Properties

Label 735.2.p.f.509.5
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.5
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.f.374.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.322403 + 0.558418i) q^{2} +(-1.69458 + 0.358331i) q^{3} +(0.792113 + 1.37198i) q^{4} +(-0.550103 + 2.16735i) q^{5} +(0.346239 - 1.06181i) q^{6} -2.31113 q^{8} +(2.74320 - 1.21444i) q^{9} +(-1.03293 - 1.00595i) q^{10} +(-3.51044 + 2.02675i) q^{11} +(-1.83392 - 2.04109i) q^{12} -4.21339 q^{13} +(0.155565 - 3.86986i) q^{15} +(-0.839111 + 1.45338i) q^{16} +(1.88498 - 1.08830i) q^{17} +(-0.206248 + 1.92339i) q^{18} +(3.87634 + 2.23800i) q^{19} +(-3.40930 + 0.962052i) q^{20} -2.61372i q^{22} +(0.322403 - 0.558418i) q^{23} +(3.91639 - 0.828150i) q^{24} +(-4.39477 - 2.38453i) q^{25} +(1.35841 - 2.35284i) q^{26} +(-4.21339 + 3.04094i) q^{27} -1.16875i q^{29} +(2.11084 + 1.33452i) q^{30} +(0.339111 - 0.195786i) q^{31} +(-2.85219 - 4.94014i) q^{32} +(5.22247 - 4.69239i) q^{33} +1.40348i q^{34} +(3.83911 + 2.80164i) q^{36} +(3.69236 + 2.13178i) q^{37} +(-2.49949 + 1.44308i) q^{38} +(7.13993 - 1.50979i) q^{39} +(1.27136 - 5.00902i) q^{40} +2.27971 q^{41} -6.54419i q^{43} +(-5.56132 - 3.21083i) q^{44} +(1.12307 + 6.61352i) q^{45} +(0.207887 + 0.360071i) q^{46} +(-6.75621 - 3.90070i) q^{47} +(0.901147 - 2.76355i) q^{48} +(2.74845 - 1.68534i) q^{50} +(-2.80428 + 2.51965i) q^{51} +(-3.33748 - 5.78069i) q^{52} +(3.60074 + 6.23667i) q^{53} +(-0.339707 - 3.33324i) q^{54} +(-2.46157 - 8.72325i) q^{55} +(-7.37071 - 2.40346i) q^{57} +(0.652654 + 0.376810i) q^{58} +(-5.66247 - 9.80768i) q^{59} +(5.43259 - 2.85193i) q^{60} +(-6.05456 - 3.49560i) q^{61} +0.252487i q^{62} +0.321779 q^{64} +(2.31780 - 9.13188i) q^{65} +(0.936579 + 4.42916i) q^{66} +(-7.56680 + 4.36870i) q^{67} +(2.98624 + 1.72411i) q^{68} +(-0.346239 + 1.06181i) q^{69} -8.13766i q^{71} +(-6.33988 + 2.80673i) q^{72} +(2.61843 + 4.53525i) q^{73} +(-2.38085 + 1.37459i) q^{74} +(8.30174 + 2.46598i) q^{75} +7.09101i q^{76} +(-1.45884 + 4.47383i) q^{78} +(-1.87634 + 3.24991i) q^{79} +(-2.68838 - 2.61815i) q^{80} +(6.05026 - 6.66291i) q^{81} +(-0.734986 + 1.27303i) q^{82} +5.27461i q^{83} +(1.32178 + 4.68409i) q^{85} +(3.65439 + 2.10987i) q^{86} +(0.418802 + 1.98055i) q^{87} +(8.11308 - 4.68409i) q^{88} +(-0.447379 + 0.774883i) q^{89} +(-4.05520 - 1.50507i) q^{90} +1.02152 q^{92} +(-0.504494 + 0.453288i) q^{93} +(4.35644 - 2.51519i) q^{94} +(-6.98291 + 7.17023i) q^{95} +(6.60347 + 7.34943i) q^{96} +3.89968 q^{97} +(-7.16845 + 9.82300i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 6 q^{9} - 24 q^{15} - 12 q^{16} - 18 q^{24} - 12 q^{25} + 18 q^{30} + 84 q^{36} - 12 q^{39} + 72 q^{40} + 18 q^{45} + 36 q^{46} - 12 q^{51} + 36 q^{54} + 12 q^{60} - 36 q^{61} + 24 q^{64}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.322403 + 0.558418i −0.227973 + 0.394861i −0.957207 0.289403i \(-0.906543\pi\)
0.729234 + 0.684264i \(0.239877\pi\)
\(3\) −1.69458 + 0.358331i −0.978366 + 0.206883i
\(4\) 0.792113 + 1.37198i 0.396056 + 0.685990i
\(5\) −0.550103 + 2.16735i −0.246013 + 0.969266i
\(6\) 0.346239 1.06181i 0.141351 0.433483i
\(7\) 0 0
\(8\) −2.31113 −0.817108
\(9\) 2.74320 1.21444i 0.914399 0.404814i
\(10\) −1.03293 1.00595i −0.326641 0.318108i
\(11\) −3.51044 + 2.02675i −1.05844 + 0.611089i −0.924999 0.379968i \(-0.875935\pi\)
−0.133437 + 0.991057i \(0.542602\pi\)
\(12\) −1.83392 2.04109i −0.529407 0.589212i
\(13\) −4.21339 −1.16858 −0.584292 0.811543i \(-0.698628\pi\)
−0.584292 + 0.811543i \(0.698628\pi\)
\(14\) 0 0
\(15\) 0.155565 3.86986i 0.0401666 0.999193i
\(16\) −0.839111 + 1.45338i −0.209778 + 0.363346i
\(17\) 1.88498 1.08830i 0.457176 0.263951i −0.253680 0.967288i \(-0.581641\pi\)
0.710856 + 0.703338i \(0.248308\pi\)
\(18\) −0.206248 + 1.92339i −0.0486132 + 0.453348i
\(19\) 3.87634 + 2.23800i 0.889293 + 0.513434i 0.873711 0.486445i \(-0.161707\pi\)
0.0155818 + 0.999879i \(0.495040\pi\)
\(20\) −3.40930 + 0.962052i −0.762342 + 0.215121i
\(21\) 0 0
\(22\) 2.61372i 0.557248i
\(23\) 0.322403 0.558418i 0.0672257 0.116438i −0.830453 0.557088i \(-0.811919\pi\)
0.897679 + 0.440650i \(0.145252\pi\)
\(24\) 3.91639 0.828150i 0.799430 0.169045i
\(25\) −4.39477 2.38453i −0.878955 0.476905i
\(26\) 1.35841 2.35284i 0.266406 0.461429i
\(27\) −4.21339 + 3.04094i −0.810868 + 0.585229i
\(28\) 0 0
\(29\) 1.16875i 0.217032i −0.994095 0.108516i \(-0.965390\pi\)
0.994095 0.108516i \(-0.0346099\pi\)
\(30\) 2.11084 + 1.33452i 0.385386 + 0.243650i
\(31\) 0.339111 0.195786i 0.0609061 0.0351641i −0.469238 0.883072i \(-0.655471\pi\)
0.530144 + 0.847908i \(0.322138\pi\)
\(32\) −2.85219 4.94014i −0.504201 0.873302i
\(33\) 5.22247 4.69239i 0.909115 0.816841i
\(34\) 1.40348i 0.240695i
\(35\) 0 0
\(36\) 3.83911 + 2.80164i 0.639852 + 0.466939i
\(37\) 3.69236 + 2.13178i 0.607020 + 0.350463i 0.771798 0.635868i \(-0.219358\pi\)
−0.164778 + 0.986331i \(0.552691\pi\)
\(38\) −2.49949 + 1.44308i −0.405470 + 0.234098i
\(39\) 7.13993 1.50979i 1.14330 0.241760i
\(40\) 1.27136 5.00902i 0.201019 0.791995i
\(41\) 2.27971 0.356031 0.178016 0.984028i \(-0.443032\pi\)
0.178016 + 0.984028i \(0.443032\pi\)
\(42\) 0 0
\(43\) 6.54419i 0.997980i −0.866608 0.498990i \(-0.833705\pi\)
0.866608 0.498990i \(-0.166295\pi\)
\(44\) −5.56132 3.21083i −0.838401 0.484051i
\(45\) 1.12307 + 6.61352i 0.167418 + 0.985886i
\(46\) 0.207887 + 0.360071i 0.0306513 + 0.0530896i
\(47\) −6.75621 3.90070i −0.985494 0.568975i −0.0815698 0.996668i \(-0.525993\pi\)
−0.903924 + 0.427692i \(0.859327\pi\)
\(48\) 0.901147 2.76355i 0.130069 0.398884i
\(49\) 0 0
\(50\) 2.74845 1.68534i 0.388690 0.238344i
\(51\) −2.80428 + 2.51965i −0.392678 + 0.352822i
\(52\) −3.33748 5.78069i −0.462825 0.801637i
\(53\) 3.60074 + 6.23667i 0.494600 + 0.856672i 0.999981 0.00622439i \(-0.00198130\pi\)
−0.505381 + 0.862896i \(0.668648\pi\)
\(54\) −0.339707 3.33324i −0.0462283 0.453597i
\(55\) −2.46157 8.72325i −0.331918 1.17624i
\(56\) 0 0
\(57\) −7.37071 2.40346i −0.976274 0.318346i
\(58\) 0.652654 + 0.376810i 0.0856977 + 0.0494776i
\(59\) −5.66247 9.80768i −0.737190 1.27685i −0.953756 0.300583i \(-0.902819\pi\)
0.216566 0.976268i \(-0.430515\pi\)
\(60\) 5.43259 2.85193i 0.701344 0.368183i
\(61\) −6.05456 3.49560i −0.775207 0.447566i 0.0595220 0.998227i \(-0.481042\pi\)
−0.834729 + 0.550661i \(0.814376\pi\)
\(62\) 0.252487i 0.0320659i
\(63\) 0 0
\(64\) 0.321779 0.0402224
\(65\) 2.31780 9.13188i 0.287488 1.13267i
\(66\) 0.936579 + 4.42916i 0.115285 + 0.545192i
\(67\) −7.56680 + 4.36870i −0.924432 + 0.533721i −0.885046 0.465503i \(-0.845873\pi\)
−0.0393859 + 0.999224i \(0.512540\pi\)
\(68\) 2.98624 + 1.72411i 0.362135 + 0.209079i
\(69\) −0.346239 + 1.06181i −0.0416822 + 0.127827i
\(70\) 0 0
\(71\) 8.13766i 0.965762i −0.875686 0.482881i \(-0.839590\pi\)
0.875686 0.482881i \(-0.160410\pi\)
\(72\) −6.33988 + 2.80673i −0.747163 + 0.330777i
\(73\) 2.61843 + 4.53525i 0.306464 + 0.530810i 0.977586 0.210536i \(-0.0675209\pi\)
−0.671123 + 0.741346i \(0.734188\pi\)
\(74\) −2.38085 + 1.37459i −0.276769 + 0.159792i
\(75\) 8.30174 + 2.46598i 0.958603 + 0.284747i
\(76\) 7.09101i 0.813394i
\(77\) 0 0
\(78\) −1.45884 + 4.47383i −0.165181 + 0.506561i
\(79\) −1.87634 + 3.24991i −0.211105 + 0.365644i −0.952060 0.305910i \(-0.901039\pi\)
0.740956 + 0.671554i \(0.234373\pi\)
\(80\) −2.68838 2.61815i −0.300571 0.292718i
\(81\) 6.05026 6.66291i 0.672251 0.740323i
\(82\) −0.734986 + 1.27303i −0.0811656 + 0.140583i
\(83\) 5.27461i 0.578964i 0.957183 + 0.289482i \(0.0934831\pi\)
−0.957183 + 0.289482i \(0.906517\pi\)
\(84\) 0 0
\(85\) 1.32178 + 4.68409i 0.143367 + 0.508061i
\(86\) 3.65439 + 2.10987i 0.394064 + 0.227513i
\(87\) 0.418802 + 1.98055i 0.0449002 + 0.212337i
\(88\) 8.11308 4.68409i 0.864857 0.499325i
\(89\) −0.447379 + 0.774883i −0.0474221 + 0.0821375i −0.888762 0.458369i \(-0.848434\pi\)
0.841340 + 0.540506i \(0.181767\pi\)
\(90\) −4.05520 1.50507i −0.427455 0.158649i
\(91\) 0 0
\(92\) 1.02152 0.106501
\(93\) −0.504494 + 0.453288i −0.0523135 + 0.0470038i
\(94\) 4.35644 2.51519i 0.449333 0.259422i
\(95\) −6.98291 + 7.17023i −0.716432 + 0.735650i
\(96\) 6.60347 + 7.34943i 0.673964 + 0.750098i
\(97\) 3.89968 0.395953 0.197976 0.980207i \(-0.436563\pi\)
0.197976 + 0.980207i \(0.436563\pi\)
\(98\) 0 0
\(99\) −7.16845 + 9.82300i −0.720456 + 0.987249i
\(100\) −0.209636 7.91835i −0.0209636 0.791835i
\(101\) −3.29188 5.70171i −0.327555 0.567341i 0.654471 0.756087i \(-0.272891\pi\)
−0.982026 + 0.188745i \(0.939558\pi\)
\(102\) −0.502911 2.37831i −0.0497956 0.235487i
\(103\) −4.90721 + 8.49954i −0.483522 + 0.837485i −0.999821 0.0189238i \(-0.993976\pi\)
0.516299 + 0.856408i \(0.327309\pi\)
\(104\) 9.73770 0.954860
\(105\) 0 0
\(106\) −4.64356 −0.451022
\(107\) −9.38974 + 16.2635i −0.907740 + 1.57225i −0.0905447 + 0.995892i \(0.528861\pi\)
−0.817196 + 0.576360i \(0.804473\pi\)
\(108\) −7.50959 3.37192i −0.722611 0.324463i
\(109\) −0.453002 0.784623i −0.0433897 0.0751532i 0.843515 0.537106i \(-0.180482\pi\)
−0.886905 + 0.461952i \(0.847149\pi\)
\(110\) 5.66484 + 1.43782i 0.540121 + 0.137090i
\(111\) −7.02088 2.28939i −0.666392 0.217299i
\(112\) 0 0
\(113\) 8.82955 0.830614 0.415307 0.909681i \(-0.363674\pi\)
0.415307 + 0.909681i \(0.363674\pi\)
\(114\) 3.71848 3.34105i 0.348267 0.312918i
\(115\) 1.03293 + 1.00595i 0.0963213 + 0.0938049i
\(116\) 1.60351 0.925786i 0.148882 0.0859570i
\(117\) −11.5582 + 5.11692i −1.06855 + 0.473059i
\(118\) 7.30238 0.672239
\(119\) 0 0
\(120\) −0.359530 + 8.94374i −0.0328205 + 0.816448i
\(121\) 2.71545 4.70330i 0.246859 0.427572i
\(122\) 3.90402 2.25398i 0.353453 0.204066i
\(123\) −3.86315 + 0.816892i −0.348329 + 0.0736567i
\(124\) 0.537228 + 0.310168i 0.0482445 + 0.0278540i
\(125\) 7.58567 8.21326i 0.678483 0.734616i
\(126\) 0 0
\(127\) 15.8249i 1.40424i 0.712060 + 0.702118i \(0.247762\pi\)
−0.712060 + 0.702118i \(0.752238\pi\)
\(128\) 5.60064 9.70060i 0.495032 0.857420i
\(129\) 2.34499 + 11.0896i 0.206465 + 0.976389i
\(130\) 4.35214 + 4.23845i 0.381708 + 0.371736i
\(131\) −8.27814 + 14.3382i −0.723265 + 1.25273i 0.236419 + 0.971651i \(0.424026\pi\)
−0.959684 + 0.281080i \(0.909307\pi\)
\(132\) 10.5746 + 3.44821i 0.920405 + 0.300128i
\(133\) 0 0
\(134\) 5.63392i 0.486697i
\(135\) −4.27297 10.8047i −0.367759 0.929921i
\(136\) −4.35644 + 2.51519i −0.373562 + 0.215676i
\(137\) −9.93080 17.2007i −0.848446 1.46955i −0.882595 0.470135i \(-0.844205\pi\)
0.0341490 0.999417i \(-0.489128\pi\)
\(138\) −0.481306 0.535677i −0.0409715 0.0455998i
\(139\) 0.228766i 0.0194037i 0.999953 + 0.00970183i \(0.00308824\pi\)
−0.999953 + 0.00970183i \(0.996912\pi\)
\(140\) 0 0
\(141\) 12.8467 + 4.18908i 1.08188 + 0.352784i
\(142\) 4.54422 + 2.62361i 0.381342 + 0.220168i
\(143\) 14.7909 8.53950i 1.23687 0.714109i
\(144\) −0.536798 + 5.00596i −0.0447332 + 0.417164i
\(145\) 2.53310 + 0.642935i 0.210362 + 0.0533929i
\(146\) −3.37675 −0.279462
\(147\) 0 0
\(148\) 6.75445i 0.555212i
\(149\) 8.62438 + 4.97929i 0.706537 + 0.407919i 0.809777 0.586737i \(-0.199588\pi\)
−0.103240 + 0.994656i \(0.532921\pi\)
\(150\) −4.05356 + 3.84080i −0.330971 + 0.313600i
\(151\) 2.53723 + 4.39461i 0.206477 + 0.357628i 0.950602 0.310412i \(-0.100467\pi\)
−0.744126 + 0.668040i \(0.767134\pi\)
\(152\) −8.95872 5.17232i −0.726648 0.419530i
\(153\) 3.84921 5.27461i 0.311190 0.426427i
\(154\) 0 0
\(155\) 0.237789 + 0.842672i 0.0190997 + 0.0676850i
\(156\) 7.72703 + 8.59991i 0.618657 + 0.688544i
\(157\) 8.42678 + 14.5956i 0.672531 + 1.16486i 0.977184 + 0.212394i \(0.0681260\pi\)
−0.304653 + 0.952463i \(0.598541\pi\)
\(158\) −1.20987 2.09556i −0.0962524 0.166714i
\(159\) −8.33653 9.27827i −0.661130 0.735814i
\(160\) 12.2760 3.46410i 0.970503 0.273861i
\(161\) 0 0
\(162\) 1.77007 + 5.52672i 0.139070 + 0.434220i
\(163\) −4.16292 2.40346i −0.326065 0.188254i 0.328028 0.944668i \(-0.393616\pi\)
−0.654093 + 0.756414i \(0.726949\pi\)
\(164\) 1.80579 + 3.12772i 0.141008 + 0.244234i
\(165\) 7.29714 + 13.9002i 0.568082 + 1.08213i
\(166\) −2.94544 1.70055i −0.228611 0.131988i
\(167\) 4.45089i 0.344420i 0.985060 + 0.172210i \(0.0550908\pi\)
−0.985060 + 0.172210i \(0.944909\pi\)
\(168\) 0 0
\(169\) 4.75268 0.365590
\(170\) −3.04182 0.772058i −0.233297 0.0592141i
\(171\) 13.3515 + 1.43170i 1.02101 + 0.109485i
\(172\) 8.97849 5.18374i 0.684604 0.395256i
\(173\) 9.91963 + 5.72710i 0.754175 + 0.435423i 0.827201 0.561907i \(-0.189932\pi\)
−0.0730252 + 0.997330i \(0.523265\pi\)
\(174\) −1.24100 0.404668i −0.0940797 0.0306778i
\(175\) 0 0
\(176\) 6.80268i 0.512771i
\(177\) 13.1099 + 14.5908i 0.985400 + 1.09672i
\(178\) −0.288473 0.499649i −0.0216219 0.0374503i
\(179\) −9.04522 + 5.22226i −0.676071 + 0.390330i −0.798373 0.602163i \(-0.794306\pi\)
0.122302 + 0.992493i \(0.460972\pi\)
\(180\) −8.18402 + 6.77949i −0.610001 + 0.505314i
\(181\) 11.9616i 0.889095i 0.895755 + 0.444548i \(0.146636\pi\)
−0.895755 + 0.444548i \(0.853364\pi\)
\(182\) 0 0
\(183\) 11.5125 + 3.75404i 0.851030 + 0.277506i
\(184\) −0.745115 + 1.29058i −0.0549306 + 0.0951426i
\(185\) −6.65149 + 6.82991i −0.489027 + 0.502145i
\(186\) −0.0904741 0.427860i −0.00663389 0.0313722i
\(187\) −4.41141 + 7.64079i −0.322594 + 0.558750i
\(188\) 12.3592i 0.901385i
\(189\) 0 0
\(190\) −1.75268 6.21109i −0.127153 0.450600i
\(191\) −12.2522 7.07383i −0.886541 0.511844i −0.0137312 0.999906i \(-0.504371\pi\)
−0.872809 + 0.488061i \(0.837704\pi\)
\(192\) −0.545280 + 0.115303i −0.0393522 + 0.00832131i
\(193\) −5.36185 + 3.09566i −0.385954 + 0.222831i −0.680406 0.732836i \(-0.738196\pi\)
0.294452 + 0.955666i \(0.404863\pi\)
\(194\) −1.25727 + 2.17765i −0.0902667 + 0.156346i
\(195\) −0.655455 + 16.3052i −0.0469381 + 1.16764i
\(196\) 0 0
\(197\) −13.0751 −0.931562 −0.465781 0.884900i \(-0.654227\pi\)
−0.465781 + 0.884900i \(0.654227\pi\)
\(198\) −3.17421 7.16996i −0.225582 0.509547i
\(199\) −14.6810 + 8.47608i −1.04071 + 0.600854i −0.920034 0.391838i \(-0.871839\pi\)
−0.120675 + 0.992692i \(0.538506\pi\)
\(200\) 10.1569 + 5.51095i 0.718201 + 0.389683i
\(201\) 11.2571 10.1145i 0.794015 0.713424i
\(202\) 4.24525 0.298695
\(203\) 0 0
\(204\) −5.67822 1.85157i −0.397555 0.129636i
\(205\) −1.25408 + 4.94092i −0.0875885 + 0.345089i
\(206\) −3.16420 5.48055i −0.220460 0.381848i
\(207\) 0.206248 1.92339i 0.0143353 0.133685i
\(208\) 3.53550 6.12367i 0.245143 0.424600i
\(209\) −18.1435 −1.25501
\(210\) 0 0
\(211\) −18.4309 −1.26884 −0.634418 0.772990i \(-0.718760\pi\)
−0.634418 + 0.772990i \(0.718760\pi\)
\(212\) −5.70439 + 9.88029i −0.391779 + 0.678581i
\(213\) 2.91598 + 13.7899i 0.199800 + 0.944869i
\(214\) −6.05456 10.4868i −0.413881 0.716863i
\(215\) 14.1835 + 3.59998i 0.967308 + 0.245516i
\(216\) 9.73770 7.02801i 0.662566 0.478195i
\(217\) 0 0
\(218\) 0.584197 0.0395668
\(219\) −6.06225 6.74707i −0.409649 0.455925i
\(220\) 10.0183 10.2870i 0.675433 0.693551i
\(221\) −7.94218 + 4.58542i −0.534249 + 0.308449i
\(222\) 3.54199 3.18248i 0.237723 0.213594i
\(223\) −0.627418 −0.0420150 −0.0210075 0.999779i \(-0.506687\pi\)
−0.0210075 + 0.999779i \(0.506687\pi\)
\(224\) 0 0
\(225\) −14.9516 1.20403i −0.996773 0.0802685i
\(226\) −2.84667 + 4.93058i −0.189358 + 0.327977i
\(227\) −4.70200 + 2.71470i −0.312082 + 0.180181i −0.647858 0.761761i \(-0.724335\pi\)
0.335776 + 0.941942i \(0.391002\pi\)
\(228\) −2.54093 12.0163i −0.168277 0.795797i
\(229\) 12.4482 + 7.18699i 0.822602 + 0.474930i 0.851313 0.524658i \(-0.175807\pi\)
−0.0287108 + 0.999588i \(0.509140\pi\)
\(230\) −0.894758 + 0.252487i −0.0589986 + 0.0166485i
\(231\) 0 0
\(232\) 2.70114i 0.177339i
\(233\) 4.21524 7.30101i 0.276150 0.478305i −0.694275 0.719710i \(-0.744275\pi\)
0.970425 + 0.241405i \(0.0776081\pi\)
\(234\) 0.869006 8.10400i 0.0568087 0.529775i
\(235\) 12.1708 12.4973i 0.793934 0.815231i
\(236\) 8.97062 15.5376i 0.583938 1.01141i
\(237\) 2.01506 6.17959i 0.130892 0.401407i
\(238\) 0 0
\(239\) 2.71852i 0.175847i −0.996127 0.0879233i \(-0.971977\pi\)
0.996127 0.0879233i \(-0.0280230\pi\)
\(240\) 5.49385 + 3.47333i 0.354626 + 0.224203i
\(241\) 1.32457 0.764739i 0.0853229 0.0492612i −0.456732 0.889605i \(-0.650980\pi\)
0.542054 + 0.840343i \(0.317647\pi\)
\(242\) 1.75094 + 3.03271i 0.112555 + 0.194950i
\(243\) −7.86512 + 13.4588i −0.504548 + 0.863384i
\(244\) 11.0756i 0.709045i
\(245\) 0 0
\(246\) 0.789324 2.42062i 0.0503255 0.154333i
\(247\) −16.3325 9.42959i −1.03921 0.599991i
\(248\) −0.783728 + 0.452486i −0.0497668 + 0.0287329i
\(249\) −1.89006 8.93825i −0.119778 0.566439i
\(250\) 2.14079 + 6.88395i 0.135396 + 0.435379i
\(251\) 8.81039 0.556107 0.278054 0.960566i \(-0.410311\pi\)
0.278054 + 0.960566i \(0.410311\pi\)
\(252\) 0 0
\(253\) 2.61372i 0.164323i
\(254\) −8.83694 5.10201i −0.554479 0.320128i
\(255\) −3.91831 7.46392i −0.245374 0.467409i
\(256\) 3.93311 + 6.81234i 0.245819 + 0.425771i
\(257\) −17.4101 10.0517i −1.08601 0.627011i −0.153502 0.988148i \(-0.549055\pi\)
−0.932512 + 0.361138i \(0.882388\pi\)
\(258\) −6.94869 2.26585i −0.432607 0.141066i
\(259\) 0 0
\(260\) 14.3647 4.05350i 0.890861 0.251388i
\(261\) −1.41938 3.20613i −0.0878577 0.198454i
\(262\) −5.33780 9.24533i −0.329770 0.571179i
\(263\) 4.37959 + 7.58568i 0.270057 + 0.467753i 0.968876 0.247546i \(-0.0796240\pi\)
−0.698819 + 0.715299i \(0.746291\pi\)
\(264\) −12.0698 + 10.8447i −0.742845 + 0.667447i
\(265\) −15.4978 + 4.37324i −0.952022 + 0.268646i
\(266\) 0 0
\(267\) 0.480454 1.47341i 0.0294033 0.0901713i
\(268\) −11.9875 6.92100i −0.732255 0.422767i
\(269\) 8.62438 + 14.9379i 0.525838 + 0.910778i 0.999547 + 0.0300966i \(0.00958150\pi\)
−0.473709 + 0.880681i \(0.657085\pi\)
\(270\) 7.41116 + 1.09736i 0.451029 + 0.0667834i
\(271\) −19.6117 11.3228i −1.19132 0.687812i −0.232718 0.972544i \(-0.574762\pi\)
−0.958607 + 0.284733i \(0.908095\pi\)
\(272\) 3.65280i 0.221484i
\(273\) 0 0
\(274\) 12.8069 0.773692
\(275\) 20.2604 0.536390i 1.22175 0.0323455i
\(276\) −1.73104 + 0.366042i −0.104197 + 0.0220331i
\(277\) −11.4413 + 6.60561i −0.687438 + 0.396893i −0.802652 0.596448i \(-0.796578\pi\)
0.115213 + 0.993341i \(0.463245\pi\)
\(278\) −0.127747 0.0737548i −0.00766176 0.00442352i
\(279\) 0.692477 0.948908i 0.0414575 0.0568097i
\(280\) 0 0
\(281\) 32.8703i 1.96088i 0.196817 + 0.980440i \(0.436940\pi\)
−0.196817 + 0.980440i \(0.563060\pi\)
\(282\) −6.48106 + 5.82324i −0.385942 + 0.346769i
\(283\) −7.90575 13.6932i −0.469948 0.813974i 0.529462 0.848334i \(-0.322394\pi\)
−0.999410 + 0.0343601i \(0.989061\pi\)
\(284\) 11.1647 6.44594i 0.662503 0.382496i
\(285\) 9.26378 14.6527i 0.548739 0.867952i
\(286\) 11.0126i 0.651191i
\(287\) 0 0
\(288\) −13.8236 10.0880i −0.814566 0.594439i
\(289\) −6.13122 + 10.6196i −0.360660 + 0.624682i
\(290\) −1.17570 + 1.20724i −0.0690397 + 0.0708917i
\(291\) −6.60832 + 1.39738i −0.387387 + 0.0819158i
\(292\) −4.14818 + 7.18485i −0.242754 + 0.420462i
\(293\) 20.7797i 1.21396i 0.794716 + 0.606982i \(0.207620\pi\)
−0.794716 + 0.606982i \(0.792380\pi\)
\(294\) 0 0
\(295\) 24.3716 6.87729i 1.41897 0.400411i
\(296\) −8.53351 4.92683i −0.496000 0.286366i
\(297\) 8.62762 19.2145i 0.500625 1.11494i
\(298\) −5.56105 + 3.21068i −0.322143 + 0.185989i
\(299\) −1.35841 + 2.35284i −0.0785589 + 0.136068i
\(300\) 3.19264 + 13.3432i 0.184327 + 0.770367i
\(301\) 0 0
\(302\) −3.27204 −0.188285
\(303\) 7.62146 + 8.48241i 0.437841 + 0.487302i
\(304\) −6.50535 + 3.75587i −0.373108 + 0.215414i
\(305\) 10.9068 11.1994i 0.624522 0.641275i
\(306\) 1.70444 + 3.85002i 0.0974366 + 0.220091i
\(307\) −12.9857 −0.741136 −0.370568 0.928805i \(-0.620837\pi\)
−0.370568 + 0.928805i \(0.620837\pi\)
\(308\) 0 0
\(309\) 5.27001 16.1616i 0.299800 0.919399i
\(310\) −0.547227 0.138894i −0.0310804 0.00788865i
\(311\) 0.228825 + 0.396337i 0.0129755 + 0.0224742i 0.872440 0.488721i \(-0.162536\pi\)
−0.859465 + 0.511195i \(0.829203\pi\)
\(312\) −16.5013 + 3.48932i −0.934202 + 0.197544i
\(313\) 13.8710 24.0252i 0.784033 1.35799i −0.145542 0.989352i \(-0.546493\pi\)
0.929575 0.368633i \(-0.120174\pi\)
\(314\) −10.8673 −0.613276
\(315\) 0 0
\(316\) −5.94509 −0.334437
\(317\) 2.26170 3.91737i 0.127030 0.220022i −0.795495 0.605960i \(-0.792789\pi\)
0.922524 + 0.385939i \(0.126122\pi\)
\(318\) 7.86888 1.66393i 0.441265 0.0933087i
\(319\) 2.36878 + 4.10284i 0.132626 + 0.229715i
\(320\) −0.177011 + 0.697406i −0.00989524 + 0.0389862i
\(321\) 10.0839 30.9244i 0.562830 1.72603i
\(322\) 0 0
\(323\) 9.74245 0.542084
\(324\) 13.9339 + 3.02306i 0.774103 + 0.167948i
\(325\) 18.5169 + 10.0469i 1.02713 + 0.557304i
\(326\) 2.68428 1.54977i 0.148668 0.0858337i
\(327\) 1.04880 + 1.16728i 0.0579989 + 0.0645508i
\(328\) −5.26871 −0.290916
\(329\) 0 0
\(330\) −10.1147 0.406603i −0.556798 0.0223828i
\(331\) 11.4482 19.8289i 0.629252 1.08990i −0.358451 0.933549i \(-0.616695\pi\)
0.987702 0.156347i \(-0.0499718\pi\)
\(332\) −7.23666 + 4.17809i −0.397163 + 0.229302i
\(333\) 12.7178 + 1.36375i 0.696931 + 0.0747330i
\(334\) −2.48546 1.43498i −0.135998 0.0785186i
\(335\) −5.30596 18.8031i −0.289895 1.02732i
\(336\) 0 0
\(337\) 31.2616i 1.70293i −0.524413 0.851464i \(-0.675715\pi\)
0.524413 0.851464i \(-0.324285\pi\)
\(338\) −1.53228 + 2.65398i −0.0833449 + 0.144358i
\(339\) −14.9624 + 3.16390i −0.812644 + 0.171840i
\(340\) −5.37947 + 5.52378i −0.291743 + 0.299569i
\(341\) −0.793618 + 1.37459i −0.0429768 + 0.0744380i
\(342\) −5.10405 + 6.99413i −0.275995 + 0.378199i
\(343\) 0 0
\(344\) 15.1245i 0.815457i
\(345\) −2.11084 1.33452i −0.113644 0.0718483i
\(346\) −6.39623 + 3.69287i −0.343864 + 0.198530i
\(347\) −1.39335 2.41336i −0.0747992 0.129556i 0.826200 0.563377i \(-0.190498\pi\)
−0.900999 + 0.433821i \(0.857165\pi\)
\(348\) −2.38553 + 2.14340i −0.127878 + 0.114899i
\(349\) 16.5636i 0.886627i −0.896367 0.443314i \(-0.853803\pi\)
0.896367 0.443314i \(-0.146197\pi\)
\(350\) 0 0
\(351\) 17.7527 12.8127i 0.947568 0.683890i
\(352\) 20.0249 + 11.5614i 1.06733 + 0.616223i
\(353\) −2.83794 + 1.63849i −0.151048 + 0.0872078i −0.573619 0.819122i \(-0.694461\pi\)
0.422571 + 0.906330i \(0.361128\pi\)
\(354\) −12.3745 + 2.61667i −0.657695 + 0.139075i
\(355\) 17.6371 + 4.47655i 0.936081 + 0.237591i
\(356\) −1.41750 −0.0751273
\(357\) 0 0
\(358\) 6.73469i 0.355939i
\(359\) 14.7282 + 8.50335i 0.777326 + 0.448789i 0.835482 0.549518i \(-0.185189\pi\)
−0.0581557 + 0.998308i \(0.518522\pi\)
\(360\) −2.59557 15.2847i −0.136799 0.805575i
\(361\) 0.517332 + 0.896045i 0.0272280 + 0.0471603i
\(362\) −6.67955 3.85644i −0.351069 0.202690i
\(363\) −2.91620 + 8.94314i −0.153061 + 0.469393i
\(364\) 0 0
\(365\) −11.2698 + 3.18018i −0.589891 + 0.166458i
\(366\) −5.80799 + 5.21849i −0.303588 + 0.272775i
\(367\) −8.55840 14.8236i −0.446745 0.773785i 0.551427 0.834223i \(-0.314084\pi\)
−0.998172 + 0.0604381i \(0.980750\pi\)
\(368\) 0.541063 + 0.937149i 0.0282049 + 0.0488523i
\(369\) 6.25370 2.76858i 0.325555 0.144126i
\(370\) −1.66949 5.91630i −0.0867926 0.307574i
\(371\) 0 0
\(372\) −1.02152 0.333100i −0.0529632 0.0172704i
\(373\) 25.0397 + 14.4567i 1.29651 + 0.748538i 0.979799 0.199986i \(-0.0640897\pi\)
0.316706 + 0.948524i \(0.397423\pi\)
\(374\) −2.84450 4.92683i −0.147086 0.254760i
\(375\) −9.91145 + 16.6362i −0.511825 + 0.859090i
\(376\) 15.6145 + 9.01502i 0.805255 + 0.464914i
\(377\) 4.92442i 0.253621i
\(378\) 0 0
\(379\) −0.559557 −0.0287425 −0.0143712 0.999897i \(-0.504575\pi\)
−0.0143712 + 0.999897i \(0.504575\pi\)
\(380\) −15.3687 3.90078i −0.788396 0.200106i
\(381\) −5.67057 26.8166i −0.290512 1.37386i
\(382\) 7.90031 4.56125i 0.404215 0.233374i
\(383\) −3.28951 1.89920i −0.168086 0.0970447i 0.413597 0.910460i \(-0.364272\pi\)
−0.581683 + 0.813415i \(0.697606\pi\)
\(384\) −6.01470 + 18.4453i −0.306937 + 0.941284i
\(385\) 0 0
\(386\) 3.99220i 0.203198i
\(387\) −7.94754 17.9520i −0.403996 0.912552i
\(388\) 3.08899 + 5.35029i 0.156820 + 0.271620i
\(389\) −7.88909 + 4.55477i −0.399993 + 0.230936i −0.686481 0.727148i \(-0.740845\pi\)
0.286488 + 0.958084i \(0.407512\pi\)
\(390\) −8.89382 5.62287i −0.450356 0.284725i
\(391\) 1.40348i 0.0709770i
\(392\) 0 0
\(393\) 8.89016 27.2635i 0.448449 1.37526i
\(394\) 4.21545 7.30137i 0.212371 0.367838i
\(395\) −6.01151 5.85446i −0.302472 0.294570i
\(396\) −19.1552 2.05404i −0.962584 0.103219i
\(397\) 12.1191 20.9910i 0.608242 1.05351i −0.383288 0.923629i \(-0.625208\pi\)
0.991530 0.129878i \(-0.0414584\pi\)
\(398\) 10.9309i 0.547914i
\(399\) 0 0
\(400\) 7.15333 4.38641i 0.357666 0.219320i
\(401\) 26.1500 + 15.0977i 1.30587 + 0.753944i 0.981404 0.191953i \(-0.0614821\pi\)
0.324466 + 0.945897i \(0.394815\pi\)
\(402\) 2.01881 + 9.54713i 0.100689 + 0.476167i
\(403\) −1.42881 + 0.824921i −0.0711739 + 0.0410923i
\(404\) 5.21509 9.03279i 0.259460 0.449398i
\(405\) 11.1126 + 16.7783i 0.552187 + 0.833720i
\(406\) 0 0
\(407\) −17.2824 −0.856656
\(408\) 6.48106 5.82324i 0.320860 0.288294i
\(409\) 21.3618 12.3332i 1.05627 0.609839i 0.131874 0.991267i \(-0.457901\pi\)
0.924399 + 0.381427i \(0.124567\pi\)
\(410\) −2.35478 2.29327i −0.116295 0.113256i
\(411\) 22.9921 + 25.5894i 1.13412 + 1.26223i
\(412\) −15.5483 −0.766008
\(413\) 0 0
\(414\) 1.00756 + 0.735280i 0.0495189 + 0.0361370i
\(415\) −11.4319 2.90158i −0.561170 0.142433i
\(416\) 12.0174 + 20.8148i 0.589202 + 1.02053i
\(417\) −0.0819740 0.387662i −0.00401428 0.0189839i
\(418\) 5.84953 10.1317i 0.286110 0.495556i
\(419\) 39.4615 1.92782 0.963911 0.266226i \(-0.0857766\pi\)
0.963911 + 0.266226i \(0.0857766\pi\)
\(420\) 0 0
\(421\) −30.9363 −1.50774 −0.753870 0.657023i \(-0.771815\pi\)
−0.753870 + 0.657023i \(0.771815\pi\)
\(422\) 5.94218 10.2921i 0.289261 0.501014i
\(423\) −23.2708 2.49536i −1.13146 0.121329i
\(424\) −8.32178 14.4137i −0.404141 0.699993i
\(425\) −10.8791 + 0.288023i −0.527716 + 0.0139712i
\(426\) −8.64066 2.81757i −0.418641 0.136512i
\(427\) 0 0
\(428\) −29.7509 −1.43807
\(429\) −22.0043 + 19.7709i −1.06238 + 0.954548i
\(430\) −6.58310 + 6.75969i −0.317465 + 0.325981i
\(431\) 26.6240 15.3713i 1.28243 0.740412i 0.305138 0.952308i \(-0.401297\pi\)
0.977292 + 0.211896i \(0.0679639\pi\)
\(432\) −0.884148 8.67536i −0.0425386 0.417393i
\(433\) 2.95856 0.142179 0.0710896 0.997470i \(-0.477352\pi\)
0.0710896 + 0.997470i \(0.477352\pi\)
\(434\) 0 0
\(435\) −4.52292 0.181817i −0.216857 0.00871746i
\(436\) 0.717658 1.24302i 0.0343696 0.0595298i
\(437\) 2.49949 1.44308i 0.119567 0.0690318i
\(438\) 5.72217 1.21000i 0.273416 0.0578159i
\(439\) −15.0772 8.70485i −0.719598 0.415460i 0.0950070 0.995477i \(-0.469713\pi\)
−0.814605 + 0.580017i \(0.803046\pi\)
\(440\) 5.68901 + 20.1606i 0.271213 + 0.961117i
\(441\) 0 0
\(442\) 5.91341i 0.281272i
\(443\) −15.8970 + 27.5344i −0.755288 + 1.30820i 0.189942 + 0.981795i \(0.439170\pi\)
−0.945231 + 0.326403i \(0.894163\pi\)
\(444\) −2.42033 11.4460i −0.114864 0.543201i
\(445\) −1.43334 1.39589i −0.0679466 0.0661716i
\(446\) 0.202281 0.350362i 0.00957830 0.0165901i
\(447\) −16.3989 5.34741i −0.775643 0.252924i
\(448\) 0 0
\(449\) 2.99461i 0.141324i 0.997500 + 0.0706621i \(0.0225112\pi\)
−0.997500 + 0.0706621i \(0.977489\pi\)
\(450\) 5.49279 7.96106i 0.258933 0.375288i
\(451\) −8.00279 + 4.62041i −0.376837 + 0.217567i
\(452\) 6.99400 + 12.1140i 0.328970 + 0.569793i
\(453\) −5.87426 6.53784i −0.275997 0.307175i
\(454\) 3.50091i 0.164306i
\(455\) 0 0
\(456\) 17.0347 + 5.55471i 0.797721 + 0.260123i
\(457\) 7.62540 + 4.40252i 0.356701 + 0.205941i 0.667633 0.744491i \(-0.267308\pi\)
−0.310932 + 0.950432i \(0.600641\pi\)
\(458\) −8.02669 + 4.63421i −0.375063 + 0.216543i
\(459\) −4.63273 + 10.3175i −0.216237 + 0.481582i
\(460\) −0.561940 + 2.21398i −0.0262006 + 0.103227i
\(461\) −31.9710 −1.48904 −0.744519 0.667602i \(-0.767321\pi\)
−0.744519 + 0.667602i \(0.767321\pi\)
\(462\) 0 0
\(463\) 6.94495i 0.322759i 0.986892 + 0.161380i \(0.0515943\pi\)
−0.986892 + 0.161380i \(0.948406\pi\)
\(464\) 1.69865 + 0.980715i 0.0788577 + 0.0455285i
\(465\) −0.704909 1.34277i −0.0326894 0.0622693i
\(466\) 2.71801 + 4.70774i 0.125910 + 0.218082i
\(467\) 21.1944 + 12.2366i 0.980758 + 0.566241i 0.902499 0.430692i \(-0.141731\pi\)
0.0782589 + 0.996933i \(0.475064\pi\)
\(468\) −16.1757 11.8044i −0.747721 0.545658i
\(469\) 0 0
\(470\) 3.05480 + 10.8255i 0.140908 + 0.499344i
\(471\) −19.5099 21.7139i −0.898970 1.00052i
\(472\) 13.0867 + 22.6668i 0.602364 + 1.04332i
\(473\) 13.2635 + 22.9730i 0.609854 + 1.05630i
\(474\) 2.80113 + 3.11756i 0.128660 + 0.143194i
\(475\) −11.6991 19.0788i −0.536789 0.875393i
\(476\) 0 0
\(477\) 17.4516 + 12.7355i 0.799054 + 0.583119i
\(478\) 1.51807 + 0.876459i 0.0694350 + 0.0400883i
\(479\) 12.1451 + 21.0359i 0.554923 + 0.961156i 0.997909 + 0.0646271i \(0.0205858\pi\)
−0.442986 + 0.896529i \(0.646081\pi\)
\(480\) −19.5614 + 10.2691i −0.892849 + 0.468717i
\(481\) −15.5573 8.98204i −0.709354 0.409546i
\(482\) 0.986217i 0.0449209i
\(483\) 0 0
\(484\) 8.60377 0.391080
\(485\) −2.14523 + 8.45196i −0.0974097 + 0.383784i
\(486\) −4.97991 8.73119i −0.225893 0.396055i
\(487\) 8.44934 4.87823i 0.382876 0.221054i −0.296193 0.955128i \(-0.595717\pi\)
0.679069 + 0.734075i \(0.262384\pi\)
\(488\) 13.9929 + 8.07879i 0.633427 + 0.365710i
\(489\) 7.91563 + 2.58115i 0.357957 + 0.116724i
\(490\) 0 0
\(491\) 23.6689i 1.06816i −0.845434 0.534080i \(-0.820658\pi\)
0.845434 0.534080i \(-0.179342\pi\)
\(492\) −4.18081 4.65310i −0.188486 0.209778i
\(493\) −1.27195 2.20308i −0.0572858 0.0992219i
\(494\) 10.5313 6.08026i 0.473826 0.273564i
\(495\) −17.3465 20.9402i −0.779665 0.941191i
\(496\) 0.657143i 0.0295066i
\(497\) 0 0
\(498\) 5.60064 + 1.82627i 0.250971 + 0.0818373i
\(499\) 5.73534 9.93391i 0.256749 0.444703i −0.708620 0.705590i \(-0.750682\pi\)
0.965369 + 0.260888i \(0.0840152\pi\)
\(500\) 17.2771 + 3.90155i 0.772657 + 0.174483i
\(501\) −1.59489 7.54238i −0.0712545 0.336969i
\(502\) −2.84050 + 4.91988i −0.126778 + 0.219585i
\(503\) 16.8580i 0.751659i 0.926689 + 0.375830i \(0.122642\pi\)
−0.926689 + 0.375830i \(0.877358\pi\)
\(504\) 0 0
\(505\) 14.1685 3.99812i 0.630488 0.177914i
\(506\) −1.45955 0.842672i −0.0648849 0.0374613i
\(507\) −8.05379 + 1.70303i −0.357681 + 0.0756343i
\(508\) −21.7115 + 12.5351i −0.963292 + 0.556157i
\(509\) 1.47582 2.55620i 0.0654147 0.113302i −0.831463 0.555580i \(-0.812496\pi\)
0.896878 + 0.442278i \(0.145830\pi\)
\(510\) 5.43127 + 0.218332i 0.240500 + 0.00966790i
\(511\) 0 0
\(512\) 17.3304 0.765902
\(513\) −23.1382 + 2.35812i −1.02158 + 0.104114i
\(514\) 11.2262 6.48142i 0.495164 0.285883i
\(515\) −15.7220 15.3112i −0.692793 0.674694i
\(516\) −13.3573 + 12.0015i −0.588021 + 0.528338i
\(517\) 31.6230 1.39078
\(518\) 0 0
\(519\) −18.8618 6.15051i −0.827941 0.269977i
\(520\) −5.35673 + 21.1050i −0.234908 + 0.925513i
\(521\) 7.91563 + 13.7103i 0.346790 + 0.600658i 0.985677 0.168642i \(-0.0539382\pi\)
−0.638887 + 0.769300i \(0.720605\pi\)
\(522\) 2.24797 + 0.241054i 0.0983911 + 0.0105506i
\(523\) −10.9800 + 19.0179i −0.480122 + 0.831595i −0.999740 0.0228034i \(-0.992741\pi\)
0.519618 + 0.854398i \(0.326074\pi\)
\(524\) −26.2289 −1.14581
\(525\) 0 0
\(526\) −5.64798 −0.246263
\(527\) 0.426145 0.738105i 0.0185632 0.0321524i
\(528\) 2.43761 + 11.5277i 0.106083 + 0.501678i
\(529\) 11.2921 + 19.5585i 0.490961 + 0.850370i
\(530\) 2.55443 10.0642i 0.110958 0.437161i
\(531\) −27.4441 20.0277i −1.19097 0.869126i
\(532\) 0 0
\(533\) −9.60532 −0.416053
\(534\) 0.667880 + 0.743327i 0.0289020 + 0.0321669i
\(535\) −30.0833 29.2974i −1.30062 1.26664i
\(536\) 17.4879 10.0966i 0.755361 0.436108i
\(537\) 13.4565 12.0907i 0.580693 0.521753i
\(538\) −11.1221 −0.479508
\(539\) 0 0
\(540\) 11.4392 14.4210i 0.492263 0.620580i
\(541\) −2.34667 + 4.06456i −0.100891 + 0.174749i −0.912052 0.410074i \(-0.865503\pi\)
0.811161 + 0.584823i \(0.198836\pi\)
\(542\) 12.6457 7.30101i 0.543181 0.313605i
\(543\) −4.28620 20.2698i −0.183938 0.869860i
\(544\) −10.7527 6.20806i −0.461017 0.266168i
\(545\) 1.94975 0.550189i 0.0835180 0.0235675i
\(546\) 0 0
\(547\) 14.9485i 0.639151i 0.947561 + 0.319575i \(0.103540\pi\)
−0.947561 + 0.319575i \(0.896460\pi\)
\(548\) 15.7326 27.2497i 0.672065 1.16405i
\(549\) −20.8541 2.23622i −0.890029 0.0954393i
\(550\) −6.23249 + 11.4867i −0.265754 + 0.489796i
\(551\) 2.61568 4.53049i 0.111432 0.193005i
\(552\) 0.800202 2.45398i 0.0340589 0.104448i
\(553\) 0 0
\(554\) 8.51867i 0.361924i
\(555\) 8.82410 13.9573i 0.374562 0.592453i
\(556\) −0.313862 + 0.181208i −0.0133107 + 0.00768494i
\(557\) −0.614501 1.06435i −0.0260373 0.0450979i 0.852713 0.522379i \(-0.174956\pi\)
−0.878750 + 0.477282i \(0.841622\pi\)
\(558\) 0.306631 + 0.692623i 0.0129807 + 0.0293211i
\(559\) 27.5732i 1.16622i
\(560\) 0 0
\(561\) 4.73755 14.5287i 0.200020 0.613401i
\(562\) −18.3554 10.5975i −0.774276 0.447028i
\(563\) −3.64387 + 2.10379i −0.153571 + 0.0886643i −0.574816 0.818282i \(-0.694926\pi\)
0.421245 + 0.906947i \(0.361593\pi\)
\(564\) 4.42868 + 20.9436i 0.186481 + 0.881884i
\(565\) −4.85716 + 19.1367i −0.204342 + 0.805086i
\(566\) 10.1953 0.428542
\(567\) 0 0
\(568\) 18.8072i 0.789132i
\(569\) −22.3139 12.8829i −0.935447 0.540081i −0.0469169 0.998899i \(-0.514940\pi\)
−0.888530 + 0.458818i \(0.848273\pi\)
\(570\) 5.19568 + 9.89715i 0.217623 + 0.414546i
\(571\) −12.3419 21.3768i −0.516492 0.894591i −0.999817 0.0191497i \(-0.993904\pi\)
0.483324 0.875441i \(-0.339429\pi\)
\(572\) 23.4320 + 13.5285i 0.979743 + 0.565655i
\(573\) 23.2972 + 7.59681i 0.973253 + 0.317361i
\(574\) 0 0
\(575\) −2.74845 + 1.68534i −0.114618 + 0.0702837i
\(576\) 0.882703 0.390782i 0.0367793 0.0162826i
\(577\) −2.86692 4.96565i −0.119351 0.206723i 0.800159 0.599787i \(-0.204748\pi\)
−0.919511 + 0.393065i \(0.871415\pi\)
\(578\) −3.95345 6.84757i −0.164442 0.284822i
\(579\) 7.97680 7.16716i 0.331504 0.297857i
\(580\) 1.12440 + 3.98463i 0.0466883 + 0.165453i
\(581\) 0 0
\(582\) 1.35022 4.14073i 0.0559684 0.171639i
\(583\) −25.2804 14.5956i −1.04701 0.604489i
\(584\) −6.05152 10.4815i −0.250414 0.433729i
\(585\) −4.73195 27.8654i −0.195642 1.15209i
\(586\) −11.6038 6.69944i −0.479347 0.276751i
\(587\) 31.0435i 1.28130i −0.767832 0.640652i \(-0.778664\pi\)
0.767832 0.640652i \(-0.221336\pi\)
\(588\) 0 0
\(589\) 1.75268 0.0722178
\(590\) −4.01706 + 15.8268i −0.165380 + 0.651578i
\(591\) 22.1568 4.68522i 0.911408 0.192724i
\(592\) −6.19659 + 3.57760i −0.254678 + 0.147039i
\(593\) −28.2124 16.2884i −1.15854 0.668885i −0.207588 0.978216i \(-0.566561\pi\)
−0.950954 + 0.309331i \(0.899895\pi\)
\(594\) 7.94818 + 11.0126i 0.326118 + 0.451854i
\(595\) 0 0
\(596\) 15.7766i 0.646236i
\(597\) 21.8409 19.6241i 0.893888 0.803159i
\(598\) −0.875911 1.51712i −0.0358187 0.0620397i
\(599\) 31.8553 18.3917i 1.30157 0.751463i 0.320899 0.947113i \(-0.396015\pi\)
0.980674 + 0.195650i \(0.0626817\pi\)
\(600\) −19.1864 5.69920i −0.783282 0.232669i
\(601\) 42.5075i 1.73392i 0.498380 + 0.866959i \(0.333929\pi\)
−0.498380 + 0.866959i \(0.666071\pi\)
\(602\) 0 0
\(603\) −15.4517 + 21.1736i −0.629242 + 0.862257i
\(604\) −4.01954 + 6.96205i −0.163553 + 0.283282i
\(605\) 8.69989 + 8.47261i 0.353701 + 0.344461i
\(606\) −7.19392 + 1.52121i −0.292233 + 0.0617948i
\(607\) −8.47607 + 14.6810i −0.344033 + 0.595883i −0.985178 0.171537i \(-0.945127\pi\)
0.641144 + 0.767420i \(0.278460\pi\)
\(608\) 25.5329i 1.03550i
\(609\) 0 0
\(610\) 2.73755 + 9.70127i 0.110840 + 0.392793i
\(611\) 28.4666 + 16.4352i 1.15163 + 0.664896i
\(612\) 10.2857 + 1.10295i 0.415774 + 0.0445841i
\(613\) 30.0373 17.3421i 1.21320 0.700439i 0.249742 0.968312i \(-0.419654\pi\)
0.963454 + 0.267873i \(0.0863207\pi\)
\(614\) 4.18664 7.25148i 0.168959 0.292646i
\(615\) 0.354643 8.82216i 0.0143006 0.355744i
\(616\) 0 0
\(617\) 45.7116 1.84028 0.920140 0.391590i \(-0.128075\pi\)
0.920140 + 0.391590i \(0.128075\pi\)
\(618\) 7.32584 + 8.15340i 0.294689 + 0.327978i
\(619\) 34.2356 19.7659i 1.37604 0.794459i 0.384363 0.923182i \(-0.374421\pi\)
0.991681 + 0.128723i \(0.0410877\pi\)
\(620\) −0.967773 + 0.993733i −0.0388667 + 0.0399093i
\(621\) 0.339707 + 3.33324i 0.0136320 + 0.133758i
\(622\) −0.295096 −0.0118323
\(623\) 0 0
\(624\) −3.79689 + 11.6439i −0.151997 + 0.466130i
\(625\) 13.6281 + 20.9589i 0.545123 + 0.838356i
\(626\) 8.94408 + 15.4916i 0.357477 + 0.619169i
\(627\) 30.7456 6.50139i 1.22786 0.259641i
\(628\) −13.3499 + 23.1228i −0.532720 + 0.922698i
\(629\) 9.28004 0.370020
\(630\) 0 0
\(631\) −21.1685 −0.842703 −0.421351 0.906897i \(-0.638444\pi\)
−0.421351 + 0.906897i \(0.638444\pi\)
\(632\) 4.33646 7.51097i 0.172495 0.298770i
\(633\) 31.2326 6.60437i 1.24139 0.262500i
\(634\) 1.45835 + 2.52594i 0.0579187 + 0.100318i
\(635\) −34.2981 8.70534i −1.36108 0.345461i
\(636\) 6.12612 18.7870i 0.242916 0.744952i
\(637\) 0 0
\(638\) −3.05480 −0.120941
\(639\) −9.88271 22.3232i −0.390954 0.883092i
\(640\) 17.9436 + 17.4749i 0.709284 + 0.690754i
\(641\) −30.6083 + 17.6717i −1.20896 + 0.697991i −0.962531 0.271171i \(-0.912589\pi\)
−0.246424 + 0.969162i \(0.579256\pi\)
\(642\) 14.0177 + 15.6012i 0.553234 + 0.615730i
\(643\) 26.0538 1.02746 0.513731 0.857951i \(-0.328263\pi\)
0.513731 + 0.857951i \(0.328263\pi\)
\(644\) 0 0
\(645\) −25.3251 1.01805i −0.997174 0.0400855i
\(646\) −3.14099 + 5.44036i −0.123581 + 0.214048i
\(647\) −35.3707 + 20.4213i −1.39057 + 0.802844i −0.993378 0.114894i \(-0.963347\pi\)
−0.397188 + 0.917737i \(0.630014\pi\)
\(648\) −13.9829 + 15.3988i −0.549302 + 0.604924i
\(649\) 39.7555 + 22.9528i 1.56054 + 0.900977i
\(650\) −11.5803 + 7.10102i −0.454217 + 0.278525i
\(651\) 0 0
\(652\) 7.61525i 0.298236i
\(653\) −12.0041 + 20.7918i −0.469758 + 0.813645i −0.999402 0.0345747i \(-0.988992\pi\)
0.529644 + 0.848220i \(0.322326\pi\)
\(654\) −0.989968 + 0.209336i −0.0387108 + 0.00818569i
\(655\) −26.5219 25.8291i −1.03630 1.00923i
\(656\) −1.91293 + 3.31329i −0.0746874 + 0.129362i
\(657\) 12.6906 + 9.26115i 0.495109 + 0.361312i
\(658\) 0 0
\(659\) 38.7398i 1.50909i 0.656248 + 0.754545i \(0.272142\pi\)
−0.656248 + 0.754545i \(0.727858\pi\)
\(660\) −13.2906 + 21.0220i −0.517336 + 0.818282i
\(661\) −44.0826 + 25.4511i −1.71461 + 0.989933i −0.786539 + 0.617541i \(0.788129\pi\)
−0.928075 + 0.372392i \(0.878538\pi\)
\(662\) 7.38188 + 12.7858i 0.286905 + 0.496934i
\(663\) 11.8156 10.6163i 0.458878 0.412302i
\(664\) 12.1903i 0.473076i
\(665\) 0 0
\(666\) −4.86179 + 6.66217i −0.188391 + 0.258154i
\(667\) −0.652654 0.376810i −0.0252709 0.0145901i
\(668\) −6.10653 + 3.52560i −0.236269 + 0.136410i
\(669\) 1.06321 0.224823i 0.0411060 0.00869218i
\(670\) 12.2107 + 3.09924i 0.471739 + 0.119734i
\(671\) 28.3389 1.09401
\(672\) 0 0
\(673\) 3.33192i 0.128436i 0.997936 + 0.0642181i \(0.0204553\pi\)
−0.997936 + 0.0642181i \(0.979545\pi\)
\(674\) 17.4570 + 10.0788i 0.672420 + 0.388222i
\(675\) 25.7681 3.31731i 0.991815 0.127683i
\(676\) 3.76466 + 6.52057i 0.144794 + 0.250791i
\(677\) 28.0352 + 16.1861i 1.07748 + 0.622083i 0.930215 0.367014i \(-0.119620\pi\)
0.147264 + 0.989097i \(0.452953\pi\)
\(678\) 3.05713 9.37531i 0.117408 0.360057i
\(679\) 0 0
\(680\) −3.05480 10.8255i −0.117146 0.415140i
\(681\) 6.99514 6.28515i 0.268055 0.240847i
\(682\) −0.511729 0.886341i −0.0195951 0.0339398i
\(683\) −10.8868 18.8566i −0.416573 0.721526i 0.579019 0.815314i \(-0.303436\pi\)
−0.995592 + 0.0937881i \(0.970102\pi\)
\(684\) 8.61162 + 19.4520i 0.329273 + 0.743767i
\(685\) 42.7427 12.0614i 1.63312 0.460841i
\(686\) 0 0
\(687\) −23.6698 7.71833i −0.903060 0.294473i
\(688\) 9.51121 + 5.49130i 0.362611 + 0.209354i
\(689\) −15.1713 26.2775i −0.577982 1.00109i
\(690\) 1.42576 0.748480i 0.0542779 0.0284941i
\(691\) −5.15554 2.97655i −0.196126 0.113233i 0.398721 0.917072i \(-0.369454\pi\)
−0.594847 + 0.803839i \(0.702787\pi\)
\(692\) 18.1460i 0.689809i
\(693\) 0 0
\(694\) 1.79689 0.0682088
\(695\) −0.495815 0.125845i −0.0188073 0.00477356i
\(696\) −0.967905 4.57730i −0.0366883 0.173502i
\(697\) 4.29722 2.48100i 0.162769 0.0939747i
\(698\) 9.24939 + 5.34014i 0.350095 + 0.202127i
\(699\) −4.52688 + 13.8826i −0.171222 + 0.525088i
\(700\) 0 0
\(701\) 19.3393i 0.730434i 0.930922 + 0.365217i \(0.119005\pi\)
−0.930922 + 0.365217i \(0.880995\pi\)
\(702\) 1.43132 + 14.0443i 0.0540217 + 0.530067i
\(703\) 9.54188 + 16.5270i 0.359879 + 0.623329i
\(704\) −1.12958 + 0.652166i −0.0425728 + 0.0245794i
\(705\) −16.1462 + 25.5388i −0.608100 + 0.961845i
\(706\) 2.11301i 0.0795242i
\(707\) 0 0
\(708\) −9.63383 + 29.5441i −0.362061 + 1.11034i
\(709\) 16.9012 29.2738i 0.634739 1.09940i −0.351831 0.936063i \(-0.614441\pi\)
0.986570 0.163337i \(-0.0522257\pi\)
\(710\) −8.18605 + 8.40564i −0.307217 + 0.315458i
\(711\) −1.20034 + 11.1939i −0.0450161 + 0.419802i
\(712\) 1.03395 1.79086i 0.0387490 0.0671152i
\(713\) 0.252487i 0.00945573i
\(714\) 0 0
\(715\) 10.3716 + 36.7545i 0.387875 + 1.37454i
\(716\) −14.3297 8.27324i −0.535525 0.309185i
\(717\) 0.974132 + 4.60675i 0.0363796 + 0.172042i
\(718\) −9.49685 + 5.48301i −0.354419 + 0.204624i
\(719\) −13.7118 + 23.7495i −0.511363 + 0.885707i 0.488550 + 0.872536i \(0.337526\pi\)
−0.999913 + 0.0131713i \(0.995807\pi\)
\(720\) −10.5544 3.91722i −0.393338 0.145986i
\(721\) 0 0
\(722\) −0.667157 −0.0248290
\(723\) −1.97055 + 1.77055i −0.0732857 + 0.0658473i
\(724\) −16.4110 + 9.47490i −0.609910 + 0.352132i
\(725\) −2.78693 + 5.13641i −0.103504 + 0.190762i
\(726\) −4.05382 4.51176i −0.150451 0.167447i
\(727\) 6.14612 0.227947 0.113973 0.993484i \(-0.463642\pi\)
0.113973 + 0.993484i \(0.463642\pi\)
\(728\) 0 0
\(729\) 8.50535 25.6254i 0.315013 0.949087i
\(730\) 1.85756 7.31859i 0.0687514 0.270873i
\(731\) −7.12202 12.3357i −0.263417 0.456252i
\(732\) 3.96875 + 18.7686i 0.146689 + 0.693706i
\(733\) −8.41748 + 14.5795i −0.310907 + 0.538506i −0.978559 0.205967i \(-0.933966\pi\)
0.667652 + 0.744473i \(0.267299\pi\)
\(734\) 11.0370 0.407384
\(735\) 0 0
\(736\) −3.67822 −0.135581
\(737\) 17.7085 30.6721i 0.652302 1.12982i
\(738\) −0.470187 + 4.38478i −0.0173078 + 0.161406i
\(739\) 19.3419 + 33.5012i 0.711503 + 1.23236i 0.964293 + 0.264838i \(0.0853186\pi\)
−0.252790 + 0.967521i \(0.581348\pi\)
\(740\) −14.6392 3.71564i −0.538149 0.136590i
\(741\) 31.0557 + 10.1267i 1.14086 + 0.372015i
\(742\) 0 0
\(743\) 39.3563 1.44384 0.721920 0.691976i \(-0.243260\pi\)
0.721920 + 0.691976i \(0.243260\pi\)
\(744\) 1.16595 1.04761i 0.0427458 0.0384072i
\(745\) −15.5361 + 15.9529i −0.569200 + 0.584469i
\(746\) −16.1457 + 9.32174i −0.591137 + 0.341293i
\(747\) 6.40571 + 14.4693i 0.234373 + 0.529404i
\(748\) −13.9773 −0.511062
\(749\) 0 0
\(750\) −6.09448 10.8983i −0.222539 0.397949i
\(751\) −16.1416 + 27.9580i −0.589014 + 1.02020i 0.405347 + 0.914163i \(0.367151\pi\)
−0.994362 + 0.106040i \(0.966183\pi\)
\(752\) 11.3384 6.54623i 0.413469 0.238717i
\(753\) −14.9299 + 3.15704i −0.544076 + 0.115049i
\(754\) −2.74989 1.58765i −0.100145 0.0578187i
\(755\) −10.9204 + 3.08156i −0.397433 + 0.112150i
\(756\) 0 0
\(757\) 40.0667i 1.45625i 0.685446 + 0.728124i \(0.259607\pi\)
−0.685446 + 0.728124i \(0.740393\pi\)
\(758\) 0.180403 0.312467i 0.00655252 0.0113493i
\(759\) −0.936579 4.42916i −0.0339957 0.160768i
\(760\) 16.1384 16.5713i 0.585402 0.601105i
\(761\) 6.58977 11.4138i 0.238879 0.413750i −0.721514 0.692400i \(-0.756553\pi\)
0.960393 + 0.278649i \(0.0898868\pi\)
\(762\) 16.8031 + 5.47920i 0.608712 + 0.198491i
\(763\) 0 0
\(764\) 22.4131i 0.810877i
\(765\) 9.31445 + 11.2442i 0.336765 + 0.406533i
\(766\) 2.12110 1.22462i 0.0766384 0.0442472i
\(767\) 23.8582 + 41.3236i 0.861469 + 1.49211i
\(768\) −9.10604 10.1347i −0.328586 0.365704i
\(769\) 12.7709i 0.460530i −0.973128 0.230265i \(-0.926041\pi\)
0.973128 0.230265i \(-0.0739593\pi\)
\(770\) 0 0
\(771\) 33.1047 + 10.7949i 1.19224 + 0.388768i
\(772\) −8.49437 4.90423i −0.305719 0.176507i
\(773\) 15.7518 9.09428i 0.566551 0.327099i −0.189219 0.981935i \(-0.560596\pi\)
0.755771 + 0.654836i \(0.227262\pi\)
\(774\) 12.5870 + 1.34973i 0.452432 + 0.0485150i
\(775\) −1.95717 + 0.0518156i −0.0703036 + 0.00186127i
\(776\) −9.01267 −0.323536
\(777\) 0 0
\(778\) 5.87388i 0.210589i
\(779\) 8.83694 + 5.10201i 0.316616 + 0.182798i
\(780\) −22.8896 + 12.0163i −0.819580 + 0.430253i
\(781\) 16.4930 + 28.5667i 0.590167 + 1.02220i
\(782\) 0.783728 + 0.452486i 0.0280261 + 0.0161809i
\(783\) 3.55412 + 4.92442i 0.127014 + 0.175985i
\(784\) 0 0
\(785\) −36.2693 + 10.2347i −1.29451 + 0.365291i
\(786\) 12.3582 + 13.7543i 0.440803 + 0.490598i
\(787\) 0.619297 + 1.07265i 0.0220756 + 0.0382360i 0.876852 0.480760i \(-0.159639\pi\)
−0.854777 + 0.518996i \(0.826306\pi\)
\(788\) −10.3569 17.9388i −0.368951 0.639042i
\(789\) −10.1398 11.2852i −0.360985 0.401763i
\(790\) 5.20736 1.46944i 0.185270 0.0522803i
\(791\) 0 0
\(792\) 16.5672 22.7022i 0.588690 0.806689i
\(793\) 25.5102 + 14.7283i 0.905895 + 0.523019i
\(794\) 7.81449 + 13.5351i 0.277326 + 0.480343i
\(795\) 24.6952 12.9642i 0.875847 0.459791i
\(796\) −23.2580 13.4280i −0.824359 0.475944i
\(797\) 51.4416i 1.82216i −0.412235 0.911078i \(-0.635252\pi\)
0.412235 0.911078i \(-0.364748\pi\)
\(798\) 0 0
\(799\) −16.9805 −0.600725
\(800\) 0.754847 + 28.5119i 0.0266879 + 1.00805i
\(801\) −0.286199 + 2.66897i −0.0101123 + 0.0943036i
\(802\) −16.8617 + 9.73510i −0.595407 + 0.343758i
\(803\) −18.3836 10.6138i −0.648745 0.374553i
\(804\) 22.7938 + 7.43268i 0.803876 + 0.262130i
\(805\) 0 0
\(806\) 1.06383i 0.0374718i
\(807\) −19.9674 22.2230i −0.702886 0.782287i
\(808\) 7.60797 + 13.1774i 0.267647 + 0.463579i
\(809\) 2.44518 1.41172i 0.0859679 0.0496336i −0.456400 0.889775i \(-0.650861\pi\)
0.542368 + 0.840141i \(0.317528\pi\)
\(810\) −12.9520 + 0.796083i −0.455088 + 0.0279715i
\(811\) 0.162805i 0.00571687i 0.999996 + 0.00285843i \(0.000909869\pi\)
−0.999996 + 0.00285843i \(0.999090\pi\)
\(812\) 0 0
\(813\) 37.2909 + 12.1599i 1.30785 + 0.426467i
\(814\) 5.57189 9.65080i 0.195295 0.338260i
\(815\) 7.49917 7.70033i 0.262684 0.269731i
\(816\) −1.30891 6.18996i −0.0458211 0.216692i
\(817\) 14.6459 25.3675i 0.512396 0.887496i
\(818\) 15.9051i 0.556108i
\(819\) 0 0
\(820\) −7.77222 + 2.19320i −0.271418 + 0.0765900i
\(821\) −43.3765 25.0434i −1.51385 0.874022i −0.999868 0.0162217i \(-0.994836\pi\)
−0.513983 0.857801i \(-0.671830\pi\)
\(822\) −21.7023 + 4.58911i −0.756954 + 0.160063i
\(823\) 33.1050 19.1132i 1.15397 0.666243i 0.204116 0.978947i \(-0.434568\pi\)
0.949851 + 0.312704i \(0.101235\pi\)
\(824\) 11.3412 19.6435i 0.395090 0.684315i
\(825\) −34.1407 + 8.16890i −1.18863 + 0.284405i
\(826\) 0 0
\(827\) −7.13112 −0.247973 −0.123987 0.992284i \(-0.539568\pi\)
−0.123987 + 0.992284i \(0.539568\pi\)
\(828\) 2.80222 1.24057i 0.0973840 0.0431129i
\(829\) −0.876338 + 0.505954i −0.0304365 + 0.0175725i −0.515141 0.857105i \(-0.672260\pi\)
0.484705 + 0.874678i \(0.338927\pi\)
\(830\) 5.30598 5.44831i 0.184173 0.189114i
\(831\) 17.0211 15.2935i 0.590456 0.530525i
\(832\) −1.35578 −0.0470032
\(833\) 0 0
\(834\) 0.242906 + 0.0792075i 0.00841115 + 0.00274273i
\(835\) −9.64661 2.44845i −0.333835 0.0847319i
\(836\) −14.3717 24.8925i −0.497056 0.860927i
\(837\) −0.833433 + 1.85614i −0.0288077 + 0.0641575i
\(838\) −12.7225 + 22.0360i −0.439492 + 0.761222i
\(839\) −29.5215 −1.01920 −0.509598 0.860412i \(-0.670206\pi\)
−0.509598 + 0.860412i \(0.670206\pi\)
\(840\) 0 0
\(841\) 27.6340 0.952897
\(842\) 9.97394 17.2754i 0.343725 0.595348i
\(843\) −11.7785 55.7014i −0.405672 1.91846i
\(844\) −14.5993 25.2868i −0.502530 0.870408i
\(845\) −2.61446 + 10.3007i −0.0899402 + 0.354355i
\(846\) 8.89603 12.1903i 0.305852 0.419112i
\(847\) 0 0
\(848\) −12.0857 −0.415024
\(849\) 18.3036 + 20.3713i 0.628178 + 0.699140i
\(850\) 3.34663 6.16797i 0.114789 0.211560i
\(851\) 2.38085 1.37459i 0.0816146 0.0471202i
\(852\) −16.6097 + 14.9238i −0.569038 + 0.511282i
\(853\) 22.0904 0.756362 0.378181 0.925732i \(-0.376550\pi\)
0.378181 + 0.925732i \(0.376550\pi\)
\(854\) 0 0
\(855\) −10.4477 + 28.1497i −0.357303 + 0.962700i
\(856\) 21.7009 37.5871i 0.741722 1.28470i
\(857\) 12.4112 7.16559i 0.423957 0.244772i −0.272812 0.962067i \(-0.587954\pi\)
0.696769 + 0.717296i \(0.254620\pi\)
\(858\) −3.94617 18.6618i −0.134720 0.637103i
\(859\) −23.7901 13.7352i −0.811709 0.468640i 0.0358402 0.999358i \(-0.488589\pi\)
−0.847549 + 0.530717i \(0.821923\pi\)
\(860\) 6.29585 + 22.3111i 0.214687 + 0.760802i
\(861\) 0 0
\(862\) 19.8231i 0.675176i
\(863\) −8.11130 + 14.0492i −0.276112 + 0.478240i −0.970415 0.241443i \(-0.922379\pi\)
0.694303 + 0.719683i \(0.255713\pi\)
\(864\) 27.0401 + 12.1414i 0.919923 + 0.413059i
\(865\) −17.8694 + 18.3488i −0.607578 + 0.623877i
\(866\) −0.953847 + 1.65211i −0.0324131 + 0.0561411i
\(867\) 6.58451 20.1927i 0.223622 0.685782i
\(868\) 0 0
\(869\) 15.2115i 0.516014i
\(870\) 1.55973 2.46706i 0.0528798 0.0836412i
\(871\) 31.8819 18.4070i 1.08028 0.623698i
\(872\) 1.04695 + 1.81336i 0.0354541 + 0.0614083i
\(873\) 10.6976 4.73594i 0.362059 0.160287i
\(874\) 1.86101i 0.0629496i
\(875\) 0 0
\(876\) 4.45486 13.6617i 0.150516 0.461587i
\(877\) −38.5317 22.2463i −1.30112 0.751204i −0.320527 0.947240i \(-0.603860\pi\)
−0.980597 + 0.196036i \(0.937193\pi\)
\(878\) 9.72189 5.61294i 0.328098 0.189427i
\(879\) −7.44602 35.2129i −0.251148 1.18770i
\(880\) 14.7438 + 3.74217i 0.497012 + 0.126149i
\(881\) −0.841670 −0.0283566 −0.0141783 0.999899i \(-0.504513\pi\)
−0.0141783 + 0.999899i \(0.504513\pi\)
\(882\) 0 0
\(883\) 51.7706i 1.74222i −0.491088 0.871110i \(-0.663400\pi\)
0.491088 0.871110i \(-0.336600\pi\)
\(884\) −12.5822 7.26434i −0.423185 0.244326i
\(885\) −38.8352 + 20.3872i −1.30543 + 0.685308i
\(886\) −10.2505 17.7543i −0.344371 0.596468i
\(887\) 48.4743 + 27.9867i 1.62761 + 0.939700i 0.984804 + 0.173669i \(0.0555623\pi\)
0.642804 + 0.766031i \(0.277771\pi\)
\(888\) 16.2262 + 5.29107i 0.544514 + 0.177557i
\(889\) 0 0
\(890\) 1.24160 0.350362i 0.0416186 0.0117441i
\(891\) −7.73501 + 35.6521i −0.259133 + 1.19439i
\(892\) −0.496986 0.860804i −0.0166403 0.0288219i
\(893\) −17.4596 30.2409i −0.584262 1.01197i
\(894\) 8.27316 7.43344i 0.276696 0.248612i
\(895\) −6.34264 22.4769i −0.212011 0.751320i
\(896\) 0 0
\(897\) 1.45884 4.47383i 0.0487092 0.149377i
\(898\) −1.67224 0.965470i −0.0558035 0.0322182i
\(899\) −0.228825 0.396337i −0.00763175 0.0132186i
\(900\) −10.1915 21.4670i −0.339715 0.715567i
\(901\) 13.5747 + 7.83734i 0.452238 + 0.261100i
\(902\) 5.95854i 0.198398i
\(903\) 0 0
\(904\) −20.4062 −0.678701
\(905\) −25.9248 6.58008i −0.861770 0.218729i
\(906\) 5.54473 1.17247i 0.184211 0.0389528i
\(907\) 31.4075 18.1332i 1.04287 0.602102i 0.122226 0.992502i \(-0.460997\pi\)
0.920645 + 0.390401i \(0.127664\pi\)
\(908\) −7.44902 4.30070i −0.247205 0.142724i
\(909\) −15.9547 11.6431i −0.529183 0.386178i
\(910\) 0 0
\(911\) 5.35784i 0.177513i 0.996053 + 0.0887565i \(0.0282893\pi\)
−0.996053 + 0.0887565i \(0.971711\pi\)
\(912\) 9.67799 8.69569i 0.320470 0.287943i
\(913\) −10.6903 18.5162i −0.353798 0.612797i
\(914\) −4.91690 + 2.83877i −0.162637 + 0.0938983i
\(915\) −14.4694 + 22.8865i −0.478342 + 0.756604i
\(916\) 22.7716i 0.752396i
\(917\) 0 0
\(918\) −4.26790 5.91341i −0.140862 0.195172i
\(919\) −10.0571 + 17.4194i −0.331754 + 0.574615i −0.982856 0.184376i \(-0.940974\pi\)
0.651102 + 0.758990i \(0.274307\pi\)
\(920\) −2.38724 2.32487i −0.0787048 0.0766487i
\(921\) 22.0054 4.65320i 0.725102 0.153328i
\(922\) 10.3075 17.8532i 0.339461 0.587963i
\(923\) 34.2872i 1.12858i
\(924\) 0 0
\(925\) −11.1438 18.1732i −0.366405 0.597532i
\(926\) −3.87818 2.23907i −0.127445 0.0735804i
\(927\) −3.13925 + 29.2754i −0.103107 + 0.961532i
\(928\) −5.77382 + 3.33351i −0.189535 + 0.109428i
\(929\) 3.39903 5.88728i 0.111518 0.193156i −0.804864 0.593459i \(-0.797762\pi\)
0.916383 + 0.400303i \(0.131095\pi\)
\(930\) 0.977090 + 0.0392781i 0.0320401 + 0.00128798i
\(931\) 0 0
\(932\) 13.3558 0.437483
\(933\) −0.529783 0.589629i −0.0173443 0.0193036i
\(934\) −13.6662 + 7.89021i −0.447173 + 0.258176i
\(935\) −14.1335 13.7643i −0.462215 0.450140i
\(936\) 26.7124 11.8259i 0.873123 0.386540i
\(937\) −44.1327 −1.44175 −0.720877 0.693063i \(-0.756261\pi\)
−0.720877 + 0.693063i \(0.756261\pi\)
\(938\) 0 0
\(939\) −14.8965 + 45.6830i −0.486128 + 1.49081i
\(940\) 26.7866 + 6.79881i 0.873682 + 0.221753i
\(941\) −4.53288 7.85118i −0.147768 0.255941i 0.782634 0.622482i \(-0.213875\pi\)
−0.930402 + 0.366540i \(0.880542\pi\)
\(942\) 18.4155 3.89409i 0.600008 0.126876i
\(943\) 0.734986 1.27303i 0.0239344 0.0414557i
\(944\) 19.0057 0.618584
\(945\) 0 0
\(946\) −17.1047 −0.556122
\(947\) 17.7437 30.7330i 0.576593 0.998689i −0.419273 0.907860i \(-0.637715\pi\)
0.995867 0.0908285i \(-0.0289515\pi\)
\(948\) 10.0744 2.13031i 0.327202 0.0691893i
\(949\) −11.0325 19.1088i −0.358129 0.620297i
\(950\) 14.4257 0.381918i 0.468033 0.0123910i
\(951\) −2.42891 + 7.44873i −0.0787627 + 0.241542i
\(952\) 0 0
\(953\) −10.8726 −0.352198 −0.176099 0.984373i \(-0.556348\pi\)
−0.176099 + 0.984373i \(0.556348\pi\)
\(954\) −12.7382 + 5.63933i −0.412414 + 0.182580i
\(955\) 22.0714 22.6635i 0.714214 0.733373i
\(956\) 3.72976 2.15338i 0.120629 0.0696452i
\(957\) −5.48426 6.10378i −0.177281 0.197307i
\(958\) −15.6625 −0.506031
\(959\) 0 0
\(960\) 0.0500574 1.24524i 0.00161560 0.0401899i
\(961\) −15.4233 + 26.7140i −0.497527 + 0.861742i
\(962\) 10.0315 5.79167i 0.323428 0.186731i
\(963\) −6.00683 + 56.0173i −0.193567 + 1.80513i
\(964\) 2.09841 + 1.21152i 0.0675853 + 0.0390204i
\(965\) −3.75981 13.3239i −0.121032 0.428912i
\(966\) 0 0
\(967\) 21.3855i 0.687711i −0.939023 0.343855i \(-0.888267\pi\)
0.939023 0.343855i \(-0.111733\pi\)
\(968\) −6.27575 + 10.8699i −0.201710 + 0.349373i
\(969\) −16.5093 + 3.49102i −0.530357 + 0.112148i
\(970\) −4.02810 3.92287i −0.129335 0.125956i
\(971\) −4.43174 + 7.67600i −0.142221 + 0.246335i −0.928333 0.371750i \(-0.878758\pi\)
0.786112 + 0.618085i \(0.212091\pi\)
\(972\) −24.6953 0.129881i −0.792102 0.00416593i
\(973\) 0 0
\(974\) 6.29102i 0.201577i
\(975\) −34.9785 10.3901i −1.12021 0.332751i
\(976\) 10.1609 5.86639i 0.325242 0.187779i
\(977\) 0.365536 + 0.633128i 0.0116945 + 0.0202555i 0.871813 0.489838i \(-0.162944\pi\)
−0.860119 + 0.510094i \(0.829611\pi\)
\(978\) −3.99339 + 3.58806i −0.127694 + 0.114734i
\(979\) 3.62691i 0.115916i
\(980\) 0 0
\(981\) −2.19555 1.60223i −0.0700986 0.0511553i
\(982\) 13.2171 + 7.63091i 0.421775 + 0.243512i
\(983\) 3.23213 1.86607i 0.103089 0.0595184i −0.447569 0.894249i \(-0.647710\pi\)
0.550658 + 0.834731i \(0.314377\pi\)
\(984\) 8.92825 1.88794i 0.284622 0.0601855i
\(985\) 7.19265 28.3382i 0.229177 0.902932i
\(986\) 1.64032 0.0522385
\(987\) 0 0
\(988\) 29.8772i 0.950520i
\(989\) −3.65439 2.10987i −0.116203 0.0670898i
\(990\) 17.2859 2.93541i 0.549383 0.0932933i
\(991\) 2.74255 + 4.75024i 0.0871200 + 0.150896i 0.906293 0.422651i \(-0.138900\pi\)
−0.819173 + 0.573547i \(0.805567\pi\)
\(992\) −1.93442 1.11684i −0.0614178 0.0354596i
\(993\) −12.2946 + 37.7039i −0.390158 + 1.19650i
\(994\) 0 0
\(995\) −10.2945 36.4815i −0.326359 1.15654i
\(996\) 10.7660 9.67323i 0.341132 0.306508i
\(997\) 2.53609 + 4.39264i 0.0803189 + 0.139116i 0.903387 0.428826i \(-0.141073\pi\)
−0.823068 + 0.567943i \(0.807739\pi\)
\(998\) 3.69818 + 6.40544i 0.117064 + 0.202761i
\(999\) −22.0400 + 2.24620i −0.697314 + 0.0710666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.f.509.5 24
3.2 odd 2 inner 735.2.p.f.509.7 24
5.4 even 2 inner 735.2.p.f.509.8 24
7.2 even 3 735.2.g.b.734.15 24
7.3 odd 6 inner 735.2.p.f.374.6 24
7.4 even 3 105.2.p.a.59.5 24
7.5 odd 6 735.2.g.b.734.14 24
7.6 odd 2 105.2.p.a.89.6 yes 24
15.14 odd 2 inner 735.2.p.f.509.6 24
21.2 odd 6 735.2.g.b.734.12 24
21.5 even 6 735.2.g.b.734.9 24
21.11 odd 6 105.2.p.a.59.7 yes 24
21.17 even 6 inner 735.2.p.f.374.8 24
21.20 even 2 105.2.p.a.89.8 yes 24
35.4 even 6 105.2.p.a.59.8 yes 24
35.9 even 6 735.2.g.b.734.10 24
35.13 even 4 525.2.t.j.26.7 24
35.18 odd 12 525.2.t.j.101.5 24
35.19 odd 6 735.2.g.b.734.11 24
35.24 odd 6 inner 735.2.p.f.374.7 24
35.27 even 4 525.2.t.j.26.6 24
35.32 odd 12 525.2.t.j.101.8 24
35.34 odd 2 105.2.p.a.89.7 yes 24
105.32 even 12 525.2.t.j.101.6 24
105.44 odd 6 735.2.g.b.734.13 24
105.53 even 12 525.2.t.j.101.7 24
105.59 even 6 inner 735.2.p.f.374.5 24
105.62 odd 4 525.2.t.j.26.8 24
105.74 odd 6 105.2.p.a.59.6 yes 24
105.83 odd 4 525.2.t.j.26.5 24
105.89 even 6 735.2.g.b.734.16 24
105.104 even 2 105.2.p.a.89.5 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.5 24 7.4 even 3
105.2.p.a.59.6 yes 24 105.74 odd 6
105.2.p.a.59.7 yes 24 21.11 odd 6
105.2.p.a.59.8 yes 24 35.4 even 6
105.2.p.a.89.5 yes 24 105.104 even 2
105.2.p.a.89.6 yes 24 7.6 odd 2
105.2.p.a.89.7 yes 24 35.34 odd 2
105.2.p.a.89.8 yes 24 21.20 even 2
525.2.t.j.26.5 24 105.83 odd 4
525.2.t.j.26.6 24 35.27 even 4
525.2.t.j.26.7 24 35.13 even 4
525.2.t.j.26.8 24 105.62 odd 4
525.2.t.j.101.5 24 35.18 odd 12
525.2.t.j.101.6 24 105.32 even 12
525.2.t.j.101.7 24 105.53 even 12
525.2.t.j.101.8 24 35.32 odd 12
735.2.g.b.734.9 24 21.5 even 6
735.2.g.b.734.10 24 35.9 even 6
735.2.g.b.734.11 24 35.19 odd 6
735.2.g.b.734.12 24 21.2 odd 6
735.2.g.b.734.13 24 105.44 odd 6
735.2.g.b.734.14 24 7.5 odd 6
735.2.g.b.734.15 24 7.2 even 3
735.2.g.b.734.16 24 105.89 even 6
735.2.p.f.374.5 24 105.59 even 6 inner
735.2.p.f.374.6 24 7.3 odd 6 inner
735.2.p.f.374.7 24 35.24 odd 6 inner
735.2.p.f.374.8 24 21.17 even 6 inner
735.2.p.f.509.5 24 1.1 even 1 trivial
735.2.p.f.509.6 24 15.14 odd 2 inner
735.2.p.f.509.7 24 3.2 odd 2 inner
735.2.p.f.509.8 24 5.4 even 2 inner