Properties

Label 736.4.a.f.1.3
Level $736$
Weight $4$
Character 736.1
Self dual yes
Analytic conductor $43.425$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [736,4,Mod(1,736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("736.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 736.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4254057642\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 137x^{6} + 344x^{5} + 6175x^{4} - 7924x^{3} - 89643x^{2} + 45072x + 51084 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.24371\) of defining polynomial
Character \(\chi\) \(=\) 736.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.24371 q^{3} -5.01937 q^{5} -22.4881 q^{7} -16.4784 q^{9} -50.5296 q^{11} -89.2035 q^{13} +16.2813 q^{15} -66.9007 q^{17} +97.7214 q^{19} +72.9448 q^{21} -23.0000 q^{23} -99.8060 q^{25} +141.031 q^{27} +29.9936 q^{29} -73.5761 q^{31} +163.903 q^{33} +112.876 q^{35} +1.12672 q^{37} +289.350 q^{39} +34.3225 q^{41} -160.562 q^{43} +82.7110 q^{45} -289.634 q^{47} +162.715 q^{49} +217.006 q^{51} -392.969 q^{53} +253.627 q^{55} -316.980 q^{57} -174.989 q^{59} -474.108 q^{61} +370.567 q^{63} +447.745 q^{65} +671.911 q^{67} +74.6052 q^{69} +481.540 q^{71} -778.702 q^{73} +323.741 q^{75} +1136.32 q^{77} +132.340 q^{79} -12.5472 q^{81} +808.059 q^{83} +335.799 q^{85} -97.2903 q^{87} -1055.47 q^{89} +2006.02 q^{91} +238.659 q^{93} -490.500 q^{95} +824.410 q^{97} +832.646 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} - 12 q^{5} - 14 q^{7} + 90 q^{9} + 88 q^{11} - 30 q^{13} + 30 q^{15} + 58 q^{17} + 190 q^{19} - 66 q^{21} - 184 q^{23} + 28 q^{25} + 432 q^{27} + 190 q^{29} - 60 q^{31} + 346 q^{33} + 192 q^{35}+ \cdots + 5986 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.24371 −0.624251 −0.312126 0.950041i \(-0.601041\pi\)
−0.312126 + 0.950041i \(0.601041\pi\)
\(4\) 0 0
\(5\) −5.01937 −0.448946 −0.224473 0.974480i \(-0.572066\pi\)
−0.224473 + 0.974480i \(0.572066\pi\)
\(6\) 0 0
\(7\) −22.4881 −1.21424 −0.607122 0.794609i \(-0.707676\pi\)
−0.607122 + 0.794609i \(0.707676\pi\)
\(8\) 0 0
\(9\) −16.4784 −0.610310
\(10\) 0 0
\(11\) −50.5296 −1.38502 −0.692512 0.721406i \(-0.743496\pi\)
−0.692512 + 0.721406i \(0.743496\pi\)
\(12\) 0 0
\(13\) −89.2035 −1.90312 −0.951561 0.307460i \(-0.900521\pi\)
−0.951561 + 0.307460i \(0.900521\pi\)
\(14\) 0 0
\(15\) 16.2813 0.280255
\(16\) 0 0
\(17\) −66.9007 −0.954459 −0.477230 0.878779i \(-0.658359\pi\)
−0.477230 + 0.878779i \(0.658359\pi\)
\(18\) 0 0
\(19\) 97.7214 1.17994 0.589969 0.807426i \(-0.299140\pi\)
0.589969 + 0.807426i \(0.299140\pi\)
\(20\) 0 0
\(21\) 72.9448 0.757993
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −99.8060 −0.798448
\(26\) 0 0
\(27\) 141.031 1.00524
\(28\) 0 0
\(29\) 29.9936 0.192057 0.0960287 0.995379i \(-0.469386\pi\)
0.0960287 + 0.995379i \(0.469386\pi\)
\(30\) 0 0
\(31\) −73.5761 −0.426279 −0.213140 0.977022i \(-0.568369\pi\)
−0.213140 + 0.977022i \(0.568369\pi\)
\(32\) 0 0
\(33\) 163.903 0.864603
\(34\) 0 0
\(35\) 112.876 0.545130
\(36\) 0 0
\(37\) 1.12672 0.00500628 0.00250314 0.999997i \(-0.499203\pi\)
0.00250314 + 0.999997i \(0.499203\pi\)
\(38\) 0 0
\(39\) 289.350 1.18803
\(40\) 0 0
\(41\) 34.3225 0.130738 0.0653692 0.997861i \(-0.479177\pi\)
0.0653692 + 0.997861i \(0.479177\pi\)
\(42\) 0 0
\(43\) −160.562 −0.569429 −0.284714 0.958612i \(-0.591899\pi\)
−0.284714 + 0.958612i \(0.591899\pi\)
\(44\) 0 0
\(45\) 82.7110 0.273996
\(46\) 0 0
\(47\) −289.634 −0.898883 −0.449442 0.893310i \(-0.648377\pi\)
−0.449442 + 0.893310i \(0.648377\pi\)
\(48\) 0 0
\(49\) 162.715 0.474388
\(50\) 0 0
\(51\) 217.006 0.595823
\(52\) 0 0
\(53\) −392.969 −1.01846 −0.509230 0.860630i \(-0.670070\pi\)
−0.509230 + 0.860630i \(0.670070\pi\)
\(54\) 0 0
\(55\) 253.627 0.621801
\(56\) 0 0
\(57\) −316.980 −0.736579
\(58\) 0 0
\(59\) −174.989 −0.386129 −0.193065 0.981186i \(-0.561843\pi\)
−0.193065 + 0.981186i \(0.561843\pi\)
\(60\) 0 0
\(61\) −474.108 −0.995136 −0.497568 0.867425i \(-0.665774\pi\)
−0.497568 + 0.867425i \(0.665774\pi\)
\(62\) 0 0
\(63\) 370.567 0.741065
\(64\) 0 0
\(65\) 447.745 0.854399
\(66\) 0 0
\(67\) 671.911 1.22518 0.612589 0.790401i \(-0.290128\pi\)
0.612589 + 0.790401i \(0.290128\pi\)
\(68\) 0 0
\(69\) 74.6052 0.130165
\(70\) 0 0
\(71\) 481.540 0.804906 0.402453 0.915441i \(-0.368158\pi\)
0.402453 + 0.915441i \(0.368158\pi\)
\(72\) 0 0
\(73\) −778.702 −1.24850 −0.624248 0.781226i \(-0.714595\pi\)
−0.624248 + 0.781226i \(0.714595\pi\)
\(74\) 0 0
\(75\) 323.741 0.498432
\(76\) 0 0
\(77\) 1136.32 1.68176
\(78\) 0 0
\(79\) 132.340 0.188474 0.0942369 0.995550i \(-0.469959\pi\)
0.0942369 + 0.995550i \(0.469959\pi\)
\(80\) 0 0
\(81\) −12.5472 −0.0172115
\(82\) 0 0
\(83\) 808.059 1.06863 0.534313 0.845287i \(-0.320570\pi\)
0.534313 + 0.845287i \(0.320570\pi\)
\(84\) 0 0
\(85\) 335.799 0.428500
\(86\) 0 0
\(87\) −97.2903 −0.119892
\(88\) 0 0
\(89\) −1055.47 −1.25707 −0.628534 0.777782i \(-0.716345\pi\)
−0.628534 + 0.777782i \(0.716345\pi\)
\(90\) 0 0
\(91\) 2006.02 2.31085
\(92\) 0 0
\(93\) 238.659 0.266106
\(94\) 0 0
\(95\) −490.500 −0.529729
\(96\) 0 0
\(97\) 824.410 0.862950 0.431475 0.902125i \(-0.357993\pi\)
0.431475 + 0.902125i \(0.357993\pi\)
\(98\) 0 0
\(99\) 832.646 0.845294
\(100\) 0 0
\(101\) 1026.60 1.01139 0.505694 0.862713i \(-0.331237\pi\)
0.505694 + 0.862713i \(0.331237\pi\)
\(102\) 0 0
\(103\) −1258.22 −1.20365 −0.601825 0.798628i \(-0.705560\pi\)
−0.601825 + 0.798628i \(0.705560\pi\)
\(104\) 0 0
\(105\) −366.137 −0.340298
\(106\) 0 0
\(107\) −507.430 −0.458459 −0.229229 0.973372i \(-0.573621\pi\)
−0.229229 + 0.973372i \(0.573621\pi\)
\(108\) 0 0
\(109\) −479.750 −0.421575 −0.210787 0.977532i \(-0.567603\pi\)
−0.210787 + 0.977532i \(0.567603\pi\)
\(110\) 0 0
\(111\) −3.65476 −0.00312518
\(112\) 0 0
\(113\) −1634.89 −1.36104 −0.680519 0.732731i \(-0.738245\pi\)
−0.680519 + 0.732731i \(0.738245\pi\)
\(114\) 0 0
\(115\) 115.445 0.0936117
\(116\) 0 0
\(117\) 1469.93 1.16149
\(118\) 0 0
\(119\) 1504.47 1.15895
\(120\) 0 0
\(121\) 1222.25 0.918291
\(122\) 0 0
\(123\) −111.332 −0.0816136
\(124\) 0 0
\(125\) 1128.38 0.807405
\(126\) 0 0
\(127\) −433.550 −0.302924 −0.151462 0.988463i \(-0.548398\pi\)
−0.151462 + 0.988463i \(0.548398\pi\)
\(128\) 0 0
\(129\) 520.815 0.355467
\(130\) 0 0
\(131\) 1097.96 0.732281 0.366140 0.930560i \(-0.380679\pi\)
0.366140 + 0.930560i \(0.380679\pi\)
\(132\) 0 0
\(133\) −2197.57 −1.43273
\(134\) 0 0
\(135\) −707.886 −0.451298
\(136\) 0 0
\(137\) −1578.08 −0.984122 −0.492061 0.870561i \(-0.663756\pi\)
−0.492061 + 0.870561i \(0.663756\pi\)
\(138\) 0 0
\(139\) 1969.53 1.20182 0.600911 0.799316i \(-0.294805\pi\)
0.600911 + 0.799316i \(0.294805\pi\)
\(140\) 0 0
\(141\) 939.489 0.561129
\(142\) 0 0
\(143\) 4507.42 2.63587
\(144\) 0 0
\(145\) −150.549 −0.0862233
\(146\) 0 0
\(147\) −527.800 −0.296137
\(148\) 0 0
\(149\) −1291.44 −0.710060 −0.355030 0.934855i \(-0.615529\pi\)
−0.355030 + 0.934855i \(0.615529\pi\)
\(150\) 0 0
\(151\) −1388.00 −0.748038 −0.374019 0.927421i \(-0.622021\pi\)
−0.374019 + 0.927421i \(0.622021\pi\)
\(152\) 0 0
\(153\) 1102.42 0.582516
\(154\) 0 0
\(155\) 369.305 0.191376
\(156\) 0 0
\(157\) 2602.69 1.32304 0.661519 0.749929i \(-0.269912\pi\)
0.661519 + 0.749929i \(0.269912\pi\)
\(158\) 0 0
\(159\) 1274.68 0.635776
\(160\) 0 0
\(161\) 517.227 0.253187
\(162\) 0 0
\(163\) −1483.18 −0.712711 −0.356356 0.934350i \(-0.615981\pi\)
−0.356356 + 0.934350i \(0.615981\pi\)
\(164\) 0 0
\(165\) −822.691 −0.388160
\(166\) 0 0
\(167\) −3685.95 −1.70795 −0.853975 0.520314i \(-0.825815\pi\)
−0.853975 + 0.520314i \(0.825815\pi\)
\(168\) 0 0
\(169\) 5760.26 2.62187
\(170\) 0 0
\(171\) −1610.29 −0.720129
\(172\) 0 0
\(173\) −1816.77 −0.798417 −0.399208 0.916860i \(-0.630715\pi\)
−0.399208 + 0.916860i \(0.630715\pi\)
\(174\) 0 0
\(175\) 2244.45 0.969510
\(176\) 0 0
\(177\) 567.613 0.241042
\(178\) 0 0
\(179\) 3595.87 1.50150 0.750749 0.660588i \(-0.229693\pi\)
0.750749 + 0.660588i \(0.229693\pi\)
\(180\) 0 0
\(181\) −2646.44 −1.08679 −0.543394 0.839478i \(-0.682861\pi\)
−0.543394 + 0.839478i \(0.682861\pi\)
\(182\) 0 0
\(183\) 1537.87 0.621215
\(184\) 0 0
\(185\) −5.65544 −0.00224755
\(186\) 0 0
\(187\) 3380.47 1.32195
\(188\) 0 0
\(189\) −3171.52 −1.22060
\(190\) 0 0
\(191\) −3057.51 −1.15829 −0.579146 0.815224i \(-0.696614\pi\)
−0.579146 + 0.815224i \(0.696614\pi\)
\(192\) 0 0
\(193\) 2810.64 1.04826 0.524130 0.851638i \(-0.324390\pi\)
0.524130 + 0.851638i \(0.324390\pi\)
\(194\) 0 0
\(195\) −1452.35 −0.533360
\(196\) 0 0
\(197\) −3369.29 −1.21854 −0.609269 0.792963i \(-0.708537\pi\)
−0.609269 + 0.792963i \(0.708537\pi\)
\(198\) 0 0
\(199\) −3191.01 −1.13671 −0.568353 0.822785i \(-0.692419\pi\)
−0.568353 + 0.822785i \(0.692419\pi\)
\(200\) 0 0
\(201\) −2179.48 −0.764819
\(202\) 0 0
\(203\) −674.498 −0.233204
\(204\) 0 0
\(205\) −172.277 −0.0586944
\(206\) 0 0
\(207\) 379.003 0.127258
\(208\) 0 0
\(209\) −4937.83 −1.63424
\(210\) 0 0
\(211\) 3367.08 1.09857 0.549287 0.835634i \(-0.314899\pi\)
0.549287 + 0.835634i \(0.314899\pi\)
\(212\) 0 0
\(213\) −1561.98 −0.502464
\(214\) 0 0
\(215\) 805.918 0.255643
\(216\) 0 0
\(217\) 1654.59 0.517607
\(218\) 0 0
\(219\) 2525.88 0.779376
\(220\) 0 0
\(221\) 5967.78 1.81645
\(222\) 0 0
\(223\) −4129.95 −1.24019 −0.620094 0.784528i \(-0.712906\pi\)
−0.620094 + 0.784528i \(0.712906\pi\)
\(224\) 0 0
\(225\) 1644.64 0.487301
\(226\) 0 0
\(227\) 2844.36 0.831661 0.415830 0.909442i \(-0.363491\pi\)
0.415830 + 0.909442i \(0.363491\pi\)
\(228\) 0 0
\(229\) −3004.28 −0.866936 −0.433468 0.901169i \(-0.642710\pi\)
−0.433468 + 0.901169i \(0.642710\pi\)
\(230\) 0 0
\(231\) −3685.88 −1.04984
\(232\) 0 0
\(233\) −457.644 −0.128675 −0.0643374 0.997928i \(-0.520493\pi\)
−0.0643374 + 0.997928i \(0.520493\pi\)
\(234\) 0 0
\(235\) 1453.78 0.403550
\(236\) 0 0
\(237\) −429.273 −0.117655
\(238\) 0 0
\(239\) 1302.50 0.352518 0.176259 0.984344i \(-0.443600\pi\)
0.176259 + 0.984344i \(0.443600\pi\)
\(240\) 0 0
\(241\) −4474.43 −1.19595 −0.597973 0.801516i \(-0.704027\pi\)
−0.597973 + 0.801516i \(0.704027\pi\)
\(242\) 0 0
\(243\) −3767.14 −0.994494
\(244\) 0 0
\(245\) −816.727 −0.212975
\(246\) 0 0
\(247\) −8717.09 −2.24557
\(248\) 0 0
\(249\) −2621.10 −0.667091
\(250\) 0 0
\(251\) 3834.68 0.964314 0.482157 0.876085i \(-0.339854\pi\)
0.482157 + 0.876085i \(0.339854\pi\)
\(252\) 0 0
\(253\) 1162.18 0.288797
\(254\) 0 0
\(255\) −1089.23 −0.267492
\(256\) 0 0
\(257\) 385.508 0.0935693 0.0467846 0.998905i \(-0.485103\pi\)
0.0467846 + 0.998905i \(0.485103\pi\)
\(258\) 0 0
\(259\) −25.3379 −0.00607884
\(260\) 0 0
\(261\) −494.245 −0.117215
\(262\) 0 0
\(263\) −3080.35 −0.722215 −0.361108 0.932524i \(-0.617601\pi\)
−0.361108 + 0.932524i \(0.617601\pi\)
\(264\) 0 0
\(265\) 1972.45 0.457234
\(266\) 0 0
\(267\) 3423.62 0.784727
\(268\) 0 0
\(269\) −5963.04 −1.35157 −0.675786 0.737098i \(-0.736196\pi\)
−0.675786 + 0.737098i \(0.736196\pi\)
\(270\) 0 0
\(271\) −6227.62 −1.39594 −0.697972 0.716125i \(-0.745914\pi\)
−0.697972 + 0.716125i \(0.745914\pi\)
\(272\) 0 0
\(273\) −6506.93 −1.44255
\(274\) 0 0
\(275\) 5043.16 1.10587
\(276\) 0 0
\(277\) −615.008 −0.133402 −0.0667009 0.997773i \(-0.521247\pi\)
−0.0667009 + 0.997773i \(0.521247\pi\)
\(278\) 0 0
\(279\) 1212.41 0.260163
\(280\) 0 0
\(281\) 8285.01 1.75887 0.879435 0.476019i \(-0.157921\pi\)
0.879435 + 0.476019i \(0.157921\pi\)
\(282\) 0 0
\(283\) −3165.51 −0.664911 −0.332456 0.943119i \(-0.607877\pi\)
−0.332456 + 0.943119i \(0.607877\pi\)
\(284\) 0 0
\(285\) 1591.04 0.330684
\(286\) 0 0
\(287\) −771.848 −0.158748
\(288\) 0 0
\(289\) −437.293 −0.0890073
\(290\) 0 0
\(291\) −2674.14 −0.538698
\(292\) 0 0
\(293\) 8523.21 1.69942 0.849712 0.527248i \(-0.176776\pi\)
0.849712 + 0.527248i \(0.176776\pi\)
\(294\) 0 0
\(295\) 878.334 0.173351
\(296\) 0 0
\(297\) −7126.25 −1.39228
\(298\) 0 0
\(299\) 2051.68 0.396828
\(300\) 0 0
\(301\) 3610.73 0.691425
\(302\) 0 0
\(303\) −3329.98 −0.631360
\(304\) 0 0
\(305\) 2379.72 0.446762
\(306\) 0 0
\(307\) −10084.1 −1.87469 −0.937343 0.348407i \(-0.886723\pi\)
−0.937343 + 0.348407i \(0.886723\pi\)
\(308\) 0 0
\(309\) 4081.29 0.751381
\(310\) 0 0
\(311\) 3592.20 0.654967 0.327484 0.944857i \(-0.393799\pi\)
0.327484 + 0.944857i \(0.393799\pi\)
\(312\) 0 0
\(313\) 1308.03 0.236212 0.118106 0.993001i \(-0.462318\pi\)
0.118106 + 0.993001i \(0.462318\pi\)
\(314\) 0 0
\(315\) −1860.01 −0.332698
\(316\) 0 0
\(317\) 1877.87 0.332718 0.166359 0.986065i \(-0.446799\pi\)
0.166359 + 0.986065i \(0.446799\pi\)
\(318\) 0 0
\(319\) −1515.56 −0.266004
\(320\) 0 0
\(321\) 1645.95 0.286194
\(322\) 0 0
\(323\) −6537.64 −1.12620
\(324\) 0 0
\(325\) 8903.04 1.51954
\(326\) 0 0
\(327\) 1556.17 0.263169
\(328\) 0 0
\(329\) 6513.33 1.09146
\(330\) 0 0
\(331\) −8312.07 −1.38028 −0.690140 0.723675i \(-0.742451\pi\)
−0.690140 + 0.723675i \(0.742451\pi\)
\(332\) 0 0
\(333\) −18.5666 −0.00305538
\(334\) 0 0
\(335\) −3372.57 −0.550039
\(336\) 0 0
\(337\) 8346.55 1.34916 0.674578 0.738204i \(-0.264326\pi\)
0.674578 + 0.738204i \(0.264326\pi\)
\(338\) 0 0
\(339\) 5303.09 0.849629
\(340\) 0 0
\(341\) 3717.78 0.590407
\(342\) 0 0
\(343\) 4054.27 0.638221
\(344\) 0 0
\(345\) −374.471 −0.0584372
\(346\) 0 0
\(347\) −10694.4 −1.65449 −0.827245 0.561842i \(-0.810093\pi\)
−0.827245 + 0.561842i \(0.810093\pi\)
\(348\) 0 0
\(349\) 8.08786 0.00124050 0.000620248 1.00000i \(-0.499803\pi\)
0.000620248 1.00000i \(0.499803\pi\)
\(350\) 0 0
\(351\) −12580.5 −1.91309
\(352\) 0 0
\(353\) −7139.25 −1.07644 −0.538221 0.842804i \(-0.680903\pi\)
−0.538221 + 0.842804i \(0.680903\pi\)
\(354\) 0 0
\(355\) −2417.03 −0.361359
\(356\) 0 0
\(357\) −4880.06 −0.723474
\(358\) 0 0
\(359\) −11540.4 −1.69660 −0.848301 0.529514i \(-0.822374\pi\)
−0.848301 + 0.529514i \(0.822374\pi\)
\(360\) 0 0
\(361\) 2690.48 0.392256
\(362\) 0 0
\(363\) −3964.60 −0.573244
\(364\) 0 0
\(365\) 3908.59 0.560507
\(366\) 0 0
\(367\) 4341.92 0.617565 0.308783 0.951133i \(-0.400078\pi\)
0.308783 + 0.951133i \(0.400078\pi\)
\(368\) 0 0
\(369\) −565.579 −0.0797910
\(370\) 0 0
\(371\) 8837.13 1.23666
\(372\) 0 0
\(373\) −10170.6 −1.41183 −0.705915 0.708297i \(-0.749464\pi\)
−0.705915 + 0.708297i \(0.749464\pi\)
\(374\) 0 0
\(375\) −3660.14 −0.504024
\(376\) 0 0
\(377\) −2675.53 −0.365509
\(378\) 0 0
\(379\) −11102.5 −1.50474 −0.752370 0.658740i \(-0.771090\pi\)
−0.752370 + 0.658740i \(0.771090\pi\)
\(380\) 0 0
\(381\) 1406.31 0.189101
\(382\) 0 0
\(383\) 7798.68 1.04045 0.520227 0.854028i \(-0.325847\pi\)
0.520227 + 0.854028i \(0.325847\pi\)
\(384\) 0 0
\(385\) −5703.59 −0.755017
\(386\) 0 0
\(387\) 2645.80 0.347528
\(388\) 0 0
\(389\) −4144.11 −0.540141 −0.270070 0.962841i \(-0.587047\pi\)
−0.270070 + 0.962841i \(0.587047\pi\)
\(390\) 0 0
\(391\) 1538.72 0.199019
\(392\) 0 0
\(393\) −3561.44 −0.457127
\(394\) 0 0
\(395\) −664.264 −0.0846145
\(396\) 0 0
\(397\) −13652.5 −1.72595 −0.862974 0.505248i \(-0.831401\pi\)
−0.862974 + 0.505248i \(0.831401\pi\)
\(398\) 0 0
\(399\) 7128.27 0.894386
\(400\) 0 0
\(401\) −4312.25 −0.537016 −0.268508 0.963277i \(-0.586531\pi\)
−0.268508 + 0.963277i \(0.586531\pi\)
\(402\) 0 0
\(403\) 6563.24 0.811262
\(404\) 0 0
\(405\) 62.9788 0.00772702
\(406\) 0 0
\(407\) −56.9329 −0.00693381
\(408\) 0 0
\(409\) 4307.52 0.520765 0.260383 0.965505i \(-0.416151\pi\)
0.260383 + 0.965505i \(0.416151\pi\)
\(410\) 0 0
\(411\) 5118.84 0.614340
\(412\) 0 0
\(413\) 3935.17 0.468855
\(414\) 0 0
\(415\) −4055.94 −0.479755
\(416\) 0 0
\(417\) −6388.57 −0.750239
\(418\) 0 0
\(419\) 3968.03 0.462651 0.231326 0.972876i \(-0.425694\pi\)
0.231326 + 0.972876i \(0.425694\pi\)
\(420\) 0 0
\(421\) 10423.7 1.20670 0.603350 0.797477i \(-0.293832\pi\)
0.603350 + 0.797477i \(0.293832\pi\)
\(422\) 0 0
\(423\) 4772.70 0.548598
\(424\) 0 0
\(425\) 6677.09 0.762086
\(426\) 0 0
\(427\) 10661.8 1.20834
\(428\) 0 0
\(429\) −14620.7 −1.64545
\(430\) 0 0
\(431\) −7390.02 −0.825905 −0.412952 0.910753i \(-0.635502\pi\)
−0.412952 + 0.910753i \(0.635502\pi\)
\(432\) 0 0
\(433\) −9821.24 −1.09002 −0.545010 0.838430i \(-0.683474\pi\)
−0.545010 + 0.838430i \(0.683474\pi\)
\(434\) 0 0
\(435\) 488.336 0.0538250
\(436\) 0 0
\(437\) −2247.59 −0.246034
\(438\) 0 0
\(439\) 4275.53 0.464829 0.232414 0.972617i \(-0.425337\pi\)
0.232414 + 0.972617i \(0.425337\pi\)
\(440\) 0 0
\(441\) −2681.28 −0.289524
\(442\) 0 0
\(443\) 5079.47 0.544770 0.272385 0.962188i \(-0.412188\pi\)
0.272385 + 0.962188i \(0.412188\pi\)
\(444\) 0 0
\(445\) 5297.77 0.564356
\(446\) 0 0
\(447\) 4189.06 0.443256
\(448\) 0 0
\(449\) 17452.0 1.83433 0.917163 0.398513i \(-0.130474\pi\)
0.917163 + 0.398513i \(0.130474\pi\)
\(450\) 0 0
\(451\) −1734.30 −0.181076
\(452\) 0 0
\(453\) 4502.26 0.466964
\(454\) 0 0
\(455\) −10068.9 −1.03745
\(456\) 0 0
\(457\) 3153.12 0.322750 0.161375 0.986893i \(-0.448407\pi\)
0.161375 + 0.986893i \(0.448407\pi\)
\(458\) 0 0
\(459\) −9435.08 −0.959459
\(460\) 0 0
\(461\) 5406.53 0.546220 0.273110 0.961983i \(-0.411948\pi\)
0.273110 + 0.961983i \(0.411948\pi\)
\(462\) 0 0
\(463\) 9702.07 0.973851 0.486926 0.873443i \(-0.338118\pi\)
0.486926 + 0.873443i \(0.338118\pi\)
\(464\) 0 0
\(465\) −1197.92 −0.119467
\(466\) 0 0
\(467\) 19192.0 1.90172 0.950858 0.309627i \(-0.100204\pi\)
0.950858 + 0.309627i \(0.100204\pi\)
\(468\) 0 0
\(469\) −15110.0 −1.48767
\(470\) 0 0
\(471\) −8442.35 −0.825908
\(472\) 0 0
\(473\) 8113.13 0.788672
\(474\) 0 0
\(475\) −9753.18 −0.942119
\(476\) 0 0
\(477\) 6475.49 0.621577
\(478\) 0 0
\(479\) 2427.60 0.231565 0.115783 0.993275i \(-0.463062\pi\)
0.115783 + 0.993275i \(0.463062\pi\)
\(480\) 0 0
\(481\) −100.508 −0.00952756
\(482\) 0 0
\(483\) −1677.73 −0.158053
\(484\) 0 0
\(485\) −4138.02 −0.387418
\(486\) 0 0
\(487\) −13649.6 −1.27006 −0.635031 0.772487i \(-0.719013\pi\)
−0.635031 + 0.772487i \(0.719013\pi\)
\(488\) 0 0
\(489\) 4811.01 0.444911
\(490\) 0 0
\(491\) −18411.1 −1.69222 −0.846109 0.533010i \(-0.821061\pi\)
−0.846109 + 0.533010i \(0.821061\pi\)
\(492\) 0 0
\(493\) −2006.59 −0.183311
\(494\) 0 0
\(495\) −4179.36 −0.379491
\(496\) 0 0
\(497\) −10828.9 −0.977352
\(498\) 0 0
\(499\) −18746.4 −1.68177 −0.840884 0.541215i \(-0.817965\pi\)
−0.840884 + 0.541215i \(0.817965\pi\)
\(500\) 0 0
\(501\) 11956.2 1.06619
\(502\) 0 0
\(503\) 6877.91 0.609683 0.304842 0.952403i \(-0.401396\pi\)
0.304842 + 0.952403i \(0.401396\pi\)
\(504\) 0 0
\(505\) −5152.86 −0.454058
\(506\) 0 0
\(507\) −18684.6 −1.63671
\(508\) 0 0
\(509\) 2182.76 0.190077 0.0950385 0.995474i \(-0.469703\pi\)
0.0950385 + 0.995474i \(0.469703\pi\)
\(510\) 0 0
\(511\) 17511.5 1.51598
\(512\) 0 0
\(513\) 13781.8 1.18612
\(514\) 0 0
\(515\) 6315.46 0.540374
\(516\) 0 0
\(517\) 14635.1 1.24497
\(518\) 0 0
\(519\) 5893.05 0.498413
\(520\) 0 0
\(521\) −10786.2 −0.907012 −0.453506 0.891253i \(-0.649827\pi\)
−0.453506 + 0.891253i \(0.649827\pi\)
\(522\) 0 0
\(523\) 2309.04 0.193054 0.0965269 0.995330i \(-0.469227\pi\)
0.0965269 + 0.995330i \(0.469227\pi\)
\(524\) 0 0
\(525\) −7280.33 −0.605218
\(526\) 0 0
\(527\) 4922.30 0.406866
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 2883.53 0.235659
\(532\) 0 0
\(533\) −3061.69 −0.248811
\(534\) 0 0
\(535\) 2546.98 0.205823
\(536\) 0 0
\(537\) −11664.0 −0.937312
\(538\) 0 0
\(539\) −8221.94 −0.657039
\(540\) 0 0
\(541\) −10591.1 −0.841673 −0.420836 0.907137i \(-0.638263\pi\)
−0.420836 + 0.907137i \(0.638263\pi\)
\(542\) 0 0
\(543\) 8584.28 0.678429
\(544\) 0 0
\(545\) 2408.04 0.189264
\(546\) 0 0
\(547\) 22197.1 1.73506 0.867530 0.497384i \(-0.165706\pi\)
0.867530 + 0.497384i \(0.165706\pi\)
\(548\) 0 0
\(549\) 7812.53 0.607342
\(550\) 0 0
\(551\) 2931.01 0.226616
\(552\) 0 0
\(553\) −2976.08 −0.228853
\(554\) 0 0
\(555\) 18.3446 0.00140303
\(556\) 0 0
\(557\) 14996.6 1.14080 0.570400 0.821367i \(-0.306788\pi\)
0.570400 + 0.821367i \(0.306788\pi\)
\(558\) 0 0
\(559\) 14322.7 1.08369
\(560\) 0 0
\(561\) −10965.2 −0.825229
\(562\) 0 0
\(563\) 6781.84 0.507674 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(564\) 0 0
\(565\) 8206.09 0.611032
\(566\) 0 0
\(567\) 282.162 0.0208989
\(568\) 0 0
\(569\) 2121.99 0.156341 0.0781707 0.996940i \(-0.475092\pi\)
0.0781707 + 0.996940i \(0.475092\pi\)
\(570\) 0 0
\(571\) 11539.3 0.845720 0.422860 0.906195i \(-0.361026\pi\)
0.422860 + 0.906195i \(0.361026\pi\)
\(572\) 0 0
\(573\) 9917.66 0.723065
\(574\) 0 0
\(575\) 2295.54 0.166488
\(576\) 0 0
\(577\) −17547.9 −1.26608 −0.633042 0.774118i \(-0.718194\pi\)
−0.633042 + 0.774118i \(0.718194\pi\)
\(578\) 0 0
\(579\) −9116.89 −0.654378
\(580\) 0 0
\(581\) −18171.7 −1.29757
\(582\) 0 0
\(583\) 19856.6 1.41059
\(584\) 0 0
\(585\) −7378.11 −0.521448
\(586\) 0 0
\(587\) −16611.1 −1.16800 −0.583999 0.811754i \(-0.698513\pi\)
−0.583999 + 0.811754i \(0.698513\pi\)
\(588\) 0 0
\(589\) −7189.96 −0.502984
\(590\) 0 0
\(591\) 10929.0 0.760675
\(592\) 0 0
\(593\) 6065.78 0.420054 0.210027 0.977696i \(-0.432645\pi\)
0.210027 + 0.977696i \(0.432645\pi\)
\(594\) 0 0
\(595\) −7551.49 −0.520304
\(596\) 0 0
\(597\) 10350.7 0.709590
\(598\) 0 0
\(599\) 12573.5 0.857659 0.428829 0.903385i \(-0.358926\pi\)
0.428829 + 0.903385i \(0.358926\pi\)
\(600\) 0 0
\(601\) −18446.2 −1.25198 −0.625988 0.779832i \(-0.715304\pi\)
−0.625988 + 0.779832i \(0.715304\pi\)
\(602\) 0 0
\(603\) −11072.0 −0.747739
\(604\) 0 0
\(605\) −6134.90 −0.412263
\(606\) 0 0
\(607\) 13715.7 0.917135 0.458568 0.888659i \(-0.348363\pi\)
0.458568 + 0.888659i \(0.348363\pi\)
\(608\) 0 0
\(609\) 2187.87 0.145578
\(610\) 0 0
\(611\) 25836.4 1.71068
\(612\) 0 0
\(613\) −9497.86 −0.625800 −0.312900 0.949786i \(-0.601300\pi\)
−0.312900 + 0.949786i \(0.601300\pi\)
\(614\) 0 0
\(615\) 558.817 0.0366401
\(616\) 0 0
\(617\) 4749.94 0.309928 0.154964 0.987920i \(-0.450474\pi\)
0.154964 + 0.987920i \(0.450474\pi\)
\(618\) 0 0
\(619\) 17961.0 1.16626 0.583130 0.812379i \(-0.301828\pi\)
0.583130 + 0.812379i \(0.301828\pi\)
\(620\) 0 0
\(621\) −3243.71 −0.209607
\(622\) 0 0
\(623\) 23735.4 1.52639
\(624\) 0 0
\(625\) 6811.98 0.435966
\(626\) 0 0
\(627\) 16016.9 1.02018
\(628\) 0 0
\(629\) −75.3786 −0.00477829
\(630\) 0 0
\(631\) −20618.4 −1.30080 −0.650401 0.759591i \(-0.725399\pi\)
−0.650401 + 0.759591i \(0.725399\pi\)
\(632\) 0 0
\(633\) −10921.8 −0.685786
\(634\) 0 0
\(635\) 2176.14 0.135996
\(636\) 0 0
\(637\) −14514.7 −0.902818
\(638\) 0 0
\(639\) −7935.00 −0.491242
\(640\) 0 0
\(641\) 18608.2 1.14661 0.573306 0.819341i \(-0.305661\pi\)
0.573306 + 0.819341i \(0.305661\pi\)
\(642\) 0 0
\(643\) −24685.2 −1.51398 −0.756989 0.653428i \(-0.773330\pi\)
−0.756989 + 0.653428i \(0.773330\pi\)
\(644\) 0 0
\(645\) −2614.16 −0.159585
\(646\) 0 0
\(647\) 26900.9 1.63460 0.817298 0.576215i \(-0.195471\pi\)
0.817298 + 0.576215i \(0.195471\pi\)
\(648\) 0 0
\(649\) 8842.13 0.534798
\(650\) 0 0
\(651\) −5367.00 −0.323117
\(652\) 0 0
\(653\) −11712.3 −0.701898 −0.350949 0.936395i \(-0.614141\pi\)
−0.350949 + 0.936395i \(0.614141\pi\)
\(654\) 0 0
\(655\) −5511.04 −0.328754
\(656\) 0 0
\(657\) 12831.8 0.761970
\(658\) 0 0
\(659\) 324.827 0.0192010 0.00960051 0.999954i \(-0.496944\pi\)
0.00960051 + 0.999954i \(0.496944\pi\)
\(660\) 0 0
\(661\) 11829.6 0.696095 0.348047 0.937477i \(-0.386845\pi\)
0.348047 + 0.937477i \(0.386845\pi\)
\(662\) 0 0
\(663\) −19357.7 −1.13392
\(664\) 0 0
\(665\) 11030.4 0.643220
\(666\) 0 0
\(667\) −689.852 −0.0400467
\(668\) 0 0
\(669\) 13396.3 0.774189
\(670\) 0 0
\(671\) 23956.5 1.37829
\(672\) 0 0
\(673\) 2893.24 0.165715 0.0828576 0.996561i \(-0.473595\pi\)
0.0828576 + 0.996561i \(0.473595\pi\)
\(674\) 0 0
\(675\) −14075.7 −0.802630
\(676\) 0 0
\(677\) −15638.7 −0.887805 −0.443903 0.896075i \(-0.646406\pi\)
−0.443903 + 0.896075i \(0.646406\pi\)
\(678\) 0 0
\(679\) −18539.4 −1.04783
\(680\) 0 0
\(681\) −9226.28 −0.519166
\(682\) 0 0
\(683\) 27288.8 1.52881 0.764404 0.644738i \(-0.223033\pi\)
0.764404 + 0.644738i \(0.223033\pi\)
\(684\) 0 0
\(685\) 7920.98 0.441818
\(686\) 0 0
\(687\) 9744.99 0.541186
\(688\) 0 0
\(689\) 35054.2 1.93825
\(690\) 0 0
\(691\) 25680.2 1.41378 0.706889 0.707325i \(-0.250098\pi\)
0.706889 + 0.707325i \(0.250098\pi\)
\(692\) 0 0
\(693\) −18724.6 −1.02639
\(694\) 0 0
\(695\) −9885.78 −0.539553
\(696\) 0 0
\(697\) −2296.20 −0.124784
\(698\) 0 0
\(699\) 1484.46 0.0803254
\(700\) 0 0
\(701\) −17178.5 −0.925568 −0.462784 0.886471i \(-0.653149\pi\)
−0.462784 + 0.886471i \(0.653149\pi\)
\(702\) 0 0
\(703\) 110.105 0.00590710
\(704\) 0 0
\(705\) −4715.64 −0.251917
\(706\) 0 0
\(707\) −23086.2 −1.22807
\(708\) 0 0
\(709\) 6738.71 0.356950 0.178475 0.983944i \(-0.442884\pi\)
0.178475 + 0.983944i \(0.442884\pi\)
\(710\) 0 0
\(711\) −2180.75 −0.115028
\(712\) 0 0
\(713\) 1692.25 0.0888854
\(714\) 0 0
\(715\) −22624.4 −1.18336
\(716\) 0 0
\(717\) −4224.93 −0.220060
\(718\) 0 0
\(719\) 24261.2 1.25840 0.629200 0.777243i \(-0.283383\pi\)
0.629200 + 0.777243i \(0.283383\pi\)
\(720\) 0 0
\(721\) 28295.0 1.46153
\(722\) 0 0
\(723\) 14513.7 0.746572
\(724\) 0 0
\(725\) −2993.54 −0.153348
\(726\) 0 0
\(727\) −33964.0 −1.73268 −0.866338 0.499458i \(-0.833533\pi\)
−0.866338 + 0.499458i \(0.833533\pi\)
\(728\) 0 0
\(729\) 12558.3 0.638026
\(730\) 0 0
\(731\) 10741.7 0.543496
\(732\) 0 0
\(733\) 37420.1 1.88560 0.942798 0.333365i \(-0.108184\pi\)
0.942798 + 0.333365i \(0.108184\pi\)
\(734\) 0 0
\(735\) 2649.22 0.132950
\(736\) 0 0
\(737\) −33951.4 −1.69690
\(738\) 0 0
\(739\) 5606.82 0.279094 0.139547 0.990215i \(-0.455435\pi\)
0.139547 + 0.990215i \(0.455435\pi\)
\(740\) 0 0
\(741\) 28275.7 1.40180
\(742\) 0 0
\(743\) 38168.4 1.88461 0.942303 0.334760i \(-0.108655\pi\)
0.942303 + 0.334760i \(0.108655\pi\)
\(744\) 0 0
\(745\) 6482.22 0.318779
\(746\) 0 0
\(747\) −13315.5 −0.652193
\(748\) 0 0
\(749\) 11411.1 0.556681
\(750\) 0 0
\(751\) 17551.3 0.852804 0.426402 0.904534i \(-0.359781\pi\)
0.426402 + 0.904534i \(0.359781\pi\)
\(752\) 0 0
\(753\) −12438.6 −0.601974
\(754\) 0 0
\(755\) 6966.87 0.335828
\(756\) 0 0
\(757\) −17994.6 −0.863967 −0.431984 0.901881i \(-0.642186\pi\)
−0.431984 + 0.901881i \(0.642186\pi\)
\(758\) 0 0
\(759\) −3769.78 −0.180282
\(760\) 0 0
\(761\) 13231.7 0.630286 0.315143 0.949044i \(-0.397947\pi\)
0.315143 + 0.949044i \(0.397947\pi\)
\(762\) 0 0
\(763\) 10788.7 0.511895
\(764\) 0 0
\(765\) −5533.43 −0.261518
\(766\) 0 0
\(767\) 15609.6 0.734851
\(768\) 0 0
\(769\) 19279.4 0.904074 0.452037 0.891999i \(-0.350697\pi\)
0.452037 + 0.891999i \(0.350697\pi\)
\(770\) 0 0
\(771\) −1250.47 −0.0584107
\(772\) 0 0
\(773\) −8171.25 −0.380206 −0.190103 0.981764i \(-0.560882\pi\)
−0.190103 + 0.981764i \(0.560882\pi\)
\(774\) 0 0
\(775\) 7343.34 0.340362
\(776\) 0 0
\(777\) 82.1886 0.00379472
\(778\) 0 0
\(779\) 3354.04 0.154263
\(780\) 0 0
\(781\) −24332.1 −1.11481
\(782\) 0 0
\(783\) 4230.02 0.193063
\(784\) 0 0
\(785\) −13063.8 −0.593972
\(786\) 0 0
\(787\) −24615.9 −1.11495 −0.557473 0.830195i \(-0.688229\pi\)
−0.557473 + 0.830195i \(0.688229\pi\)
\(788\) 0 0
\(789\) 9991.76 0.450844
\(790\) 0 0
\(791\) 36765.5 1.65263
\(792\) 0 0
\(793\) 42292.1 1.89387
\(794\) 0 0
\(795\) −6398.06 −0.285429
\(796\) 0 0
\(797\) 37349.4 1.65995 0.829976 0.557798i \(-0.188354\pi\)
0.829976 + 0.557798i \(0.188354\pi\)
\(798\) 0 0
\(799\) 19376.7 0.857948
\(800\) 0 0
\(801\) 17392.4 0.767202
\(802\) 0 0
\(803\) 39347.6 1.72920
\(804\) 0 0
\(805\) −2596.15 −0.113667
\(806\) 0 0
\(807\) 19342.3 0.843720
\(808\) 0 0
\(809\) −16964.4 −0.737254 −0.368627 0.929577i \(-0.620172\pi\)
−0.368627 + 0.929577i \(0.620172\pi\)
\(810\) 0 0
\(811\) −19028.5 −0.823899 −0.411950 0.911207i \(-0.635152\pi\)
−0.411950 + 0.911207i \(0.635152\pi\)
\(812\) 0 0
\(813\) 20200.6 0.871420
\(814\) 0 0
\(815\) 7444.64 0.319969
\(816\) 0 0
\(817\) −15690.3 −0.671891
\(818\) 0 0
\(819\) −33055.9 −1.41034
\(820\) 0 0
\(821\) −16919.1 −0.719223 −0.359612 0.933102i \(-0.617091\pi\)
−0.359612 + 0.933102i \(0.617091\pi\)
\(822\) 0 0
\(823\) −23348.3 −0.988908 −0.494454 0.869204i \(-0.664632\pi\)
−0.494454 + 0.869204i \(0.664632\pi\)
\(824\) 0 0
\(825\) −16358.5 −0.690340
\(826\) 0 0
\(827\) −27804.4 −1.16911 −0.584555 0.811354i \(-0.698731\pi\)
−0.584555 + 0.811354i \(0.698731\pi\)
\(828\) 0 0
\(829\) 14429.4 0.604528 0.302264 0.953224i \(-0.402258\pi\)
0.302264 + 0.953224i \(0.402258\pi\)
\(830\) 0 0
\(831\) 1994.91 0.0832762
\(832\) 0 0
\(833\) −10885.8 −0.452784
\(834\) 0 0
\(835\) 18501.2 0.766777
\(836\) 0 0
\(837\) −10376.5 −0.428512
\(838\) 0 0
\(839\) 30557.7 1.25741 0.628707 0.777643i \(-0.283585\pi\)
0.628707 + 0.777643i \(0.283585\pi\)
\(840\) 0 0
\(841\) −23489.4 −0.963114
\(842\) 0 0
\(843\) −26874.1 −1.09798
\(844\) 0 0
\(845\) −28912.8 −1.17708
\(846\) 0 0
\(847\) −27486.0 −1.11503
\(848\) 0 0
\(849\) 10268.0 0.415072
\(850\) 0 0
\(851\) −25.9146 −0.00104388
\(852\) 0 0
\(853\) −46453.7 −1.86465 −0.932325 0.361622i \(-0.882223\pi\)
−0.932325 + 0.361622i \(0.882223\pi\)
\(854\) 0 0
\(855\) 8082.64 0.323299
\(856\) 0 0
\(857\) −43077.2 −1.71702 −0.858512 0.512794i \(-0.828610\pi\)
−0.858512 + 0.512794i \(0.828610\pi\)
\(858\) 0 0
\(859\) 27121.5 1.07727 0.538634 0.842540i \(-0.318941\pi\)
0.538634 + 0.842540i \(0.318941\pi\)
\(860\) 0 0
\(861\) 2503.65 0.0990989
\(862\) 0 0
\(863\) −12067.2 −0.475983 −0.237992 0.971267i \(-0.576489\pi\)
−0.237992 + 0.971267i \(0.576489\pi\)
\(864\) 0 0
\(865\) 9119.01 0.358446
\(866\) 0 0
\(867\) 1418.45 0.0555630
\(868\) 0 0
\(869\) −6687.10 −0.261041
\(870\) 0 0
\(871\) −59936.8 −2.33166
\(872\) 0 0
\(873\) −13584.9 −0.526667
\(874\) 0 0
\(875\) −25375.2 −0.980387
\(876\) 0 0
\(877\) 33239.2 1.27983 0.639913 0.768447i \(-0.278970\pi\)
0.639913 + 0.768447i \(0.278970\pi\)
\(878\) 0 0
\(879\) −27646.8 −1.06087
\(880\) 0 0
\(881\) 29990.7 1.14689 0.573445 0.819244i \(-0.305606\pi\)
0.573445 + 0.819244i \(0.305606\pi\)
\(882\) 0 0
\(883\) −31116.9 −1.18592 −0.592960 0.805232i \(-0.702041\pi\)
−0.592960 + 0.805232i \(0.702041\pi\)
\(884\) 0 0
\(885\) −2849.06 −0.108215
\(886\) 0 0
\(887\) 2202.57 0.0833765 0.0416882 0.999131i \(-0.486726\pi\)
0.0416882 + 0.999131i \(0.486726\pi\)
\(888\) 0 0
\(889\) 9749.71 0.367823
\(890\) 0 0
\(891\) 634.004 0.0238383
\(892\) 0 0
\(893\) −28303.5 −1.06063
\(894\) 0 0
\(895\) −18049.0 −0.674091
\(896\) 0 0
\(897\) −6655.04 −0.247721
\(898\) 0 0
\(899\) −2206.81 −0.0818701
\(900\) 0 0
\(901\) 26289.9 0.972079
\(902\) 0 0
\(903\) −11712.1 −0.431623
\(904\) 0 0
\(905\) 13283.5 0.487909
\(906\) 0 0
\(907\) −25884.4 −0.947606 −0.473803 0.880631i \(-0.657119\pi\)
−0.473803 + 0.880631i \(0.657119\pi\)
\(908\) 0 0
\(909\) −16916.6 −0.617260
\(910\) 0 0
\(911\) 40217.9 1.46265 0.731326 0.682028i \(-0.238902\pi\)
0.731326 + 0.682028i \(0.238902\pi\)
\(912\) 0 0
\(913\) −40830.9 −1.48007
\(914\) 0 0
\(915\) −7719.12 −0.278892
\(916\) 0 0
\(917\) −24690.9 −0.889168
\(918\) 0 0
\(919\) −26633.7 −0.956000 −0.478000 0.878360i \(-0.658638\pi\)
−0.478000 + 0.878360i \(0.658638\pi\)
\(920\) 0 0
\(921\) 32709.8 1.17028
\(922\) 0 0
\(923\) −42955.1 −1.53183
\(924\) 0 0
\(925\) −112.454 −0.00399725
\(926\) 0 0
\(927\) 20733.4 0.734600
\(928\) 0 0
\(929\) −11575.8 −0.408815 −0.204408 0.978886i \(-0.565527\pi\)
−0.204408 + 0.978886i \(0.565527\pi\)
\(930\) 0 0
\(931\) 15900.8 0.559749
\(932\) 0 0
\(933\) −11652.0 −0.408864
\(934\) 0 0
\(935\) −16967.8 −0.593483
\(936\) 0 0
\(937\) −11824.3 −0.412254 −0.206127 0.978525i \(-0.566086\pi\)
−0.206127 + 0.978525i \(0.566086\pi\)
\(938\) 0 0
\(939\) −4242.88 −0.147456
\(940\) 0 0
\(941\) 106.265 0.00368135 0.00184068 0.999998i \(-0.499414\pi\)
0.00184068 + 0.999998i \(0.499414\pi\)
\(942\) 0 0
\(943\) −789.418 −0.0272608
\(944\) 0 0
\(945\) 15919.0 0.547985
\(946\) 0 0
\(947\) 7880.25 0.270405 0.135203 0.990818i \(-0.456831\pi\)
0.135203 + 0.990818i \(0.456831\pi\)
\(948\) 0 0
\(949\) 69463.0 2.37604
\(950\) 0 0
\(951\) −6091.26 −0.207700
\(952\) 0 0
\(953\) 10290.6 0.349784 0.174892 0.984588i \(-0.444042\pi\)
0.174892 + 0.984588i \(0.444042\pi\)
\(954\) 0 0
\(955\) 15346.8 0.520010
\(956\) 0 0
\(957\) 4916.04 0.166053
\(958\) 0 0
\(959\) 35488.1 1.19496
\(960\) 0 0
\(961\) −24377.6 −0.818286
\(962\) 0 0
\(963\) 8361.62 0.279802
\(964\) 0 0
\(965\) −14107.6 −0.470612
\(966\) 0 0
\(967\) −4662.32 −0.155047 −0.0775234 0.996991i \(-0.524701\pi\)
−0.0775234 + 0.996991i \(0.524701\pi\)
\(968\) 0 0
\(969\) 21206.2 0.703034
\(970\) 0 0
\(971\) −6268.19 −0.207164 −0.103582 0.994621i \(-0.533030\pi\)
−0.103582 + 0.994621i \(0.533030\pi\)
\(972\) 0 0
\(973\) −44291.0 −1.45930
\(974\) 0 0
\(975\) −28878.8 −0.948577
\(976\) 0 0
\(977\) −26085.0 −0.854180 −0.427090 0.904209i \(-0.640461\pi\)
−0.427090 + 0.904209i \(0.640461\pi\)
\(978\) 0 0
\(979\) 53332.3 1.74107
\(980\) 0 0
\(981\) 7905.49 0.257291
\(982\) 0 0
\(983\) −54148.4 −1.75693 −0.878467 0.477802i \(-0.841434\pi\)
−0.878467 + 0.477802i \(0.841434\pi\)
\(984\) 0 0
\(985\) 16911.7 0.547058
\(986\) 0 0
\(987\) −21127.3 −0.681348
\(988\) 0 0
\(989\) 3692.92 0.118734
\(990\) 0 0
\(991\) −40567.7 −1.30038 −0.650189 0.759772i \(-0.725310\pi\)
−0.650189 + 0.759772i \(0.725310\pi\)
\(992\) 0 0
\(993\) 26961.9 0.861642
\(994\) 0 0
\(995\) 16016.8 0.510319
\(996\) 0 0
\(997\) 49354.5 1.56778 0.783888 0.620902i \(-0.213234\pi\)
0.783888 + 0.620902i \(0.213234\pi\)
\(998\) 0 0
\(999\) 158.903 0.00503250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 736.4.a.f.1.3 yes 8
4.3 odd 2 736.4.a.e.1.6 8
8.3 odd 2 1472.4.a.bh.1.3 8
8.5 even 2 1472.4.a.bg.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.e.1.6 8 4.3 odd 2
736.4.a.f.1.3 yes 8 1.1 even 1 trivial
1472.4.a.bg.1.6 8 8.5 even 2
1472.4.a.bh.1.3 8 8.3 odd 2