Properties

Label 525.2.t.j.26.5
Level $525$
Weight $2$
Character 525.26
Analytic conductor $4.192$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(26,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.5
Character \(\chi\) \(=\) 525.26
Dual form 525.2.t.j.101.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.558418 - 0.322403i) q^{2} +(-1.28838 - 1.15761i) q^{3} +(-0.792113 - 1.37198i) q^{4} +(0.346239 + 1.06181i) q^{6} +(0.105130 + 2.64366i) q^{7} +2.31113i q^{8} +(0.319861 + 2.98290i) q^{9} +(3.51044 - 2.02675i) q^{11} +(-0.567678 + 2.68460i) q^{12} +4.21339i q^{13} +(0.793618 - 1.51016i) q^{14} +(-0.839111 + 1.45338i) q^{16} +(-1.08830 - 1.88498i) q^{17} +(0.783079 - 1.76883i) q^{18} +(3.87634 + 2.23800i) q^{19} +(2.92489 - 3.52775i) q^{21} -2.61372 q^{22} +(-0.558418 - 0.322403i) q^{23} +(2.67540 - 2.97762i) q^{24} +(1.35841 - 2.35284i) q^{26} +(3.04094 - 4.21339i) q^{27} +(3.54377 - 2.23831i) q^{28} -1.16875i q^{29} +(-0.339111 + 0.195786i) q^{31} +(4.94014 - 2.85219i) q^{32} +(-6.86898 - 1.45250i) q^{33} +1.40348i q^{34} +(3.83911 - 2.80164i) q^{36} +(2.13178 - 3.69236i) q^{37} +(-1.44308 - 2.49949i) q^{38} +(4.87748 - 5.42846i) q^{39} +2.27971 q^{41} +(-2.77067 + 1.02697i) q^{42} +6.54419 q^{43} +(-5.56132 - 3.21083i) q^{44} +(0.207887 + 0.360071i) q^{46} +(-3.90070 + 6.75621i) q^{47} +(2.76355 - 0.901147i) q^{48} +(-6.97790 + 0.555857i) q^{49} +(-0.779941 + 3.68841i) q^{51} +(5.78069 - 3.33748i) q^{52} +(6.23667 - 3.60074i) q^{53} +(-3.05653 + 1.37243i) q^{54} +(-6.10984 + 0.242969i) q^{56} +(-2.40346 - 7.37071i) q^{57} +(-0.376810 + 0.652654i) q^{58} +(5.66247 + 9.80768i) q^{59} +(6.05456 + 3.49560i) q^{61} +0.252487 q^{62} +(-7.85215 + 1.15920i) q^{63} -0.321779 q^{64} +(3.36748 + 3.02568i) q^{66} +(4.36870 + 7.56680i) q^{67} +(-1.72411 + 2.98624i) q^{68} +(0.346239 + 1.06181i) q^{69} +8.13766i q^{71} +(-6.89387 + 0.739241i) q^{72} +(4.53525 - 2.61843i) q^{73} +(-2.38085 + 1.37459i) q^{74} -7.09101i q^{76} +(5.72710 + 9.06734i) q^{77} +(-4.47383 + 1.45884i) q^{78} +(1.87634 - 3.24991i) q^{79} +(-8.79538 + 1.90823i) q^{81} +(-1.27303 - 0.734986i) q^{82} -5.27461 q^{83} +(-7.15684 - 1.21852i) q^{84} +(-3.65439 - 2.10987i) q^{86} +(-1.35297 + 1.50580i) q^{87} +(4.68409 + 8.11308i) q^{88} +(0.447379 - 0.774883i) q^{89} +(-11.1388 + 0.442954i) q^{91} +1.02152i q^{92} +(0.663548 + 0.140312i) q^{93} +(4.35644 - 2.51519i) q^{94} +(-9.66653 - 2.04406i) q^{96} +3.89968i q^{97} +(4.07579 + 1.93929i) q^{98} +(7.16845 + 9.82300i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{4} + 6 q^{9} - 12 q^{16} - 6 q^{21} - 18 q^{24} + 84 q^{36} + 12 q^{39} + 36 q^{46} + 12 q^{49} - 12 q^{51} + 36 q^{54} + 36 q^{61} - 24 q^{64} - 72 q^{66} - 48 q^{79} - 6 q^{81} - 48 q^{84}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.558418 0.322403i −0.394861 0.227973i 0.289403 0.957207i \(-0.406543\pi\)
−0.684264 + 0.729234i \(0.739877\pi\)
\(3\) −1.28838 1.15761i −0.743848 0.668349i
\(4\) −0.792113 1.37198i −0.396056 0.685990i
\(5\) 0 0
\(6\) 0.346239 + 1.06181i 0.141351 + 0.433483i
\(7\) 0.105130 + 2.64366i 0.0397354 + 0.999210i
\(8\) 2.31113i 0.817108i
\(9\) 0.319861 + 2.98290i 0.106620 + 0.994300i
\(10\) 0 0
\(11\) 3.51044 2.02675i 1.05844 0.611089i 0.133437 0.991057i \(-0.457398\pi\)
0.924999 + 0.379968i \(0.124065\pi\)
\(12\) −0.567678 + 2.68460i −0.163874 + 0.774976i
\(13\) 4.21339i 1.16858i 0.811543 + 0.584292i \(0.198628\pi\)
−0.811543 + 0.584292i \(0.801372\pi\)
\(14\) 0.793618 1.51016i 0.212103 0.403608i
\(15\) 0 0
\(16\) −0.839111 + 1.45338i −0.209778 + 0.363346i
\(17\) −1.08830 1.88498i −0.263951 0.457176i 0.703338 0.710856i \(-0.251692\pi\)
−0.967288 + 0.253680i \(0.918359\pi\)
\(18\) 0.783079 1.76883i 0.184574 0.416917i
\(19\) 3.87634 + 2.23800i 0.889293 + 0.513434i 0.873711 0.486445i \(-0.161707\pi\)
0.0155818 + 0.999879i \(0.495040\pi\)
\(20\) 0 0
\(21\) 2.92489 3.52775i 0.638264 0.769818i
\(22\) −2.61372 −0.557248
\(23\) −0.558418 0.322403i −0.116438 0.0672257i 0.440650 0.897679i \(-0.354748\pi\)
−0.557088 + 0.830453i \(0.688081\pi\)
\(24\) 2.67540 2.97762i 0.546113 0.607804i
\(25\) 0 0
\(26\) 1.35841 2.35284i 0.266406 0.461429i
\(27\) 3.04094 4.21339i 0.585229 0.810868i
\(28\) 3.54377 2.23831i 0.669710 0.423002i
\(29\) 1.16875i 0.217032i −0.994095 0.108516i \(-0.965390\pi\)
0.994095 0.108516i \(-0.0346099\pi\)
\(30\) 0 0
\(31\) −0.339111 + 0.195786i −0.0609061 + 0.0351641i −0.530144 0.847908i \(-0.677862\pi\)
0.469238 + 0.883072i \(0.344529\pi\)
\(32\) 4.94014 2.85219i 0.873302 0.504201i
\(33\) −6.86898 1.45250i −1.19574 0.252847i
\(34\) 1.40348i 0.240695i
\(35\) 0 0
\(36\) 3.83911 2.80164i 0.639852 0.466939i
\(37\) 2.13178 3.69236i 0.350463 0.607020i −0.635868 0.771798i \(-0.719358\pi\)
0.986331 + 0.164778i \(0.0526909\pi\)
\(38\) −1.44308 2.49949i −0.234098 0.405470i
\(39\) 4.87748 5.42846i 0.781022 0.869250i
\(40\) 0 0
\(41\) 2.27971 0.356031 0.178016 0.984028i \(-0.443032\pi\)
0.178016 + 0.984028i \(0.443032\pi\)
\(42\) −2.77067 + 1.02697i −0.427524 + 0.158464i
\(43\) 6.54419 0.997980 0.498990 0.866608i \(-0.333705\pi\)
0.498990 + 0.866608i \(0.333705\pi\)
\(44\) −5.56132 3.21083i −0.838401 0.484051i
\(45\) 0 0
\(46\) 0.207887 + 0.360071i 0.0306513 + 0.0530896i
\(47\) −3.90070 + 6.75621i −0.568975 + 0.985494i 0.427692 + 0.903924i \(0.359327\pi\)
−0.996668 + 0.0815698i \(0.974007\pi\)
\(48\) 2.76355 0.901147i 0.398884 0.130069i
\(49\) −6.97790 + 0.555857i −0.996842 + 0.0794081i
\(50\) 0 0
\(51\) −0.779941 + 3.68841i −0.109214 + 0.516480i
\(52\) 5.78069 3.33748i 0.801637 0.462825i
\(53\) 6.23667 3.60074i 0.856672 0.494600i −0.00622439 0.999981i \(-0.501981\pi\)
0.862896 + 0.505381i \(0.168648\pi\)
\(54\) −3.05653 + 1.37243i −0.415941 + 0.186764i
\(55\) 0 0
\(56\) −6.10984 + 0.242969i −0.816462 + 0.0324681i
\(57\) −2.40346 7.37071i −0.318346 0.976274i
\(58\) −0.376810 + 0.652654i −0.0494776 + 0.0856977i
\(59\) 5.66247 + 9.80768i 0.737190 + 1.27685i 0.953756 + 0.300583i \(0.0971812\pi\)
−0.216566 + 0.976268i \(0.569485\pi\)
\(60\) 0 0
\(61\) 6.05456 + 3.49560i 0.775207 + 0.447566i 0.834729 0.550661i \(-0.185624\pi\)
−0.0595220 + 0.998227i \(0.518958\pi\)
\(62\) 0.252487 0.0320659
\(63\) −7.85215 + 1.15920i −0.989278 + 0.146045i
\(64\) −0.321779 −0.0402224
\(65\) 0 0
\(66\) 3.36748 + 3.02568i 0.414508 + 0.372436i
\(67\) 4.36870 + 7.56680i 0.533721 + 0.924432i 0.999224 + 0.0393859i \(0.0125402\pi\)
−0.465503 + 0.885046i \(0.654127\pi\)
\(68\) −1.72411 + 2.98624i −0.209079 + 0.362135i
\(69\) 0.346239 + 1.06181i 0.0416822 + 0.127827i
\(70\) 0 0
\(71\) 8.13766i 0.965762i 0.875686 + 0.482881i \(0.160410\pi\)
−0.875686 + 0.482881i \(0.839590\pi\)
\(72\) −6.89387 + 0.739241i −0.812450 + 0.0871204i
\(73\) 4.53525 2.61843i 0.530810 0.306464i −0.210536 0.977586i \(-0.567521\pi\)
0.741346 + 0.671123i \(0.234188\pi\)
\(74\) −2.38085 + 1.37459i −0.276769 + 0.159792i
\(75\) 0 0
\(76\) 7.09101i 0.813394i
\(77\) 5.72710 + 9.06734i 0.652664 + 1.03332i
\(78\) −4.47383 + 1.45884i −0.506561 + 0.165181i
\(79\) 1.87634 3.24991i 0.211105 0.365644i −0.740956 0.671554i \(-0.765627\pi\)
0.952060 + 0.305910i \(0.0989606\pi\)
\(80\) 0 0
\(81\) −8.79538 + 1.90823i −0.977264 + 0.212025i
\(82\) −1.27303 0.734986i −0.140583 0.0811656i
\(83\) −5.27461 −0.578964 −0.289482 0.957183i \(-0.593483\pi\)
−0.289482 + 0.957183i \(0.593483\pi\)
\(84\) −7.15684 1.21852i −0.780876 0.132951i
\(85\) 0 0
\(86\) −3.65439 2.10987i −0.394064 0.227513i
\(87\) −1.35297 + 1.50580i −0.145053 + 0.161439i
\(88\) 4.68409 + 8.11308i 0.499325 + 0.864857i
\(89\) 0.447379 0.774883i 0.0474221 0.0821375i −0.841340 0.540506i \(-0.818233\pi\)
0.888762 + 0.458369i \(0.151566\pi\)
\(90\) 0 0
\(91\) −11.1388 + 0.442954i −1.16766 + 0.0464342i
\(92\) 1.02152i 0.106501i
\(93\) 0.663548 + 0.140312i 0.0688068 + 0.0145497i
\(94\) 4.35644 2.51519i 0.449333 0.259422i
\(95\) 0 0
\(96\) −9.66653 2.04406i −0.986586 0.208621i
\(97\) 3.89968i 0.395953i 0.980207 + 0.197976i \(0.0634370\pi\)
−0.980207 + 0.197976i \(0.936563\pi\)
\(98\) 4.07579 + 1.93929i 0.411717 + 0.195898i
\(99\) 7.16845 + 9.82300i 0.720456 + 0.987249i
\(100\) 0 0
\(101\) −3.29188 5.70171i −0.327555 0.567341i 0.654471 0.756087i \(-0.272891\pi\)
−0.982026 + 0.188745i \(0.939558\pi\)
\(102\) 1.62469 1.80822i 0.160868 0.179040i
\(103\) 8.49954 + 4.90721i 0.837485 + 0.483522i 0.856408 0.516299i \(-0.172691\pi\)
−0.0189238 + 0.999821i \(0.506024\pi\)
\(104\) −9.73770 −0.954860
\(105\) 0 0
\(106\) −4.64356 −0.451022
\(107\) −16.2635 9.38974i −1.57225 0.907740i −0.995892 0.0905447i \(-0.971139\pi\)
−0.576360 0.817196i \(-0.695527\pi\)
\(108\) −8.18946 0.834627i −0.788031 0.0803120i
\(109\) 0.453002 + 0.784623i 0.0433897 + 0.0751532i 0.886905 0.461952i \(-0.152851\pi\)
−0.843515 + 0.537106i \(0.819518\pi\)
\(110\) 0 0
\(111\) −7.02088 + 2.28939i −0.666392 + 0.217299i
\(112\) −3.93047 2.06553i −0.371394 0.195174i
\(113\) 8.82955i 0.830614i −0.909681 0.415307i \(-0.863674\pi\)
0.909681 0.415307i \(-0.136326\pi\)
\(114\) −1.03420 + 4.89082i −0.0968618 + 0.458067i
\(115\) 0 0
\(116\) −1.60351 + 0.925786i −0.148882 + 0.0859570i
\(117\) −12.5681 + 1.34770i −1.16192 + 0.124595i
\(118\) 7.30238i 0.672239i
\(119\) 4.86885 3.07526i 0.446327 0.281908i
\(120\) 0 0
\(121\) 2.71545 4.70330i 0.246859 0.427572i
\(122\) −2.25398 3.90402i −0.204066 0.353453i
\(123\) −2.93714 2.63903i −0.264833 0.237953i
\(124\) 0.537228 + 0.310168i 0.0482445 + 0.0278540i
\(125\) 0 0
\(126\) 4.75851 + 1.88424i 0.423922 + 0.167861i
\(127\) 15.8249 1.40424 0.702118 0.712060i \(-0.252238\pi\)
0.702118 + 0.712060i \(0.252238\pi\)
\(128\) −9.70060 5.60064i −0.857420 0.495032i
\(129\) −8.43142 7.57564i −0.742345 0.666998i
\(130\) 0 0
\(131\) −8.27814 + 14.3382i −0.723265 + 1.25273i 0.236419 + 0.971651i \(0.424026\pi\)
−0.959684 + 0.281080i \(0.909307\pi\)
\(132\) 3.44821 + 10.5746i 0.300128 + 0.920405i
\(133\) −5.50901 + 10.4830i −0.477692 + 0.908992i
\(134\) 5.63392i 0.486697i
\(135\) 0 0
\(136\) 4.35644 2.51519i 0.373562 0.215676i
\(137\) 17.2007 9.93080i 1.46955 0.848446i 0.470135 0.882595i \(-0.344205\pi\)
0.999417 + 0.0341490i \(0.0108721\pi\)
\(138\) 0.148985 0.704563i 0.0126825 0.0599764i
\(139\) 0.228766i 0.0194037i 0.999953 + 0.00970183i \(0.00308824\pi\)
−0.999953 + 0.00970183i \(0.996912\pi\)
\(140\) 0 0
\(141\) 12.8467 4.18908i 1.08188 0.352784i
\(142\) 2.62361 4.54422i 0.220168 0.381342i
\(143\) 8.53950 + 14.7909i 0.714109 + 1.23687i
\(144\) −4.60369 2.03810i −0.383641 0.169842i
\(145\) 0 0
\(146\) −3.37675 −0.279462
\(147\) 9.63367 + 7.36155i 0.794572 + 0.607170i
\(148\) −6.75445 −0.555212
\(149\) 8.62438 + 4.97929i 0.706537 + 0.407919i 0.809777 0.586737i \(-0.199588\pi\)
−0.103240 + 0.994656i \(0.532921\pi\)
\(150\) 0 0
\(151\) 2.53723 + 4.39461i 0.206477 + 0.357628i 0.950602 0.310412i \(-0.100467\pi\)
−0.744126 + 0.668040i \(0.767134\pi\)
\(152\) −5.17232 + 8.95872i −0.419530 + 0.726648i
\(153\) 5.27461 3.84921i 0.426427 0.311190i
\(154\) −0.274781 6.90980i −0.0221425 0.556808i
\(155\) 0 0
\(156\) −11.3113 2.39185i −0.905625 0.191501i
\(157\) −14.5956 + 8.42678i −1.16486 + 0.672531i −0.952463 0.304653i \(-0.901459\pi\)
−0.212394 + 0.977184i \(0.568126\pi\)
\(158\) −2.09556 + 1.20987i −0.166714 + 0.0962524i
\(159\) −12.2035 2.58052i −0.967799 0.204648i
\(160\) 0 0
\(161\) 0.793618 1.51016i 0.0625458 0.119018i
\(162\) 5.52672 + 1.77007i 0.434220 + 0.139070i
\(163\) 2.40346 4.16292i 0.188254 0.326065i −0.756414 0.654093i \(-0.773051\pi\)
0.944668 + 0.328028i \(0.106384\pi\)
\(164\) −1.80579 3.12772i −0.141008 0.244234i
\(165\) 0 0
\(166\) 2.94544 + 1.70055i 0.228611 + 0.131988i
\(167\) 4.45089 0.344420 0.172210 0.985060i \(-0.444909\pi\)
0.172210 + 0.985060i \(0.444909\pi\)
\(168\) 8.15308 + 6.75980i 0.629024 + 0.521530i
\(169\) −4.75268 −0.365590
\(170\) 0 0
\(171\) −5.43585 + 12.2786i −0.415690 + 0.938966i
\(172\) −5.18374 8.97849i −0.395256 0.684604i
\(173\) −5.72710 + 9.91963i −0.435423 + 0.754175i −0.997330 0.0730252i \(-0.976735\pi\)
0.561907 + 0.827201i \(0.310068\pi\)
\(174\) 1.24100 0.404668i 0.0940797 0.0306778i
\(175\) 0 0
\(176\) 6.80268i 0.512771i
\(177\) 4.05808 19.1910i 0.305024 1.44248i
\(178\) −0.499649 + 0.288473i −0.0374503 + 0.0216219i
\(179\) −9.04522 + 5.22226i −0.676071 + 0.390330i −0.798373 0.602163i \(-0.794306\pi\)
0.122302 + 0.992493i \(0.460972\pi\)
\(180\) 0 0
\(181\) 11.9616i 0.889095i −0.895755 0.444548i \(-0.853364\pi\)
0.895755 0.444548i \(-0.146636\pi\)
\(182\) 6.36291 + 3.34382i 0.471650 + 0.247861i
\(183\) −3.75404 11.5125i −0.277506 0.851030i
\(184\) 0.745115 1.29058i 0.0549306 0.0951426i
\(185\) 0 0
\(186\) −0.325300 0.292283i −0.0238522 0.0214312i
\(187\) −7.64079 4.41141i −0.558750 0.322594i
\(188\) 12.3592 0.901385
\(189\) 11.4585 + 7.59627i 0.833482 + 0.552547i
\(190\) 0 0
\(191\) 12.2522 + 7.07383i 0.886541 + 0.511844i 0.872809 0.488061i \(-0.162296\pi\)
0.0137312 + 0.999906i \(0.495629\pi\)
\(192\) 0.414574 + 0.372496i 0.0299193 + 0.0268826i
\(193\) −3.09566 5.36185i −0.222831 0.385954i 0.732836 0.680406i \(-0.238196\pi\)
−0.955666 + 0.294452i \(0.904863\pi\)
\(194\) 1.25727 2.17765i 0.0902667 0.156346i
\(195\) 0 0
\(196\) 6.28990 + 9.13323i 0.449279 + 0.652373i
\(197\) 13.0751i 0.931562i −0.884900 0.465781i \(-0.845773\pi\)
0.884900 0.465781i \(-0.154227\pi\)
\(198\) −0.836029 7.79647i −0.0594140 0.554071i
\(199\) −14.6810 + 8.47608i −1.04071 + 0.600854i −0.920034 0.391838i \(-0.871839\pi\)
−0.120675 + 0.992692i \(0.538506\pi\)
\(200\) 0 0
\(201\) 3.13088 14.8062i 0.220835 1.04435i
\(202\) 4.24525i 0.298695i
\(203\) 3.08979 0.122871i 0.216861 0.00862388i
\(204\) 5.67822 1.85157i 0.397555 0.129636i
\(205\) 0 0
\(206\) −3.16420 5.48055i −0.220460 0.381848i
\(207\) 0.783079 1.76883i 0.0544278 0.122942i
\(208\) −6.12367 3.53550i −0.424600 0.245143i
\(209\) 18.1435 1.25501
\(210\) 0 0
\(211\) −18.4309 −1.26884 −0.634418 0.772990i \(-0.718760\pi\)
−0.634418 + 0.772990i \(0.718760\pi\)
\(212\) −9.88029 5.70439i −0.678581 0.391779i
\(213\) 9.42027 10.4844i 0.645466 0.718381i
\(214\) 6.05456 + 10.4868i 0.413881 + 0.716863i
\(215\) 0 0
\(216\) 9.73770 + 7.02801i 0.662566 + 0.478195i
\(217\) −0.553242 0.875911i −0.0375565 0.0594607i
\(218\) 0.584197i 0.0395668i
\(219\) −8.87426 1.87653i −0.599667 0.126804i
\(220\) 0 0
\(221\) 7.94218 4.58542i 0.534249 0.308449i
\(222\) 4.65869 + 0.985115i 0.312671 + 0.0661166i
\(223\) 0.627418i 0.0420150i 0.999779 + 0.0210075i \(0.00668739\pi\)
−0.999779 + 0.0210075i \(0.993313\pi\)
\(224\) 8.05959 + 12.7602i 0.538504 + 0.852578i
\(225\) 0 0
\(226\) −2.84667 + 4.93058i −0.189358 + 0.327977i
\(227\) 2.71470 + 4.70200i 0.180181 + 0.312082i 0.941942 0.335776i \(-0.108998\pi\)
−0.761761 + 0.647858i \(0.775665\pi\)
\(228\) −8.20865 + 9.13593i −0.543631 + 0.605042i
\(229\) 12.4482 + 7.18699i 0.822602 + 0.474930i 0.851313 0.524658i \(-0.175807\pi\)
−0.0287108 + 0.999588i \(0.509140\pi\)
\(230\) 0 0
\(231\) 3.11778 18.3120i 0.205135 1.20484i
\(232\) 2.70114 0.177339
\(233\) −7.30101 4.21524i −0.478305 0.276150i 0.241405 0.970425i \(-0.422392\pi\)
−0.719710 + 0.694275i \(0.755725\pi\)
\(234\) 7.45277 + 3.29942i 0.487203 + 0.215690i
\(235\) 0 0
\(236\) 8.97062 15.5376i 0.583938 1.01141i
\(237\) −6.17959 + 2.01506i −0.401407 + 0.130892i
\(238\) −3.71032 + 0.147548i −0.240505 + 0.00956411i
\(239\) 2.71852i 0.175847i −0.996127 0.0879233i \(-0.971977\pi\)
0.996127 0.0879233i \(-0.0280230\pi\)
\(240\) 0 0
\(241\) −1.32457 + 0.764739i −0.0853229 + 0.0492612i −0.542054 0.840343i \(-0.682353\pi\)
0.456732 + 0.889605i \(0.349020\pi\)
\(242\) −3.03271 + 1.75094i −0.194950 + 0.112555i
\(243\) 13.5408 + 7.72312i 0.868643 + 0.495438i
\(244\) 11.0756i 0.709045i
\(245\) 0 0
\(246\) 0.789324 + 2.42062i 0.0503255 + 0.154333i
\(247\) −9.42959 + 16.3325i −0.599991 + 1.03921i
\(248\) −0.452486 0.783728i −0.0287329 0.0497668i
\(249\) 6.79572 + 6.10597i 0.430661 + 0.386950i
\(250\) 0 0
\(251\) 8.81039 0.556107 0.278054 0.960566i \(-0.410311\pi\)
0.278054 + 0.960566i \(0.410311\pi\)
\(252\) 7.81018 + 9.85477i 0.491995 + 0.620792i
\(253\) −2.61372 −0.164323
\(254\) −8.83694 5.10201i −0.554479 0.320128i
\(255\) 0 0
\(256\) 3.93311 + 6.81234i 0.245819 + 0.425771i
\(257\) −10.0517 + 17.4101i −0.627011 + 1.08601i 0.361138 + 0.932512i \(0.382388\pi\)
−0.988148 + 0.153502i \(0.950945\pi\)
\(258\) 2.26585 + 6.94869i 0.141066 + 0.432607i
\(259\) 9.98546 + 5.24754i 0.620466 + 0.326066i
\(260\) 0 0
\(261\) 3.48628 0.373839i 0.215795 0.0231401i
\(262\) 9.24533 5.33780i 0.571179 0.329770i
\(263\) 7.58568 4.37959i 0.467753 0.270057i −0.247546 0.968876i \(-0.579624\pi\)
0.715299 + 0.698819i \(0.246291\pi\)
\(264\) 3.35691 15.8751i 0.206604 0.977046i
\(265\) 0 0
\(266\) 6.45608 4.07778i 0.395848 0.250025i
\(267\) −1.47341 + 0.480454i −0.0901713 + 0.0294033i
\(268\) 6.92100 11.9875i 0.422767 0.732255i
\(269\) −8.62438 14.9379i −0.525838 0.910778i −0.999547 0.0300966i \(-0.990419\pi\)
0.473709 0.880681i \(-0.342915\pi\)
\(270\) 0 0
\(271\) 19.6117 + 11.3228i 1.19132 + 0.687812i 0.958607 0.284733i \(-0.0919048\pi\)
0.232718 + 0.972544i \(0.425238\pi\)
\(272\) 3.65280 0.221484
\(273\) 14.8638 + 12.3237i 0.899598 + 0.745865i
\(274\) −12.8069 −0.773692
\(275\) 0 0
\(276\) 1.18252 1.31611i 0.0711795 0.0792203i
\(277\) 6.60561 + 11.4413i 0.396893 + 0.687438i 0.993341 0.115213i \(-0.0367552\pi\)
−0.596448 + 0.802652i \(0.703422\pi\)
\(278\) 0.0737548 0.127747i 0.00442352 0.00766176i
\(279\) −0.692477 0.948908i −0.0414575 0.0568097i
\(280\) 0 0
\(281\) 32.8703i 1.96088i −0.196817 0.980440i \(-0.563060\pi\)
0.196817 0.980440i \(-0.436940\pi\)
\(282\) −8.52439 1.80255i −0.507620 0.107340i
\(283\) −13.6932 + 7.90575i −0.813974 + 0.469948i −0.848334 0.529462i \(-0.822394\pi\)
0.0343601 + 0.999410i \(0.489061\pi\)
\(284\) 11.1647 6.44594i 0.662503 0.382496i
\(285\) 0 0
\(286\) 11.0126i 0.651191i
\(287\) 0.239666 + 6.02679i 0.0141471 + 0.355750i
\(288\) 10.0880 + 13.8236i 0.594439 + 0.814566i
\(289\) 6.13122 10.6196i 0.360660 0.624682i
\(290\) 0 0
\(291\) 4.51433 5.02429i 0.264635 0.294529i
\(292\) −7.18485 4.14818i −0.420462 0.242754i
\(293\) −20.7797 −1.21396 −0.606982 0.794716i \(-0.707620\pi\)
−0.606982 + 0.794716i \(0.707620\pi\)
\(294\) −3.00623 7.21675i −0.175327 0.420889i
\(295\) 0 0
\(296\) 8.53351 + 4.92683i 0.496000 + 0.286366i
\(297\) 2.13553 20.9541i 0.123916 1.21588i
\(298\) −3.21068 5.56105i −0.185989 0.322143i
\(299\) 1.35841 2.35284i 0.0785589 0.136068i
\(300\) 0 0
\(301\) 0.687991 + 17.3006i 0.0396552 + 0.997191i
\(302\) 3.27204i 0.188285i
\(303\) −2.35917 + 11.1567i −0.135531 + 0.640937i
\(304\) −6.50535 + 3.75587i −0.373108 + 0.215414i
\(305\) 0 0
\(306\) −4.18644 + 0.448919i −0.239323 + 0.0256630i
\(307\) 12.9857i 0.741136i −0.928805 0.370568i \(-0.879163\pi\)
0.928805 0.370568i \(-0.120837\pi\)
\(308\) 7.90369 15.0398i 0.450355 0.856973i
\(309\) −5.27001 16.1616i −0.299800 0.919399i
\(310\) 0 0
\(311\) 0.228825 + 0.396337i 0.0129755 + 0.0224742i 0.872440 0.488721i \(-0.162536\pi\)
−0.859465 + 0.511195i \(0.829203\pi\)
\(312\) 12.5459 + 11.2725i 0.710271 + 0.638179i
\(313\) −24.0252 13.8710i −1.35799 0.784033i −0.368633 0.929575i \(-0.620174\pi\)
−0.989352 + 0.145542i \(0.953507\pi\)
\(314\) 10.8673 0.613276
\(315\) 0 0
\(316\) −5.94509 −0.334437
\(317\) 3.91737 + 2.26170i 0.220022 + 0.127030i 0.605960 0.795495i \(-0.292789\pi\)
−0.385939 + 0.922524i \(0.626122\pi\)
\(318\) 5.98268 + 5.37545i 0.335492 + 0.301440i
\(319\) −2.36878 4.10284i −0.132626 0.229715i
\(320\) 0 0
\(321\) 10.0839 + 30.9244i 0.562830 + 1.72603i
\(322\) −0.930052 + 0.587438i −0.0518297 + 0.0327366i
\(323\) 9.74245i 0.542084i
\(324\) 9.58498 + 10.5555i 0.532499 + 0.586419i
\(325\) 0 0
\(326\) −2.68428 + 1.54977i −0.148668 + 0.0858337i
\(327\) 0.324650 1.53530i 0.0179532 0.0849021i
\(328\) 5.26871i 0.290916i
\(329\) −18.2712 9.60185i −1.00732 0.529367i
\(330\) 0 0
\(331\) 11.4482 19.8289i 0.629252 1.08990i −0.358451 0.933549i \(-0.616695\pi\)
0.987702 0.156347i \(-0.0499718\pi\)
\(332\) 4.17809 + 7.23666i 0.229302 + 0.397163i
\(333\) 11.6958 + 5.17785i 0.640926 + 0.283745i
\(334\) −2.48546 1.43498i −0.135998 0.0785186i
\(335\) 0 0
\(336\) 2.67286 + 7.21116i 0.145816 + 0.393401i
\(337\) −31.2616 −1.70293 −0.851464 0.524413i \(-0.824285\pi\)
−0.851464 + 0.524413i \(0.824285\pi\)
\(338\) 2.65398 + 1.53228i 0.144358 + 0.0833449i
\(339\) −10.2212 + 11.3758i −0.555140 + 0.617851i
\(340\) 0 0
\(341\) −0.793618 + 1.37459i −0.0429768 + 0.0744380i
\(342\) 6.99413 5.10405i 0.378199 0.275995i
\(343\) −2.20308 18.3888i −0.118955 0.992900i
\(344\) 15.1245i 0.815457i
\(345\) 0 0
\(346\) 6.39623 3.69287i 0.343864 0.198530i
\(347\) 2.41336 1.39335i 0.129556 0.0747992i −0.433821 0.900999i \(-0.642835\pi\)
0.563377 + 0.826200i \(0.309502\pi\)
\(348\) 3.13763 + 0.663476i 0.168195 + 0.0355661i
\(349\) 16.5636i 0.886627i −0.896367 0.443314i \(-0.853803\pi\)
0.896367 0.443314i \(-0.146197\pi\)
\(350\) 0 0
\(351\) 17.7527 + 12.8127i 0.947568 + 0.683890i
\(352\) 11.5614 20.0249i 0.616223 1.06733i
\(353\) −1.63849 2.83794i −0.0872078 0.151048i 0.819122 0.573619i \(-0.194461\pi\)
−0.906330 + 0.422571i \(0.861128\pi\)
\(354\) −8.45334 + 9.40826i −0.449290 + 0.500044i
\(355\) 0 0
\(356\) −1.41750 −0.0751273
\(357\) −9.83290 1.67414i −0.520412 0.0886048i
\(358\) 6.73469 0.355939
\(359\) 14.7282 + 8.50335i 0.777326 + 0.448789i 0.835482 0.549518i \(-0.185189\pi\)
−0.0581557 + 0.998308i \(0.518522\pi\)
\(360\) 0 0
\(361\) 0.517332 + 0.896045i 0.0272280 + 0.0471603i
\(362\) −3.85644 + 6.67955i −0.202690 + 0.351069i
\(363\) −8.94314 + 2.91620i −0.469393 + 0.153061i
\(364\) 9.43090 + 14.9313i 0.494313 + 0.782614i
\(365\) 0 0
\(366\) −1.61535 + 7.63911i −0.0844355 + 0.399303i
\(367\) 14.8236 8.55840i 0.773785 0.446745i −0.0604381 0.998172i \(-0.519250\pi\)
0.834223 + 0.551427i \(0.185916\pi\)
\(368\) 0.937149 0.541063i 0.0488523 0.0282049i
\(369\) 0.729192 + 6.80015i 0.0379602 + 0.354002i
\(370\) 0 0
\(371\) 10.1748 + 16.1091i 0.528249 + 0.836342i
\(372\) −0.333100 1.02152i −0.0172704 0.0529632i
\(373\) −14.4567 + 25.0397i −0.748538 + 1.29651i 0.199986 + 0.979799i \(0.435910\pi\)
−0.948524 + 0.316706i \(0.897423\pi\)
\(374\) 2.84450 + 4.92683i 0.147086 + 0.254760i
\(375\) 0 0
\(376\) −15.6145 9.01502i −0.805255 0.464914i
\(377\) 4.92442 0.253621
\(378\) −3.94957 7.93614i −0.203144 0.408191i
\(379\) 0.559557 0.0287425 0.0143712 0.999897i \(-0.495425\pi\)
0.0143712 + 0.999897i \(0.495425\pi\)
\(380\) 0 0
\(381\) −20.3886 18.3192i −1.04454 0.938519i
\(382\) −4.56125 7.90031i −0.233374 0.404215i
\(383\) 1.89920 3.28951i 0.0970447 0.168086i −0.813415 0.581683i \(-0.802394\pi\)
0.910460 + 0.413597i \(0.135728\pi\)
\(384\) 6.01470 + 18.4453i 0.306937 + 0.941284i
\(385\) 0 0
\(386\) 3.99220i 0.203198i
\(387\) 2.09323 + 19.5207i 0.106405 + 0.992291i
\(388\) 5.35029 3.08899i 0.271620 0.156820i
\(389\) −7.88909 + 4.55477i −0.399993 + 0.230936i −0.686481 0.727148i \(-0.740845\pi\)
0.286488 + 0.958084i \(0.407512\pi\)
\(390\) 0 0
\(391\) 1.40348i 0.0709770i
\(392\) −1.28466 16.1268i −0.0648850 0.814527i
\(393\) 27.2635 8.89016i 1.37526 0.448449i
\(394\) −4.21545 + 7.30137i −0.212371 + 0.367838i
\(395\) 0 0
\(396\) 7.79874 17.6159i 0.391901 0.885232i
\(397\) 20.9910 + 12.1191i 1.05351 + 0.608242i 0.923629 0.383288i \(-0.125208\pi\)
0.129878 + 0.991530i \(0.458542\pi\)
\(398\) 10.9309 0.547914
\(399\) 19.2330 7.12883i 0.962854 0.356888i
\(400\) 0 0
\(401\) −26.1500 15.0977i −1.30587 0.753944i −0.324466 0.945897i \(-0.605185\pi\)
−0.981404 + 0.191953i \(0.938518\pi\)
\(402\) −6.52190 + 7.25865i −0.325283 + 0.362028i
\(403\) −0.824921 1.42881i −0.0410923 0.0711739i
\(404\) −5.21509 + 9.03279i −0.259460 + 0.449398i
\(405\) 0 0
\(406\) −1.76501 0.927545i −0.0875960 0.0460333i
\(407\) 17.2824i 0.856656i
\(408\) −8.52439 1.80255i −0.422020 0.0892393i
\(409\) 21.3618 12.3332i 1.05627 0.609839i 0.131874 0.991267i \(-0.457901\pi\)
0.924399 + 0.381427i \(0.124567\pi\)
\(410\) 0 0
\(411\) −33.6571 7.11704i −1.66018 0.351058i
\(412\) 15.5483i 0.766008i
\(413\) −25.3329 + 16.0007i −1.24655 + 0.787344i
\(414\) −1.00756 + 0.735280i −0.0495189 + 0.0361370i
\(415\) 0 0
\(416\) 12.0174 + 20.8148i 0.589202 + 1.02053i
\(417\) 0.264822 0.294738i 0.0129684 0.0144334i
\(418\) −10.1317 5.84953i −0.495556 0.286110i
\(419\) −39.4615 −1.92782 −0.963911 0.266226i \(-0.914223\pi\)
−0.963911 + 0.266226i \(0.914223\pi\)
\(420\) 0 0
\(421\) −30.9363 −1.50774 −0.753870 0.657023i \(-0.771815\pi\)
−0.753870 + 0.657023i \(0.771815\pi\)
\(422\) 10.2921 + 5.94218i 0.501014 + 0.289261i
\(423\) −21.4008 9.47434i −1.04054 0.460658i
\(424\) 8.32178 + 14.4137i 0.404141 + 0.699993i
\(425\) 0 0
\(426\) −8.64066 + 2.81757i −0.418641 + 0.136512i
\(427\) −8.60467 + 16.3737i −0.416409 + 0.792379i
\(428\) 29.7509i 1.43807i
\(429\) 6.11994 28.9417i 0.295474 1.39732i
\(430\) 0 0
\(431\) −26.6240 + 15.3713i −1.28243 + 0.740412i −0.977292 0.211896i \(-0.932036\pi\)
−0.305138 + 0.952308i \(0.598703\pi\)
\(432\) 3.57198 + 7.95515i 0.171857 + 0.382742i
\(433\) 2.95856i 0.142179i −0.997470 0.0710896i \(-0.977352\pi\)
0.997470 0.0710896i \(-0.0226476\pi\)
\(434\) 0.0265440 + 0.667491i 0.00127415 + 0.0320406i
\(435\) 0 0
\(436\) 0.717658 1.24302i 0.0343696 0.0595298i
\(437\) −1.44308 2.49949i −0.0690318 0.119567i
\(438\) 4.35055 + 3.90897i 0.207877 + 0.186778i
\(439\) −15.0772 8.70485i −0.719598 0.415460i 0.0950070 0.995477i \(-0.469713\pi\)
−0.814605 + 0.580017i \(0.803046\pi\)
\(440\) 0 0
\(441\) −3.89002 20.6366i −0.185239 0.982693i
\(442\) −5.91341 −0.281272
\(443\) 27.5344 + 15.8970i 1.30820 + 0.755288i 0.981795 0.189942i \(-0.0608301\pi\)
0.326403 + 0.945231i \(0.394163\pi\)
\(444\) 8.70232 + 7.81904i 0.412994 + 0.371075i
\(445\) 0 0
\(446\) 0.202281 0.350362i 0.00957830 0.0165901i
\(447\) −5.34741 16.3989i −0.252924 0.775643i
\(448\) −0.0338286 0.850674i −0.00159825 0.0401906i
\(449\) 2.99461i 0.141324i 0.997500 + 0.0706621i \(0.0225112\pi\)
−0.997500 + 0.0706621i \(0.977489\pi\)
\(450\) 0 0
\(451\) 8.00279 4.62041i 0.376837 0.217567i
\(452\) −12.1140 + 6.99400i −0.569793 + 0.328970i
\(453\) 1.81834 8.59907i 0.0854329 0.404019i
\(454\) 3.50091i 0.164306i
\(455\) 0 0
\(456\) 17.0347 5.55471i 0.797721 0.260123i
\(457\) 4.40252 7.62540i 0.205941 0.356701i −0.744491 0.667633i \(-0.767308\pi\)
0.950432 + 0.310932i \(0.100641\pi\)
\(458\) −4.63421 8.02669i −0.216543 0.375063i
\(459\) −11.2516 1.14671i −0.525181 0.0535237i
\(460\) 0 0
\(461\) −31.9710 −1.48904 −0.744519 0.667602i \(-0.767321\pi\)
−0.744519 + 0.667602i \(0.767321\pi\)
\(462\) −7.64486 + 9.22056i −0.355671 + 0.428979i
\(463\) −6.94495 −0.322759 −0.161380 0.986892i \(-0.551594\pi\)
−0.161380 + 0.986892i \(0.551594\pi\)
\(464\) 1.69865 + 0.980715i 0.0788577 + 0.0455285i
\(465\) 0 0
\(466\) 2.71801 + 4.70774i 0.125910 + 0.218082i
\(467\) 12.2366 21.1944i 0.566241 0.980758i −0.430692 0.902499i \(-0.641731\pi\)
0.996933 0.0782589i \(-0.0249361\pi\)
\(468\) 11.8044 + 16.1757i 0.545658 + 0.747721i
\(469\) −19.5448 + 12.3449i −0.902495 + 0.570032i
\(470\) 0 0
\(471\) 28.5597 + 6.03916i 1.31596 + 0.278270i
\(472\) −22.6668 + 13.0867i −1.04332 + 0.602364i
\(473\) 22.9730 13.2635i 1.05630 0.609854i
\(474\) 4.10045 + 0.867071i 0.188340 + 0.0398259i
\(475\) 0 0
\(476\) −8.07586 4.24401i −0.370157 0.194524i
\(477\) 12.7355 + 17.4516i 0.583119 + 0.799054i
\(478\) −0.876459 + 1.51807i −0.0400883 + 0.0694350i
\(479\) −12.1451 21.0359i −0.554923 0.961156i −0.997909 0.0646271i \(-0.979414\pi\)
0.442986 0.896529i \(-0.353919\pi\)
\(480\) 0 0
\(481\) 15.5573 + 8.98204i 0.709354 + 0.409546i
\(482\) 0.986217 0.0449209
\(483\) −2.77067 + 1.02697i −0.126070 + 0.0467286i
\(484\) −8.60377 −0.391080
\(485\) 0 0
\(486\) −5.07148 8.67833i −0.230047 0.393657i
\(487\) −4.87823 8.44934i −0.221054 0.382876i 0.734075 0.679069i \(-0.237616\pi\)
−0.955128 + 0.296193i \(0.904283\pi\)
\(488\) −8.07879 + 13.9929i −0.365710 + 0.633427i
\(489\) −7.91563 + 2.58115i −0.357957 + 0.116724i
\(490\) 0 0
\(491\) 23.6689i 1.06816i 0.845434 + 0.534080i \(0.179342\pi\)
−0.845434 + 0.534080i \(0.820658\pi\)
\(492\) −1.29414 + 6.12011i −0.0583444 + 0.275916i
\(493\) −2.20308 + 1.27195i −0.0992219 + 0.0572858i
\(494\) 10.5313 6.08026i 0.473826 0.273564i
\(495\) 0 0
\(496\) 0.657143i 0.0295066i
\(497\) −21.5132 + 0.855513i −0.965000 + 0.0383750i
\(498\) −1.82627 5.60064i −0.0818373 0.250971i
\(499\) −5.73534 + 9.93391i −0.256749 + 0.444703i −0.965369 0.260888i \(-0.915985\pi\)
0.708620 + 0.705590i \(0.249318\pi\)
\(500\) 0 0
\(501\) −5.73445 5.15241i −0.256196 0.230193i
\(502\) −4.91988 2.84050i −0.219585 0.126778i
\(503\) −16.8580 −0.751659 −0.375830 0.926689i \(-0.622642\pi\)
−0.375830 + 0.926689i \(0.622642\pi\)
\(504\) −2.67906 18.1473i −0.119335 0.808347i
\(505\) 0 0
\(506\) 1.45955 + 0.842672i 0.0648849 + 0.0374613i
\(507\) 6.12327 + 5.50176i 0.271944 + 0.244342i
\(508\) −12.5351 21.7115i −0.556157 0.963292i
\(509\) −1.47582 + 2.55620i −0.0654147 + 0.113302i −0.896878 0.442278i \(-0.854170\pi\)
0.831463 + 0.555580i \(0.187504\pi\)
\(510\) 0 0
\(511\) 7.39902 + 11.7144i 0.327313 + 0.518214i
\(512\) 17.3304i 0.765902i
\(513\) 21.2173 9.52689i 0.936767 0.420623i
\(514\) 11.2262 6.48142i 0.495164 0.285883i
\(515\) 0 0
\(516\) −3.71499 + 17.5685i −0.163543 + 0.773410i
\(517\) 31.6230i 1.39078i
\(518\) −3.88424 6.14966i −0.170664 0.270201i
\(519\) 18.8618 6.15051i 0.827941 0.269977i
\(520\) 0 0
\(521\) 7.91563 + 13.7103i 0.346790 + 0.600658i 0.985677 0.168642i \(-0.0539382\pi\)
−0.638887 + 0.769300i \(0.720605\pi\)
\(522\) −2.06733 0.915228i −0.0904845 0.0400584i
\(523\) 19.0179 + 10.9800i 0.831595 + 0.480122i 0.854398 0.519618i \(-0.173926\pi\)
−0.0228034 + 0.999740i \(0.507259\pi\)
\(524\) 26.2289 1.14581
\(525\) 0 0
\(526\) −5.64798 −0.246263
\(527\) 0.738105 + 0.426145i 0.0321524 + 0.0185632i
\(528\) 7.87487 8.76445i 0.342710 0.381424i
\(529\) −11.2921 19.5585i −0.490961 0.850370i
\(530\) 0 0
\(531\) −27.4441 + 20.0277i −1.19097 + 0.869126i
\(532\) 18.7462 0.745479i 0.812752 0.0323206i
\(533\) 9.60532i 0.416053i
\(534\) 0.977680 + 0.206738i 0.0423083 + 0.00894641i
\(535\) 0 0
\(536\) −17.4879 + 10.0966i −0.755361 + 0.436108i
\(537\) 17.6991 + 3.74260i 0.763771 + 0.161505i
\(538\) 11.1221i 0.479508i
\(539\) −23.3689 + 16.0938i −1.00657 + 0.693208i
\(540\) 0 0
\(541\) −2.34667 + 4.06456i −0.100891 + 0.174749i −0.912052 0.410074i \(-0.865503\pi\)
0.811161 + 0.584823i \(0.198836\pi\)
\(542\) −7.30101 12.6457i −0.313605 0.543181i
\(543\) −13.8469 + 15.4111i −0.594225 + 0.661352i
\(544\) −10.7527 6.20806i −0.461017 0.266168i
\(545\) 0 0
\(546\) −4.32701 11.6739i −0.185179 0.499597i
\(547\) 14.9485 0.639151 0.319575 0.947561i \(-0.396460\pi\)
0.319575 + 0.947561i \(0.396460\pi\)
\(548\) −27.2497 15.7326i −1.16405 0.672065i
\(549\) −8.49041 + 19.1782i −0.362362 + 0.818508i
\(550\) 0 0
\(551\) 2.61568 4.53049i 0.111432 0.193005i
\(552\) −2.45398 + 0.800202i −0.104448 + 0.0340589i
\(553\) 8.78893 + 4.61874i 0.373743 + 0.196409i
\(554\) 8.51867i 0.361924i
\(555\) 0 0
\(556\) 0.313862 0.181208i 0.0133107 0.00768494i
\(557\) 1.06435 0.614501i 0.0450979 0.0260373i −0.477282 0.878750i \(-0.658378\pi\)
0.522379 + 0.852713i \(0.325044\pi\)
\(558\) 0.0807609 + 0.753144i 0.00341888 + 0.0318831i
\(559\) 27.5732i 1.16622i
\(560\) 0 0
\(561\) 4.73755 + 14.5287i 0.200020 + 0.613401i
\(562\) −10.5975 + 18.3554i −0.447028 + 0.774276i
\(563\) −2.10379 3.64387i −0.0886643 0.153571i 0.818282 0.574816i \(-0.194926\pi\)
−0.906947 + 0.421245i \(0.861593\pi\)
\(564\) −15.9233 14.3071i −0.670494 0.602440i
\(565\) 0 0
\(566\) 10.1953 0.428542
\(567\) −5.96937 23.0514i −0.250690 0.968067i
\(568\) −18.8072 −0.789132
\(569\) −22.3139 12.8829i −0.935447 0.540081i −0.0469169 0.998899i \(-0.514940\pi\)
−0.888530 + 0.458818i \(0.848273\pi\)
\(570\) 0 0
\(571\) −12.3419 21.3768i −0.516492 0.894591i −0.999817 0.0191497i \(-0.993904\pi\)
0.483324 0.875441i \(-0.339429\pi\)
\(572\) 13.5285 23.4320i 0.565655 0.979743i
\(573\) −7.59681 23.2972i −0.317361 0.973253i
\(574\) 1.80922 3.44274i 0.0755154 0.143697i
\(575\) 0 0
\(576\) −0.102925 0.959834i −0.00428852 0.0399931i
\(577\) 4.96565 2.86692i 0.206723 0.119351i −0.393065 0.919511i \(-0.628585\pi\)
0.599787 + 0.800159i \(0.295252\pi\)
\(578\) −6.84757 + 3.95345i −0.284822 + 0.164442i
\(579\) −2.21855 + 10.4917i −0.0921996 + 0.436020i
\(580\) 0 0
\(581\) −0.554521 13.9443i −0.0230054 0.578507i
\(582\) −4.14073 + 1.35022i −0.171639 + 0.0559684i
\(583\) 14.5956 25.2804i 0.604489 1.04701i
\(584\) 6.05152 + 10.4815i 0.250414 + 0.433729i
\(585\) 0 0
\(586\) 11.6038 + 6.69944i 0.479347 + 0.276751i
\(587\) −31.0435 −1.28130 −0.640652 0.767832i \(-0.721336\pi\)
−0.640652 + 0.767832i \(0.721336\pi\)
\(588\) 2.46894 19.0484i 0.101818 0.785542i
\(589\) −1.75268 −0.0722178
\(590\) 0 0
\(591\) −15.1359 + 16.8457i −0.622608 + 0.692941i
\(592\) 3.57760 + 6.19659i 0.147039 + 0.254678i
\(593\) 16.2884 28.2124i 0.668885 1.15854i −0.309331 0.950954i \(-0.600105\pi\)
0.978216 0.207588i \(-0.0665614\pi\)
\(594\) −7.94818 + 11.0126i −0.326118 + 0.451854i
\(595\) 0 0
\(596\) 15.7766i 0.646236i
\(597\) 28.7268 + 6.07449i 1.17571 + 0.248612i
\(598\) −1.51712 + 0.875911i −0.0620397 + 0.0358187i
\(599\) 31.8553 18.3917i 1.30157 0.751463i 0.320899 0.947113i \(-0.396015\pi\)
0.980674 + 0.195650i \(0.0626817\pi\)
\(600\) 0 0
\(601\) 42.5075i 1.73392i −0.498380 0.866959i \(-0.666071\pi\)
0.498380 0.866959i \(-0.333929\pi\)
\(602\) 5.19358 9.88279i 0.211675 0.402793i
\(603\) −21.1736 + 15.4517i −0.862257 + 0.629242i
\(604\) 4.01954 6.96205i 0.163553 0.283282i
\(605\) 0 0
\(606\) 4.91436 5.46951i 0.199632 0.222184i
\(607\) −14.6810 8.47607i −0.595883 0.344033i 0.171537 0.985178i \(-0.445127\pi\)
−0.767420 + 0.641144i \(0.778460\pi\)
\(608\) 25.5329 1.03550
\(609\) −4.12307 3.41848i −0.167075 0.138524i
\(610\) 0 0
\(611\) −28.4666 16.4352i −1.15163 0.664896i
\(612\) −9.45913 4.18765i −0.382363 0.169276i
\(613\) 17.3421 + 30.0373i 0.700439 + 1.21320i 0.968312 + 0.249742i \(0.0803459\pi\)
−0.267873 + 0.963454i \(0.586321\pi\)
\(614\) −4.18664 + 7.25148i −0.168959 + 0.292646i
\(615\) 0 0
\(616\) −20.9558 + 13.2361i −0.844333 + 0.533296i
\(617\) 45.7116i 1.84028i 0.391590 + 0.920140i \(0.371925\pi\)
−0.391590 + 0.920140i \(0.628075\pi\)
\(618\) −2.26766 + 10.7240i −0.0912188 + 0.431381i
\(619\) 34.2356 19.7659i 1.37604 0.794459i 0.384363 0.923182i \(-0.374421\pi\)
0.991681 + 0.128723i \(0.0410877\pi\)
\(620\) 0 0
\(621\) −3.05653 + 1.37243i −0.122654 + 0.0550736i
\(622\) 0.295096i 0.0118323i
\(623\) 2.09556 + 1.10126i 0.0839570 + 0.0441209i
\(624\) 3.79689 + 11.6439i 0.151997 + 0.466130i
\(625\) 0 0
\(626\) 8.94408 + 15.4916i 0.357477 + 0.619169i
\(627\) −23.3758 21.0032i −0.933540 0.838787i
\(628\) 23.1228 + 13.3499i 0.922698 + 0.532720i
\(629\) −9.28004 −0.370020
\(630\) 0 0
\(631\) −21.1685 −0.842703 −0.421351 0.906897i \(-0.638444\pi\)
−0.421351 + 0.906897i \(0.638444\pi\)
\(632\) 7.51097 + 4.33646i 0.298770 + 0.172495i
\(633\) 23.7461 + 21.3359i 0.943821 + 0.848024i
\(634\) −1.45835 2.52594i −0.0579187 0.100318i
\(635\) 0 0
\(636\) 6.12612 + 18.7870i 0.242916 + 0.744952i
\(637\) −2.34204 29.4006i −0.0927951 1.16489i
\(638\) 3.05480i 0.120941i
\(639\) −24.2738 + 2.60292i −0.960257 + 0.102970i
\(640\) 0 0
\(641\) 30.6083 17.6717i 1.20896 0.697991i 0.246424 0.969162i \(-0.420744\pi\)
0.962531 + 0.271171i \(0.0874109\pi\)
\(642\) 4.33908 20.5199i 0.171250 0.809854i
\(643\) 26.0538i 1.02746i −0.857951 0.513731i \(-0.828263\pi\)
0.857951 0.513731i \(-0.171737\pi\)
\(644\) −2.70055 + 0.107392i −0.106416 + 0.00423185i
\(645\) 0 0
\(646\) −3.14099 + 5.44036i −0.123581 + 0.214048i
\(647\) 20.4213 + 35.3707i 0.802844 + 1.39057i 0.917737 + 0.397188i \(0.130014\pi\)
−0.114894 + 0.993378i \(0.536653\pi\)
\(648\) −4.41016 20.3273i −0.173248 0.798530i
\(649\) 39.7555 + 22.9528i 1.56054 + 0.900977i
\(650\) 0 0
\(651\) −0.301179 + 1.76895i −0.0118041 + 0.0693306i
\(652\) −7.61525 −0.298236
\(653\) 20.7918 + 12.0041i 0.813645 + 0.469758i 0.848220 0.529644i \(-0.177674\pi\)
−0.0345747 + 0.999402i \(0.511008\pi\)
\(654\) −0.676274 + 0.752669i −0.0264444 + 0.0294317i
\(655\) 0 0
\(656\) −1.91293 + 3.31329i −0.0746874 + 0.129362i
\(657\) 9.26115 + 12.6906i 0.361312 + 0.495109i
\(658\) 7.10731 + 11.2525i 0.277072 + 0.438670i
\(659\) 38.7398i 1.50909i 0.656248 + 0.754545i \(0.272142\pi\)
−0.656248 + 0.754545i \(0.727858\pi\)
\(660\) 0 0
\(661\) 44.0826 25.4511i 1.71461 0.989933i 0.786539 0.617541i \(-0.211871\pi\)
0.928075 0.372392i \(-0.121462\pi\)
\(662\) −12.7858 + 7.38188i −0.496934 + 0.286905i
\(663\) −15.5407 3.28620i −0.603551 0.127625i
\(664\) 12.1903i 0.473076i
\(665\) 0 0
\(666\) −4.86179 6.66217i −0.188391 0.258154i
\(667\) −0.376810 + 0.652654i −0.0145901 + 0.0252709i
\(668\) −3.52560 6.10653i −0.136410 0.236269i
\(669\) 0.726307 0.808354i 0.0280807 0.0312528i
\(670\) 0 0
\(671\) 28.3389 1.09401
\(672\) 4.38756 25.7699i 0.169254 0.994097i
\(673\) −3.33192 −0.128436 −0.0642181 0.997936i \(-0.520455\pi\)
−0.0642181 + 0.997936i \(0.520455\pi\)
\(674\) 17.4570 + 10.0788i 0.672420 + 0.388222i
\(675\) 0 0
\(676\) 3.76466 + 6.52057i 0.144794 + 0.250791i
\(677\) 16.1861 28.0352i 0.622083 1.07748i −0.367014 0.930215i \(-0.619620\pi\)
0.989097 0.147264i \(-0.0470467\pi\)
\(678\) 9.37531 3.05713i 0.360057 0.117408i
\(679\) −10.3094 + 0.409974i −0.395640 + 0.0157334i
\(680\) 0 0
\(681\) 1.94552 9.20055i 0.0745526 0.352566i
\(682\) 0.886341 0.511729i 0.0339398 0.0195951i
\(683\) −18.8566 + 10.8868i −0.721526 + 0.416573i −0.815314 0.579019i \(-0.803436\pi\)
0.0937881 + 0.995592i \(0.470102\pi\)
\(684\) 21.1518 2.26814i 0.808758 0.0867245i
\(685\) 0 0
\(686\) −4.69835 + 10.9789i −0.179384 + 0.419176i
\(687\) −7.71833 23.6698i −0.294473 0.903060i
\(688\) −5.49130 + 9.51121i −0.209354 + 0.362611i
\(689\) 15.1713 + 26.2775i 0.577982 + 1.00109i
\(690\) 0 0
\(691\) 5.15554 + 2.97655i 0.196126 + 0.113233i 0.594847 0.803839i \(-0.297213\pi\)
−0.398721 + 0.917072i \(0.630546\pi\)
\(692\) 18.1460 0.689809
\(693\) −25.2151 + 19.9837i −0.957842 + 0.759116i
\(694\) −1.79689 −0.0682088
\(695\) 0 0
\(696\) −3.48011 3.12688i −0.131913 0.118524i
\(697\) −2.48100 4.29722i −0.0939747 0.162769i
\(698\) −5.34014 + 9.24939i −0.202127 + 0.350095i
\(699\) 4.52688 + 13.8826i 0.171222 + 0.525088i
\(700\) 0 0
\(701\) 19.3393i 0.730434i −0.930922 0.365217i \(-0.880995\pi\)
0.930922 0.365217i \(-0.119005\pi\)
\(702\) −5.78257 12.8783i −0.218249 0.486062i
\(703\) 16.5270 9.54188i 0.623329 0.359879i
\(704\) −1.12958 + 0.652166i −0.0425728 + 0.0245794i
\(705\) 0 0
\(706\) 2.11301i 0.0795242i
\(707\) 14.7273 9.30205i 0.553878 0.349840i
\(708\) −29.5441 + 9.63383i −1.11034 + 0.362061i
\(709\) −16.9012 + 29.2738i −0.634739 + 1.09940i 0.351831 + 0.936063i \(0.385559\pi\)
−0.986570 + 0.163337i \(0.947774\pi\)
\(710\) 0 0
\(711\) 10.2943 + 4.55741i 0.386068 + 0.170916i
\(712\) 1.79086 + 1.03395i 0.0671152 + 0.0387490i
\(713\) 0.252487 0.00945573
\(714\) 4.95112 + 4.10502i 0.185291 + 0.153627i
\(715\) 0 0
\(716\) 14.3297 + 8.27324i 0.535525 + 0.309185i
\(717\) −3.14700 + 3.50250i −0.117527 + 0.130803i
\(718\) −5.48301 9.49685i −0.204624 0.354419i
\(719\) 13.7118 23.7495i 0.511363 0.885707i −0.488550 0.872536i \(-0.662474\pi\)
0.999913 0.0131713i \(-0.00419267\pi\)
\(720\) 0 0
\(721\) −12.0795 + 22.9858i −0.449862 + 0.856036i
\(722\) 0.667157i 0.0248290i
\(723\) 2.59182 + 0.548060i 0.0963909 + 0.0203826i
\(724\) −16.4110 + 9.47490i −0.609910 + 0.352132i
\(725\) 0 0
\(726\) 5.93420 + 1.25483i 0.220239 + 0.0465712i
\(727\) 6.14612i 0.227947i 0.993484 + 0.113973i \(0.0363579\pi\)
−0.993484 + 0.113973i \(0.963642\pi\)
\(728\) −1.02372 25.7432i −0.0379418 0.954105i
\(729\) −8.50535 25.6254i −0.315013 0.949087i
\(730\) 0 0
\(731\) −7.12202 12.3357i −0.263417 0.456252i
\(732\) −12.8213 + 14.2697i −0.473889 + 0.527422i
\(733\) 14.5795 + 8.41748i 0.538506 + 0.310907i 0.744473 0.667652i \(-0.232701\pi\)
−0.205967 + 0.978559i \(0.566034\pi\)
\(734\) −11.0370 −0.407384
\(735\) 0 0
\(736\) −3.67822 −0.135581
\(737\) 30.6721 + 17.7085i 1.12982 + 0.652302i
\(738\) 1.78520 4.03242i 0.0657139 0.148436i
\(739\) −19.3419 33.5012i −0.711503 1.23236i −0.964293 0.264838i \(-0.914681\pi\)
0.252790 0.967521i \(-0.418652\pi\)
\(740\) 0 0
\(741\) 31.0557 10.1267i 1.14086 0.372015i
\(742\) −0.488178 12.2760i −0.0179216 0.450666i
\(743\) 39.3563i 1.44384i −0.691976 0.721920i \(-0.743260\pi\)
0.691976 0.721920i \(-0.256740\pi\)
\(744\) −0.324280 + 1.53355i −0.0118887 + 0.0562225i
\(745\) 0 0
\(746\) 16.1457 9.32174i 0.591137 0.341293i
\(747\) −1.68714 15.7336i −0.0617294 0.575664i
\(748\) 13.9773i 0.511062i
\(749\) 23.1135 43.9824i 0.844549 1.60708i
\(750\) 0 0
\(751\) −16.1416 + 27.9580i −0.589014 + 1.02020i 0.405347 + 0.914163i \(0.367151\pi\)
−0.994362 + 0.106040i \(0.966183\pi\)
\(752\) −6.54623 11.3384i −0.238717 0.413469i
\(753\) −11.3512 10.1990i −0.413659 0.371673i
\(754\) −2.74989 1.58765i −0.100145 0.0578187i
\(755\) 0 0
\(756\) 1.34551 21.7379i 0.0489359 0.790600i
\(757\) 40.0667 1.45625 0.728124 0.685446i \(-0.240393\pi\)
0.728124 + 0.685446i \(0.240393\pi\)
\(758\) −0.312467 0.180403i −0.0113493 0.00655252i
\(759\) 3.36748 + 3.02568i 0.122232 + 0.109825i
\(760\) 0 0
\(761\) 6.58977 11.4138i 0.238879 0.413750i −0.721514 0.692400i \(-0.756553\pi\)
0.960393 + 0.278649i \(0.0898868\pi\)
\(762\) 5.47920 + 16.8031i 0.198491 + 0.608712i
\(763\) −2.02665 + 1.28007i −0.0733698 + 0.0463417i
\(764\) 22.4131i 0.810877i
\(765\) 0 0
\(766\) −2.12110 + 1.22462i −0.0766384 + 0.0442472i
\(767\) −41.3236 + 23.8582i −1.49211 + 0.861469i
\(768\) 2.81871 13.3299i 0.101711 0.481002i
\(769\) 12.7709i 0.460530i −0.973128 0.230265i \(-0.926041\pi\)
0.973128 0.230265i \(-0.0739593\pi\)
\(770\) 0 0
\(771\) 33.1047 10.7949i 1.19224 0.388768i
\(772\) −4.90423 + 8.49437i −0.176507 + 0.305719i
\(773\) 9.09428 + 15.7518i 0.327099 + 0.566551i 0.981935 0.189219i \(-0.0605957\pi\)
−0.654836 + 0.755771i \(0.727262\pi\)
\(774\) 5.12462 11.5756i 0.184201 0.416075i
\(775\) 0 0
\(776\) −9.01267 −0.323536
\(777\) −6.79047 18.3201i −0.243607 0.657231i
\(778\) 5.87388 0.210589
\(779\) 8.83694 + 5.10201i 0.316616 + 0.182798i
\(780\) 0 0
\(781\) 16.4930 + 28.5667i 0.590167 + 1.02220i
\(782\) 0.452486 0.783728i 0.0161809 0.0280261i
\(783\) −4.92442 3.55412i −0.175985 0.127014i
\(784\) 5.04735 10.6080i 0.180263 0.378856i
\(785\) 0 0
\(786\) −18.0906 3.82540i −0.645272 0.136447i
\(787\) −1.07265 + 0.619297i −0.0382360 + 0.0220756i −0.518996 0.854777i \(-0.673694\pi\)
0.480760 + 0.876852i \(0.340361\pi\)
\(788\) −17.9388 + 10.3569i −0.639042 + 0.368951i
\(789\) −14.8431 3.13869i −0.528430 0.111740i
\(790\) 0 0
\(791\) 23.3423 0.928251i 0.829958 0.0330048i
\(792\) −22.7022 + 16.5672i −0.806689 + 0.588690i
\(793\) −14.7283 + 25.5102i −0.523019 + 0.905895i
\(794\) −7.81449 13.5351i −0.277326 0.480343i
\(795\) 0 0
\(796\) 23.2580 + 13.4280i 0.824359 + 0.475944i
\(797\) −51.4416 −1.82216 −0.911078 0.412235i \(-0.864748\pi\)
−0.911078 + 0.412235i \(0.864748\pi\)
\(798\) −13.0384 2.21990i −0.461555 0.0785837i
\(799\) 16.9805 0.600725
\(800\) 0 0
\(801\) 2.45450 + 1.08663i 0.0867254 + 0.0383942i
\(802\) 9.73510 + 16.8617i 0.343758 + 0.595407i
\(803\) 10.6138 18.3836i 0.374553 0.648745i
\(804\) −22.7938 + 7.43268i −0.803876 + 0.262130i
\(805\) 0 0
\(806\) 1.06383i 0.0374718i
\(807\) −6.18077 + 29.2294i −0.217574 + 1.02892i
\(808\) 13.1774 7.60797i 0.463579 0.267647i
\(809\) 2.44518 1.41172i 0.0859679 0.0496336i −0.456400 0.889775i \(-0.650861\pi\)
0.542368 + 0.840141i \(0.317528\pi\)
\(810\) 0 0
\(811\) 0.162805i 0.00571687i −0.999996 0.00285843i \(-0.999090\pi\)
0.999996 0.00285843i \(-0.000909869\pi\)
\(812\) −2.61604 4.14180i −0.0918050 0.145349i
\(813\) −12.1599 37.2909i −0.426467 1.30785i
\(814\) −5.57189 + 9.65080i −0.195295 + 0.338260i
\(815\) 0 0
\(816\) −4.70621 4.22853i −0.164750 0.148028i
\(817\) 25.3675 + 14.6459i 0.887496 + 0.512396i
\(818\) −15.9051 −0.556108
\(819\) −4.88415 33.0842i −0.170666 1.15606i
\(820\) 0 0
\(821\) 43.3765 + 25.0434i 1.51385 + 0.874022i 0.999868 + 0.0162217i \(0.00516375\pi\)
0.513983 + 0.857801i \(0.328170\pi\)
\(822\) 16.5002 + 14.8254i 0.575509 + 0.517096i
\(823\) 19.1132 + 33.1050i 0.666243 + 1.15397i 0.978947 + 0.204116i \(0.0654319\pi\)
−0.312704 + 0.949851i \(0.601235\pi\)
\(824\) −11.3412 + 19.6435i −0.395090 + 0.684315i
\(825\) 0 0
\(826\) 19.3050 0.767700i 0.671708 0.0267117i
\(827\) 7.13112i 0.247973i −0.992284 0.123987i \(-0.960432\pi\)
0.992284 0.123987i \(-0.0395680\pi\)
\(828\) −3.04708 + 0.326744i −0.105894 + 0.0113551i
\(829\) −0.876338 + 0.505954i −0.0304365 + 0.0175725i −0.515141 0.857105i \(-0.672260\pi\)
0.484705 + 0.874678i \(0.338927\pi\)
\(830\) 0 0
\(831\) 4.73399 22.3875i 0.164220 0.776612i
\(832\) 1.35578i 0.0470032i
\(833\) 8.64180 + 12.5483i 0.299421 + 0.434772i
\(834\) −0.242906 + 0.0792075i −0.00841115 + 0.00274273i
\(835\) 0 0
\(836\) −14.3717 24.8925i −0.497056 0.860927i
\(837\) −0.206294 + 2.02418i −0.00713056 + 0.0699658i
\(838\) 22.0360 + 12.7225i 0.761222 + 0.439492i
\(839\) 29.5215 1.01920 0.509598 0.860412i \(-0.329794\pi\)
0.509598 + 0.860412i \(0.329794\pi\)
\(840\) 0 0
\(841\) 27.6340 0.952897
\(842\) 17.2754 + 9.97394i 0.595348 + 0.343725i
\(843\) −38.0512 + 42.3496i −1.31055 + 1.45860i
\(844\) 14.5993 + 25.2868i 0.502530 + 0.870408i
\(845\) 0 0
\(846\) 8.89603 + 12.1903i 0.305852 + 0.419112i
\(847\) 12.7194 + 6.68427i 0.437044 + 0.229674i
\(848\) 12.0857i 0.415024i
\(849\) 26.7938 + 5.66576i 0.919562 + 0.194448i
\(850\) 0 0
\(851\) −2.38085 + 1.37459i −0.0816146 + 0.0471202i
\(852\) −21.8463 4.61957i −0.748443 0.158264i
\(853\) 22.0904i 0.756362i −0.925732 0.378181i \(-0.876550\pi\)
0.925732 0.378181i \(-0.123450\pi\)
\(854\) 10.0839 6.36920i 0.345065 0.217950i
\(855\) 0 0
\(856\) 21.7009 37.5871i 0.741722 1.28470i
\(857\) −7.16559 12.4112i −0.244772 0.423957i 0.717296 0.696769i \(-0.245380\pi\)
−0.962067 + 0.272812i \(0.912046\pi\)
\(858\) −12.7484 + 14.1885i −0.435223 + 0.484387i
\(859\) −23.7901 13.7352i −0.811709 0.468640i 0.0358402 0.999358i \(-0.488589\pi\)
−0.847549 + 0.530717i \(0.821923\pi\)
\(860\) 0 0
\(861\) 6.66791 8.04225i 0.227242 0.274079i
\(862\) 19.8231 0.675176
\(863\) 14.0492 + 8.11130i 0.478240 + 0.276112i 0.719683 0.694303i \(-0.244287\pi\)
−0.241443 + 0.970415i \(0.577621\pi\)
\(864\) 3.00528 29.4881i 0.102242 1.00321i
\(865\) 0 0
\(866\) −0.953847 + 1.65211i −0.0324131 + 0.0561411i
\(867\) −20.1927 + 6.58451i −0.685782 + 0.223622i
\(868\) −0.763502 + 1.45286i −0.0259149 + 0.0493131i
\(869\) 15.2115i 0.516014i
\(870\) 0 0
\(871\) −31.8819 + 18.4070i −1.08028 + 0.623698i
\(872\) −1.81336 + 1.04695i −0.0614083 + 0.0354541i
\(873\) −11.6324 + 1.24736i −0.393696 + 0.0422167i
\(874\) 1.86101i 0.0629496i
\(875\) 0 0
\(876\) 4.45486 + 13.6617i 0.150516 + 0.461587i
\(877\) −22.2463 + 38.5317i −0.751204 + 1.30112i 0.196036 + 0.980597i \(0.437193\pi\)
−0.947240 + 0.320527i \(0.896140\pi\)
\(878\) 5.61294 + 9.72189i 0.189427 + 0.328098i
\(879\) 26.7722 + 24.0549i 0.903004 + 0.811351i
\(880\) 0 0
\(881\) −0.841670 −0.0283566 −0.0141783 0.999899i \(-0.504513\pi\)
−0.0141783 + 0.999899i \(0.504513\pi\)
\(882\) −4.48103 + 12.7780i −0.150884 + 0.430257i
\(883\) 51.7706 1.74222 0.871110 0.491088i \(-0.163400\pi\)
0.871110 + 0.491088i \(0.163400\pi\)
\(884\) −12.5822 7.26434i −0.423185 0.244326i
\(885\) 0 0
\(886\) −10.2505 17.7543i −0.344371 0.596468i
\(887\) 27.9867 48.4743i 0.939700 1.62761i 0.173669 0.984804i \(-0.444438\pi\)
0.766031 0.642804i \(-0.222229\pi\)
\(888\) −5.29107 16.2262i −0.177557 0.544514i
\(889\) 1.66368 + 41.8358i 0.0557980 + 1.40313i
\(890\) 0 0
\(891\) −27.0081 + 24.5248i −0.904806 + 0.821611i
\(892\) 0.860804 0.496986i 0.0288219 0.0166403i
\(893\) −30.2409 + 17.4596i −1.01197 + 0.584262i
\(894\) −2.30097 + 10.8815i −0.0769560 + 0.363931i
\(895\) 0 0
\(896\) 13.7864 26.2339i 0.460571 0.876413i
\(897\) −4.47383 + 1.45884i −0.149377 + 0.0487092i
\(898\) 0.965470 1.67224i 0.0322182 0.0558035i
\(899\) 0.228825 + 0.396337i 0.00763175 + 0.0132186i
\(900\) 0 0
\(901\) −13.5747 7.83734i −0.452238 0.261100i
\(902\) −5.95854 −0.198398
\(903\) 19.1410 23.0863i 0.636974 0.768263i
\(904\) 20.4062 0.678701
\(905\) 0 0
\(906\) −3.78776 + 4.21564i −0.125840 + 0.140055i
\(907\) −18.1332 31.4075i −0.602102 1.04287i −0.992502 0.122226i \(-0.960997\pi\)
0.390401 0.920645i \(-0.372336\pi\)
\(908\) 4.30070 7.44902i 0.142724 0.247205i
\(909\) 15.9547 11.6431i 0.529183 0.386178i
\(910\) 0 0
\(911\) 5.35784i 0.177513i −0.996053 0.0887565i \(-0.971711\pi\)
0.996053 0.0887565i \(-0.0282893\pi\)
\(912\) 12.7292 + 2.69169i 0.421507 + 0.0891308i
\(913\) −18.5162 + 10.6903i −0.612797 + 0.353798i
\(914\) −4.91690 + 2.83877i −0.162637 + 0.0938983i
\(915\) 0 0
\(916\) 22.7716i 0.752396i
\(917\) −38.7755 20.3772i −1.28048 0.672916i
\(918\) 5.91341 + 4.26790i 0.195172 + 0.140862i
\(919\) 10.0571 17.4194i 0.331754 0.574615i −0.651102 0.758990i \(-0.725693\pi\)
0.982856 + 0.184376i \(0.0590263\pi\)
\(920\) 0 0
\(921\) −15.0325 + 16.7306i −0.495337 + 0.551292i
\(922\) 17.8532 + 10.3075i 0.587963 + 0.339461i
\(923\) −34.2872 −1.12858
\(924\) −27.5933 + 10.2276i −0.907752 + 0.336464i
\(925\) 0 0
\(926\) 3.87818 + 2.23907i 0.127445 + 0.0735804i
\(927\) −11.9190 + 26.9229i −0.391473 + 0.884264i
\(928\) −3.33351 5.77382i −0.109428 0.189535i
\(929\) −3.39903 + 5.88728i −0.111518 + 0.193156i −0.916383 0.400303i \(-0.868905\pi\)
0.804864 + 0.593459i \(0.202238\pi\)
\(930\) 0 0
\(931\) −28.2927 13.4619i −0.927256 0.441195i
\(932\) 13.3558i 0.437483i
\(933\) 0.163991 0.775525i 0.00536881 0.0253896i
\(934\) −13.6662 + 7.89021i −0.447173 + 0.258176i
\(935\) 0 0
\(936\) −3.11471 29.0466i −0.101808 0.949417i
\(937\) 44.1327i 1.44175i −0.693063 0.720877i \(-0.743739\pi\)
0.693063 0.720877i \(-0.256261\pi\)
\(938\) 14.8942 0.592295i 0.486312 0.0193391i
\(939\) 14.8965 + 45.6830i 0.486128 + 1.49081i
\(940\) 0 0
\(941\) −4.53288 7.85118i −0.147768 0.255941i 0.782634 0.622482i \(-0.213875\pi\)
−0.930402 + 0.366540i \(0.880542\pi\)
\(942\) −14.0012 12.5801i −0.456184 0.409882i
\(943\) −1.27303 0.734986i −0.0414557 0.0239344i
\(944\) −19.0057 −0.618584
\(945\) 0 0
\(946\) −17.1047 −0.556122
\(947\) 30.7330 + 17.7437i 0.998689 + 0.576593i 0.907860 0.419273i \(-0.137715\pi\)
0.0908285 + 0.995867i \(0.471048\pi\)
\(948\) 7.65955 + 6.88211i 0.248771 + 0.223521i
\(949\) 11.0325 + 19.1088i 0.358129 + 0.620297i
\(950\) 0 0
\(951\) −2.42891 7.44873i −0.0787627 0.241542i
\(952\) 7.10731 + 11.2525i 0.230349 + 0.364697i
\(953\) 10.8726i 0.352198i 0.984373 + 0.176099i \(0.0563478\pi\)
−0.984373 + 0.176099i \(0.943652\pi\)
\(954\) −1.48529 13.8513i −0.0480882 0.448451i
\(955\) 0 0
\(956\) −3.72976 + 2.15338i −0.120629 + 0.0696452i
\(957\) −1.69761 + 8.02816i −0.0548761 + 0.259514i
\(958\) 15.6625i 0.506031i
\(959\) 28.0620 + 44.4287i 0.906169 + 1.43468i
\(960\) 0 0
\(961\) −15.4233 + 26.7140i −0.497527 + 0.861742i
\(962\) −5.79167 10.0315i −0.186731 0.323428i
\(963\) 22.8066 51.5158i 0.734932 1.66007i
\(964\) 2.09841 + 1.21152i 0.0675853 + 0.0390204i
\(965\) 0 0
\(966\) 1.87829 + 0.319795i 0.0604330 + 0.0102892i
\(967\) −21.3855 −0.687711 −0.343855 0.939023i \(-0.611733\pi\)
−0.343855 + 0.939023i \(0.611733\pi\)
\(968\) 10.8699 + 6.27575i 0.349373 + 0.201710i
\(969\) −11.2780 + 12.5520i −0.362301 + 0.403228i
\(970\) 0 0
\(971\) −4.43174 + 7.67600i −0.142221 + 0.246335i −0.928333 0.371750i \(-0.878758\pi\)
0.786112 + 0.618085i \(0.212091\pi\)
\(972\) −0.129881 24.6953i −0.00416593 0.792102i
\(973\) −0.604779 + 0.0240502i −0.0193883 + 0.000771013i
\(974\) 6.29102i 0.201577i
\(975\) 0 0
\(976\) −10.1609 + 5.86639i −0.325242 + 0.187779i
\(977\) −0.633128 + 0.365536i −0.0202555 + 0.0116945i −0.510094 0.860119i \(-0.670389\pi\)
0.489838 + 0.871813i \(0.337056\pi\)
\(978\) 5.25241 + 1.11066i 0.167953 + 0.0355150i
\(979\) 3.62691i 0.115916i
\(980\) 0 0
\(981\) −2.19555 + 1.60223i −0.0700986 + 0.0511553i
\(982\) 7.63091 13.2171i 0.243512 0.421775i
\(983\) 1.86607 + 3.23213i 0.0595184 + 0.103089i 0.894249 0.447569i \(-0.147710\pi\)
−0.834731 + 0.550658i \(0.814377\pi\)
\(984\) 6.09913 6.78812i 0.194433 0.216397i
\(985\) 0 0
\(986\) 1.64032 0.0522385
\(987\) 12.4251 + 33.5219i 0.395495 + 1.06701i
\(988\) 29.8772 0.950520
\(989\) −3.65439 2.10987i −0.116203 0.0670898i
\(990\) 0 0
\(991\) 2.74255 + 4.75024i 0.0871200 + 0.150896i 0.906293 0.422651i \(-0.138900\pi\)
−0.819173 + 0.573547i \(0.805567\pi\)
\(992\) −1.11684 + 1.93442i −0.0354596 + 0.0614178i
\(993\) −37.7039 + 12.2946i −1.19650 + 0.390158i
\(994\) 12.2892 + 6.45819i 0.389790 + 0.204841i
\(995\) 0 0
\(996\) 2.99428 14.1602i 0.0948774 0.448683i
\(997\) −4.39264 + 2.53609i −0.139116 + 0.0803189i −0.567943 0.823068i \(-0.692261\pi\)
0.428826 + 0.903387i \(0.358927\pi\)
\(998\) 6.40544 3.69818i 0.202761 0.117064i
\(999\) −9.07472 20.2103i −0.287111 0.639425i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.t.j.26.5 24
3.2 odd 2 inner 525.2.t.j.26.7 24
5.2 odd 4 105.2.p.a.89.8 yes 24
5.3 odd 4 105.2.p.a.89.5 yes 24
5.4 even 2 inner 525.2.t.j.26.8 24
7.3 odd 6 inner 525.2.t.j.101.7 24
15.2 even 4 105.2.p.a.89.6 yes 24
15.8 even 4 105.2.p.a.89.7 yes 24
15.14 odd 2 inner 525.2.t.j.26.6 24
21.17 even 6 inner 525.2.t.j.101.5 24
35.2 odd 12 735.2.g.b.734.9 24
35.3 even 12 105.2.p.a.59.6 yes 24
35.12 even 12 735.2.g.b.734.12 24
35.13 even 4 735.2.p.f.509.6 24
35.17 even 12 105.2.p.a.59.7 yes 24
35.18 odd 12 735.2.p.f.374.5 24
35.23 odd 12 735.2.g.b.734.16 24
35.24 odd 6 inner 525.2.t.j.101.6 24
35.27 even 4 735.2.p.f.509.7 24
35.32 odd 12 735.2.p.f.374.8 24
35.33 even 12 735.2.g.b.734.13 24
105.2 even 12 735.2.g.b.734.14 24
105.17 odd 12 105.2.p.a.59.5 24
105.23 even 12 735.2.g.b.734.11 24
105.32 even 12 735.2.p.f.374.6 24
105.38 odd 12 105.2.p.a.59.8 yes 24
105.47 odd 12 735.2.g.b.734.15 24
105.53 even 12 735.2.p.f.374.7 24
105.59 even 6 inner 525.2.t.j.101.8 24
105.62 odd 4 735.2.p.f.509.5 24
105.68 odd 12 735.2.g.b.734.10 24
105.83 odd 4 735.2.p.f.509.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.5 24 105.17 odd 12
105.2.p.a.59.6 yes 24 35.3 even 12
105.2.p.a.59.7 yes 24 35.17 even 12
105.2.p.a.59.8 yes 24 105.38 odd 12
105.2.p.a.89.5 yes 24 5.3 odd 4
105.2.p.a.89.6 yes 24 15.2 even 4
105.2.p.a.89.7 yes 24 15.8 even 4
105.2.p.a.89.8 yes 24 5.2 odd 4
525.2.t.j.26.5 24 1.1 even 1 trivial
525.2.t.j.26.6 24 15.14 odd 2 inner
525.2.t.j.26.7 24 3.2 odd 2 inner
525.2.t.j.26.8 24 5.4 even 2 inner
525.2.t.j.101.5 24 21.17 even 6 inner
525.2.t.j.101.6 24 35.24 odd 6 inner
525.2.t.j.101.7 24 7.3 odd 6 inner
525.2.t.j.101.8 24 105.59 even 6 inner
735.2.g.b.734.9 24 35.2 odd 12
735.2.g.b.734.10 24 105.68 odd 12
735.2.g.b.734.11 24 105.23 even 12
735.2.g.b.734.12 24 35.12 even 12
735.2.g.b.734.13 24 35.33 even 12
735.2.g.b.734.14 24 105.2 even 12
735.2.g.b.734.15 24 105.47 odd 12
735.2.g.b.734.16 24 35.23 odd 12
735.2.p.f.374.5 24 35.18 odd 12
735.2.p.f.374.6 24 105.32 even 12
735.2.p.f.374.7 24 105.53 even 12
735.2.p.f.374.8 24 35.32 odd 12
735.2.p.f.509.5 24 105.62 odd 4
735.2.p.f.509.6 24 35.13 even 4
735.2.p.f.509.7 24 35.27 even 4
735.2.p.f.509.8 24 105.83 odd 4