Properties

Label 74.2.f.a.33.1
Level $74$
Weight $2$
Character 74.33
Analytic conductor $0.591$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,2,Mod(7,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 74.f (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.590892974957\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 33.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 74.33
Dual form 74.2.f.a.9.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 + 0.984808i) q^{2} +(0.266044 + 1.50881i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-1.79813 + 1.50881i) q^{5} -1.53209 q^{6} +(1.93969 - 1.62760i) q^{7} +(0.500000 - 0.866025i) q^{8} +(0.613341 - 0.223238i) q^{9} +O(q^{10})\) \(q+(-0.173648 + 0.984808i) q^{2} +(0.266044 + 1.50881i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-1.79813 + 1.50881i) q^{5} -1.53209 q^{6} +(1.93969 - 1.62760i) q^{7} +(0.500000 - 0.866025i) q^{8} +(0.613341 - 0.223238i) q^{9} +(-1.17365 - 2.03282i) q^{10} +(-0.560307 + 0.970481i) q^{11} +(0.266044 - 1.50881i) q^{12} +(1.70574 + 0.620838i) q^{13} +(1.26604 + 2.19285i) q^{14} +(-2.75490 - 2.31164i) q^{15} +(0.766044 + 0.642788i) q^{16} +(2.81908 - 1.02606i) q^{17} +(0.113341 + 0.642788i) q^{18} +(-0.971782 - 5.51125i) q^{19} +(2.20574 - 0.802823i) q^{20} +(2.97178 + 2.49362i) q^{21} +(-0.858441 - 0.720317i) q^{22} +(-4.55303 - 7.88609i) q^{23} +(1.43969 + 0.524005i) q^{24} +(0.0885259 - 0.502055i) q^{25} +(-0.907604 + 1.57202i) q^{26} +(2.79813 + 4.84651i) q^{27} +(-2.37939 + 0.866025i) q^{28} +(-4.52481 + 7.83721i) q^{29} +(2.75490 - 2.31164i) q^{30} -4.53209 q^{31} +(-0.766044 + 0.642788i) q^{32} +(-1.61334 - 0.587208i) q^{33} +(0.520945 + 2.95442i) q^{34} +(-1.03209 + 5.85327i) q^{35} -0.652704 q^{36} +(2.33750 - 5.61570i) q^{37} +5.59627 q^{38} +(-0.482926 + 2.73881i) q^{39} +(0.407604 + 2.31164i) q^{40} +(6.98545 + 2.54250i) q^{41} +(-2.97178 + 2.49362i) q^{42} -8.92902 q^{43} +(0.858441 - 0.720317i) q^{44} +(-0.766044 + 1.32683i) q^{45} +(8.55690 - 3.11446i) q^{46} +(0.194593 + 0.337044i) q^{47} +(-0.766044 + 1.32683i) q^{48} +(-0.102196 + 0.579585i) q^{49} +(0.479055 + 0.174362i) q^{50} +(2.29813 + 3.98048i) q^{51} +(-1.39053 - 1.16679i) q^{52} +(-9.23055 - 7.74535i) q^{53} +(-5.25877 + 1.91404i) q^{54} +(-0.456767 - 2.59045i) q^{55} +(-0.439693 - 2.49362i) q^{56} +(8.05690 - 2.93247i) q^{57} +(-6.93242 - 5.81699i) q^{58} +(6.41534 + 5.38311i) q^{59} +(1.79813 + 3.11446i) q^{60} +(2.45336 + 0.892951i) q^{61} +(0.786989 - 4.46324i) q^{62} +(0.826352 - 1.43128i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-4.00387 + 1.45729i) q^{65} +(0.858441 - 1.48686i) q^{66} +(5.62836 - 4.72275i) q^{67} -3.00000 q^{68} +(10.6873 - 8.96773i) q^{69} +(-5.58512 - 2.03282i) q^{70} +(-0.448311 - 2.54250i) q^{71} +(0.113341 - 0.642788i) q^{72} -0.709141 q^{73} +(5.12449 + 3.27714i) q^{74} +0.781059 q^{75} +(-0.971782 + 5.51125i) q^{76} +(0.492726 + 2.79439i) q^{77} +(-2.61334 - 0.951178i) q^{78} +(3.39646 - 2.84997i) q^{79} -2.34730 q^{80} +(-5.06805 + 4.25260i) q^{81} +(-3.71688 + 6.43783i) q^{82} +(6.81180 - 2.47929i) q^{83} +(-1.93969 - 3.35965i) q^{84} +(-3.52094 + 6.09845i) q^{85} +(1.55051 - 8.79336i) q^{86} +(-13.0287 - 4.74205i) q^{87} +(0.560307 + 0.970481i) q^{88} +(-9.95336 - 8.35186i) q^{89} +(-1.17365 - 0.984808i) q^{90} +(4.31908 - 1.57202i) q^{91} +(1.58125 + 8.96773i) q^{92} +(-1.20574 - 6.83807i) q^{93} +(-0.365715 + 0.133109i) q^{94} +(10.0628 + 8.44372i) q^{95} +(-1.17365 - 0.984808i) q^{96} +(7.34730 + 12.7259i) q^{97} +(-0.553033 - 0.201288i) q^{98} +(-0.127011 + 0.720317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + 3 q^{5} + 6 q^{7} + 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{3} + 3 q^{5} + 6 q^{7} + 3 q^{8} - 3 q^{9} - 6 q^{10} - 9 q^{11} - 3 q^{12} + 3 q^{14} - 18 q^{15} - 6 q^{18} + 9 q^{19} + 3 q^{20} + 3 q^{21} + 3 q^{22} - 15 q^{23} + 3 q^{24} + 21 q^{25} - 9 q^{26} + 3 q^{27} - 3 q^{28} + 18 q^{30} - 18 q^{31} - 3 q^{33} + 3 q^{35} - 6 q^{36} + 9 q^{37} + 6 q^{38} + 18 q^{39} + 6 q^{40} + 6 q^{41} - 3 q^{42} + 12 q^{43} - 3 q^{44} + 15 q^{46} - 3 q^{47} + 6 q^{50} + 9 q^{52} - 18 q^{53} - 9 q^{54} - 18 q^{55} + 3 q^{56} + 12 q^{57} - 18 q^{58} - 6 q^{59} - 3 q^{60} - 12 q^{61} - 3 q^{62} + 6 q^{63} - 3 q^{64} - 3 q^{66} - 3 q^{67} - 18 q^{68} + 42 q^{69} - 12 q^{70} - 6 q^{71} - 6 q^{72} - 36 q^{73} + 18 q^{74} - 30 q^{75} + 9 q^{76} - 15 q^{77} - 9 q^{78} + 30 q^{79} - 12 q^{80} + 12 q^{81} - 6 q^{82} + 6 q^{83} - 6 q^{84} - 18 q^{85} + 12 q^{86} - 27 q^{87} + 9 q^{88} - 33 q^{89} - 6 q^{90} + 9 q^{91} + 12 q^{92} + 3 q^{93} - 12 q^{94} + 51 q^{95} - 6 q^{96} + 42 q^{97} + 9 q^{98} + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 + 0.984808i −0.122788 + 0.696364i
\(3\) 0.266044 + 1.50881i 0.153601 + 0.871114i 0.960054 + 0.279815i \(0.0902733\pi\)
−0.806453 + 0.591298i \(0.798616\pi\)
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) −1.79813 + 1.50881i −0.804150 + 0.674762i −0.949204 0.314662i \(-0.898109\pi\)
0.145054 + 0.989424i \(0.453664\pi\)
\(6\) −1.53209 −0.625473
\(7\) 1.93969 1.62760i 0.733135 0.615173i −0.197849 0.980232i \(-0.563396\pi\)
0.930984 + 0.365059i \(0.118951\pi\)
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) 0.613341 0.223238i 0.204447 0.0744126i
\(10\) −1.17365 2.03282i −0.371140 0.642834i
\(11\) −0.560307 + 0.970481i −0.168939 + 0.292611i −0.938047 0.346508i \(-0.887367\pi\)
0.769108 + 0.639119i \(0.220701\pi\)
\(12\) 0.266044 1.50881i 0.0768004 0.435557i
\(13\) 1.70574 + 0.620838i 0.473086 + 0.172189i 0.567550 0.823339i \(-0.307891\pi\)
−0.0944636 + 0.995528i \(0.530114\pi\)
\(14\) 1.26604 + 2.19285i 0.338365 + 0.586065i
\(15\) −2.75490 2.31164i −0.711312 0.596862i
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) 2.81908 1.02606i 0.683727 0.248856i 0.0232799 0.999729i \(-0.492589\pi\)
0.660447 + 0.750873i \(0.270367\pi\)
\(18\) 0.113341 + 0.642788i 0.0267147 + 0.151506i
\(19\) −0.971782 5.51125i −0.222942 1.26437i −0.866581 0.499037i \(-0.833687\pi\)
0.643639 0.765330i \(-0.277424\pi\)
\(20\) 2.20574 0.802823i 0.493218 0.179517i
\(21\) 2.97178 + 2.49362i 0.648496 + 0.544153i
\(22\) −0.858441 0.720317i −0.183020 0.153572i
\(23\) −4.55303 7.88609i −0.949373 1.64436i −0.746749 0.665106i \(-0.768386\pi\)
−0.202624 0.979257i \(-0.564947\pi\)
\(24\) 1.43969 + 0.524005i 0.293876 + 0.106962i
\(25\) 0.0885259 0.502055i 0.0177052 0.100411i
\(26\) −0.907604 + 1.57202i −0.177996 + 0.308298i
\(27\) 2.79813 + 4.84651i 0.538501 + 0.932711i
\(28\) −2.37939 + 0.866025i −0.449662 + 0.163663i
\(29\) −4.52481 + 7.83721i −0.840237 + 1.45533i 0.0494571 + 0.998776i \(0.484251\pi\)
−0.889694 + 0.456557i \(0.849082\pi\)
\(30\) 2.75490 2.31164i 0.502974 0.422045i
\(31\) −4.53209 −0.813987 −0.406994 0.913431i \(-0.633423\pi\)
−0.406994 + 0.913431i \(0.633423\pi\)
\(32\) −0.766044 + 0.642788i −0.135419 + 0.113630i
\(33\) −1.61334 0.587208i −0.280847 0.102220i
\(34\) 0.520945 + 2.95442i 0.0893413 + 0.506679i
\(35\) −1.03209 + 5.85327i −0.174455 + 0.989383i
\(36\) −0.652704 −0.108784
\(37\) 2.33750 5.61570i 0.384282 0.923216i
\(38\) 5.59627 0.907834
\(39\) −0.482926 + 2.73881i −0.0773300 + 0.438560i
\(40\) 0.407604 + 2.31164i 0.0644478 + 0.365502i
\(41\) 6.98545 + 2.54250i 1.09094 + 0.397071i 0.823971 0.566633i \(-0.191754\pi\)
0.266974 + 0.963704i \(0.413976\pi\)
\(42\) −2.97178 + 2.49362i −0.458556 + 0.384774i
\(43\) −8.92902 −1.36166 −0.680831 0.732441i \(-0.738381\pi\)
−0.680831 + 0.732441i \(0.738381\pi\)
\(44\) 0.858441 0.720317i 0.129415 0.108592i
\(45\) −0.766044 + 1.32683i −0.114195 + 0.197792i
\(46\) 8.55690 3.11446i 1.26165 0.459202i
\(47\) 0.194593 + 0.337044i 0.0283843 + 0.0491630i 0.879869 0.475217i \(-0.157630\pi\)
−0.851484 + 0.524380i \(0.824297\pi\)
\(48\) −0.766044 + 1.32683i −0.110569 + 0.191511i
\(49\) −0.102196 + 0.579585i −0.0145995 + 0.0827978i
\(50\) 0.479055 + 0.174362i 0.0677487 + 0.0246585i
\(51\) 2.29813 + 3.98048i 0.321803 + 0.557379i
\(52\) −1.39053 1.16679i −0.192832 0.161805i
\(53\) −9.23055 7.74535i −1.26791 1.06391i −0.994792 0.101927i \(-0.967499\pi\)
−0.273122 0.961979i \(-0.588056\pi\)
\(54\) −5.25877 + 1.91404i −0.715628 + 0.260467i
\(55\) −0.456767 2.59045i −0.0615904 0.349297i
\(56\) −0.439693 2.49362i −0.0587564 0.333224i
\(57\) 8.05690 2.93247i 1.06716 0.388416i
\(58\) −6.93242 5.81699i −0.910271 0.763808i
\(59\) 6.41534 + 5.38311i 0.835207 + 0.700822i 0.956480 0.291797i \(-0.0942533\pi\)
−0.121273 + 0.992619i \(0.538698\pi\)
\(60\) 1.79813 + 3.11446i 0.232138 + 0.402075i
\(61\) 2.45336 + 0.892951i 0.314121 + 0.114331i 0.494269 0.869309i \(-0.335436\pi\)
−0.180149 + 0.983639i \(0.557658\pi\)
\(62\) 0.786989 4.46324i 0.0999477 0.566832i
\(63\) 0.826352 1.43128i 0.104111 0.180325i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −4.00387 + 1.45729i −0.496619 + 0.180755i
\(66\) 0.858441 1.48686i 0.105667 0.183020i
\(67\) 5.62836 4.72275i 0.687613 0.576976i −0.230607 0.973047i \(-0.574071\pi\)
0.918220 + 0.396071i \(0.129627\pi\)
\(68\) −3.00000 −0.363803
\(69\) 10.6873 8.96773i 1.28660 1.07959i
\(70\) −5.58512 2.03282i −0.667550 0.242968i
\(71\) −0.448311 2.54250i −0.0532047 0.301739i 0.946580 0.322468i \(-0.104512\pi\)
−0.999785 + 0.0207290i \(0.993401\pi\)
\(72\) 0.113341 0.642788i 0.0133573 0.0757532i
\(73\) −0.709141 −0.0829986 −0.0414993 0.999139i \(-0.513213\pi\)
−0.0414993 + 0.999139i \(0.513213\pi\)
\(74\) 5.12449 + 3.27714i 0.595709 + 0.380960i
\(75\) 0.781059 0.0901889
\(76\) −0.971782 + 5.51125i −0.111471 + 0.632183i
\(77\) 0.492726 + 2.79439i 0.0561513 + 0.318450i
\(78\) −2.61334 0.951178i −0.295903 0.107700i
\(79\) 3.39646 2.84997i 0.382132 0.320646i −0.431407 0.902157i \(-0.641983\pi\)
0.813539 + 0.581511i \(0.197538\pi\)
\(80\) −2.34730 −0.262436
\(81\) −5.06805 + 4.25260i −0.563116 + 0.472511i
\(82\) −3.71688 + 6.43783i −0.410461 + 0.710939i
\(83\) 6.81180 2.47929i 0.747693 0.272138i 0.0600581 0.998195i \(-0.480871\pi\)
0.687634 + 0.726057i \(0.258649\pi\)
\(84\) −1.93969 3.35965i −0.211638 0.366567i
\(85\) −3.52094 + 6.09845i −0.381900 + 0.661470i
\(86\) 1.55051 8.79336i 0.167195 0.948213i
\(87\) −13.0287 4.74205i −1.39682 0.508402i
\(88\) 0.560307 + 0.970481i 0.0597290 + 0.103454i
\(89\) −9.95336 8.35186i −1.05505 0.885296i −0.0614384 0.998111i \(-0.519569\pi\)
−0.993616 + 0.112815i \(0.964013\pi\)
\(90\) −1.17365 0.984808i −0.123713 0.103808i
\(91\) 4.31908 1.57202i 0.452762 0.164792i
\(92\) 1.58125 + 8.96773i 0.164857 + 0.934950i
\(93\) −1.20574 6.83807i −0.125029 0.709075i
\(94\) −0.365715 + 0.133109i −0.0377206 + 0.0137292i
\(95\) 10.0628 + 8.44372i 1.03242 + 0.866307i
\(96\) −1.17365 0.984808i −0.119785 0.100512i
\(97\) 7.34730 + 12.7259i 0.746005 + 1.29212i 0.949724 + 0.313089i \(0.101364\pi\)
−0.203719 + 0.979029i \(0.565303\pi\)
\(98\) −0.553033 0.201288i −0.0558648 0.0203331i
\(99\) −0.127011 + 0.720317i −0.0127651 + 0.0723946i
\(100\) −0.254900 + 0.441500i −0.0254900 + 0.0441500i
\(101\) −1.51367 2.62175i −0.150616 0.260874i 0.780838 0.624733i \(-0.214792\pi\)
−0.931454 + 0.363859i \(0.881459\pi\)
\(102\) −4.31908 + 1.57202i −0.427652 + 0.155653i
\(103\) −4.20826 + 7.28893i −0.414653 + 0.718199i −0.995392 0.0958903i \(-0.969430\pi\)
0.580739 + 0.814090i \(0.302764\pi\)
\(104\) 1.39053 1.16679i 0.136353 0.114413i
\(105\) −9.10607 −0.888661
\(106\) 9.23055 7.74535i 0.896550 0.752295i
\(107\) −5.67752 2.06645i −0.548866 0.199771i 0.0526763 0.998612i \(-0.483225\pi\)
−0.601543 + 0.798841i \(0.705447\pi\)
\(108\) −0.971782 5.51125i −0.0935097 0.530320i
\(109\) −3.47906 + 19.7307i −0.333233 + 1.88986i 0.110791 + 0.993844i \(0.464662\pi\)
−0.444024 + 0.896015i \(0.646449\pi\)
\(110\) 2.63041 0.250800
\(111\) 9.09492 + 2.03282i 0.863252 + 0.192947i
\(112\) 2.53209 0.239260
\(113\) −0.442219 + 2.50795i −0.0416004 + 0.235928i −0.998517 0.0544340i \(-0.982665\pi\)
0.956917 + 0.290362i \(0.0937757\pi\)
\(114\) 1.48886 + 8.44372i 0.139444 + 0.790827i
\(115\) 20.0856 + 7.31056i 1.87299 + 0.681713i
\(116\) 6.93242 5.81699i 0.643659 0.540094i
\(117\) 1.18479 0.109534
\(118\) −6.41534 + 5.38311i −0.590580 + 0.495556i
\(119\) 3.79813 6.57856i 0.348174 0.603056i
\(120\) −3.37939 + 1.23000i −0.308494 + 0.112283i
\(121\) 4.87211 + 8.43874i 0.442919 + 0.767159i
\(122\) −1.30541 + 2.26103i −0.118186 + 0.204704i
\(123\) −1.97771 + 11.2162i −0.178324 + 1.01133i
\(124\) 4.25877 + 1.55007i 0.382449 + 0.139200i
\(125\) −5.26991 9.12776i −0.471356 0.816412i
\(126\) 1.26604 + 1.06234i 0.112788 + 0.0946405i
\(127\) −5.38326 4.51709i −0.477687 0.400827i 0.371902 0.928272i \(-0.378706\pi\)
−0.849589 + 0.527445i \(0.823150\pi\)
\(128\) 0.939693 0.342020i 0.0830579 0.0302306i
\(129\) −2.37551 13.4722i −0.209152 1.18616i
\(130\) −0.739885 4.19610i −0.0648922 0.368022i
\(131\) 0.852044 0.310119i 0.0744434 0.0270952i −0.304530 0.952503i \(-0.598499\pi\)
0.378973 + 0.925408i \(0.376277\pi\)
\(132\) 1.31521 + 1.10359i 0.114474 + 0.0960552i
\(133\) −10.8550 9.10846i −0.941251 0.789803i
\(134\) 3.67365 + 6.36295i 0.317355 + 0.549675i
\(135\) −12.3439 4.49281i −1.06239 0.386679i
\(136\) 0.520945 2.95442i 0.0446706 0.253340i
\(137\) −0.979055 + 1.69577i −0.0836464 + 0.144880i −0.904814 0.425808i \(-0.859990\pi\)
0.821167 + 0.570688i \(0.193323\pi\)
\(138\) 6.97565 + 12.0822i 0.593807 + 1.02850i
\(139\) −12.7811 + 4.65193i −1.08408 + 0.394571i −0.821423 0.570319i \(-0.806819\pi\)
−0.262652 + 0.964891i \(0.584597\pi\)
\(140\) 2.97178 5.14728i 0.251161 0.435024i
\(141\) −0.456767 + 0.383273i −0.0384667 + 0.0322774i
\(142\) 2.58172 0.216653
\(143\) −1.55825 + 1.30753i −0.130307 + 0.109341i
\(144\) 0.613341 + 0.223238i 0.0511117 + 0.0186031i
\(145\) −3.68866 20.9194i −0.306327 1.73727i
\(146\) 0.123141 0.698367i 0.0101912 0.0577973i
\(147\) −0.901674 −0.0743688
\(148\) −4.11721 + 4.47756i −0.338433 + 0.368053i
\(149\) −6.73648 −0.551874 −0.275937 0.961176i \(-0.588988\pi\)
−0.275937 + 0.961176i \(0.588988\pi\)
\(150\) −0.135630 + 0.769193i −0.0110741 + 0.0628044i
\(151\) 0.832748 + 4.72275i 0.0677681 + 0.384332i 0.999761 + 0.0218558i \(0.00695748\pi\)
−0.931993 + 0.362476i \(0.881931\pi\)
\(152\) −5.25877 1.91404i −0.426543 0.155249i
\(153\) 1.50000 1.25865i 0.121268 0.101756i
\(154\) −2.83750 −0.228652
\(155\) 8.14930 6.83807i 0.654568 0.549247i
\(156\) 1.39053 2.40847i 0.111331 0.192832i
\(157\) 13.5954 4.94832i 1.08503 0.394919i 0.263253 0.964727i \(-0.415205\pi\)
0.821778 + 0.569808i \(0.192983\pi\)
\(158\) 2.21688 + 3.83975i 0.176366 + 0.305474i
\(159\) 9.23055 15.9878i 0.732030 1.26791i
\(160\) 0.407604 2.31164i 0.0322239 0.182751i
\(161\) −21.6668 7.88609i −1.70759 0.621511i
\(162\) −3.30793 5.72951i −0.259896 0.450153i
\(163\) 7.69846 + 6.45978i 0.602990 + 0.505969i 0.892405 0.451235i \(-0.149016\pi\)
−0.289415 + 0.957204i \(0.593461\pi\)
\(164\) −5.69459 4.77833i −0.444673 0.373125i
\(165\) 3.78699 1.37835i 0.294817 0.107305i
\(166\) 1.25877 + 7.13884i 0.0976995 + 0.554082i
\(167\) 1.81315 + 10.2829i 0.140306 + 0.795713i 0.971017 + 0.239010i \(0.0768228\pi\)
−0.830712 + 0.556703i \(0.812066\pi\)
\(168\) 3.64543 1.32683i 0.281251 0.102367i
\(169\) −7.43448 6.23827i −0.571883 0.479867i
\(170\) −5.39440 4.52644i −0.413732 0.347162i
\(171\) −1.82635 3.16333i −0.139665 0.241906i
\(172\) 8.39053 + 3.05390i 0.639772 + 0.232858i
\(173\) 0.182266 1.03368i 0.0138575 0.0785895i −0.977095 0.212805i \(-0.931740\pi\)
0.990952 + 0.134215i \(0.0428513\pi\)
\(174\) 6.93242 12.0073i 0.525545 0.910271i
\(175\) −0.645430 1.11792i −0.0487899 0.0845066i
\(176\) −1.05303 + 0.383273i −0.0793754 + 0.0288903i
\(177\) −6.41534 + 11.1117i −0.482207 + 0.835207i
\(178\) 9.95336 8.35186i 0.746036 0.625999i
\(179\) 9.15570 0.684329 0.342164 0.939640i \(-0.388840\pi\)
0.342164 + 0.939640i \(0.388840\pi\)
\(180\) 1.17365 0.984808i 0.0874786 0.0734032i
\(181\) 21.2408 + 7.73103i 1.57882 + 0.574643i 0.974947 0.222439i \(-0.0714019\pi\)
0.603871 + 0.797082i \(0.293624\pi\)
\(182\) 0.798133 + 4.52644i 0.0591616 + 0.335522i
\(183\) −0.694593 + 3.93923i −0.0513458 + 0.291196i
\(184\) −9.10607 −0.671308
\(185\) 4.26991 + 13.6246i 0.313930 + 1.00170i
\(186\) 6.94356 0.509127
\(187\) −0.583778 + 3.31077i −0.0426901 + 0.242108i
\(188\) −0.0675813 0.383273i −0.00492888 0.0279530i
\(189\) 13.3157 + 4.84651i 0.968573 + 0.352532i
\(190\) −10.0628 + 8.44372i −0.730035 + 0.612572i
\(191\) −19.1334 −1.38444 −0.692222 0.721684i \(-0.743368\pi\)
−0.692222 + 0.721684i \(0.743368\pi\)
\(192\) 1.17365 0.984808i 0.0847008 0.0710724i
\(193\) 9.50640 16.4656i 0.684285 1.18522i −0.289375 0.957216i \(-0.593448\pi\)
0.973661 0.228001i \(-0.0732191\pi\)
\(194\) −13.8084 + 5.02585i −0.991385 + 0.360835i
\(195\) −3.26399 5.65339i −0.233739 0.404848i
\(196\) 0.294263 0.509678i 0.0210188 0.0364056i
\(197\) 3.20914 18.1999i 0.228642 1.29669i −0.626958 0.779053i \(-0.715700\pi\)
0.855599 0.517639i \(-0.173189\pi\)
\(198\) −0.687319 0.250164i −0.0488456 0.0177784i
\(199\) 2.78699 + 4.82721i 0.197564 + 0.342192i 0.947738 0.319049i \(-0.103364\pi\)
−0.750174 + 0.661241i \(0.770030\pi\)
\(200\) −0.390530 0.327693i −0.0276146 0.0231714i
\(201\) 8.62314 + 7.23567i 0.608229 + 0.510365i
\(202\) 2.84477 1.03541i 0.200157 0.0728513i
\(203\) 3.97906 + 22.5663i 0.279275 + 1.58385i
\(204\) −0.798133 4.52644i −0.0558805 0.316914i
\(205\) −16.3969 + 5.96799i −1.14521 + 0.416823i
\(206\) −6.44743 5.41004i −0.449214 0.376935i
\(207\) −4.55303 3.82045i −0.316458 0.265540i
\(208\) 0.907604 + 1.57202i 0.0629310 + 0.109000i
\(209\) 5.89306 + 2.14490i 0.407631 + 0.148366i
\(210\) 1.58125 8.96773i 0.109117 0.618832i
\(211\) −10.8550 + 18.8015i −0.747292 + 1.29435i 0.201825 + 0.979422i \(0.435313\pi\)
−0.949116 + 0.314925i \(0.898021\pi\)
\(212\) 6.02481 + 10.4353i 0.413786 + 0.716698i
\(213\) 3.71688 1.35283i 0.254677 0.0926947i
\(214\) 3.02094 5.23243i 0.206508 0.357682i
\(215\) 16.0556 13.4722i 1.09498 0.918797i
\(216\) 5.59627 0.380778
\(217\) −8.79086 + 7.37641i −0.596762 + 0.500743i
\(218\) −18.8268 6.85240i −1.27511 0.464103i
\(219\) −0.188663 1.06996i −0.0127487 0.0723012i
\(220\) −0.456767 + 2.59045i −0.0307952 + 0.174648i
\(221\) 5.44562 0.366312
\(222\) −3.58125 + 8.60375i −0.240358 + 0.577446i
\(223\) −10.1429 −0.679219 −0.339610 0.940567i \(-0.610295\pi\)
−0.339610 + 0.940567i \(0.610295\pi\)
\(224\) −0.439693 + 2.49362i −0.0293782 + 0.166612i
\(225\) −0.0577812 0.327693i −0.00385208 0.0218462i
\(226\) −2.39306 0.871001i −0.159184 0.0579381i
\(227\) −3.34524 + 2.80699i −0.222031 + 0.186306i −0.747017 0.664804i \(-0.768515\pi\)
0.524986 + 0.851111i \(0.324070\pi\)
\(228\) −8.57398 −0.567826
\(229\) −9.01889 + 7.56774i −0.595985 + 0.500091i −0.890152 0.455663i \(-0.849402\pi\)
0.294167 + 0.955754i \(0.404958\pi\)
\(230\) −10.6873 + 18.5110i −0.704701 + 1.22058i
\(231\) −4.08512 + 1.48686i −0.268781 + 0.0978284i
\(232\) 4.52481 + 7.83721i 0.297069 + 0.514538i
\(233\) −8.13816 + 14.0957i −0.533148 + 0.923440i 0.466102 + 0.884731i \(0.345658\pi\)
−0.999251 + 0.0387091i \(0.987675\pi\)
\(234\) −0.205737 + 1.16679i −0.0134495 + 0.0762756i
\(235\) −0.858441 0.312447i −0.0559985 0.0203818i
\(236\) −4.18732 7.25265i −0.272571 0.472107i
\(237\) 5.20368 + 4.36640i 0.338015 + 0.283628i
\(238\) 5.81908 + 4.88279i 0.377195 + 0.316504i
\(239\) 14.6493 5.33191i 0.947584 0.344893i 0.178428 0.983953i \(-0.442899\pi\)
0.769157 + 0.639060i \(0.220677\pi\)
\(240\) −0.624485 3.54163i −0.0403103 0.228611i
\(241\) −0.151826 0.861050i −0.00977999 0.0554651i 0.979527 0.201312i \(-0.0645205\pi\)
−0.989307 + 0.145847i \(0.953409\pi\)
\(242\) −9.15657 + 3.33272i −0.588607 + 0.214235i
\(243\) 5.09627 + 4.27628i 0.326926 + 0.274323i
\(244\) −2.00000 1.67820i −0.128037 0.107436i
\(245\) −0.690722 1.19637i −0.0441286 0.0764330i
\(246\) −10.7023 3.89533i −0.682356 0.248357i
\(247\) 1.76399 10.0041i 0.112240 0.636543i
\(248\) −2.26604 + 3.92490i −0.143894 + 0.249232i
\(249\) 5.55303 + 9.61814i 0.351909 + 0.609525i
\(250\) 9.90420 3.60483i 0.626397 0.227990i
\(251\) 1.26991 2.19956i 0.0801563 0.138835i −0.823161 0.567809i \(-0.807791\pi\)
0.903317 + 0.428974i \(0.141125\pi\)
\(252\) −1.26604 + 1.06234i −0.0797533 + 0.0669210i
\(253\) 10.2044 0.641545
\(254\) 5.38326 4.51709i 0.337775 0.283427i
\(255\) −10.1382 3.68999i −0.634876 0.231076i
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) 2.89187 16.4006i 0.180390 1.02304i −0.751346 0.659908i \(-0.770595\pi\)
0.931736 0.363135i \(-0.118294\pi\)
\(258\) 13.6800 0.851682
\(259\) −4.60607 14.6972i −0.286207 0.913242i
\(260\) 4.26083 0.264245
\(261\) −1.02569 + 5.81699i −0.0634888 + 0.360063i
\(262\) 0.157451 + 0.892951i 0.00972738 + 0.0551667i
\(263\) 6.14068 + 2.23503i 0.378651 + 0.137818i 0.524332 0.851514i \(-0.324315\pi\)
−0.145681 + 0.989332i \(0.546537\pi\)
\(264\) −1.31521 + 1.10359i −0.0809454 + 0.0679213i
\(265\) 28.2841 1.73748
\(266\) 10.8550 9.10846i 0.665565 0.558475i
\(267\) 9.95336 17.2397i 0.609136 1.05505i
\(268\) −6.90420 + 2.51292i −0.421741 + 0.153501i
\(269\) 4.42902 + 7.67128i 0.270042 + 0.467726i 0.968872 0.247561i \(-0.0796291\pi\)
−0.698830 + 0.715287i \(0.746296\pi\)
\(270\) 6.56805 11.3762i 0.399719 0.692333i
\(271\) 1.64930 9.35365i 0.100188 0.568194i −0.892846 0.450362i \(-0.851295\pi\)
0.993034 0.117831i \(-0.0375941\pi\)
\(272\) 2.81908 + 1.02606i 0.170932 + 0.0622141i
\(273\) 3.52094 + 6.09845i 0.213097 + 0.369095i
\(274\) −1.50000 1.25865i −0.0906183 0.0760378i
\(275\) 0.437633 + 0.367218i 0.0263903 + 0.0221441i
\(276\) −13.1099 + 4.77163i −0.789125 + 0.287218i
\(277\) −5.11040 28.9825i −0.307054 1.74139i −0.613674 0.789560i \(-0.710309\pi\)
0.306619 0.951832i \(-0.400802\pi\)
\(278\) −2.36184 13.3947i −0.141654 0.803360i
\(279\) −2.77972 + 1.01173i −0.166417 + 0.0605709i
\(280\) 4.55303 + 3.82045i 0.272096 + 0.228315i
\(281\) 4.54323 + 3.81223i 0.271027 + 0.227418i 0.768163 0.640254i \(-0.221171\pi\)
−0.497137 + 0.867672i \(0.665615\pi\)
\(282\) −0.298133 0.516382i −0.0177536 0.0307501i
\(283\) −21.2062 7.71843i −1.26058 0.458813i −0.376615 0.926370i \(-0.622912\pi\)
−0.883963 + 0.467557i \(0.845134\pi\)
\(284\) −0.448311 + 2.54250i −0.0266023 + 0.150869i
\(285\) −10.0628 + 17.4293i −0.596071 + 1.03242i
\(286\) −1.01707 1.76162i −0.0601409 0.104167i
\(287\) 17.6878 6.43783i 1.04408 0.380013i
\(288\) −0.326352 + 0.565258i −0.0192305 + 0.0333081i
\(289\) −6.12836 + 5.14230i −0.360492 + 0.302488i
\(290\) 21.2422 1.24738
\(291\) −17.2463 + 14.4713i −1.01099 + 0.848325i
\(292\) 0.666374 + 0.242540i 0.0389966 + 0.0141936i
\(293\) −0.705737 4.00243i −0.0412296 0.233825i 0.957229 0.289333i \(-0.0934333\pi\)
−0.998458 + 0.0555078i \(0.982322\pi\)
\(294\) 0.156574 0.887975i 0.00913158 0.0517878i
\(295\) −19.6578 −1.14452
\(296\) −3.69459 4.83218i −0.214744 0.280865i
\(297\) −6.27126 −0.363895
\(298\) 1.16978 6.63414i 0.0677634 0.384305i
\(299\) −2.87030 16.2783i −0.165994 0.941397i
\(300\) −0.733956 0.267138i −0.0423749 0.0154232i
\(301\) −17.3195 + 14.5328i −0.998282 + 0.837658i
\(302\) −4.79561 −0.275956
\(303\) 3.55303 2.98135i 0.204116 0.171274i
\(304\) 2.79813 4.84651i 0.160484 0.277966i
\(305\) −5.75877 + 2.09602i −0.329746 + 0.120018i
\(306\) 0.979055 + 1.69577i 0.0559689 + 0.0969409i
\(307\) 5.59240 9.68631i 0.319175 0.552827i −0.661141 0.750261i \(-0.729928\pi\)
0.980316 + 0.197434i \(0.0632609\pi\)
\(308\) 0.492726 2.79439i 0.0280757 0.159225i
\(309\) −12.1172 4.41030i −0.689324 0.250893i
\(310\) 5.31908 + 9.21291i 0.302103 + 0.523258i
\(311\) 6.32501 + 5.30731i 0.358658 + 0.300950i 0.804256 0.594283i \(-0.202564\pi\)
−0.445597 + 0.895233i \(0.647009\pi\)
\(312\) 2.13041 + 1.78763i 0.120611 + 0.101205i
\(313\) 11.0633 4.02671i 0.625335 0.227603i −0.00986477 0.999951i \(-0.503140\pi\)
0.635199 + 0.772348i \(0.280918\pi\)
\(314\) 2.51233 + 14.2481i 0.141779 + 0.804067i
\(315\) 0.673648 + 3.82045i 0.0379558 + 0.215258i
\(316\) −4.16637 + 1.51644i −0.234377 + 0.0853062i
\(317\) 10.1441 + 8.51190i 0.569749 + 0.478076i 0.881562 0.472067i \(-0.156492\pi\)
−0.311814 + 0.950143i \(0.600937\pi\)
\(318\) 14.1420 + 11.8666i 0.793045 + 0.665444i
\(319\) −5.07057 8.78249i −0.283898 0.491725i
\(320\) 2.20574 + 0.802823i 0.123304 + 0.0448791i
\(321\) 1.60741 9.11608i 0.0897169 0.508810i
\(322\) 11.5287 19.9683i 0.642469 1.11279i
\(323\) −8.39440 14.5395i −0.467077 0.809001i
\(324\) 6.21688 2.26276i 0.345382 0.125709i
\(325\) 0.462697 0.801414i 0.0256658 0.0444544i
\(326\) −7.69846 + 6.45978i −0.426378 + 0.357774i
\(327\) −30.6955 −1.69747
\(328\) 5.69459 4.77833i 0.314431 0.263839i
\(329\) 0.926022 + 0.337044i 0.0510532 + 0.0185819i
\(330\) 0.699807 + 3.96880i 0.0385231 + 0.218475i
\(331\) 4.26217 24.1720i 0.234270 1.32861i −0.609875 0.792498i \(-0.708780\pi\)
0.844145 0.536115i \(-0.180109\pi\)
\(332\) −7.24897 −0.397839
\(333\) 0.180045 3.96616i 0.00986639 0.217344i
\(334\) −10.4415 −0.571334
\(335\) −2.99479 + 16.9843i −0.163623 + 0.927950i
\(336\) 0.673648 + 3.82045i 0.0367505 + 0.208423i
\(337\) −11.3576 4.13381i −0.618686 0.225183i 0.0136136 0.999907i \(-0.495667\pi\)
−0.632299 + 0.774724i \(0.717889\pi\)
\(338\) 7.43448 6.23827i 0.404382 0.339317i
\(339\) −3.90167 −0.211910
\(340\) 5.39440 4.52644i 0.292552 0.245481i
\(341\) 2.53936 4.39831i 0.137514 0.238182i
\(342\) 3.43242 1.24930i 0.185604 0.0675543i
\(343\) 9.60741 + 16.6405i 0.518751 + 0.898504i
\(344\) −4.46451 + 7.73275i −0.240710 + 0.416922i
\(345\) −5.68660 + 32.2503i −0.306156 + 1.73630i
\(346\) 0.986329 + 0.358995i 0.0530254 + 0.0192997i
\(347\) 0.904200 + 1.56612i 0.0485400 + 0.0840738i 0.889275 0.457374i \(-0.151210\pi\)
−0.840735 + 0.541447i \(0.817876\pi\)
\(348\) 10.6211 + 8.91215i 0.569350 + 0.477741i
\(349\) 3.95677 + 3.32012i 0.211801 + 0.177722i 0.742516 0.669828i \(-0.233632\pi\)
−0.530715 + 0.847550i \(0.678077\pi\)
\(350\) 1.21301 0.441500i 0.0648382 0.0235992i
\(351\) 1.76399 + 10.0041i 0.0941546 + 0.533977i
\(352\) −0.194593 1.10359i −0.0103718 0.0588216i
\(353\) 29.1570 10.6123i 1.55187 0.564835i 0.583017 0.812460i \(-0.301872\pi\)
0.968856 + 0.247625i \(0.0796500\pi\)
\(354\) −9.82888 8.24741i −0.522399 0.438345i
\(355\) 4.64227 + 3.89533i 0.246386 + 0.206743i
\(356\) 6.49660 + 11.2524i 0.344319 + 0.596378i
\(357\) 10.9363 + 3.98048i 0.578810 + 0.210670i
\(358\) −1.58987 + 9.01660i −0.0840272 + 0.476542i
\(359\) −1.51367 + 2.62175i −0.0798885 + 0.138371i −0.903202 0.429216i \(-0.858790\pi\)
0.823313 + 0.567587i \(0.192123\pi\)
\(360\) 0.766044 + 1.32683i 0.0403741 + 0.0699300i
\(361\) −11.5753 + 4.21307i −0.609227 + 0.221741i
\(362\) −11.3020 + 19.5756i −0.594020 + 1.02887i
\(363\) −11.4363 + 9.59619i −0.600250 + 0.503669i
\(364\) −4.59627 −0.240910
\(365\) 1.27513 1.06996i 0.0667433 0.0560043i
\(366\) −3.75877 1.36808i −0.196474 0.0715107i
\(367\) 4.82651 + 27.3725i 0.251942 + 1.42883i 0.803802 + 0.594897i \(0.202807\pi\)
−0.551860 + 0.833937i \(0.686082\pi\)
\(368\) 1.58125 8.96773i 0.0824285 0.467475i
\(369\) 4.85204 0.252587
\(370\) −14.1591 + 1.83915i −0.736097 + 0.0956131i
\(371\) −30.5107 −1.58404
\(372\) −1.20574 + 6.83807i −0.0625146 + 0.354538i
\(373\) 0.898681 + 5.09667i 0.0465319 + 0.263896i 0.999194 0.0401346i \(-0.0127787\pi\)
−0.952662 + 0.304030i \(0.901668\pi\)
\(374\) −3.15910 1.14982i −0.163353 0.0594557i
\(375\) 12.3701 10.3797i 0.638787 0.536006i
\(376\) 0.389185 0.0200707
\(377\) −12.5838 + 10.5590i −0.648098 + 0.543818i
\(378\) −7.08512 + 12.2718i −0.364419 + 0.631193i
\(379\) 19.8195 7.21372i 1.01806 0.370544i 0.221538 0.975152i \(-0.428892\pi\)
0.796523 + 0.604608i \(0.206670\pi\)
\(380\) −6.56805 11.3762i −0.336934 0.583586i
\(381\) 5.38326 9.32407i 0.275793 0.477687i
\(382\) 3.32248 18.8427i 0.169993 0.964078i
\(383\) 36.6771 + 13.3494i 1.87411 + 0.682121i 0.962658 + 0.270721i \(0.0872621\pi\)
0.911455 + 0.411400i \(0.134960\pi\)
\(384\) 0.766044 + 1.32683i 0.0390920 + 0.0677094i
\(385\) −5.10220 4.28125i −0.260032 0.218193i
\(386\) 14.5646 + 12.2212i 0.741321 + 0.622042i
\(387\) −5.47653 + 1.99329i −0.278388 + 0.101325i
\(388\) −2.55169 14.4713i −0.129542 0.734671i
\(389\) 2.78312 + 15.7838i 0.141110 + 0.800273i 0.970409 + 0.241468i \(0.0776289\pi\)
−0.829299 + 0.558805i \(0.811260\pi\)
\(390\) 6.13429 2.23270i 0.310622 0.113057i
\(391\) −20.9270 17.5598i −1.05832 0.888037i
\(392\) 0.450837 + 0.378297i 0.0227707 + 0.0191069i
\(393\) 0.694593 + 1.20307i 0.0350376 + 0.0606868i
\(394\) 17.3662 + 6.32077i 0.874896 + 0.318436i
\(395\) −1.80722 + 10.2492i −0.0909310 + 0.515695i
\(396\) 0.365715 0.633436i 0.0183779 0.0318314i
\(397\) −7.32042 12.6793i −0.367401 0.636358i 0.621757 0.783210i \(-0.286419\pi\)
−0.989158 + 0.146852i \(0.953086\pi\)
\(398\) −5.23783 + 1.90641i −0.262548 + 0.0955598i
\(399\) 10.8550 18.8015i 0.543432 0.941251i
\(400\) 0.390530 0.327693i 0.0195265 0.0163847i
\(401\) 11.8075 0.589637 0.294818 0.955553i \(-0.404741\pi\)
0.294818 + 0.955553i \(0.404741\pi\)
\(402\) −8.62314 + 7.23567i −0.430083 + 0.360883i
\(403\) −7.73055 2.81369i −0.385086 0.140160i
\(404\) 0.525692 + 2.98135i 0.0261542 + 0.148328i
\(405\) 2.69665 15.2935i 0.133998 0.759939i
\(406\) −22.9145 −1.13723
\(407\) 4.14022 + 5.41501i 0.205223 + 0.268412i
\(408\) 4.59627 0.227549
\(409\) 0.975652 5.53320i 0.0482429 0.273599i −0.951139 0.308764i \(-0.900085\pi\)
0.999382 + 0.0351652i \(0.0111957\pi\)
\(410\) −3.03003 17.1842i −0.149642 0.848665i
\(411\) −2.81908 1.02606i −0.139055 0.0506118i
\(412\) 6.44743 5.41004i 0.317642 0.266533i
\(413\) 21.2053 1.04345
\(414\) 4.55303 3.82045i 0.223769 0.187765i
\(415\) −8.50774 + 14.7358i −0.417629 + 0.723354i
\(416\) −1.70574 + 0.620838i −0.0836306 + 0.0304391i
\(417\) −10.4192 18.0466i −0.510231 0.883746i
\(418\) −3.13563 + 5.43107i −0.153369 + 0.265642i
\(419\) −1.76171 + 9.99114i −0.0860650 + 0.488099i 0.911057 + 0.412281i \(0.135268\pi\)
−0.997122 + 0.0758179i \(0.975843\pi\)
\(420\) 8.55690 + 3.11446i 0.417534 + 0.151970i
\(421\) −5.48158 9.49438i −0.267156 0.462728i 0.700970 0.713190i \(-0.252751\pi\)
−0.968126 + 0.250463i \(0.919417\pi\)
\(422\) −16.6309 13.9550i −0.809579 0.679317i
\(423\) 0.194593 + 0.163283i 0.00946142 + 0.00793908i
\(424\) −11.3229 + 4.12122i −0.549891 + 0.200144i
\(425\) −0.265578 1.50617i −0.0128824 0.0730598i
\(426\) 0.686852 + 3.89533i 0.0332781 + 0.188729i
\(427\) 6.21213 2.26103i 0.300626 0.109419i
\(428\) 4.62836 + 3.88365i 0.223720 + 0.187723i
\(429\) −2.38737 2.00324i −0.115264 0.0967176i
\(430\) 10.4795 + 18.1511i 0.505367 + 0.875322i
\(431\) −4.80066 1.74730i −0.231240 0.0841643i 0.223802 0.974635i \(-0.428153\pi\)
−0.455041 + 0.890470i \(0.650375\pi\)
\(432\) −0.971782 + 5.51125i −0.0467549 + 0.265160i
\(433\) 13.8712 24.0257i 0.666609 1.15460i −0.312237 0.950004i \(-0.601078\pi\)
0.978846 0.204596i \(-0.0655882\pi\)
\(434\) −5.73783 9.93821i −0.275424 0.477049i
\(435\) 30.5822 11.1310i 1.46630 0.533691i
\(436\) 10.0175 17.3509i 0.479753 0.830957i
\(437\) −39.0376 + 32.7564i −1.86742 + 1.56695i
\(438\) 1.08647 0.0519134
\(439\) −22.3214 + 18.7298i −1.06534 + 0.893927i −0.994622 0.103570i \(-0.966973\pi\)
−0.0707180 + 0.997496i \(0.522529\pi\)
\(440\) −2.47178 0.899655i −0.117838 0.0428894i
\(441\) 0.0667040 + 0.378297i 0.00317638 + 0.0180141i
\(442\) −0.945622 + 5.36289i −0.0449787 + 0.255087i
\(443\) 6.97864 0.331565 0.165783 0.986162i \(-0.446985\pi\)
0.165783 + 0.986162i \(0.446985\pi\)
\(444\) −7.85117 5.02087i −0.372600 0.238280i
\(445\) 30.4989 1.44579
\(446\) 1.76130 9.98881i 0.0833998 0.472984i
\(447\) −1.79220 10.1641i −0.0847683 0.480745i
\(448\) −2.37939 0.866025i −0.112415 0.0409159i
\(449\) 13.9834 11.7335i 0.659917 0.553736i −0.250145 0.968208i \(-0.580478\pi\)
0.910062 + 0.414472i \(0.136034\pi\)
\(450\) 0.332748 0.0156859
\(451\) −6.38144 + 5.35467i −0.300490 + 0.252141i
\(452\) 1.27332 2.20545i 0.0598919 0.103736i
\(453\) −6.90420 + 2.51292i −0.324388 + 0.118067i
\(454\) −2.18345 3.78184i −0.102474 0.177491i
\(455\) −5.39440 + 9.34337i −0.252893 + 0.438024i
\(456\) 1.48886 8.44372i 0.0697221 0.395413i
\(457\) 21.4209 + 7.79656i 1.00203 + 0.364708i 0.790365 0.612636i \(-0.209891\pi\)
0.211660 + 0.977343i \(0.432113\pi\)
\(458\) −5.88666 10.1960i −0.275066 0.476427i
\(459\) 12.8610 + 10.7916i 0.600299 + 0.503710i
\(460\) −16.3739 13.7394i −0.763438 0.640601i
\(461\) −8.17277 + 2.97465i −0.380644 + 0.138543i −0.525254 0.850946i \(-0.676030\pi\)
0.144610 + 0.989489i \(0.453807\pi\)
\(462\) −0.754900 4.28125i −0.0351211 0.199182i
\(463\) 0.592701 + 3.36137i 0.0275451 + 0.156216i 0.995478 0.0949930i \(-0.0302829\pi\)
−0.967933 + 0.251209i \(0.919172\pi\)
\(464\) −8.50387 + 3.09516i −0.394782 + 0.143689i
\(465\) 12.4855 + 10.4765i 0.578999 + 0.485838i
\(466\) −12.4684 10.4622i −0.577586 0.484653i
\(467\) −18.3170 31.7260i −0.847611 1.46810i −0.883335 0.468743i \(-0.844707\pi\)
0.0357242 0.999362i \(-0.488626\pi\)
\(468\) −1.11334 0.405223i −0.0514642 0.0187314i
\(469\) 3.23055 18.3214i 0.149173 0.846002i
\(470\) 0.456767 0.791143i 0.0210691 0.0364927i
\(471\) 11.0831 + 19.1964i 0.510681 + 0.884525i
\(472\) 7.86959 2.86429i 0.362227 0.131840i
\(473\) 5.00299 8.66544i 0.230038 0.398437i
\(474\) −5.20368 + 4.36640i −0.239013 + 0.200556i
\(475\) −2.85298 −0.130904
\(476\) −5.81908 + 4.88279i −0.266717 + 0.223802i
\(477\) −7.39053 2.68993i −0.338389 0.123164i
\(478\) 2.70708 + 15.3526i 0.123819 + 0.702213i
\(479\) −3.57832 + 20.2936i −0.163497 + 0.927240i 0.787103 + 0.616822i \(0.211580\pi\)
−0.950600 + 0.310418i \(0.899531\pi\)
\(480\) 3.59627 0.164146
\(481\) 7.47359 8.12771i 0.340766 0.370592i
\(482\) 0.874333 0.0398248
\(483\) 6.13429 34.7893i 0.279120 1.58297i
\(484\) −1.69207 9.59619i −0.0769121 0.436190i
\(485\) −32.4124 11.7972i −1.47177 0.535681i
\(486\) −5.09627 + 4.27628i −0.231171 + 0.193976i
\(487\) 42.2867 1.91620 0.958098 0.286442i \(-0.0924726\pi\)
0.958098 + 0.286442i \(0.0924726\pi\)
\(488\) 2.00000 1.67820i 0.0905357 0.0759685i
\(489\) −7.69846 + 13.3341i −0.348137 + 0.602990i
\(490\) 1.29813 0.472482i 0.0586437 0.0213446i
\(491\) −16.5560 28.6759i −0.747163 1.29412i −0.949177 0.314742i \(-0.898082\pi\)
0.202014 0.979383i \(-0.435251\pi\)
\(492\) 5.69459 9.86332i 0.256732 0.444673i
\(493\) −4.71436 + 26.7364i −0.212324 + 1.20415i
\(494\) 9.54576 + 3.47437i 0.429484 + 0.156319i
\(495\) −0.858441 1.48686i −0.0385840 0.0668295i
\(496\) −3.47178 2.91317i −0.155888 0.130805i
\(497\) −5.00774 4.20199i −0.224628 0.188485i
\(498\) −10.4363 + 3.79850i −0.467661 + 0.170215i
\(499\) −1.73577 9.84402i −0.0777036 0.440679i −0.998694 0.0510934i \(-0.983729\pi\)
0.920990 0.389586i \(-0.127382\pi\)
\(500\) 1.83022 + 10.3797i 0.0818500 + 0.464195i
\(501\) −15.0326 + 5.47140i −0.671605 + 0.244444i
\(502\) 1.94562 + 1.63257i 0.0868374 + 0.0728652i
\(503\) 25.5023 + 21.3990i 1.13709 + 0.954132i 0.999340 0.0363348i \(-0.0115683\pi\)
0.137751 + 0.990467i \(0.456013\pi\)
\(504\) −0.826352 1.43128i −0.0368086 0.0637544i
\(505\) 6.67752 + 2.43042i 0.297146 + 0.108152i
\(506\) −1.77197 + 10.0494i −0.0787739 + 0.446749i
\(507\) 7.43448 12.8769i 0.330177 0.571883i
\(508\) 3.51367 + 6.08586i 0.155894 + 0.270016i
\(509\) −19.3751 + 7.05196i −0.858786 + 0.312573i −0.733617 0.679563i \(-0.762170\pi\)
−0.125169 + 0.992135i \(0.539947\pi\)
\(510\) 5.39440 9.34337i 0.238868 0.413732i
\(511\) −1.37551 + 1.15419i −0.0608492 + 0.0510585i
\(512\) −1.00000 −0.0441942
\(513\) 23.9911 20.1310i 1.05923 0.888803i
\(514\) 15.6493 + 5.69588i 0.690261 + 0.251234i
\(515\) −3.43061 19.4559i −0.151171 0.857331i
\(516\) −2.37551 + 13.4722i −0.104576 + 0.593081i
\(517\) −0.436127 −0.0191808
\(518\) 15.2738 1.98394i 0.671092 0.0871694i
\(519\) 1.60813 0.0705889
\(520\) −0.739885 + 4.19610i −0.0324461 + 0.184011i
\(521\) −4.53121 25.6978i −0.198516 1.12584i −0.907322 0.420437i \(-0.861877\pi\)
0.708806 0.705404i \(-0.249234\pi\)
\(522\) −5.55051 2.02022i −0.242939 0.0884226i
\(523\) 1.10535 0.927500i 0.0483337 0.0405567i −0.618301 0.785942i \(-0.712179\pi\)
0.666634 + 0.745385i \(0.267734\pi\)
\(524\) −0.906726 −0.0396105
\(525\) 1.51501 1.27125i 0.0661207 0.0554818i
\(526\) −3.26739 + 5.65928i −0.142465 + 0.246756i
\(527\) −12.7763 + 4.65020i −0.556545 + 0.202566i
\(528\) −0.858441 1.48686i −0.0373588 0.0647074i
\(529\) −29.9602 + 51.8926i −1.30262 + 2.25620i
\(530\) −4.91147 + 27.8544i −0.213341 + 1.20992i
\(531\) 5.13651 + 1.86954i 0.222905 + 0.0811309i
\(532\) 7.08512 + 12.2718i 0.307179 + 0.532050i
\(533\) 10.3369 + 8.67366i 0.447739 + 0.375698i
\(534\) 15.2494 + 12.7958i 0.659908 + 0.553728i
\(535\) 13.3268 4.85057i 0.576169 0.209708i
\(536\) −1.27584 7.23567i −0.0551081 0.312534i
\(537\) 2.43582 + 13.8142i 0.105113 + 0.596128i
\(538\) −8.32383 + 3.02962i −0.358866 + 0.130616i
\(539\) −0.505215 0.423925i −0.0217611 0.0182598i
\(540\) 10.0628 + 8.44372i 0.433035 + 0.363360i
\(541\) 2.72921 + 4.72713i 0.117338 + 0.203235i 0.918712 0.394929i \(-0.129231\pi\)
−0.801374 + 0.598164i \(0.795897\pi\)
\(542\) 8.92514 + 3.24849i 0.383368 + 0.139534i
\(543\) −6.01367 + 34.1052i −0.258071 + 1.46360i
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) −23.5141 40.7277i −1.00723 1.74458i
\(546\) −6.61721 + 2.40847i −0.283190 + 0.103073i
\(547\) −20.1086 + 34.8291i −0.859781 + 1.48918i 0.0123559 + 0.999924i \(0.496067\pi\)
−0.872137 + 0.489261i \(0.837266\pi\)
\(548\) 1.50000 1.25865i 0.0640768 0.0537668i
\(549\) 1.70409 0.0727287
\(550\) −0.437633 + 0.367218i −0.0186607 + 0.0156582i
\(551\) 47.5899 + 17.3213i 2.02740 + 0.737913i
\(552\) −2.42262 13.7394i −0.103113 0.584786i
\(553\) 1.94949 11.0561i 0.0829009 0.470154i
\(554\) 29.4296 1.25035
\(555\) −19.4210 + 10.0673i −0.824377 + 0.427331i
\(556\) 13.6013 0.576824
\(557\) −3.06640 + 17.3904i −0.129928 + 0.736856i 0.848331 + 0.529466i \(0.177608\pi\)
−0.978259 + 0.207389i \(0.933503\pi\)
\(558\) −0.513671 2.91317i −0.0217454 0.123324i
\(559\) −15.2306 5.54347i −0.644184 0.234464i
\(560\) −4.55303 + 3.82045i −0.192401 + 0.161443i
\(561\) −5.15064 −0.217460
\(562\) −4.54323 + 3.81223i −0.191645 + 0.160809i
\(563\) −1.15523 + 2.00092i −0.0486871 + 0.0843286i −0.889342 0.457243i \(-0.848837\pi\)
0.840655 + 0.541571i \(0.182170\pi\)
\(564\) 0.560307 0.203935i 0.0235932 0.00858722i
\(565\) −2.98886 5.17685i −0.125742 0.217792i
\(566\) 11.2836 19.5437i 0.474284 0.821485i
\(567\) −2.90895 + 16.4975i −0.122164 + 0.692828i
\(568\) −2.42602 0.883000i −0.101794 0.0370498i
\(569\) 0.141559 + 0.245188i 0.00593447 + 0.0102788i 0.868977 0.494852i \(-0.164778\pi\)
−0.863043 + 0.505131i \(0.831444\pi\)
\(570\) −15.4172 12.9365i −0.645754 0.541852i
\(571\) −8.40420 7.05196i −0.351705 0.295115i 0.449769 0.893145i \(-0.351506\pi\)
−0.801474 + 0.598029i \(0.795951\pi\)
\(572\) 1.91147 0.695720i 0.0799227 0.0290895i
\(573\) −5.09034 28.8687i −0.212652 1.20601i
\(574\) 3.26857 + 18.5370i 0.136428 + 0.773719i
\(575\) −4.36231 + 1.58775i −0.181921 + 0.0662138i
\(576\) −0.500000 0.419550i −0.0208333 0.0174812i
\(577\) −12.1382 10.1851i −0.505318 0.424012i 0.354160 0.935185i \(-0.384767\pi\)
−0.859478 + 0.511173i \(0.829211\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 27.3726 + 9.96280i 1.13757 + 0.414040i
\(580\) −3.68866 + 20.9194i −0.153163 + 0.868633i
\(581\) 9.17752 15.8959i 0.380748 0.659474i
\(582\) −11.2567 19.4972i −0.466606 0.808185i
\(583\) 12.6887 4.61830i 0.525511 0.191270i
\(584\) −0.354570 + 0.614134i −0.0146722 + 0.0254130i
\(585\) −2.13041 + 1.78763i −0.0880818 + 0.0739094i
\(586\) 4.06418 0.167890
\(587\) −14.2947 + 11.9947i −0.590007 + 0.495074i −0.888216 0.459426i \(-0.848055\pi\)
0.298209 + 0.954500i \(0.403611\pi\)
\(588\) 0.847296 + 0.308391i 0.0349419 + 0.0127178i
\(589\) 4.40420 + 24.9775i 0.181472 + 1.02918i
\(590\) 3.41353 19.3591i 0.140533 0.797002i
\(591\) 28.3141 1.16469
\(592\) 5.40033 2.79936i 0.221952 0.115053i
\(593\) −39.4329 −1.61932 −0.809658 0.586901i \(-0.800348\pi\)
−0.809658 + 0.586901i \(0.800348\pi\)
\(594\) 1.08899 6.17598i 0.0446819 0.253404i
\(595\) 3.09627 + 17.5598i 0.126935 + 0.719882i
\(596\) 6.33022 + 2.30401i 0.259296 + 0.0943760i
\(597\) −6.54189 + 5.48930i −0.267742 + 0.224662i
\(598\) 16.5294 0.675937
\(599\) 5.35710 4.49514i 0.218885 0.183666i −0.526751 0.850019i \(-0.676590\pi\)
0.745636 + 0.666353i \(0.232146\pi\)
\(600\) 0.390530 0.676417i 0.0159433 0.0276146i
\(601\) −33.7301 + 12.2768i −1.37588 + 0.500780i −0.920927 0.389735i \(-0.872567\pi\)
−0.454954 + 0.890515i \(0.650344\pi\)
\(602\) −11.3045 19.5800i −0.460738 0.798022i
\(603\) 2.39780 4.15312i 0.0976461 0.169128i
\(604\) 0.832748 4.72275i 0.0338841 0.192166i
\(605\) −21.4932 7.82288i −0.873823 0.318045i
\(606\) 2.31908 + 4.01676i 0.0942061 + 0.163170i
\(607\) 8.60788 + 7.22287i 0.349383 + 0.293167i 0.800542 0.599276i \(-0.204545\pi\)
−0.451159 + 0.892443i \(0.648989\pi\)
\(608\) 4.28699 + 3.59721i 0.173860 + 0.145886i
\(609\) −32.9898 + 12.0073i −1.33681 + 0.486560i
\(610\) −1.06418 6.03525i −0.0430873 0.244360i
\(611\) 0.122674 + 0.695720i 0.00496286 + 0.0281458i
\(612\) −1.84002 + 0.669713i −0.0743785 + 0.0270716i
\(613\) 0.735767 + 0.617381i 0.0297173 + 0.0249358i 0.657525 0.753432i \(-0.271603\pi\)
−0.627808 + 0.778368i \(0.716048\pi\)
\(614\) 8.56805 + 7.18945i 0.345778 + 0.290142i
\(615\) −13.3669 23.1521i −0.539005 0.933585i
\(616\) 2.66637 + 0.970481i 0.107431 + 0.0391018i
\(617\) −3.71641 + 21.0768i −0.149617 + 0.848521i 0.813926 + 0.580969i \(0.197326\pi\)
−0.963543 + 0.267553i \(0.913785\pi\)
\(618\) 6.44743 11.1673i 0.259354 0.449214i
\(619\) −5.72550 9.91686i −0.230127 0.398592i 0.727718 0.685876i \(-0.240581\pi\)
−0.957845 + 0.287284i \(0.907248\pi\)
\(620\) −9.99660 + 3.63846i −0.401473 + 0.146124i
\(621\) 25.4800 44.1326i 1.02248 1.77098i
\(622\) −6.32501 + 5.30731i −0.253610 + 0.212804i
\(623\) −32.8999 −1.31811
\(624\) −2.13041 + 1.78763i −0.0852849 + 0.0715625i
\(625\) 25.6434 + 9.33342i 1.02573 + 0.373337i
\(626\) 2.04442 + 11.5945i 0.0817113 + 0.463408i
\(627\) −1.66843 + 9.46216i −0.0666308 + 0.377882i
\(628\) −14.4679 −0.577333
\(629\) 0.827534 18.2295i 0.0329959 0.726858i
\(630\) −3.87939 −0.154558
\(631\) 8.35710 47.3954i 0.332691 1.88678i −0.116247 0.993220i \(-0.537087\pi\)
0.448938 0.893563i \(-0.351802\pi\)
\(632\) −0.769915 4.36640i −0.0306256 0.173686i
\(633\) −31.2558 11.3762i −1.24231 0.452163i
\(634\) −10.1441 + 8.51190i −0.402873 + 0.338051i
\(635\) 16.4953 0.654594
\(636\) −14.1420 + 11.8666i −0.560768 + 0.470540i
\(637\) −0.534148 + 0.925172i −0.0211637 + 0.0366566i
\(638\) 9.52956 3.46848i 0.377279 0.137318i
\(639\) −0.842549 1.45934i −0.0333307 0.0577305i
\(640\) −1.17365 + 2.03282i −0.0463925 + 0.0803542i
\(641\) 5.53121 31.3691i 0.218470 1.23900i −0.656313 0.754488i \(-0.727885\pi\)
0.874783 0.484515i \(-0.161004\pi\)
\(642\) 8.69846 + 3.16598i 0.343301 + 0.124951i
\(643\) −11.2897 19.5543i −0.445221 0.771146i 0.552846 0.833283i \(-0.313542\pi\)
−0.998068 + 0.0621372i \(0.980208\pi\)
\(644\) 17.6630 + 14.8210i 0.696019 + 0.584029i
\(645\) 24.5985 + 20.6406i 0.968567 + 0.812724i
\(646\) 15.7763 5.74211i 0.620711 0.225920i
\(647\) 5.12954 + 29.0911i 0.201663 + 1.14369i 0.902605 + 0.430469i \(0.141652\pi\)
−0.700942 + 0.713218i \(0.747237\pi\)
\(648\) 1.14883 + 6.51536i 0.0451304 + 0.255947i
\(649\) −8.81877 + 3.20977i −0.346167 + 0.125995i
\(650\) 0.708892 + 0.594831i 0.0278050 + 0.0233312i
\(651\) −13.4684 11.3013i −0.527867 0.442933i
\(652\) −5.02481 8.70323i −0.196787 0.340845i
\(653\) 8.71600 + 3.17237i 0.341084 + 0.124144i 0.506882 0.862015i \(-0.330798\pi\)
−0.165799 + 0.986160i \(0.553020\pi\)
\(654\) 5.33022 30.2292i 0.208428 1.18205i
\(655\) −1.06418 + 1.84321i −0.0415809 + 0.0720202i
\(656\) 3.71688 + 6.43783i 0.145120 + 0.251355i
\(657\) −0.434945 + 0.158307i −0.0169688 + 0.00617614i
\(658\) −0.492726 + 0.853427i −0.0192085 + 0.0332700i
\(659\) 20.8418 17.4884i 0.811883 0.681250i −0.139174 0.990268i \(-0.544445\pi\)
0.951056 + 0.309018i \(0.100000\pi\)
\(660\) −4.03003 −0.156869
\(661\) 8.43763 7.08001i 0.328186 0.275381i −0.463774 0.885953i \(-0.653505\pi\)
0.791960 + 0.610573i \(0.209061\pi\)
\(662\) 23.0646 + 8.39484i 0.896433 + 0.326275i
\(663\) 1.44878 + 8.21643i 0.0562659 + 0.319100i
\(664\) 1.25877 7.13884i 0.0488498 0.277041i
\(665\) 33.2618 1.28984
\(666\) 3.87464 + 0.866025i 0.150139 + 0.0335578i
\(667\) 82.4065 3.19079
\(668\) 1.81315 10.2829i 0.0701528 0.397856i
\(669\) −2.69846 15.3037i −0.104329 0.591677i
\(670\) −16.2062 5.89858i −0.626100 0.227882i
\(671\) −2.24123 + 1.88061i −0.0865217 + 0.0726003i
\(672\) −3.87939 −0.149651
\(673\) 10.1141 8.48670i 0.389868 0.327138i −0.426694 0.904396i \(-0.640322\pi\)
0.816562 + 0.577258i \(0.195877\pi\)
\(674\) 6.04323 10.4672i 0.232777 0.403181i
\(675\) 2.68092 0.975776i 0.103189 0.0375576i
\(676\) 4.85251 + 8.40480i 0.186635 + 0.323261i
\(677\) 17.7763 30.7895i 0.683199 1.18334i −0.290800 0.956784i \(-0.593921\pi\)
0.973999 0.226552i \(-0.0727452\pi\)
\(678\) 0.677519 3.84240i 0.0260199 0.147566i
\(679\) 34.9641 + 12.7259i 1.34180 + 0.488375i
\(680\) 3.52094 + 6.09845i 0.135022 + 0.233865i
\(681\) −5.12520 4.30055i −0.196398 0.164798i
\(682\) 3.89053 + 3.26454i 0.148976 + 0.125006i
\(683\) −30.8756 + 11.2378i −1.18142 + 0.430002i −0.856704 0.515809i \(-0.827491\pi\)
−0.324717 + 0.945811i \(0.605269\pi\)
\(684\) 0.634285 + 3.59721i 0.0242525 + 0.137543i
\(685\) −0.798133 4.52644i −0.0304951 0.172946i
\(686\) −18.0560 + 6.57186i −0.689382 + 0.250915i
\(687\) −13.8177 11.5945i −0.527179 0.442356i
\(688\) −6.84002 5.73946i −0.260773 0.218815i
\(689\) −10.9363 18.9422i −0.416639 0.721641i
\(690\) −30.7729 11.2004i −1.17150 0.426393i
\(691\) −7.38089 + 41.8591i −0.280782 + 1.59240i 0.439191 + 0.898394i \(0.355265\pi\)
−0.719973 + 0.694002i \(0.755846\pi\)
\(692\) −0.524815 + 0.909006i −0.0199505 + 0.0345552i
\(693\) 0.926022 + 1.60392i 0.0351767 + 0.0609278i
\(694\) −1.69934 + 0.618509i −0.0645061 + 0.0234783i
\(695\) 15.9632 27.6490i 0.605517 1.04879i
\(696\) −10.6211 + 8.91215i −0.402591 + 0.337814i
\(697\) 22.3013 0.844722
\(698\) −3.95677 + 3.32012i −0.149766 + 0.125668i
\(699\) −23.4329 8.52887i −0.886313 0.322592i
\(700\) 0.224155 + 1.27125i 0.00847228 + 0.0480487i
\(701\) −2.88161 + 16.3424i −0.108837 + 0.617244i 0.880781 + 0.473523i \(0.157018\pi\)
−0.989618 + 0.143721i \(0.954093\pi\)
\(702\) −10.1584 −0.383404
\(703\) −33.2211 7.42528i −1.25296 0.280050i
\(704\) 1.12061 0.0422348
\(705\) 0.243041 1.37835i 0.00915344 0.0519117i
\(706\) 5.38800 + 30.5569i 0.202780 + 1.15002i
\(707\) −7.20321 2.62175i −0.270905 0.0986012i
\(708\) 9.82888 8.24741i 0.369392 0.309957i
\(709\) 5.68779 0.213609 0.106805 0.994280i \(-0.465938\pi\)
0.106805 + 0.994280i \(0.465938\pi\)
\(710\) −4.64227 + 3.89533i −0.174221 + 0.146189i
\(711\) 1.44697 2.50622i 0.0542655 0.0939906i
\(712\) −12.2096 + 4.44393i −0.457574 + 0.166543i
\(713\) 20.6348 + 35.7404i 0.772778 + 1.33849i
\(714\) −5.81908 + 10.0789i −0.217774 + 0.377195i
\(715\) 0.829126 4.70221i 0.0310076 0.175853i
\(716\) −8.60354 3.13143i −0.321529 0.117027i
\(717\) 11.9422 + 20.6845i 0.445990 + 0.772478i
\(718\) −2.31908 1.94594i −0.0865472 0.0726217i
\(719\) 9.21735 + 7.73427i 0.343749 + 0.288440i 0.798274 0.602294i \(-0.205747\pi\)
−0.454525 + 0.890734i \(0.650191\pi\)
\(720\) −1.43969 + 0.524005i −0.0536542 + 0.0195285i
\(721\) 3.70068 + 20.9876i 0.137821 + 0.781620i
\(722\) −2.13903 12.1311i −0.0796066 0.451471i
\(723\) 1.25877 0.458155i 0.0468142 0.0170390i
\(724\) −17.3157 14.5296i −0.643532 0.539987i
\(725\) 3.53415 + 2.96550i 0.131255 + 0.110136i
\(726\) −7.46451 12.9289i −0.277034 0.479837i
\(727\) −25.5898 9.31391i −0.949072 0.345434i −0.179330 0.983789i \(-0.557393\pi\)
−0.769742 + 0.638355i \(0.779615\pi\)
\(728\) 0.798133 4.52644i 0.0295808 0.167761i
\(729\) −15.0201 + 26.0155i −0.556299 + 0.963538i
\(730\) 0.832282 + 1.44155i 0.0308041 + 0.0533543i
\(731\) −25.1716 + 9.16171i −0.931005 + 0.338858i
\(732\) 2.00000 3.46410i 0.0739221 0.128037i
\(733\) −16.2324 + 13.6206i −0.599556 + 0.503087i −0.891303 0.453408i \(-0.850208\pi\)
0.291747 + 0.956496i \(0.405764\pi\)
\(734\) −27.7948 −1.02592
\(735\) 1.62133 1.36046i 0.0598037 0.0501812i
\(736\) 8.55690 + 3.11446i 0.315412 + 0.114800i
\(737\) 1.42973 + 8.10840i 0.0526648 + 0.298677i
\(738\) −0.842549 + 4.77833i −0.0310146 + 0.175893i
\(739\) −30.6195 −1.12636 −0.563178 0.826336i \(-0.690421\pi\)
−0.563178 + 0.826336i \(0.690421\pi\)
\(740\) 0.647489 14.2634i 0.0238022 0.524331i
\(741\) 15.5635 0.571741
\(742\) 5.29813 30.0472i 0.194501 1.10307i
\(743\) −2.98798 16.9457i −0.109618 0.621676i −0.989275 0.146067i \(-0.953339\pi\)
0.879656 0.475610i \(-0.157772\pi\)
\(744\) −6.52481 2.37484i −0.239211 0.0870658i
\(745\) 12.1131 10.1641i 0.443789 0.372383i
\(746\) −5.17530 −0.189481
\(747\) 3.62449 3.04130i 0.132613 0.111275i
\(748\) 1.68092 2.91144i 0.0614606 0.106453i
\(749\) −14.3760 + 5.23243i −0.525287 + 0.191189i
\(750\) 8.07398 + 13.9845i 0.294820 + 0.510643i
\(751\) 13.7506 23.8168i 0.501767 0.869086i −0.498231 0.867045i \(-0.666017\pi\)
0.999998 0.00204181i \(-0.000649930\pi\)
\(752\) −0.0675813 + 0.383273i −0.00246444 + 0.0139765i
\(753\) 3.65657 + 1.33088i 0.133253 + 0.0485001i
\(754\) −8.21348 14.2262i −0.299117 0.518086i
\(755\) −8.62314 7.23567i −0.313828 0.263333i
\(756\) −10.8550 9.10846i −0.394794 0.331271i
\(757\) −18.0753 + 6.57888i −0.656959 + 0.239113i −0.648923 0.760854i \(-0.724780\pi\)
−0.00803598 + 0.999968i \(0.502558\pi\)
\(758\) 3.66250 + 20.7711i 0.133028 + 0.754440i
\(759\) 2.71482 + 15.3965i 0.0985418 + 0.558858i
\(760\) 12.3439 4.49281i 0.447760 0.162971i
\(761\) 30.1313 + 25.2832i 1.09226 + 0.916515i 0.996881 0.0789255i \(-0.0251489\pi\)
0.0953800 + 0.995441i \(0.469593\pi\)
\(762\) 8.24763 + 6.92058i 0.298780 + 0.250706i
\(763\) 25.3653 + 43.9340i 0.918286 + 1.59052i
\(764\) 17.9795 + 6.54401i 0.650476 + 0.236754i
\(765\) −0.798133 + 4.52644i −0.0288566 + 0.163654i
\(766\) −19.5155 + 33.8018i −0.705123 + 1.22131i
\(767\) 7.60085 + 13.1651i 0.274451 + 0.475363i
\(768\) −1.43969 + 0.524005i −0.0519504 + 0.0189084i
\(769\) −6.48087 + 11.2252i −0.233706 + 0.404791i −0.958896 0.283758i \(-0.908419\pi\)
0.725190 + 0.688549i \(0.241752\pi\)
\(770\) 5.10220 4.28125i 0.183870 0.154286i
\(771\) 25.5149 0.918895
\(772\) −14.5646 + 12.2212i −0.524193 + 0.439850i
\(773\) −11.1878 4.07202i −0.402397 0.146460i 0.132890 0.991131i \(-0.457574\pi\)
−0.535287 + 0.844670i \(0.679796\pi\)
\(774\) −1.01202 5.73946i −0.0363764 0.206301i
\(775\) −0.401207 + 2.27536i −0.0144118 + 0.0817333i
\(776\) 14.6946 0.527505
\(777\) 20.9500 10.8598i 0.751576 0.389594i
\(778\) −16.0273 −0.574608
\(779\) 7.22399 40.9693i 0.258826 1.46788i
\(780\) 1.13357 + 6.42880i 0.0405883 + 0.230188i
\(781\) 2.71864 + 0.989503i 0.0972804 + 0.0354072i
\(782\) 20.9270 17.5598i 0.748346 0.627937i
\(783\) −50.6441 −1.80987
\(784\) −0.450837 + 0.378297i −0.0161013 + 0.0135106i
\(785\) −16.9802 + 29.4106i −0.606051 + 1.04971i
\(786\) −1.30541 + 0.475129i −0.0465623 + 0.0169473i
\(787\) −10.4618 18.1204i −0.372924 0.645923i 0.617090 0.786892i \(-0.288311\pi\)
−0.990014 + 0.140970i \(0.954978\pi\)
\(788\) −9.24035 + 16.0048i −0.329174 + 0.570146i
\(789\) −1.73854 + 9.85976i −0.0618937 + 0.351017i
\(790\) −9.77972 3.55953i −0.347947 0.126642i
\(791\) 3.22416 + 5.58440i 0.114638 + 0.198558i
\(792\) 0.560307 + 0.470154i 0.0199097 + 0.0167062i
\(793\) 3.63041 + 3.04628i 0.128920 + 0.108177i
\(794\) 13.7579 5.00746i 0.488249 0.177708i
\(795\) 7.52481 + 42.6753i 0.266878 + 1.51354i
\(796\) −0.967911 5.48930i −0.0343067 0.194563i
\(797\) 3.67752 1.33851i 0.130264 0.0474124i −0.276065 0.961139i \(-0.589031\pi\)
0.406330 + 0.913726i \(0.366808\pi\)
\(798\) 16.6309 + 13.9550i 0.588727 + 0.494000i
\(799\) 0.894400 + 0.750491i 0.0316416 + 0.0265505i
\(800\) 0.254900 + 0.441500i 0.00901208 + 0.0156094i
\(801\) −7.96926 2.90057i −0.281580 0.102487i
\(802\) −2.05035 + 11.6281i −0.0724002 + 0.410602i
\(803\) 0.397337 0.688207i 0.0140217 0.0242863i
\(804\) −5.62836 9.74860i −0.198497 0.343807i
\(805\) 50.8585 18.5110i 1.79253 0.652426i
\(806\) 4.11334 7.12452i 0.144886 0.250950i
\(807\) −10.3962 + 8.72346i −0.365964 + 0.307080i
\(808\) −3.02734 −0.106501
\(809\) 11.5921 9.72697i 0.407558 0.341982i −0.415848 0.909434i \(-0.636515\pi\)
0.823406 + 0.567452i \(0.192071\pi\)
\(810\) 14.5929 + 5.31137i 0.512741 + 0.186622i
\(811\) 6.99629 + 39.6779i 0.245673 + 1.39328i 0.818924 + 0.573901i \(0.194571\pi\)
−0.573251 + 0.819380i \(0.694318\pi\)
\(812\) 3.97906 22.5663i 0.139637 0.791923i
\(813\) 14.5517 0.510350
\(814\) −6.05169 + 3.13701i −0.212112 + 0.109952i
\(815\) −23.5895 −0.826303
\(816\) −0.798133 + 4.52644i −0.0279403 + 0.158457i
\(817\) 8.67705 + 49.2100i 0.303572 + 1.72164i
\(818\) 5.27972 + 1.92166i 0.184601 + 0.0671892i
\(819\) 2.29813 1.92836i 0.0803033 0.0673825i
\(820\) 17.4492 0.609354
\(821\) 19.4008 16.2792i 0.677092 0.568148i −0.238063 0.971250i \(-0.576512\pi\)
0.915155 + 0.403102i \(0.132068\pi\)
\(822\) 1.50000 2.59808i 0.0523185 0.0906183i
\(823\) −26.7212 + 9.72573i −0.931443 + 0.339018i −0.762781 0.646656i \(-0.776167\pi\)
−0.168662 + 0.985674i \(0.553945\pi\)
\(824\) 4.20826 + 7.28893i 0.146602 + 0.253922i
\(825\) −0.437633 + 0.758003i −0.0152364 + 0.0263903i
\(826\) −3.68227 + 20.8832i −0.128122 + 0.726618i
\(827\) −2.64068 0.961130i −0.0918255 0.0334218i 0.295699 0.955281i \(-0.404447\pi\)
−0.387524 + 0.921859i \(0.626670\pi\)
\(828\) 2.97178 + 5.14728i 0.103277 + 0.178880i
\(829\) −15.2585 12.8034i −0.529950 0.444681i 0.338134 0.941098i \(-0.390204\pi\)
−0.868084 + 0.496417i \(0.834649\pi\)
\(830\) −13.0346 10.9373i −0.452438 0.379641i
\(831\) 42.3696 15.4213i 1.46979 0.534959i
\(832\) −0.315207 1.78763i −0.0109279 0.0619749i
\(833\) 0.306589 + 1.73875i 0.0106227 + 0.0602443i
\(834\) 19.5817 7.12716i 0.678059 0.246793i
\(835\) −18.7752 15.7543i −0.649743 0.545199i
\(836\) −4.80406 4.03109i −0.166152 0.139418i
\(837\) −12.6814 21.9648i −0.438333 0.759215i
\(838\) −9.53343 3.46989i −0.329327 0.119865i
\(839\) 6.48726 36.7911i 0.223965 1.27017i −0.640688 0.767801i \(-0.721351\pi\)
0.864654 0.502369i \(-0.167538\pi\)
\(840\) −4.55303 + 7.88609i −0.157095 + 0.272096i
\(841\) −26.4479 45.8091i −0.911997 1.57962i
\(842\) 10.3020 3.74962i 0.355030 0.129221i
\(843\) −4.54323 + 7.86911i −0.156477 + 0.271027i
\(844\) 16.6309 13.9550i 0.572459 0.480350i
\(845\) 22.7806 0.783675
\(846\) −0.194593 + 0.163283i −0.00669024 + 0.00561377i
\(847\) 23.1853 + 8.43874i 0.796655 + 0.289959i
\(848\) −2.09240 11.8666i −0.0718532 0.407500i
\(849\) 6.00387 34.0496i 0.206052 1.16858i
\(850\) 1.52940 0.0524580
\(851\) −54.9286 + 7.13479i −1.88293 + 0.244577i
\(852\) −3.95542 −0.135511
\(853\) 3.87227 21.9608i 0.132584 0.751922i −0.843928 0.536457i \(-0.819762\pi\)
0.976512 0.215465i \(-0.0691266\pi\)
\(854\) 1.14796 + 6.51038i 0.0392822 + 0.222781i
\(855\) 8.05690 + 2.93247i 0.275540 + 0.100288i
\(856\) −4.62836 + 3.88365i −0.158194 + 0.132740i
\(857\) −18.2817 −0.624491 −0.312245 0.950002i \(-0.601081\pi\)
−0.312245 + 0.950002i \(0.601081\pi\)
\(858\) 2.38737 2.00324i 0.0815036 0.0683897i
\(859\) 7.59358 13.1525i 0.259090 0.448756i −0.706909 0.707305i \(-0.749911\pi\)
0.965998 + 0.258549i \(0.0832442\pi\)
\(860\) −19.6951 + 7.16842i −0.671596 + 0.244441i
\(861\) 14.4192 + 24.9748i 0.491406 + 0.851139i
\(862\) 2.55438 4.42431i 0.0870024 0.150693i
\(863\) 0.353855 2.00681i 0.0120454 0.0683127i −0.978193 0.207700i \(-0.933402\pi\)
0.990238 + 0.139387i \(0.0445133\pi\)
\(864\) −5.25877 1.91404i −0.178907 0.0651168i
\(865\) 1.23190 + 2.13371i 0.0418857 + 0.0725482i
\(866\) 21.2520 + 17.8325i 0.722171 + 0.605974i
\(867\) −9.38919 7.87846i −0.318873 0.267567i
\(868\) 10.7836 3.92490i 0.366019 0.133220i
\(869\) 0.862778 + 4.89306i 0.0292677 + 0.165986i
\(870\) 5.65136 + 32.0505i 0.191599 + 1.08661i
\(871\) 12.5326 4.56148i 0.424649 0.154560i
\(872\) 15.3478 + 12.8783i 0.519741 + 0.436114i
\(873\) 7.34730 + 6.16511i 0.248668 + 0.208657i
\(874\) −25.4800 44.1326i −0.861873 1.49281i
\(875\) −25.0783 9.12776i −0.847802 0.308575i
\(876\) −0.188663 + 1.06996i −0.00637433 + 0.0361506i
\(877\) −1.13445 + 1.96492i −0.0383076 + 0.0663507i −0.884544 0.466458i \(-0.845530\pi\)
0.846236 + 0.532808i \(0.178863\pi\)
\(878\) −14.5692 25.2346i −0.491688 0.851628i
\(879\) 5.85117 2.12965i 0.197355 0.0718313i
\(880\) 1.31521 2.27801i 0.0443356 0.0767916i
\(881\) 23.1616 19.4349i 0.780335 0.654779i −0.162998 0.986626i \(-0.552116\pi\)
0.943333 + 0.331848i \(0.107672\pi\)
\(882\) −0.384133 −0.0129344
\(883\) −1.65136 + 1.38566i −0.0555727 + 0.0466310i −0.670151 0.742225i \(-0.733771\pi\)
0.614578 + 0.788856i \(0.289326\pi\)
\(884\) −5.11721 1.86251i −0.172110 0.0626431i
\(885\) −5.22984 29.6599i −0.175799 0.997006i
\(886\) −1.21183 + 6.87262i −0.0407122 + 0.230890i
\(887\) −30.0387 −1.00860 −0.504300 0.863528i \(-0.668250\pi\)
−0.504300 + 0.863528i \(0.668250\pi\)
\(888\) 6.30793 6.86002i 0.211680 0.230207i
\(889\) −17.7939 −0.596787
\(890\) −5.29607 + 30.0355i −0.177525 + 1.00679i
\(891\) −1.28740 7.30121i −0.0431295 0.244600i
\(892\) 9.53121 + 3.46908i 0.319129 + 0.116153i
\(893\) 1.66843 1.39998i 0.0558320 0.0468486i
\(894\) 10.3209 0.345182
\(895\) −16.4632 + 13.8142i −0.550303 + 0.461759i
\(896\) 1.26604 2.19285i 0.0422956 0.0732581i
\(897\) 23.7973 8.66149i 0.794567 0.289199i
\(898\) 9.12701 + 15.8084i 0.304572 + 0.527535i
\(899\) 20.5069 35.5189i 0.683942 1.18462i
\(900\) −0.0577812 + 0.327693i −0.00192604 + 0.0109231i
\(901\) −33.9688 12.3636i −1.13167 0.411893i
\(902\) −4.16519 7.21432i −0.138686 0.240211i
\(903\) −26.5351 22.2656i −0.883032 0.740952i
\(904\) 1.95084 + 1.63695i 0.0648839 + 0.0544440i
\(905\) −49.8585 + 18.1470i −1.65735 + 0.603227i
\(906\) −1.27584 7.23567i −0.0423871 0.240389i
\(907\) −0.218474 1.23903i −0.00725431 0.0411412i 0.980966 0.194181i \(-0.0622049\pi\)
−0.988220 + 0.153040i \(0.951094\pi\)
\(908\) 4.10354 1.49357i 0.136181 0.0495657i
\(909\) −1.51367 1.27012i −0.0502053 0.0421272i
\(910\) −8.26470 6.93491i −0.273972 0.229890i
\(911\) 22.8371 + 39.5550i 0.756626 + 1.31052i 0.944562 + 0.328334i \(0.106487\pi\)
−0.187935 + 0.982181i \(0.560180\pi\)
\(912\) 8.05690 + 2.93247i 0.266791 + 0.0971039i
\(913\) −1.41060 + 7.99989i −0.0466839 + 0.264758i
\(914\) −11.3978 + 19.7416i −0.377006 + 0.652993i
\(915\) −4.69459 8.13127i −0.155198 0.268812i
\(916\) 11.0633 4.02671i 0.365542 0.133046i
\(917\) 1.14796 1.98832i 0.0379088 0.0656600i
\(918\) −12.8610 + 10.7916i −0.424475 + 0.356177i
\(919\) −12.5006 −0.412358 −0.206179 0.978514i \(-0.566103\pi\)
−0.206179 + 0.978514i \(0.566103\pi\)
\(920\) 16.3739 13.7394i 0.539832 0.452973i
\(921\) 16.1027 + 5.86089i 0.530601 + 0.193123i
\(922\) −1.51027 8.56515i −0.0497380 0.282078i
\(923\) 0.813777 4.61516i 0.0267858 0.151910i
\(924\) 4.34730 0.143016
\(925\) −2.61246 1.67069i −0.0858973 0.0549318i
\(926\) −3.41323 −0.112166
\(927\) −0.953936 + 5.41004i −0.0313314 + 0.177689i
\(928\) −1.57145 8.91215i −0.0515854 0.292556i
\(929\) −14.8769 5.41473i −0.488094 0.177652i 0.0862374 0.996275i \(-0.472516\pi\)
−0.574331 + 0.818623i \(0.694738\pi\)
\(930\) −12.4855 + 10.4765i −0.409414 + 0.343539i
\(931\) 3.29355 0.107942
\(932\) 12.4684 10.4622i 0.408415 0.342701i
\(933\) −6.32501 + 10.9552i −0.207071 + 0.358658i
\(934\) 34.4247 12.5296i 1.12641 0.409980i
\(935\) −3.94562 6.83402i −0.129036 0.223496i
\(936\) 0.592396 1.02606i 0.0193631 0.0335378i
\(937\) 7.32454 41.5395i 0.239282 1.35704i −0.594123 0.804375i \(-0.702501\pi\)
0.833405 0.552663i \(-0.186388\pi\)
\(938\) 17.4820 + 6.36295i 0.570809 + 0.207758i
\(939\) 9.01889 + 15.6212i 0.294320 + 0.509778i
\(940\) 0.699807 + 0.587208i 0.0228252 + 0.0191526i
\(941\) 40.3469 + 33.8551i 1.31527 + 1.10364i 0.987285 + 0.158961i \(0.0508143\pi\)
0.327986 + 0.944683i \(0.393630\pi\)
\(942\) −20.8293 + 7.58126i −0.678657 + 0.247011i
\(943\) −11.7547 66.6639i −0.382784 2.17088i
\(944\) 1.45424 + 8.24741i 0.0473315 + 0.268430i
\(945\) −31.2558 + 11.3762i −1.01675 + 0.370068i
\(946\) 7.66503 + 6.43172i 0.249212 + 0.209113i
\(947\) 3.45929 + 2.90269i 0.112412 + 0.0943248i 0.697261 0.716817i \(-0.254402\pi\)
−0.584849 + 0.811142i \(0.698846\pi\)
\(948\) −3.39646 5.88284i −0.110312 0.191066i
\(949\) −1.20961 0.440261i −0.0392655 0.0142915i
\(950\) 0.495414 2.80963i 0.0160734 0.0911566i
\(951\) −10.1441 + 17.5701i −0.328945 + 0.569749i
\(952\) −3.79813 6.57856i −0.123098 0.213212i
\(953\) −44.1715 + 16.0771i −1.43085 + 0.520789i −0.937176 0.348856i \(-0.886570\pi\)
−0.493678 + 0.869645i \(0.664348\pi\)
\(954\) 3.93242 6.81115i 0.127317 0.220519i
\(955\) 34.4044 28.8687i 1.11330 0.934170i
\(956\) −15.5895 −0.504199
\(957\) 11.9021 9.98708i 0.384742 0.322837i
\(958\) −19.3640 7.04791i −0.625621 0.227707i
\(959\) 0.860967 + 4.88279i 0.0278021 + 0.157673i
\(960\) −0.624485 + 3.54163i −0.0201552 + 0.114306i
\(961\) −10.4602 −0.337425
\(962\) 6.70645 + 8.77141i 0.216225 + 0.282802i
\(963\) −3.94356 −0.127080
\(964\) −0.151826 + 0.861050i −0.00489000 + 0.0277325i
\(965\) 7.74969 + 43.9507i 0.249471 + 1.41482i
\(966\) 33.1955 + 12.0822i 1.06805 + 0.388738i
\(967\) 0.149548 0.125486i 0.00480915 0.00403536i −0.640380 0.768058i \(-0.721223\pi\)
0.645189 + 0.764023i \(0.276779\pi\)
\(968\) 9.74422 0.313191
\(969\) 19.7041 16.5337i 0.632988 0.531140i
\(970\) 17.2463 29.8714i 0.553745 0.959114i
\(971\) −0.752679 + 0.273953i −0.0241546 + 0.00879156i −0.354069 0.935219i \(-0.615202\pi\)
0.329915 + 0.944011i \(0.392980\pi\)
\(972\) −3.32635 5.76141i −0.106693 0.184797i
\(973\) −17.2199 + 29.8257i −0.552044 + 0.956168i
\(974\) −7.34302 + 41.6443i −0.235285 + 1.33437i
\(975\) 1.33228 + 0.484911i 0.0426672 + 0.0155296i
\(976\) 1.30541 + 2.26103i 0.0417851 + 0.0723739i
\(977\) −12.6438 10.6094i −0.404512 0.339426i 0.417722 0.908575i \(-0.362828\pi\)
−0.822235 + 0.569149i \(0.807273\pi\)
\(978\) −11.7947 9.89695i −0.377154 0.316470i
\(979\) 13.6823 4.97994i 0.437287 0.159159i
\(980\) 0.239885 + 1.36046i 0.00766286 + 0.0434582i
\(981\) 2.27079 + 12.8783i 0.0725008 + 0.411173i
\(982\) 31.1152 11.3250i 0.992924 0.361395i
\(983\) −22.4466 18.8349i −0.715934 0.600740i 0.210323 0.977632i \(-0.432548\pi\)
−0.926257 + 0.376892i \(0.876993\pi\)
\(984\) 8.72462 + 7.32083i 0.278131 + 0.233379i
\(985\) 21.6898 + 37.5679i 0.691096 + 1.19701i
\(986\) −25.5116 9.28547i −0.812455 0.295710i
\(987\) −0.262174 + 1.48686i −0.00834509 + 0.0473274i
\(988\) −5.07919 + 8.79742i −0.161591 + 0.279883i
\(989\) 40.6541 + 70.4150i 1.29273 + 2.23907i
\(990\) 1.61334 0.587208i 0.0512753 0.0186627i
\(991\) 6.89393 11.9406i 0.218993 0.379307i −0.735507 0.677517i \(-0.763056\pi\)
0.954500 + 0.298210i \(0.0963895\pi\)
\(992\) 3.47178 2.91317i 0.110229 0.0924933i
\(993\) 37.6049 1.19336
\(994\) 5.00774 4.20199i 0.158836 0.133279i
\(995\) −12.2947 4.47492i −0.389769 0.141864i
\(996\) −1.92855 10.9373i −0.0611084 0.346563i
\(997\) 3.43170 19.4622i 0.108683 0.616373i −0.881002 0.473113i \(-0.843130\pi\)
0.989685 0.143260i \(-0.0457585\pi\)
\(998\) 9.99588 0.316414
\(999\) 33.7572 4.38479i 1.06803 0.138729i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.2.f.a.33.1 yes 6
3.2 odd 2 666.2.x.c.181.1 6
4.3 odd 2 592.2.bc.b.33.1 6
37.3 even 18 2738.2.a.p.1.3 3
37.9 even 9 inner 74.2.f.a.9.1 6
37.34 even 9 2738.2.a.m.1.3 3
111.83 odd 18 666.2.x.c.379.1 6
148.83 odd 18 592.2.bc.b.305.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.2.f.a.9.1 6 37.9 even 9 inner
74.2.f.a.33.1 yes 6 1.1 even 1 trivial
592.2.bc.b.33.1 6 4.3 odd 2
592.2.bc.b.305.1 6 148.83 odd 18
666.2.x.c.181.1 6 3.2 odd 2
666.2.x.c.379.1 6 111.83 odd 18
2738.2.a.m.1.3 3 37.34 even 9
2738.2.a.p.1.3 3 37.3 even 18