.75268 6.21109i −0.127153 0.450600i
\(191\) 12.2522 7.07383i 0.886541 0.511844i 0.0137312 0.999906i \(-0.495629\pi\)
0.872809 + 0.488061i \(0.162296\pi\)
\(192\) −0.372496 0.414574i −0.0268826 0.0299193i
\(193\) 5.36185 + 3.09566i 0.385954 + 0.222831i 0.680406 0.732836i \(-0.261804\pi\)
−0.294452 + 0.955666i \(0.595137\pi\)
\(194\) 1.25727 + 2.17765i 0.0902667 + 0.156346i
\(195\) 0.655455 16.3052i 0.0469381 1.16764i
\(196\) 0 0
\(197\) −13.0751 −0.931562 −0.465781 0.884900i \(-0.654227\pi\)
−0.465781 + 0.884900i \(0.654227\pi\)
\(198\) 7.79647 + 0.836029i 0.554071 + 0.0594140i
\(199\) −14.6810 8.47608i −1.04071 0.600854i −0.120675 0.992692i \(-0.538506\pi\)
−0.920034 + 0.391838i \(0.871839\pi\)
\(200\) −0.305826 11.5516i −0.0216251 0.816821i
\(201\) −3.13088 14.8062i −0.220835 1.04435i
\(202\) −4.24525 −0.298695
\(203\) 0 0
\(204\) −5.67822 1.85157i −0.397555 0.129636i
\(205\) −3.65193 3.55652i −0.255062 0.248398i
\(206\) 3.16420 5.48055i 0.220460 0.381848i
\(207\) −1.76883 + 0.783079i −0.122942 + 0.0544278i
\(208\) −3.53550 6.12367i −0.245143 0.424600i
\(209\) 18.1435 1.25501
\(210\) 0 0
\(211\) −18.4309 −1.26884 −0.634418 0.772990i \(-0.718760\pi\)
−0.634418 + 0.772990i \(0.718760\pi\)
\(212\) −5.70439 9.88029i −0.391779 0.678581i
\(213\) −10.4844 + 9.42027i −0.718381 + 0.645466i
\(214\) −6.05456 + 10.4868i −0.413881 + 0.716863i
\(215\) 10.2094 10.4833i 0.696277 0.714955i
\(216\) −9.73770 + 7.02801i −0.662566 + 0.478195i
\(217\) 0 0
\(218\) 0.584197 0.0395668
\(219\) 8.87426 1.87653i 0.599667 0.126804i
\(220\) 13.9180 + 3.53258i 0.938349 + 0.238166i
\(221\) 7.94218 + 4.58542i 0.534249 + 0.308449i
\(222\) −0.985115 4.65869i −0.0661166 0.312671i
\(223\) 0.627418 0.0420150 0.0210075 0.999779i \(-0.493313\pi\)
0.0210075 + 0.999779i \(0.493313\pi\)
\(224\) 0 0
\(225\) −14.9516 1.20403i −0.996773 0.0802685i
\(226\) −2.84667 4.93058i −0.189358 0.327977i
\(227\) −4.70200 2.71470i −0.312082 0.180181i 0.335776 0.941942i \(-0.391002\pi\)
−0.647858 + 0.761761i \(0.724335\pi\)
\(228\) −9.13593 + 8.20865i −0.605042 + 0.543631i
\(229\) 12.4482 7.18699i 0.822602 0.474930i −0.0287108 0.999588i \(-0.509140\pi\)
0.851313 + 0.524658i \(0.175807\pi\)
\(230\) 0.894758 0.252487i 0.0589986 0.0166485i
\(231\) 0 0
\(232\) 2.70114i 0.177339i
\(233\) 4.21524 + 7.30101i 0.276150 + 0.478305i 0.970425 0.241405i \(-0.0776081\pi\)
−0.694275 + 0.719710i \(0.744275\pi\)
\(234\) 7.45277 3.29942i 0.487203 0.215690i
\(235\) −16.9083 4.29157i −1.10298 0.279951i
\(236\) −8.97062 15.5376i −0.583938 1.01141i
\(237\) −2.01506 + 6.17959i −0.130892 + 0.401407i
\(238\) 0 0
\(239\) 2.71852i 0.175847i −0.996127 0.0879233i \(-0.971977\pi\)
0.996127 0.0879233i \(-0.0280230\pi\)
\(240\) −5.75492 + 3.02114i −0.371478 + 0.195014i
\(241\) 1.32457 + 0.764739i 0.0853229 + 0.0492612i 0.542054 0.840343i \(-0.317647\pi\)
−0.456732 + 0.889605i \(0.650980\pi\)
\(242\) 1.75094 3.03271i 0.112555 0.194950i
\(243\) 7.72312 + 13.5408i 0.495438 + 0.868643i
\(244\) 11.0756i 0.709045i
\(245\) 0 0
\(246\) 0.789324 2.42062i 0.0503255 0.154333i
\(247\) 16.3325 9.42959i 1.03921 0.599991i
\(248\) −0.783728 0.452486i −0.0497668 0.0287329i
\(249\) −6.79572 + 6.10597i −0.430661 + 0.386950i
\(250\) 7.03208 + 1.58800i 0.444748 + 0.100434i
\(251\) −8.81039 −0.556107 −0.278054 0.960566i \(-0.589689\pi\)
−0.278054 + 0.960566i \(0.589689\pi\)
\(252\) 0 0
\(253\) 2.61372i 0.164323i
\(254\) 8.83694 5.10201i 0.554479 0.320128i
\(255\) 4.50479 7.12532i 0.282101 0.446205i
\(256\) 3.93311 6.81234i 0.245819 0.425771i
\(257\) −17.4101 + 10.0517i −1.08601 + 0.627011i −0.932512 0.361138i \(-0.882388\pi\)
−0.153502 + 0.988148i \(0.549055\pi\)
\(258\) 6.94869 + 2.26585i 0.432607 + 0.141066i
\(259\) 0 0
\(260\) 14.3647 4.05350i 0.890861 0.251388i
\(261\) 3.48628 + 0.373839i 0.215795 + 0.0231401i
\(262\) 5.33780 9.24533i 0.329770 0.571179i
\(263\) 4.37959 7.58568i 0.270057 0.467753i −0.698819 0.715299i \(-0.746291\pi\)
0.968876 + 0.247546i \(0.0796240\pi\)
\(264\) 3.35691 + 15.8751i 0.206604 + 0.977046i
\(265\) 15.4978 4.37324i 0.952022 0.268646i
\(266\) 0 0
\(267\) 0.480454 1.47341i 0.0294033 0.0901713i
\(268\) 11.9875 6.92100i 0.732255 0.422767i
\(269\) −8.62438 + 14.9379i −0.525838 + 0.910778i 0.473709 + 0.880681i \(0.342915\pi\)
−0.999547 + 0.0300966i \(0.990419\pi\)
\(270\) −2.75524 6.96694i −0.167678 0.423994i
\(271\) −19.6117 + 11.3228i −1.19132 + 0.687812i −0.958607 0.284733i \(-0.908095\pi\)
−0.232718 + 0.972544i \(0.574762\pi\)
\(272\) 3.65280i 0.221484i
\(273\) 0 0
\(274\) 12.8069 0.773692
\(275\) −9.66568 + 17.8142i −0.582863 + 1.07424i
\(276\) −1.18252 1.31611i −0.0711795 0.0792203i
\(277\) 11.4413 + 6.60561i 0.687438 + 0.396893i 0.802652 0.596448i \(-0.203422\pi\)
−0.115213 + 0.993341i \(0.536755\pi\)
\(278\) −0.127747 + 0.0737548i −0.00766176 + 0.00442352i
\(279\) −0.692477 + 0.948908i −0.0414575 + 0.0568097i
\(280\) 0 0
\(281\) 32.8703i 1.96088i 0.196817 + 0.980440i \(0.436940\pi\)
−0.196817 + 0.980440i \(0.563060\pi\)
\(282\) −1.80255 8.52439i −0.107340 0.507620i
\(283\) 7.90575 13.6932i 0.469948 0.813974i −0.529462 0.848334i \(-0.677606\pi\)
0.999410 + 0.0343601i \(0.0109393\pi\)
\(284\) −11.1647 6.44594i −0.662503 0.382496i
\(285\) −8.05774 15.3490i −0.477299 0.909198i
\(286\) 11.0126i 0.651191i
\(287\) 0 0
\(288\) −13.8236 10.0880i −0.814566 0.594439i
\(289\) −6.13122 10.6196i −0.360660 0.624682i
\(290\) −1.63336 0.414568i −0.0959139 0.0243443i
\(291\) 4.51433 + 5.02429i 0.264635 + 0.294529i
\(292\) 4.14818 + 7.18485i 0.242754 + 0.420462i
\(293\) 20.7797i 1.21396i −0.794716 0.606982i \(-0.792380\pi\)
0.794716 0.606982i \(-0.207620\pi\)
\(294\) 0 0
\(295\) 24.3716 6.87729i 1.41897 0.400411i
\(296\) 8.53351 4.92683i 0.496000 0.286366i
\(297\) 20.9541 2.13553i 1.21588 0.123916i
\(298\) 5.56105 + 3.21068i 0.322143 + 0.185989i
\(299\) 1.35841 + 2.35284i 0.0785589 + 0.136068i
\(300\) −3.19264 13.3432i −0.184327 0.770367i
\(301\) 0 0
\(302\) −3.27204 −0.188285
\(303\) −11.1567 + 2.35917i −0.640937 + 0.135531i
\(304\) −6.50535 3.75587i −0.373108 0.215414i
\(305\) −15.1524 3.84588i −0.867621 0.220214i
\(306\) 4.18644 + 0.448919i 0.239323 + 0.0256630i
\(307\) 12.9857 0.741136 0.370568 0.928805i \(-0.379163\pi\)
0.370568 + 0.928805i \(0.379163\pi\)
\(308\) 0 0
\(309\) 5.27001 16.1616i 0.299800 0.919399i
\(310\) 0.393899 0.404466i 0.0223720 0.0229721i
\(311\) −0.228825 + 0.396337i −0.0129755 + 0.0224742i −0.872440 0.488721i \(-0.837464\pi\)
0.859465 + 0.511195i \(0.170797\pi\)
\(312\) 11.2725 + 12.5459i 0.638179 + 0.710271i
\(313\) −13.8710 24.0252i −0.784033 1.35799i −0.929575 0.368633i \(-0.879826\pi\)
0.145542 0.989352i \(-0.453507\pi\)
\(314\) 10.8673 0.613276
\(315\) 0 0
\(316\) −5.94509 −0.334437
\(317\) 2.26170 + 3.91737i 0.127030 + 0.220022i 0.922524 0.385939i \(-0.126122\pi\)
−0.795495 + 0.605960i \(0.792789\pi\)
\(318\) 5.37545 + 5.98268i 0.301440 + 0.335492i
\(319\) 2.36878 4.10284i 0.132626 0.229715i
\(320\) 0.515466 + 0.501999i 0.0288154 + 0.0280626i
\(321\) −10.0839 + 30.9244i −0.562830 + 1.72603i
\(322\) 0 0
\(323\) 9.74245 0.542084
\(324\) −9.58498 + 10.5555i −0.532499 + 0.586419i
\(325\) 0.557547 + 21.0596i 0.0309272 + 1.16818i
\(326\) −2.68428 1.54977i −0.148668 0.0858337i
\(327\) 1.53530 0.324650i 0.0849021 0.0179532i
\(328\) 5.26871 0.290916
\(329\) 0 0
\(330\) −10.1147 0.406603i −0.556798 0.0223828i
\(331\) 11.4482 + 19.8289i 0.629252 + 1.08990i 0.987702 + 0.156347i \(0.0499718\pi\)
−0.358451 + 0.933549i \(0.616695\pi\)
\(332\) −7.23666 4.17809i −0.397163 0.229302i
\(333\) −5.17785 11.6958i −0.283745 0.640926i
\(334\) −2.48546 + 1.43498i −0.135998 + 0.0785186i
\(335\) 5.30596 + 18.8031i 0.289895 + 1.02732i
\(336\) 0 0
\(337\) 31.2616i 1.70293i −0.524413 0.851464i \(-0.675715\pi\)
0.524413 0.851464i \(-0.324285\pi\)
\(338\) −1.53228 2.65398i −0.0833449 0.144358i
\(339\) −10.2212 11.3758i −0.555140 0.617851i
\(340\) 7.47347 + 1.89687i 0.405306 + 0.102872i
\(341\) 0.793618 + 1.37459i 0.0429768 + 0.0744380i
\(342\) 5.10405 6.99413i 0.275995 0.378199i
\(343\) 0 0
\(344\) 15.1245i 0.815457i
\(345\) 2.21115 1.16078i 0.119045 0.0624945i
\(346\) −6.39623 3.69287i −0.343864 0.198530i
\(347\) −1.39335 + 2.41336i −0.0747992 + 0.129556i −0.900999 0.433821i \(-0.857165\pi\)
0.826200 + 0.563377i \(0.190498\pi\)
\(348\) 0.663476 + 3.13763i 0.0355661 + 0.168195i
\(349\) 16.5636i 0.886627i 0.896367 + 0.443314i \(0.146197\pi\)
−0.896367 + 0.443314i \(0.853803\pi\)
\(350\) 0 0
\(351\) 17.7527 12.8127i 0.947568 0.683890i
\(352\) −20.0249 + 11.5614i −1.06733 + 0.616223i
\(353\) −2.83794 1.63849i −0.151048 0.0872078i 0.422571 0.906330i \(-0.361128\pi\)
−0.573619 + 0.819122i \(0.694461\pi\)
\(354\) 8.45334 + 9.40826i 0.449290 + 0.500044i
\(355\) 12.6954 13.0359i 0.673800 0.691875i
\(356\) 1.41750 0.0751273
\(357\) 0 0
\(358\) 6.73469i 0.355939i
\(359\) −14.7282 + 8.50335i −0.777326 + 0.448789i −0.835482 0.549518i \(-0.814811\pi\)
0.0581557 + 0.998308i \(0.481478\pi\)
\(360\) 11.9392 9.89019i 0.629249 0.521259i
\(361\) 0.517332 0.896045i 0.0272280 0.0471603i
\(362\) −6.67955 + 3.85644i −0.351069 + 0.202690i
\(363\) 2.91620 8.94314i 0.153061 0.469393i
\(364\) 0 0
\(365\) −11.2698 + 3.18018i −0.589891 + 0.166458i
\(366\) −1.61535 7.63911i −0.0844355 0.399303i
\(367\) 8.55840 14.8236i 0.446745 0.773785i −0.551427 0.834223i \(-0.685916\pi\)
0.998172 + 0.0604381i \(0.0192498\pi\)
\(368\) 0.541063 0.937149i 0.0282049 0.0488523i
\(369\) 0.729192 6.80015i 0.0379602 0.354002i
\(370\) 1.66949 + 5.91630i 0.0867926 + 0.307574i
\(371\) 0 0
\(372\) −1.02152 0.333100i −0.0529632 0.0172704i
\(373\) −25.0397 + 14.4567i −1.29651 + 0.748538i −0.979799 0.199986i \(-0.935910\pi\)
−0.316706 + 0.948524i \(0.602577\pi\)
\(374\) 2.84450 4.92683i 0.147086 0.254760i
\(375\) 19.3631 + 0.265463i 0.999906 + 0.0137084i
\(376\) 15.6145 9.01502i 0.805255 0.464914i
\(377\) 4.92442i 0.253621i
\(378\) 0 0
\(379\) −0.559557 −0.0287425 −0.0143712 0.999897i \(-0.504575\pi\)
−0.0143712 + 0.999897i \(0.504575\pi\)
\(380\) 11.0625 11.3593i 0.567495 0.582718i
\(381\) 20.3886 18.3192i 1.04454 0.938519i
\(382\) −7.90031 4.56125i −0.404215 0.233374i
\(383\) −3.28951 + 1.89920i −0.168086 + 0.0970447i −0.581683 0.813415i \(-0.697606\pi\)
0.413597 + 0.910460i \(0.364272\pi\)
\(384\) 6.01470 18.4453i 0.306937 0.941284i
\(385\) 0 0
\(386\) 3.99220i 0.203198i
\(387\) 19.5207 + 2.09323i 0.992291 + 0.106405i
\(388\) −3.08899 + 5.35029i −0.156820 + 0.271620i
\(389\) 7.88909 + 4.55477i 0.399993 + 0.230936i 0.686481 0.727148i \(-0.259155\pi\)
−0.286488 + 0.958084i \(0.592488\pi\)
\(390\) −9.31646 + 4.89084i −0.471757 + 0.247657i
\(391\) 1.40348i 0.0709770i
\(392\) 0 0
\(393\) 8.89016 27.2635i 0.448449 1.37526i
\(394\) 4.21545 + 7.30137i 0.212371 + 0.367838i
\(395\) 2.06436 8.13335i 0.103869 0.409233i
\(396\) 7.79874 + 17.6159i 0.391901 + 0.885232i
\(397\) −12.1191 20.9910i −0.608242 1.05351i −0.991530 0.129878i \(-0.958542\pi\)
0.383288 0.923629i \(-0.374792\pi\)
\(398\) 10.9309i 0.547914i
\(399\) 0 0
\(400\) 7.15333 4.38641i 0.357666 0.219320i
\(401\) −26.1500 + 15.0977i −1.30587 + 0.753944i −0.981404 0.191953i \(-0.938518\pi\)
−0.324466 + 0.945897i \(0.605185\pi\)
\(402\) −7.25865 + 6.52190i −0.362028 + 0.325283i
\(403\) 1.42881 + 0.824921i 0.0711739 + 0.0410923i
\(404\) −5.21509 9.03279i −0.259460 0.449398i
\(405\) −11.1126 16.7783i −0.552187 0.833720i
\(406\) 0 0
\(407\) −17.2824 −0.856656
\(408\) 1.80255 + 8.52439i 0.0892393 + 0.422020i
\(409\) 21.3618 + 12.3332i 1.05627 + 0.609839i 0.924399 0.381427i \(-0.124567\pi\)
0.131874 + 0.991267i \(0.457901\pi\)
\(410\) −0.808636 + 3.18594i −0.0399357 + 0.157342i
\(411\) 33.6571 7.11704i 1.66018 0.351058i
\(412\) 15.5483 0.766008
\(413\) 0 0
\(414\) 1.00756 + 0.735280i 0.0495189 + 0.0361370i
\(415\) 8.22880 8.44954i 0.403936 0.414771i
\(416\) −12.0174 + 20.8148i −0.589202 + 1.02053i
\(417\) −0.294738 + 0.264822i −0.0144334 + 0.0129684i
\(418\) −5.84953 10.1317i −0.286110 0.495556i
\(419\) −39.4615 −1.92782 −0.963911 0.266226i \(-0.914223\pi\)
−0.963911 + 0.266226i \(0.914223\pi\)
\(420\) 0 0
\(421\) −30.9363 −1.50774 −0.753870 0.657023i \(-0.771815\pi\)
−0.753870 + 0.657023i \(0.771815\pi\)
\(422\) 5.94218 + 10.2921i 0.289261 + 0.501014i
\(423\) −9.47434 21.4008i −0.460658 1.04054i
\(424\) −8.32178 + 14.4137i −0.404141 + 0.699993i
\(425\) −5.19014 + 9.56563i −0.251759 + 0.464001i
\(426\) 8.64066 + 2.81757i 0.418641 + 0.136512i
\(427\) 0 0
\(428\) −29.7509 −1.43807
\(429\) −6.11994 28.9417i −0.295474 1.39732i
\(430\) −9.14562 2.32129i −0.441041 0.111942i
\(431\) −26.6240 15.3713i −1.28243 0.740412i −0.305138 0.952308i \(-0.598703\pi\)
−0.977292 + 0.211896i \(0.932036\pi\)
\(432\) −7.95515 3.57198i −0.382742 0.171857i
\(433\) −2.95856 −0.142179 −0.0710896 0.997470i \(-0.522648\pi\)
−0.0710896 + 0.997470i \(0.522648\pi\)
\(434\) 0 0
\(435\) −4.52292 0.181817i −0.216857 0.00871746i
\(436\) 0.717658 + 1.24302i 0.0343696 + 0.0595298i
\(437\) 2.49949 + 1.44308i 0.119567 + 0.0690318i
\(438\) −3.90897 4.35055i −0.186778 0.207877i
\(439\) −15.0772 + 8.70485i −0.719598 + 0.415460i −0.814605 0.580017i \(-0.803046\pi\)
0.0950070 + 0.995477i \(0.469713\pi\)
\(440\) −5.68901 20.1606i −0.271213 0.961117i
\(441\) 0 0
\(442\) 5.91341i 0.281272i
\(443\) −15.8970 27.5344i −0.755288 1.30820i −0.945231 0.326403i \(-0.894163\pi\)
0.189942 0.981795i \(-0.439170\pi\)
\(444\) 8.70232 7.81904i 0.412994 0.371075i
\(445\) −0.492209 + 1.93925i −0.0233329 + 0.0919293i
\(446\) −0.202281 0.350362i −0.00957830 0.0165901i
\(447\) 16.3989 + 5.34741i 0.775643 + 0.252924i
\(448\) 0 0
\(449\) 2.99461i 0.141324i 0.997500 + 0.0706621i \(0.0225112\pi\)
−0.997500 + 0.0706621i \(0.977489\pi\)
\(450\) 4.14809 + 8.73743i 0.195543 + 0.411886i
\(451\) −8.00279 4.62041i −0.376837 0.217567i
\(452\) 6.99400 12.1140i 0.328970 0.569793i
\(453\) −8.59907 + 1.81834i −0.404019 + 0.0854329i
\(454\) 3.50091i 0.164306i
\(455\) 0 0
\(456\) 17.0347 + 5.55471i 0.797721 + 0.260123i
\(457\) −7.62540 + 4.40252i −0.356701 + 0.205941i −0.667633 0.744491i \(-0.732692\pi\)
0.310932 + 0.950432i \(0.399359\pi\)
\(458\) −8.02669 4.63421i −0.375063 0.216543i
\(459\) 11.2516 1.14671i 0.525181 0.0535237i
\(460\) 1.63639 + 1.59365i 0.0762973 + 0.0743041i
\(461\) 31.9710 1.48904 0.744519 0.667602i \(-0.232679\pi\)
0.744519 + 0.667602i \(0.232679\pi\)
\(462\) 0 0
\(463\) 6.94495i 0.322759i 0.986892 + 0.161380i \(0.0515943\pi\)
−0.986892 + 0.161380i \(0.948406\pi\)
\(464\) −1.69865 + 0.980715i −0.0788577 + 0.0455285i
\(465\) 0.810416 1.28185i 0.0375821 0.0594445i
\(466\) 2.71801 4.70774i 0.125910 0.218082i
\(467\) 21.1944 12.2366i 0.980758 0.566241i 0.0782589 0.996933i \(-0.475064\pi\)
0.902499 + 0.430692i \(0.141731\pi\)
\(468\) 16.1757 + 11.8044i 0.747721 + 0.545658i
\(469\) 0 0
\(470\) 3.05480 + 10.8255i 0.140908 + 0.499344i
\(471\) 28.5597 6.03916i 1.31596 0.278270i
\(472\) −13.0867 + 22.6668i −0.602364 + 1.04332i
\(473\) 13.2635 22.9730i 0.609854 1.05630i
\(474\) 4.10045 0.867071i 0.188340 0.0398259i
\(475\) 11.6991 + 19.0788i 0.536789 + 0.875393i
\(476\) 0 0
\(477\) 17.4516 + 12.7355i 0.799054 + 0.583119i
\(478\) −1.51807 + 0.876459i −0.0694350 + 0.0400883i
\(479\) −12.1451 + 21.0359i −0.554923 + 0.961156i 0.442986 + 0.896529i \(0.353919\pi\)
−0.997909 + 0.0646271i \(0.979414\pi\)
\(480\) 18.6740 + 11.8061i 0.852345 + 0.538872i
\(481\) −15.5573 + 8.98204i −0.709354 + 0.409546i
\(482\) 0.986217i 0.0449209i
\(483\) 0 0
\(484\) 8.60377 0.391080
\(485\) −6.24700 6.08380i −0.283662 0.276251i
\(486\) 5.07148 8.67833i 0.230047 0.393657i
\(487\) −8.44934 4.87823i −0.382876 0.221054i 0.296193 0.955128i \(-0.404283\pi\)
−0.679069 + 0.734075i \(0.737616\pi\)
\(488\) 13.9929 8.07879i 0.633427 0.365710i
\(489\) −7.91563 2.58115i −0.357957 0.116724i
\(490\) 0 0
\(491\) 23.6689i 1.06816i −0.845434 0.534080i \(-0.820658\pi\)
0.845434 0.534080i \(-0.179342\pi\)
\(492\) 6.12011 1.29414i 0.275916 0.0583444i
\(493\) 1.27195 2.20308i 0.0572858 0.0992219i
\(494\) −10.5313 6.08026i −0.473826 0.273564i
\(495\) −26.8079 + 4.55239i −1.20493 + 0.204615i
\(496\) 0.657143i 0.0295066i
\(497\) 0 0
\(498\) 5.60064 + 1.82627i 0.250971 + 0.0818373i
\(499\) 5.73534 + 9.93391i 0.256749 + 0.444703i 0.965369 0.260888i \(-0.0840152\pi\)
−0.708620 + 0.705590i \(0.750682\pi\)
\(500\) 5.25972 + 16.9132i 0.235222 + 0.756382i
\(501\) −5.73445 + 5.15241i −0.256196 + 0.230193i
\(502\) 2.84050 + 4.91988i 0.126778 + 0.219585i
\(503\) 16.8580i 0.751659i −0.926689 0.375830i \(-0.877358\pi\)
0.926689 0.375830i \(-0.122642\pi\)
\(504\) 0 0
\(505\) 14.1685 3.99812i 0.630488 0.177914i
\(506\) 1.45955 0.842672i 0.0648849 0.0374613i
\(507\) −5.50176 6.12327i −0.244342 0.271944i
\(508\) 21.7115 + 12.5351i 0.963292 + 0.556157i
\(509\) −1.47582 2.55620i −0.0654147 0.113302i 0.831463 0.555580i \(-0.187504\pi\)
−0.896878 + 0.442278i \(0.854170\pi\)
\(510\) −5.43127 0.218332i −0.240500 0.00966790i
\(511\) 0 0
\(512\) 17.3304 0.765902
\(513\) 9.52689 21.2173i 0.420623 0.936767i
\(514\) 11.2262 + 6.48142i 0.495164 + 0.285883i
\(515\) −5.39894 + 21.2713i −0.237906 + 0.937323i
\(516\) 3.71499 + 17.5685i 0.163543 + 0.773410i
\(517\) −31.6230 −1.39078
\(518\) 0 0
\(519\) −18.8618 6.15051i −0.827941 0.269977i
\(520\) −15.5991 15.1915i −0.684064 0.666193i
\(521\) −7.91563 + 13.7103i −0.346790 + 0.600658i −0.985677 0.168642i \(-0.946062\pi\)
0.638887 + 0.769300i \(0.279395\pi\)
\(522\) −0.915228 2.06733i −0.0400584 0.0904845i
\(523\) 10.9800 + 19.0179i 0.480122 + 0.831595i 0.999740 0.0228034i \(-0.00725919\pi\)
−0.519618 + 0.854398i \(0.673926\pi\)
\(524\) 26.2289 1.14581
\(525\) 0 0
\(526\) −5.64798 −0.246263
\(527\) 0.426145 + 0.738105i 0.0185632 + 0.0321524i
\(528\) −8.76445 + 7.87487i −0.381424 + 0.342710i
\(529\) 11.2921 19.5585i 0.490961 0.850370i
\(530\) −7.43863 7.24430i −0.323113 0.314672i
\(531\) 27.4441 + 20.0277i 1.19097 + 0.869126i
\(532\) 0 0
\(533\) −9.60532 −0.416053
\(534\) −0.977680 + 0.206738i −0.0423083 + 0.00894641i
\(535\) 10.3306 40.7016i 0.446633 1.75968i
\(536\) −17.4879 10.0966i −0.755361 0.436108i
\(537\) −3.74260 17.6991i −0.161505 0.763771i
\(538\) 11.1221 0.479508
\(539\) 0 0
\(540\) 11.4392 14.4210i 0.492263 0.620580i
\(541\) −2.34667 4.06456i −0.100891 0.174749i 0.811161 0.584823i \(-0.198836\pi\)
−0.912052 + 0.410074i \(0.865503\pi\)
\(542\) 12.6457 + 7.30101i 0.543181 + 0.313605i
\(543\) −15.4111 + 13.8469i −0.661352 + 0.594225i
\(544\) −10.7527 + 6.20806i −0.461017 + 0.266168i
\(545\) −1.94975 + 0.550189i −0.0835180 + 0.0235675i
\(546\) 0 0
\(547\) 14.9485i 0.639151i 0.947561 + 0.319575i \(0.103540\pi\)
−0.947561 + 0.319575i \(0.896460\pi\)
\(548\) 15.7326 + 27.2497i 0.672065 + 1.16405i
\(549\) −8.49041 19.1782i −0.362362 0.818508i
\(550\) 13.0640 0.345867i 0.557052 0.0147478i
\(551\) −2.61568 4.53049i −0.111432 0.193005i
\(552\) −0.800202 + 2.45398i −0.0340589 + 0.104448i
\(553\) 0 0
\(554\) 8.51867i 0.361924i
\(555\) 7.67530 + 14.6205i 0.325798 + 0.620607i
\(556\) −0.313862 0.181208i −0.0133107 0.00768494i
\(557\) −0.614501 + 1.06435i −0.0260373 + 0.0450979i −0.878750 0.477282i \(-0.841622\pi\)
0.852713 + 0.522379i \(0.174956\pi\)
\(558\) 0.753144 + 0.0807609i 0.0318831 + 0.00341888i
\(559\) 27.5732i 1.16622i
\(560\) 0 0
\(561\) 4.73755 14.5287i 0.200020 0.613401i
\(562\) 18.3554 10.5975i 0.774276 0.447028i
\(563\) −3.64387 2.10379i −0.153571 0.0886643i 0.421245 0.906947i \(-0.361593\pi\)
−0.574816 + 0.818282i \(0.694926\pi\)
\(564\) 15.9233 14.3071i 0.670494 0.602440i
\(565\) 14.1443 + 13.7748i 0.595054 + 0.579509i
\(566\) −10.1953 −0.428542
\(567\) 0 0
\(568\) 18.8072i 0.789132i
\(569\) 22.3139 12.8829i 0.935447 0.540081i 0.0469169 0.998899i \(-0.485060\pi\)
0.888530 + 0.458818i \(0.151727\pi\)
\(570\) −5.97334 + 9.44816i −0.250196 + 0.395740i
\(571\) −12.3419 + 21.3768i −0.516492 + 0.894591i 0.483324 + 0.875441i \(0.339429\pi\)
−0.999817 + 0.0191497i \(0.993904\pi\)
\(572\) 23.4320 13.5285i 0.979743 0.565655i
\(573\) −23.2972 7.59681i −0.973253 0.317361i
\(574\) 0 0
\(575\) −2.74845 + 1.68534i −0.114618 + 0.0702837i
\(576\) −0.102925 + 0.959834i −0.00428852 + 0.0399931i
\(577\) 2.86692 4.96565i 0.119351 0.206723i −0.800159 0.599787i \(-0.795252\pi\)
0.919511 + 0.393065i \(0.128585\pi\)
\(578\) −3.95345 + 6.84757i −0.164442 + 0.284822i
\(579\) −2.21855 10.4917i −0.0921996 0.436020i
\(580\) −1.12440 3.98463i −0.0466883 0.165453i
\(581\) 0 0
\(582\) 1.35022 4.14073i 0.0559684 0.171639i
\(583\) 25.2804 14.5956i 1.04701 0.604489i
\(584\) 6.05152 10.4815i 0.250414 0.433729i
\(585\) −21.7661 + 18.0307i −0.899919 + 0.745477i
\(586\) −11.6038 + 6.69944i −0.479347 + 0.276751i
\(587\) 31.0435i 1.28130i 0.767832 + 0.640652i \(0.221336\pi\)
−0.767832 + 0.640652i \(0.778664\pi\)
\(588\) 0 0
\(589\) 1.75268 0.0722178
\(590\) −11.6979 11.3923i −0.481594 0.469012i
\(591\) 15.1359 + 16.8457i 0.622608 + 0.692941i
\(592\) 6.19659 + 3.57760i 0.254678 + 0.147039i
\(593\) −28.2124 + 16.2884i −1.15854 + 0.668885i −0.950954 0.309331i \(-0.899895\pi\)
−0.207588 + 0.978216i \(0.566561\pi\)
\(594\) −7.94818 11.0126i −0.326118 0.451854i
\(595\) 0 0
\(596\) 15.7766i 0.646236i
\(597\) 6.07449 + 28.7268i 0.248612 + 1.17571i
\(598\) 0.875911 1.51712i 0.0358187 0.0620397i
\(599\) −31.8553 18.3917i −1.30157 0.751463i −0.320899 0.947113i \(-0.603985\pi\)
−0.980674 + 0.195650i \(0.937318\pi\)
\(600\) −14.5289 + 13.7663i −0.593138 + 0.562007i
\(601\) 42.5075i 1.73392i −0.498380 0.866959i \(-0.666071\pi\)
0.498380 0.866959i \(-0.333929\pi\)
\(602\) 0 0
\(603\) −15.4517 + 21.1736i −0.629242 + 0.862257i
\(604\) −4.01954 6.96205i −0.163553 0.283282i
\(605\) −2.98755 + 11.7706i −0.121461 + 0.478544i
\(606\) 4.91436 + 5.46951i 0.199632 + 0.222184i
\(607\) 8.47607 + 14.6810i 0.344033 + 0.595883i 0.985178 0.171537i \(-0.0548734\pi\)
−0.641144 + 0.767420i \(0.721540\pi\)
\(608\) 25.5329i 1.03550i
\(609\) 0 0
\(610\) 2.73755 + 9.70127i 0.110840 + 0.392793i
\(611\) −28.4666 + 16.4352i −1.15163 + 0.664896i
\(612\) 4.18765 + 9.45913i 0.169276 + 0.382363i
\(613\) −30.0373 17.3421i −1.21320 0.700439i −0.249742 0.968312i \(-0.580346\pi\)
−0.963454 + 0.267873i \(0.913679\pi\)
\(614\) −4.18664 7.25148i −0.168959 0.292646i
\(615\) −0.354643 + 8.82216i −0.0143006 + 0.355744i
\(616\) 0 0
\(617\) 45.7116 1.84028 0.920140 0.391590i \(-0.128075\pi\)
0.920140 + 0.391590i \(0.128075\pi\)
\(618\) −10.7240 + 2.26766i −0.431381 + 0.0912188i
\(619\) 34.2356 + 19.7659i 1.37604 + 0.794459i 0.991681 0.128723i \(-0.0410877\pi\)
0.384363 + 0.923182i \(0.374421\pi\)
\(620\) 1.34448 + 0.341249i 0.0539958 + 0.0137049i
\(621\) 3.05653 + 1.37243i 0.122654 + 0.0550736i
\(622\) 0.295096 0.0118323
\(623\) 0 0
\(624\) −3.79689 + 11.6439i −0.151997 + 0.466130i
\(625\) −24.9650 + 1.32281i −0.998599 + 0.0529124i
\(626\) −8.94408 + 15.4916i −0.357477 + 0.619169i
\(627\) −21.0032 23.3758i −0.838787 0.933540i
\(628\) 13.3499 + 23.1228i 0.532720 + 0.922698i
\(629\) −9.28004 −0.370020
\(630\) 0 0
\(631\) −21.1685 −0.842703 −0.421351 0.906897i \(-0.638444\pi\)
−0.421351 + 0.906897i \(0.638444\pi\)
\(632\) 4.33646 + 7.51097i 0.172495 + 0.298770i
\(633\) 21.3359 + 23.7461i 0.848024 + 0.943821i
\(634\) 1.45835 2.52594i 0.0579187 0.100318i
\(635\) −24.6881 + 25.3504i −0.979718 + 1.00600i
\(636\) −6.12612 + 18.7870i −0.242916 + 0.744952i
\(637\) 0 0
\(638\) −3.05480 −0.120941
\(639\) 24.2738 + 2.60292i 0.960257 + 0.102970i
\(640\) −6.16186 + 24.2771i −0.243569 + 0.959635i
\(641\) 30.6083 + 17.6717i 1.20896 + 0.697991i 0.962531 0.271171i \(-0.0874109\pi\)
0.246424 + 0.969162i \(0.420744\pi\)
\(642\) 20.5199 4.33908i 0.809854 0.171250i
\(643\) −26.0538 −1.02746 −0.513731 0.857951i \(-0.671737\pi\)
−0.513731 + 0.857951i \(0.671737\pi\)
\(644\) 0 0
\(645\) −25.3251 1.01805i −0.997174 0.0400855i
\(646\) −3.14099 5.44036i −0.123581 0.214048i
\(647\) −35.3707 20.4213i −1.39057 0.802844i −0.397188 0.917737i \(-0.630014\pi\)
−0.993378 + 0.114894i \(0.963347\pi\)
\(648\) 20.3273 + 4.41016i 0.798530 + 0.173248i
\(649\) 39.7555 22.9528i 1.56054 0.900977i
\(650\) 11.5803 7.10102i 0.454217 0.278525i
\(651\) 0 0
\(652\) 7.61525i 0.298236i
\(653\) −12.0041 20.7918i −0.469758 0.813645i 0.529644 0.848220i \(-0.322326\pi\)
−0.999402 + 0.0345747i \(0.988992\pi\)
\(654\) −0.676274 0.752669i −0.0264444 0.0294317i
\(655\) −9.10766 + 35.8832i −0.355866 + 1.40207i
\(656\) 1.91293 + 3.31329i 0.0746874 + 0.129362i
\(657\) −12.6906 9.26115i −0.495109 0.361312i
\(658\) 0 0
\(659\) 38.7398i 1.50909i 0.656248 + 0.754545i \(0.272142\pi\)
−0.656248 + 0.754545i \(0.727858\pi\)
\(660\) −11.5603 22.0210i −0.449985 0.857167i
\(661\) −44.0826 25.4511i −1.71461 0.989933i −0.928075 0.372392i \(-0.878538\pi\)
−0.786539 0.617541i \(-0.788129\pi\)
\(662\) 7.38188 12.7858i 0.286905 0.496934i
\(663\) −3.28620 15.5407i −0.127625 0.603551i
\(664\) 12.1903i 0.473076i
\(665\) 0 0
\(666\) −4.86179 + 6.66217i −0.188391 + 0.258154i
\(667\) 0.652654 0.376810i 0.0252709 0.0145901i
\(668\) −6.10653 3.52560i −0.236269 0.136410i
\(669\) −0.726307 0.808354i −0.0280807 0.0312528i
\(670\) 8.78934 9.02512i 0.339562 0.348671i
\(671\) −28.3389 −1.09401
\(672\) 0 0
\(673\) 3.33192i 0.128436i 0.997936 + 0.0642181i \(0.0204553\pi\)
−0.997936 + 0.0642181i \(0.979545\pi\)
\(674\) −17.4570 + 10.0788i −0.672420 + 0.388222i
\(675\) 15.7569 + 20.6572i 0.606484 + 0.795095i
\(676\) 3.76466 6.52057i 0.144794 0.250791i
\(677\) 28.0352 16.1861i 1.07748 0.622083i 0.147264 0.989097i \(-0.452953\pi\)
0.930215 + 0.367014i \(0.119620\pi\)
\(678\) −3.05713 + 9.37531i −0.117408 + 0.360057i
\(679\) 0 0
\(680\) −3.05480 10.8255i −0.117146 0.415140i
\(681\) 1.94552 + 9.20055i 0.0745526 + 0.352566i
\(682\) 0.511729 0.886341i 0.0195951 0.0339398i
\(683\) −10.8868 + 18.8566i −0.416573 + 0.721526i −0.995592 0.0937881i \(-0.970102\pi\)
0.579019 + 0.815314i \(0.303436\pi\)
\(684\) 21.1518 + 2.26814i 0.808758 + 0.0867245i
\(685\) −42.7427 + 12.0614i −1.63312 + 0.460841i
\(686\) 0 0
\(687\) −23.6698 7.71833i −0.903060 0.294473i
\(688\) −9.51121 + 5.49130i −0.362611 + 0.209354i
\(689\) 15.1713 26.2775i 0.577982 1.00109i
\(690\) −1.36108 0.860509i −0.0518156 0.0327590i
\(691\) −5.15554 + 2.97655i −0.196126 + 0.113233i −0.594847 0.803839i \(-0.702787\pi\)
0.398721 + 0.917072i \(0.369454\pi\)
\(692\) 18.1460i 0.689809i
\(693\) 0 0
\(694\) 1.79689 0.0682088
\(695\) 0.356892 0.366466i 0.0135377 0.0139008i
\(696\) 3.48011 3.12688i 0.131913 0.118524i
\(697\) −4.29722 2.48100i −0.162769 0.0939747i
\(698\) 9.24939 5.34014i 0.350095 0.202127i
\(699\) 4.52688 13.8826i 0.171222 0.525088i
\(700\) 0 0
\(701\) 19.3393i 0.730434i 0.930922 + 0.365217i \(0.119005\pi\)
−0.930922 + 0.365217i \(0.880995\pi\)
\(702\) −12.8783 5.78257i −0.486062 0.218249i
\(703\) −9.54188 + 16.5270i −0.359879 + 0.623329i
\(704\) 1.12958 + 0.652166i 0.0425728 + 0.0245794i
\(705\) 14.0441 + 26.7524i 0.528932 + 1.00755i
\(706\) 2.11301i 0.0795242i
\(707\) 0 0
\(708\) −9.63383 + 29.5441i −0.362061 + 1.11034i
\(709\) 16.9012 + 29.2738i 0.634739 + 1.09940i 0.986570 + 0.163337i \(0.0522257\pi\)
−0.351831 + 0.936063i \(0.614441\pi\)
\(710\) −11.3725 2.88650i −0.426803 0.108329i
\(711\) 10.2943 4.55741i 0.386068 0.170916i
\(712\) −1.03395 1.79086i −0.0387490 0.0671152i
\(713\) 0.252487i 0.00945573i
\(714\) 0 0
\(715\) 10.3716 + 36.7545i 0.387875 + 1.37454i
\(716\) 14.3297 8.27324i 0.535525 0.309185i
\(717\) −3.50250 + 3.14700i −0.130803 + 0.117527i
\(718\) 9.49685 + 5.48301i 0.354419 + 0.204624i
\(719\) 13.7118 + 23.7495i 0.511363 + 0.885707i 0.999913 + 0.0131713i \(0.00419267\pi\)
−0.488550 + 0.872536i \(0.662474\pi\)
\(720\) 10.5544 + 3.91722i 0.393338 + 0.145986i
\(721\) 0 0
\(722\) −0.667157 −0.0248290
\(723\) −0.548060 2.59182i −0.0203826 0.0963909i
\(724\) −16.4110 9.47490i −0.609910 0.352132i
\(725\) 5.84173 0.154658i 0.216956 0.00574387i
\(726\) −5.93420 + 1.25483i −0.220239 + 0.0465712i
\(727\) −6.14612 −0.227947 −0.113973 0.993484i \(-0.536358\pi\)
−0.113973 + 0.993484i \(0.536358\pi\)
\(728\) 0 0
\(729\) 8.50535 25.6254i 0.315013 0.949087i
\(730\) 5.40930 + 5.26799i 0.200207 + 0.194977i
\(731\) 7.12202 12.3357i 0.263417 0.456252i
\(732\) 14.2697 12.8213i 0.527422 0.473889i
\(733\) 8.41748 + 14.5795i 0.310907 + 0.538506i 0.978559 0.205967i \(-0.0660340\pi\)
−0.667652 + 0.744473i \(0.732701\pi\)
\(734\) −11.0370 −0.407384
\(735\) 0 0
\(736\) −3.67822 −0.135581
\(737\) 17.7085 + 30.6721i 0.652302 + 1.12982i
\(738\) −4.03242 + 1.78520i −0.148436 + 0.0657139i
\(739\) 19.3419 33.5012i 0.711503 1.23236i −0.252790 0.967521i \(-0.581348\pi\)
0.964293 0.264838i \(-0.0853186\pi\)
\(740\) −10.5375 + 10.8201i −0.387364 + 0.397756i
\(741\) −31.0557 10.1267i −1.14086 0.372015i
\(742\) 0 0
\(743\) 39.3563 1.44384 0.721920 0.691976i \(-0.243260\pi\)
0.721920 + 0.691976i \(0.243260\pi\)
\(744\) 0.324280 + 1.53355i 0.0118887 + 0.0562225i
\(745\) −21.5837 5.47824i −0.790765 0.200707i
\(746\) 16.1457 + 9.32174i 0.591137 + 0.341293i
\(747\) 15.7336 + 1.68714i 0.575664 + 0.0617294i
\(748\) 13.9773 0.511062
\(749\) 0 0
\(750\) −6.09448 10.8983i −0.222539 0.397949i
\(751\) −16.1416 27.9580i −0.589014 1.02020i −0.994362 0.106040i \(-0.966183\pi\)
0.405347 0.914163i \(-0.367151\pi\)
\(752\) 11.3384 + 6.54623i 0.413469 + 0.238717i
\(753\) 10.1990 + 11.3512i 0.371673 + 0.413659i
\(754\) −2.74989 + 1.58765i −0.100145 + 0.0578187i
\(755\) 10.9204 3.08156i 0.397433 0.112150i
\(756\) 0 0
\(757\) 40.0667i 1.45625i 0.685446 + 0.728124i \(0.259607\pi\)
−0.685446 + 0.728124i \(0.740393\pi\)
\(758\) 0.180403 + 0.312467i 0.00655252 + 0.0113493i
\(759\) 3.36748 3.02568i 0.122232 0.109825i
\(760\) −22.4204 5.69061i −0.813274 0.206420i
\(761\) −6.58977 11.4138i −0.238879 0.413750i 0.721514 0.692400i \(-0.243447\pi\)
−0.960393 + 0.278649i \(0.910113\pi\)
\(762\) −16.8031 5.47920i −0.608712 0.198491i
\(763\) 0 0
\(764\) 22.4131i 0.810877i
\(765\) −14.3949 + 2.44448i −0.520450 + 0.0883802i
\(766\) 2.12110 + 1.22462i 0.0766384 + 0.0442472i
\(767\) 23.8582 41.3236i 0.861469 1.49211i
\(768\) −13.3299 + 2.81871i −0.481002 + 0.101711i
\(769\) 12.7709i 0.460530i 0.973128 + 0.230265i \(0.0739593\pi\)
−0.973128 + 0.230265i \(0.926041\pi\)
\(770\) 0 0
\(771\) 33.1047 + 10.7949i 1.19224 + 0.388768i
\(772\) 8.49437 4.90423i 0.305719 0.176507i
\(773\) 15.7518 + 9.09428i 0.566551 + 0.327099i 0.755771 0.654836i \(-0.227262\pi\)
−0.189219 + 0.981935i \(0.560596\pi\)
\(774\) −5.12462 11.5756i −0.184201 0.416075i
\(775\) −0.933711 + 1.72087i −0.0335399 + 0.0618154i
\(776\) 9.01267 0.323536
\(777\) 0 0
\(778\) 5.87388i 0.210589i
\(779\) −8.83694 + 5.10201i −0.316616 + 0.182798i
\(780\) −21.8512 13.8149i −0.782400 0.494651i
\(781\) 16.4930 28.5667i 0.590167 1.02220i
\(782\) 0.783728 0.452486i 0.0280261 0.0161809i
\(783\) −3.55412 4.92442i −0.127014 0.175985i
\(784\) 0 0
\(785\) −36.2693 + 10.2347i −1.29451 + 0.365291i
\(786\) −18.0906 + 3.82540i −0.645272 + 0.136447i
\(787\) −0.619297 + 1.07265i −0.0220756 + 0.0382360i −0.876852 0.480760i \(-0.840361\pi\)
0.854777 + 0.518996i \(0.173694\pi\)
\(788\) −10.3569 + 17.9388i −0.368951 + 0.639042i
\(789\) −14.8431 + 3.13869i −0.528430 + 0.111740i
\(790\) −5.20736 + 1.46944i −0.185270 + 0.0522803i
\(791\) 0 0
\(792\) 16.5672 22.7022i 0.588690 0.806689i
\(793\) −25.5102 + 14.7283i −0.905895 + 0.523019i
\(794\) −7.81449 + 13.5351i −0.277326 + 0.480343i
\(795\) −23.5749 14.9046i −0.836114 0.528610i
\(796\) −23.2580 + 13.4280i −0.824359 + 0.475944i
\(797\) 51.4416i 1.82216i 0.412235 + 0.911078i \(0.364748\pi\)
−0.412235 + 0.911078i \(0.635252\pi\)
\(798\) 0 0
\(799\) −16.9805 −0.600725
\(800\) −25.0695 13.6023i −0.886340 0.480912i
\(801\) −2.45450 + 1.08663i −0.0867254 + 0.0383942i
\(802\) 16.8617 + 9.73510i 0.595407 + 0.343758i
\(803\) −18.3836 + 10.6138i −0.648745 + 0.374553i
\(804\) −22.7938 7.43268i −0.803876 0.262130i
\(805\) 0 0
\(806\) 1.06383i 0.0374718i
\(807\) 29.2294 6.18077i 1.02892 0.217574i
\(808\) −7.60797 + 13.1774i −0.267647 + 0.463579i
\(809\) −2.44518 1.41172i −0.0859679 0.0496336i 0.456400 0.889775i \(-0.349139\pi\)
−0.542368 + 0.840141i \(0.682472\pi\)
\(810\) −5.78658 + 11.6148i −0.203320 + 0.408103i
\(811\) 0.162805i 0.00571687i −0.999996 0.00285843i \(-0.999090\pi\)
0.999996 0.00285843i \(-0.000909869\pi\)
\(812\) 0 0
\(813\) 37.2909 + 12.1599i 1.30785 + 0.426467i
\(814\) 5.57189 + 9.65080i 0.195295 + 0.338260i
\(815\) 10.4183 + 2.64430i 0.364936 + 0.0926259i
\(816\) −4.70621 + 4.22853i −0.164750 + 0.148028i
\(817\) −14.6459 25.3675i −0.512396 0.887496i
\(818\) 15.9051i 0.556108i
\(819\) 0 0
\(820\) −7.77222 + 2.19320i −0.271418 + 0.0765900i
\(821\) 43.3765 25.0434i 1.51385 0.874022i 0.513983 0.857801i \(-0.328170\pi\)
0.999868 0.0162217i \(-0.00516375\pi\)
\(822\) −14.8254 16.5002i −0.517096 0.575509i
\(823\) −33.1050 19.1132i −1.15397 0.666243i −0.204116 0.978947i \(-0.565432\pi\)
−0.949851 + 0.312704i \(0.898765\pi\)
\(824\) −11.3412 19.6435i −0.395090 0.684315i
\(825\) 34.1407 8.16890i 1.18863 0.284405i
\(826\) 0 0
\(827\) −7.13112 −0.247973 −0.123987 0.992284i \(-0.539568\pi\)
−0.123987 + 0.992284i \(0.539568\pi\)
\(828\) −0.326744 + 3.04708i −0.0113551 + 0.105894i
\(829\) −0.876338 0.505954i −0.0304365 0.0175725i 0.484705 0.874678i \(-0.338927\pi\)
−0.515141 + 0.857105i \(0.672260\pi\)
\(830\) −7.37136 1.87096i −0.255864 0.0649418i
\(831\) −4.73399 22.3875i −0.164220 0.776612i
\(832\) 1.35578 0.0470032
\(833\) 0 0
\(834\) 0.242906 + 0.0792075i 0.00841115 + 0.00274273i
\(835\) 6.94372 7.12999i 0.240297 0.246743i
\(836\) 14.3717 24.8925i 0.497056 0.860927i
\(837\) 2.02418 0.206294i 0.0699658 0.00713056i
\(838\) 12.7225 + 22.0360i 0.439492 + 0.761222i
\(839\) 29.5215 1.01920 0.509598 0.860412i \(-0.329794\pi\)
0.509598 + 0.860412i \(0.329794\pi\)
\(840\) 0 0
\(841\) 27.6340 0.952897
\(842\) 9.97394 + 17.2754i 0.343725 + 0.595348i
\(843\) 42.3496 38.0512i 1.45860 1.31055i
\(844\) −14.5993 + 25.2868i −0.502530 + 0.870408i
\(845\) 7.61343 + 7.41454i 0.261910 + 0.255068i
\(846\) −8.89603 + 12.1903i −0.305852 + 0.419112i
\(847\) 0 0
\(848\) −12.0857 −0.415024
\(849\) −26.7938 + 5.66576i −0.919562 + 0.194448i
\(850\) 7.01494 0.185719i 0.240610 0.00637010i
\(851\) −2.38085 1.37459i −0.0816146 0.0471202i
\(852\) 4.61957 + 21.8463i 0.158264 + 0.748443i
\(853\) −22.0904 −0.756362 −0.378181 0.925732i \(-0.623450\pi\)
−0.378181 + 0.925732i \(0.623450\pi\)
\(854\) 0 0
\(855\) −10.4477 + 28.1497i −0.357303 + 0.962700i
\(856\) 21.7009 + 37.5871i 0.741722 + 1.28470i
\(857\) 12.4112 + 7.16559i 0.423957 + 0.244772i 0.696769 0.717296i \(-0.254620\pi\)
−0.272812 + 0.962067i \(0.587954\pi\)
\(858\) −14.1885 + 12.7484i −0.484387 + 0.435223i
\(859\) −23.7901 + 13.7352i −0.811709 + 0.468640i −0.847549 0.530717i \(-0.821923\pi\)
0.0358402 + 0.999358i \(0.488589\pi\)
\(860\) −6.29585 22.3111i −0.214687 0.760802i
\(861\) 0 0
\(862\) 19.8231i 0.675176i
\(863\) −8.11130 14.0492i −0.276112 0.478240i 0.694303 0.719683i \(-0.255713\pi\)
−0.970415 + 0.241443i \(0.922379\pi\)
\(864\) 3.00528 + 29.4881i 0.102242 + 1.00321i
\(865\) 24.8252 + 6.30099i 0.844082 + 0.214240i
\(866\) 0.953847 + 1.65211i 0.0324131 + 0.0561411i
\(867\) −6.58451 + 20.1927i −0.223622 + 0.685782i
\(868\) 0 0
\(869\) 15.2115i 0.516014i
\(870\) 1.35667 + 2.58430i 0.0459955 + 0.0876159i
\(871\) 31.8819 + 18.4070i 1.08028 + 0.623698i
\(872\) 1.04695 1.81336i 0.0354541 0.0614083i
\(873\) 1.24736 11.6324i 0.0422167 0.393696i
\(874\) 1.86101i 0.0629496i
\(875\) 0 0
\(876\) 4.45486 13.6617i 0.150516 0.461587i
\(877\) 38.5317 22.2463i 1.30112 0.751204i 0.320527 0.947240i \(-0.396140\pi\)
0.980597 + 0.196036i \(0.0628068\pi\)
\(878\) 9.72189 + 5.61294i 0.328098 + 0.189427i
\(879\) −26.7722 + 24.0549i −0.903004 + 0.811351i
\(880\) 10.6127 10.8974i 0.357754 0.367351i
\(881\) 0.841670 0.0283566 0.0141783 0.999899i \(-0.495487\pi\)
0.0141783 + 0.999899i \(0.495487\pi\)
\(882\) 0 0
\(883\) 51.7706i 1.74222i −0.491088 0.871110i \(-0.663400\pi\)
0.491088 0.871110i \(-0.336600\pi\)
\(884\) 12.5822 7.26434i 0.423185 0.244326i
\(885\) −37.0734 23.4387i −1.24621 0.787882i
\(886\) −10.2505 + 17.7543i −0.344371 + 0.596468i
\(887\) 48.4743 27.9867i 1.62761 0.939700i 0.642804 0.766031i \(-0.277771\pi\)
0.984804 0.173669i \(-0.0555623\pi\)
\(888\) −16.2262 5.29107i −0.544514 0.177557i
\(889\) 0 0
\(890\) 1.24160 0.350362i 0.0416186 0.0117441i
\(891\) −27.0081 24.5248i −0.904806 0.821611i
\(892\) 0.496986 0.860804i 0.0166403 0.0288219i
\(893\) −17.4596 + 30.2409i −0.584262 + 1.01197i
\(894\) −2.30097 10.8815i −0.0769560 0.363931i
\(895\) 6.34264 + 22.4769i 0.212011 + 0.751320i
\(896\) 0 0
\(897\) 1.45884 4.47383i 0.0487092 0.149377i
\(898\) 1.67224 0.965470i 0.0558035 0.0322182i
\(899\) 0.228825 0.396337i 0.00763175 0.0132186i
\(900\) −13.4953 + 19.5596i −0.449842 + 0.651985i
\(901\) 13.5747 7.83734i 0.452238 0.261100i
\(902\) 5.95854i 0.198398i
\(903\) 0 0
\(904\) −20.4062 −0.678701
\(905\) 18.6609 19.1615i 0.620310 0.636950i
\(906\) 3.78776 + 4.21564i 0.125840 + 0.140055i
\(907\) −31.4075 18.1332i −1.04287 0.602102i −0.122226 0.992502i \(-0.539003\pi\)
−0.920645 + 0.390401i \(0.872336\pi\)
\(908\) −7.44902 + 4.30070i −0.247205 + 0.142724i
\(909\) 15.9547 + 11.6431i 0.529183 + 0.386178i
\(910\) 0 0
\(911\) 5.35784i 0.177513i 0.996053 + 0.0887565i \(0.0282893\pi\)
−0.996053 + 0.0887565i \(0.971711\pi\)
\(912\) 2.69169 + 12.7292i 0.0891308 + 0.421507i
\(913\) 10.6903 18.5162i 0.353798 0.612797i
\(914\) 4.91690 + 2.83877i 0.162637 + 0.0938983i
\(915\) 12.5856 + 23.9741i 0.416067 + 0.792559i
\(916\) 22.7716i 0.752396i
\(917\) 0 0
\(918\) −4.26790 5.91341i −0.140862 0.195172i
\(919\) −10.0571 17.4194i −0.331754 0.574615i 0.651102 0.758990i \(-0.274307\pi\)
−0.982856 + 0.184376i \(0.940974\pi\)
\(920\) 0.819779 3.22984i 0.0270273 0.106485i
\(921\) −15.0325 16.7306i −0.495337 0.551292i
\(922\) −10.3075 17.8532i −0.339461 0.587963i
\(923\) 34.2872i 1.12858i
\(924\) 0 0
\(925\) −11.1438 18.1732i −0.366405 0.597532i
\(926\) 3.87818 2.23907i 0.127445 0.0735804i
\(927\) −26.9229 + 11.9190i −0.884264 + 0.391473i
\(928\) 5.77382 + 3.33351i 0.189535 + 0.109428i
\(929\) −3.39903 5.88728i −0.111518 0.193156i 0.804864 0.593459i \(-0.202238\pi\)
−0.916383 + 0.400303i \(0.868905\pi\)
\(930\) −0.977090 0.0392781i −0.0320401 0.00128798i
\(931\) 0 0
\(932\) 13.3558 0.437483
\(933\) 0.775525 0.163991i 0.0253896 0.00536881i
\(934\) −13.6662 7.89021i −0.447173 0.258176i
\(935\) −4.85346 + 19.1221i −0.158725 + 0.625360i
\(936\) 3.11471 29.0466i 0.101808 0.949417i
\(937\) 44.1327 1.44175 0.720877 0.693063i \(-0.243739\pi\)
0.720877 + 0.693063i \(0.243739\pi\)
\(938\) 0 0
\(939\) −14.8965 + 45.6830i −0.486128 + 1.49081i
\(940\) −19.2812 + 19.7985i −0.628885 + 0.645755i
\(941\) 4.53288 7.85118i 0.147768 0.255941i −0.782634 0.622482i \(-0.786125\pi\)
0.930402 + 0.366540i \(0.119458\pi\)
\(942\) −12.5801 14.0012i −0.409882 0.456184i
\(943\) −0.734986 1.27303i −0.0239344 0.0414557i
\(944\) −19.0057 −0.618584
\(945\) 0 0
\(946\) −17.1047 −0.556122
\(947\) 17.7437 + 30.7330i 0.576593 + 0.998689i 0.995867 + 0.0908285i \(0.0289515\pi\)
−0.419273 + 0.907860i \(0.637715\pi\)
\(948\) 6.88211 + 7.65955i 0.223521 + 0.248771i
\(949\) −11.0325 + 19.1088i −0.358129 + 0.620297i
\(950\) 6.88212 12.6840i 0.223285 0.411524i
\(951\) 2.42891 7.44873i 0.0787627 0.241542i
\(952\) 0 0
\(953\) −10.8726 −0.352198 −0.176099 0.984373i \(-0.556348\pi\)
−0.176099 + 0.984373i \(0.556348\pi\)
\(954\) 1.48529 13.8513i 0.0480882 0.448451i
\(955\) 30.6629 + 7.78267i 0.992227 + 0.251841i
\(956\) −3.72976 2.15338i −0.120629 0.0696452i
\(957\) −8.02816 + 1.69761i −0.259514 + 0.0548761i
\(958\) 15.6625 0.506031
\(959\) 0 0
\(960\) 0.0500574 1.24524i 0.00161560 0.0401899i
\(961\) −15.4233 26.7140i −0.497527 0.861742i
\(962\) 10.0315 + 5.79167i 0.323428 + 0.186731i
\(963\) 51.5158 22.8066i 1.66007 0.734932i
\(964\) 2.09841 1.21152i 0.0675853 0.0390204i
\(965\) 3.75981 + 13.3239i 0.121032 + 0.428912i
\(966\) 0 0
\(967\) 21.3855i 0.687711i −0.939023 0.343855i \(-0.888267\pi\)
0.939023 0.343855i \(-0.111733\pi\)
\(968\) −6.27575 10.8699i −0.201710 0.349373i
\(969\) −11.2780 12.5520i −0.362301 0.403228i
\(970\) −1.38325 + 5.44987i −0.0444136 + 0.174985i
\(971\) 4.43174 + 7.67600i 0.142221 + 0.246335i 0.928333 0.371750i \(-0.121242\pi\)
−0.786112 + 0.618085i \(0.787909\pi\)
\(972\) 24.6953 + 0.129881i 0.792102 + 0.00416593i
\(973\) 0 0
\(974\) 6.29102i 0.201577i
\(975\) 26.4874 25.0972i 0.848275 0.803754i
\(976\) 10.1609 + 5.86639i 0.325242 + 0.187779i
\(977\) 0.365536 0.633128i 0.0116945 0.0202555i −0.860119 0.510094i \(-0.829611\pi\)
0.871813 + 0.489838i \(0.162944\pi\)
\(978\) 1.11066 + 5.25241i 0.0355150 + 0.167953i
\(979\) 3.62691i 0.115916i
\(980\) 0 0
\(981\) −2.19555 1.60223i −0.0700986 0.0511553i
\(982\) −13.2171 + 7.63091i −0.421775 + 0.243512i
\(983\) 3.23213 + 1.86607i 0.103089 + 0.0595184i 0.550658 0.834731i \(-0.314377\pi\)
−0.447569 + 0.894249i \(0.647710\pi\)
\(984\) −6.09913 6.78812i −0.194433 0.216397i
\(985\) −20.9453 20.3981i −0.667373 0.649939i
\(986\) −1.64032 −0.0522385
\(987\) 0 0
\(988\) 29.8772i 0.950520i
\(989\) 3.65439 2.10987i 0.116203 0.0670898i
\(990\) 11.1851 + 13.5023i 0.355486 + 0.429133i
\(991\) 2.74255 4.75024i 0.0871200 0.150896i −0.819173 0.573547i \(-0.805567\pi\)
0.906293 + 0.422651i \(0.138900\pi\)
\(992\) −1.93442 + 1.11684i −0.0614178 + 0.0354596i
\(993\) 12.2946 37.7039i 0.390158 1.19650i
\(994\) 0 0
\(995\) −10.2945 36.4815i −0.326359 1.15654i
\(996\) 2.99428 + 14.1602i 0.0948774 + 0.448683i
\(997\) −2.53609 + 4.39264i −0.0803189 + 0.139116i −0.903387 0.428826i \(-0.858927\pi\)
0.823068 + 0.567943i \(0.192261\pi\)
\(998\) 3.69818 6.40544i 0.117064 0.202761i
\(999\) −9.07472 + 20.2103i −0.287111 + 0.639425i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.f.374.6 24
3.2 odd 2 inner 735.2.p.f.374.8 24
5.4 even 2 inner 735.2.p.f.374.7 24
7.2 even 3 105.2.p.a.89.6 yes 24
7.3 odd 6 735.2.g.b.734.15 24
7.4 even 3 735.2.g.b.734.14 24
7.5 odd 6 inner 735.2.p.f.509.5 24
7.6 odd 2 105.2.p.a.59.5 24
15.14 odd 2 inner 735.2.p.f.374.5 24
21.2 odd 6 105.2.p.a.89.8 yes 24
21.5 even 6 inner 735.2.p.f.509.7 24
21.11 odd 6 735.2.g.b.734.9 24
21.17 even 6 735.2.g.b.734.12 24
21.20 even 2 105.2.p.a.59.7 yes 24
35.2 odd 12 525.2.t.j.26.6 24
35.4 even 6 735.2.g.b.734.11 24
35.9 even 6 105.2.p.a.89.7 yes 24
35.13 even 4 525.2.t.j.101.5 24
35.19 odd 6 inner 735.2.p.f.509.8 24
35.23 odd 12 525.2.t.j.26.7 24
35.24 odd 6 735.2.g.b.734.10 24
35.27 even 4 525.2.t.j.101.8 24
35.34 odd 2 105.2.p.a.59.8 yes 24
105.2 even 12 525.2.t.j.26.8 24
105.23 even 12 525.2.t.j.26.5 24
105.44 odd 6 105.2.p.a.89.5 yes 24
105.59 even 6 735.2.g.b.734.13 24
105.62 odd 4 525.2.t.j.101.6 24
105.74 odd 6 735.2.g.b.734.16 24
105.83 odd 4 525.2.t.j.101.7 24
105.89 even 6 inner 735.2.p.f.509.6 24
105.104 even 2 105.2.p.a.59.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.5 24 7.6 odd 2
105.2.p.a.59.6 yes 24 105.104 even 2
105.2.p.a.59.7 yes 24 21.20 even 2
105.2.p.a.59.8 yes 24 35.34 odd 2
105.2.p.a.89.5 yes 24 105.44 odd 6
105.2.p.a.89.6 yes 24 7.2 even 3
105.2.p.a.89.7 yes 24 35.9 even 6
105.2.p.a.89.8 yes 24 21.2 odd 6
525.2.t.j.26.5 24 105.23 even 12
525.2.t.j.26.6 24 35.2 odd 12
525.2.t.j.26.7 24 35.23 odd 12
525.2.t.j.26.8 24 105.2 even 12
525.2.t.j.101.5 24 35.13 even 4
525.2.t.j.101.6 24 105.62 odd 4
525.2.t.j.101.7 24 105.83 odd 4
525.2.t.j.101.8 24 35.27 even 4
735.2.g.b.734.9 24 21.11 odd 6
735.2.g.b.734.10 24 35.24 odd 6
735.2.g.b.734.11 24 35.4 even 6
735.2.g.b.734.12 24 21.17 even 6
735.2.g.b.734.13 24 105.59 even 6
735.2.g.b.734.14 24 7.4 even 3
735.2.g.b.734.15 24 7.3 odd 6
735.2.g.b.734.16 24 105.74 odd 6
735.2.p.f.374.5 24 15.14 odd 2 inner
735.2.p.f.374.6 24 1.1 even 1 trivial
735.2.p.f.374.7 24 5.4 even 2 inner
735.2.p.f.374.8 24 3.2 odd 2 inner
735.2.p.f.509.5 24 7.5 odd 6 inner
735.2.p.f.509.6 24 105.89 even 6 inner
735.2.p.f.509.7 24 21.5 even 6 inner
735.2.p.f.509.8 24 35.19 odd 6 inner