Properties

Label 74.2.f.a.9.1
Level $74$
Weight $2$
Character 74.9
Analytic conductor $0.591$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,2,Mod(7,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 74.f (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.590892974957\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 9.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 74.9
Dual form 74.2.f.a.33.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 - 0.984808i) q^{2} +(0.266044 - 1.50881i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(-1.79813 - 1.50881i) q^{5} -1.53209 q^{6} +(1.93969 + 1.62760i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.613341 + 0.223238i) q^{9} +O(q^{10})\) \(q+(-0.173648 - 0.984808i) q^{2} +(0.266044 - 1.50881i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(-1.79813 - 1.50881i) q^{5} -1.53209 q^{6} +(1.93969 + 1.62760i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.613341 + 0.223238i) q^{9} +(-1.17365 + 2.03282i) q^{10} +(-0.560307 - 0.970481i) q^{11} +(0.266044 + 1.50881i) q^{12} +(1.70574 - 0.620838i) q^{13} +(1.26604 - 2.19285i) q^{14} +(-2.75490 + 2.31164i) q^{15} +(0.766044 - 0.642788i) q^{16} +(2.81908 + 1.02606i) q^{17} +(0.113341 - 0.642788i) q^{18} +(-0.971782 + 5.51125i) q^{19} +(2.20574 + 0.802823i) q^{20} +(2.97178 - 2.49362i) q^{21} +(-0.858441 + 0.720317i) q^{22} +(-4.55303 + 7.88609i) q^{23} +(1.43969 - 0.524005i) q^{24} +(0.0885259 + 0.502055i) q^{25} +(-0.907604 - 1.57202i) q^{26} +(2.79813 - 4.84651i) q^{27} +(-2.37939 - 0.866025i) q^{28} +(-4.52481 - 7.83721i) q^{29} +(2.75490 + 2.31164i) q^{30} -4.53209 q^{31} +(-0.766044 - 0.642788i) q^{32} +(-1.61334 + 0.587208i) q^{33} +(0.520945 - 2.95442i) q^{34} +(-1.03209 - 5.85327i) q^{35} -0.652704 q^{36} +(2.33750 + 5.61570i) q^{37} +5.59627 q^{38} +(-0.482926 - 2.73881i) q^{39} +(0.407604 - 2.31164i) q^{40} +(6.98545 - 2.54250i) q^{41} +(-2.97178 - 2.49362i) q^{42} -8.92902 q^{43} +(0.858441 + 0.720317i) q^{44} +(-0.766044 - 1.32683i) q^{45} +(8.55690 + 3.11446i) q^{46} +(0.194593 - 0.337044i) q^{47} +(-0.766044 - 1.32683i) q^{48} +(-0.102196 - 0.579585i) q^{49} +(0.479055 - 0.174362i) q^{50} +(2.29813 - 3.98048i) q^{51} +(-1.39053 + 1.16679i) q^{52} +(-9.23055 + 7.74535i) q^{53} +(-5.25877 - 1.91404i) q^{54} +(-0.456767 + 2.59045i) q^{55} +(-0.439693 + 2.49362i) q^{56} +(8.05690 + 2.93247i) q^{57} +(-6.93242 + 5.81699i) q^{58} +(6.41534 - 5.38311i) q^{59} +(1.79813 - 3.11446i) q^{60} +(2.45336 - 0.892951i) q^{61} +(0.786989 + 4.46324i) q^{62} +(0.826352 + 1.43128i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-4.00387 - 1.45729i) q^{65} +(0.858441 + 1.48686i) q^{66} +(5.62836 + 4.72275i) q^{67} -3.00000 q^{68} +(10.6873 + 8.96773i) q^{69} +(-5.58512 + 2.03282i) q^{70} +(-0.448311 + 2.54250i) q^{71} +(0.113341 + 0.642788i) q^{72} -0.709141 q^{73} +(5.12449 - 3.27714i) q^{74} +0.781059 q^{75} +(-0.971782 - 5.51125i) q^{76} +(0.492726 - 2.79439i) q^{77} +(-2.61334 + 0.951178i) q^{78} +(3.39646 + 2.84997i) q^{79} -2.34730 q^{80} +(-5.06805 - 4.25260i) q^{81} +(-3.71688 - 6.43783i) q^{82} +(6.81180 + 2.47929i) q^{83} +(-1.93969 + 3.35965i) q^{84} +(-3.52094 - 6.09845i) q^{85} +(1.55051 + 8.79336i) q^{86} +(-13.0287 + 4.74205i) q^{87} +(0.560307 - 0.970481i) q^{88} +(-9.95336 + 8.35186i) q^{89} +(-1.17365 + 0.984808i) q^{90} +(4.31908 + 1.57202i) q^{91} +(1.58125 - 8.96773i) q^{92} +(-1.20574 + 6.83807i) q^{93} +(-0.365715 - 0.133109i) q^{94} +(10.0628 - 8.44372i) q^{95} +(-1.17365 + 0.984808i) q^{96} +(7.34730 - 12.7259i) q^{97} +(-0.553033 + 0.201288i) q^{98} +(-0.127011 - 0.720317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + 3 q^{5} + 6 q^{7} + 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{3} + 3 q^{5} + 6 q^{7} + 3 q^{8} - 3 q^{9} - 6 q^{10} - 9 q^{11} - 3 q^{12} + 3 q^{14} - 18 q^{15} - 6 q^{18} + 9 q^{19} + 3 q^{20} + 3 q^{21} + 3 q^{22} - 15 q^{23} + 3 q^{24} + 21 q^{25} - 9 q^{26} + 3 q^{27} - 3 q^{28} + 18 q^{30} - 18 q^{31} - 3 q^{33} + 3 q^{35} - 6 q^{36} + 9 q^{37} + 6 q^{38} + 18 q^{39} + 6 q^{40} + 6 q^{41} - 3 q^{42} + 12 q^{43} - 3 q^{44} + 15 q^{46} - 3 q^{47} + 6 q^{50} + 9 q^{52} - 18 q^{53} - 9 q^{54} - 18 q^{55} + 3 q^{56} + 12 q^{57} - 18 q^{58} - 6 q^{59} - 3 q^{60} - 12 q^{61} - 3 q^{62} + 6 q^{63} - 3 q^{64} - 3 q^{66} - 3 q^{67} - 18 q^{68} + 42 q^{69} - 12 q^{70} - 6 q^{71} - 6 q^{72} - 36 q^{73} + 18 q^{74} - 30 q^{75} + 9 q^{76} - 15 q^{77} - 9 q^{78} + 30 q^{79} - 12 q^{80} + 12 q^{81} - 6 q^{82} + 6 q^{83} - 6 q^{84} - 18 q^{85} + 12 q^{86} - 27 q^{87} + 9 q^{88} - 33 q^{89} - 6 q^{90} + 9 q^{91} + 12 q^{92} + 3 q^{93} - 12 q^{94} + 51 q^{95} - 6 q^{96} + 42 q^{97} + 9 q^{98} + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/74\mathbb{Z}\right)^\times\).

\(n\) \(39\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 0.984808i −0.122788 0.696364i
\(3\) 0.266044 1.50881i 0.153601 0.871114i −0.806453 0.591298i \(-0.798616\pi\)
0.960054 0.279815i \(-0.0902733\pi\)
\(4\) −0.939693 + 0.342020i −0.469846 + 0.171010i
\(5\) −1.79813 1.50881i −0.804150 0.674762i 0.145054 0.989424i \(-0.453664\pi\)
−0.949204 + 0.314662i \(0.898109\pi\)
\(6\) −1.53209 −0.625473
\(7\) 1.93969 + 1.62760i 0.733135 + 0.615173i 0.930984 0.365059i \(-0.118951\pi\)
−0.197849 + 0.980232i \(0.563396\pi\)
\(8\) 0.500000 + 0.866025i 0.176777 + 0.306186i
\(9\) 0.613341 + 0.223238i 0.204447 + 0.0744126i
\(10\) −1.17365 + 2.03282i −0.371140 + 0.642834i
\(11\) −0.560307 0.970481i −0.168939 0.292611i 0.769108 0.639119i \(-0.220701\pi\)
−0.938047 + 0.346508i \(0.887367\pi\)
\(12\) 0.266044 + 1.50881i 0.0768004 + 0.435557i
\(13\) 1.70574 0.620838i 0.473086 0.172189i −0.0944636 0.995528i \(-0.530114\pi\)
0.567550 + 0.823339i \(0.307891\pi\)
\(14\) 1.26604 2.19285i 0.338365 0.586065i
\(15\) −2.75490 + 2.31164i −0.711312 + 0.596862i
\(16\) 0.766044 0.642788i 0.191511 0.160697i
\(17\) 2.81908 + 1.02606i 0.683727 + 0.248856i 0.660447 0.750873i \(-0.270367\pi\)
0.0232799 + 0.999729i \(0.492589\pi\)
\(18\) 0.113341 0.642788i 0.0267147 0.151506i
\(19\) −0.971782 + 5.51125i −0.222942 + 1.26437i 0.643639 + 0.765330i \(0.277424\pi\)
−0.866581 + 0.499037i \(0.833687\pi\)
\(20\) 2.20574 + 0.802823i 0.493218 + 0.179517i
\(21\) 2.97178 2.49362i 0.648496 0.544153i
\(22\) −0.858441 + 0.720317i −0.183020 + 0.153572i
\(23\) −4.55303 + 7.88609i −0.949373 + 1.64436i −0.202624 + 0.979257i \(0.564947\pi\)
−0.746749 + 0.665106i \(0.768386\pi\)
\(24\) 1.43969 0.524005i 0.293876 0.106962i
\(25\) 0.0885259 + 0.502055i 0.0177052 + 0.100411i
\(26\) −0.907604 1.57202i −0.177996 0.308298i
\(27\) 2.79813 4.84651i 0.538501 0.932711i
\(28\) −2.37939 0.866025i −0.449662 0.163663i
\(29\) −4.52481 7.83721i −0.840237 1.45533i −0.889694 0.456557i \(-0.849082\pi\)
0.0494571 0.998776i \(-0.484251\pi\)
\(30\) 2.75490 + 2.31164i 0.502974 + 0.422045i
\(31\) −4.53209 −0.813987 −0.406994 0.913431i \(-0.633423\pi\)
−0.406994 + 0.913431i \(0.633423\pi\)
\(32\) −0.766044 0.642788i −0.135419 0.113630i
\(33\) −1.61334 + 0.587208i −0.280847 + 0.102220i
\(34\) 0.520945 2.95442i 0.0893413 0.506679i
\(35\) −1.03209 5.85327i −0.174455 0.989383i
\(36\) −0.652704 −0.108784
\(37\) 2.33750 + 5.61570i 0.384282 + 0.923216i
\(38\) 5.59627 0.907834
\(39\) −0.482926 2.73881i −0.0773300 0.438560i
\(40\) 0.407604 2.31164i 0.0644478 0.365502i
\(41\) 6.98545 2.54250i 1.09094 0.397071i 0.266974 0.963704i \(-0.413976\pi\)
0.823971 + 0.566633i \(0.191754\pi\)
\(42\) −2.97178 2.49362i −0.458556 0.384774i
\(43\) −8.92902 −1.36166 −0.680831 0.732441i \(-0.738381\pi\)
−0.680831 + 0.732441i \(0.738381\pi\)
\(44\) 0.858441 + 0.720317i 0.129415 + 0.108592i
\(45\) −0.766044 1.32683i −0.114195 0.197792i
\(46\) 8.55690 + 3.11446i 1.26165 + 0.459202i
\(47\) 0.194593 0.337044i 0.0283843 0.0491630i −0.851484 0.524380i \(-0.824297\pi\)
0.879869 + 0.475217i \(0.157630\pi\)
\(48\) −0.766044 1.32683i −0.110569 0.191511i
\(49\) −0.102196 0.579585i −0.0145995 0.0827978i
\(50\) 0.479055 0.174362i 0.0677487 0.0246585i
\(51\) 2.29813 3.98048i 0.321803 0.557379i
\(52\) −1.39053 + 1.16679i −0.192832 + 0.161805i
\(53\) −9.23055 + 7.74535i −1.26791 + 1.06391i −0.273122 + 0.961979i \(0.588056\pi\)
−0.994792 + 0.101927i \(0.967499\pi\)
\(54\) −5.25877 1.91404i −0.715628 0.260467i
\(55\) −0.456767 + 2.59045i −0.0615904 + 0.349297i
\(56\) −0.439693 + 2.49362i −0.0587564 + 0.333224i
\(57\) 8.05690 + 2.93247i 1.06716 + 0.388416i
\(58\) −6.93242 + 5.81699i −0.910271 + 0.763808i
\(59\) 6.41534 5.38311i 0.835207 0.700822i −0.121273 0.992619i \(-0.538698\pi\)
0.956480 + 0.291797i \(0.0942533\pi\)
\(60\) 1.79813 3.11446i 0.232138 0.402075i
\(61\) 2.45336 0.892951i 0.314121 0.114331i −0.180149 0.983639i \(-0.557658\pi\)
0.494269 + 0.869309i \(0.335436\pi\)
\(62\) 0.786989 + 4.46324i 0.0999477 + 0.566832i
\(63\) 0.826352 + 1.43128i 0.104111 + 0.180325i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −4.00387 1.45729i −0.496619 0.180755i
\(66\) 0.858441 + 1.48686i 0.105667 + 0.183020i
\(67\) 5.62836 + 4.72275i 0.687613 + 0.576976i 0.918220 0.396071i \(-0.129627\pi\)
−0.230607 + 0.973047i \(0.574071\pi\)
\(68\) −3.00000 −0.363803
\(69\) 10.6873 + 8.96773i 1.28660 + 1.07959i
\(70\) −5.58512 + 2.03282i −0.667550 + 0.242968i
\(71\) −0.448311 + 2.54250i −0.0532047 + 0.301739i −0.999785 0.0207290i \(-0.993401\pi\)
0.946580 + 0.322468i \(0.104512\pi\)
\(72\) 0.113341 + 0.642788i 0.0133573 + 0.0757532i
\(73\) −0.709141 −0.0829986 −0.0414993 0.999139i \(-0.513213\pi\)
−0.0414993 + 0.999139i \(0.513213\pi\)
\(74\) 5.12449 3.27714i 0.595709 0.380960i
\(75\) 0.781059 0.0901889
\(76\) −0.971782 5.51125i −0.111471 0.632183i
\(77\) 0.492726 2.79439i 0.0561513 0.318450i
\(78\) −2.61334 + 0.951178i −0.295903 + 0.107700i
\(79\) 3.39646 + 2.84997i 0.382132 + 0.320646i 0.813539 0.581511i \(-0.197538\pi\)
−0.431407 + 0.902157i \(0.641983\pi\)
\(80\) −2.34730 −0.262436
\(81\) −5.06805 4.25260i −0.563116 0.472511i
\(82\) −3.71688 6.43783i −0.410461 0.710939i
\(83\) 6.81180 + 2.47929i 0.747693 + 0.272138i 0.687634 0.726057i \(-0.258649\pi\)
0.0600581 + 0.998195i \(0.480871\pi\)
\(84\) −1.93969 + 3.35965i −0.211638 + 0.366567i
\(85\) −3.52094 6.09845i −0.381900 0.661470i
\(86\) 1.55051 + 8.79336i 0.167195 + 0.948213i
\(87\) −13.0287 + 4.74205i −1.39682 + 0.508402i
\(88\) 0.560307 0.970481i 0.0597290 0.103454i
\(89\) −9.95336 + 8.35186i −1.05505 + 0.885296i −0.993616 0.112815i \(-0.964013\pi\)
−0.0614384 + 0.998111i \(0.519569\pi\)
\(90\) −1.17365 + 0.984808i −0.123713 + 0.103808i
\(91\) 4.31908 + 1.57202i 0.452762 + 0.164792i
\(92\) 1.58125 8.96773i 0.164857 0.934950i
\(93\) −1.20574 + 6.83807i −0.125029 + 0.709075i
\(94\) −0.365715 0.133109i −0.0377206 0.0137292i
\(95\) 10.0628 8.44372i 1.03242 0.866307i
\(96\) −1.17365 + 0.984808i −0.119785 + 0.100512i
\(97\) 7.34730 12.7259i 0.746005 1.29212i −0.203719 0.979029i \(-0.565303\pi\)
0.949724 0.313089i \(-0.101364\pi\)
\(98\) −0.553033 + 0.201288i −0.0558648 + 0.0203331i
\(99\) −0.127011 0.720317i −0.0127651 0.0723946i
\(100\) −0.254900 0.441500i −0.0254900 0.0441500i
\(101\) −1.51367 + 2.62175i −0.150616 + 0.260874i −0.931454 0.363859i \(-0.881459\pi\)
0.780838 + 0.624733i \(0.214792\pi\)
\(102\) −4.31908 1.57202i −0.427652 0.155653i
\(103\) −4.20826 7.28893i −0.414653 0.718199i 0.580739 0.814090i \(-0.302764\pi\)
−0.995392 + 0.0958903i \(0.969430\pi\)
\(104\) 1.39053 + 1.16679i 0.136353 + 0.114413i
\(105\) −9.10607 −0.888661
\(106\) 9.23055 + 7.74535i 0.896550 + 0.752295i
\(107\) −5.67752 + 2.06645i −0.548866 + 0.199771i −0.601543 0.798841i \(-0.705447\pi\)
0.0526763 + 0.998612i \(0.483225\pi\)
\(108\) −0.971782 + 5.51125i −0.0935097 + 0.530320i
\(109\) −3.47906 19.7307i −0.333233 1.88986i −0.444024 0.896015i \(-0.646449\pi\)
0.110791 0.993844i \(-0.464662\pi\)
\(110\) 2.63041 0.250800
\(111\) 9.09492 2.03282i 0.863252 0.192947i
\(112\) 2.53209 0.239260
\(113\) −0.442219 2.50795i −0.0416004 0.235928i 0.956917 0.290362i \(-0.0937757\pi\)
−0.998517 + 0.0544340i \(0.982665\pi\)
\(114\) 1.48886 8.44372i 0.139444 0.790827i
\(115\) 20.0856 7.31056i 1.87299 0.681713i
\(116\) 6.93242 + 5.81699i 0.643659 + 0.540094i
\(117\) 1.18479 0.109534
\(118\) −6.41534 5.38311i −0.590580 0.495556i
\(119\) 3.79813 + 6.57856i 0.348174 + 0.603056i
\(120\) −3.37939 1.23000i −0.308494 0.112283i
\(121\) 4.87211 8.43874i 0.442919 0.767159i
\(122\) −1.30541 2.26103i −0.118186 0.204704i
\(123\) −1.97771 11.2162i −0.178324 1.01133i
\(124\) 4.25877 1.55007i 0.382449 0.139200i
\(125\) −5.26991 + 9.12776i −0.471356 + 0.816412i
\(126\) 1.26604 1.06234i 0.112788 0.0946405i
\(127\) −5.38326 + 4.51709i −0.477687 + 0.400827i −0.849589 0.527445i \(-0.823150\pi\)
0.371902 + 0.928272i \(0.378706\pi\)
\(128\) 0.939693 + 0.342020i 0.0830579 + 0.0302306i
\(129\) −2.37551 + 13.4722i −0.209152 + 1.18616i
\(130\) −0.739885 + 4.19610i −0.0648922 + 0.368022i
\(131\) 0.852044 + 0.310119i 0.0744434 + 0.0270952i 0.378973 0.925408i \(-0.376277\pi\)
−0.304530 + 0.952503i \(0.598499\pi\)
\(132\) 1.31521 1.10359i 0.114474 0.0960552i
\(133\) −10.8550 + 9.10846i −0.941251 + 0.789803i
\(134\) 3.67365 6.36295i 0.317355 0.549675i
\(135\) −12.3439 + 4.49281i −1.06239 + 0.386679i
\(136\) 0.520945 + 2.95442i 0.0446706 + 0.253340i
\(137\) −0.979055 1.69577i −0.0836464 0.144880i 0.821167 0.570688i \(-0.193323\pi\)
−0.904814 + 0.425808i \(0.859990\pi\)
\(138\) 6.97565 12.0822i 0.593807 1.02850i
\(139\) −12.7811 4.65193i −1.08408 0.394571i −0.262652 0.964891i \(-0.584597\pi\)
−0.821423 + 0.570319i \(0.806819\pi\)
\(140\) 2.97178 + 5.14728i 0.251161 + 0.435024i
\(141\) −0.456767 0.383273i −0.0384667 0.0322774i
\(142\) 2.58172 0.216653
\(143\) −1.55825 1.30753i −0.130307 0.109341i
\(144\) 0.613341 0.223238i 0.0511117 0.0186031i
\(145\) −3.68866 + 20.9194i −0.306327 + 1.73727i
\(146\) 0.123141 + 0.698367i 0.0101912 + 0.0577973i
\(147\) −0.901674 −0.0743688
\(148\) −4.11721 4.47756i −0.338433 0.368053i
\(149\) −6.73648 −0.551874 −0.275937 0.961176i \(-0.588988\pi\)
−0.275937 + 0.961176i \(0.588988\pi\)
\(150\) −0.135630 0.769193i −0.0110741 0.0628044i
\(151\) 0.832748 4.72275i 0.0677681 0.384332i −0.931993 0.362476i \(-0.881931\pi\)
0.999761 0.0218558i \(-0.00695748\pi\)
\(152\) −5.25877 + 1.91404i −0.426543 + 0.155249i
\(153\) 1.50000 + 1.25865i 0.121268 + 0.101756i
\(154\) −2.83750 −0.228652
\(155\) 8.14930 + 6.83807i 0.654568 + 0.549247i
\(156\) 1.39053 + 2.40847i 0.111331 + 0.192832i
\(157\) 13.5954 + 4.94832i 1.08503 + 0.394919i 0.821778 0.569808i \(-0.192983\pi\)
0.263253 + 0.964727i \(0.415205\pi\)
\(158\) 2.21688 3.83975i 0.176366 0.305474i
\(159\) 9.23055 + 15.9878i 0.732030 + 1.26791i
\(160\) 0.407604 + 2.31164i 0.0322239 + 0.182751i
\(161\) −21.6668 + 7.88609i −1.70759 + 0.621511i
\(162\) −3.30793 + 5.72951i −0.259896 + 0.450153i
\(163\) 7.69846 6.45978i 0.602990 0.505969i −0.289415 0.957204i \(-0.593461\pi\)
0.892405 + 0.451235i \(0.149016\pi\)
\(164\) −5.69459 + 4.77833i −0.444673 + 0.373125i
\(165\) 3.78699 + 1.37835i 0.294817 + 0.107305i
\(166\) 1.25877 7.13884i 0.0976995 0.554082i
\(167\) 1.81315 10.2829i 0.140306 0.795713i −0.830712 0.556703i \(-0.812066\pi\)
0.971017 0.239010i \(-0.0768228\pi\)
\(168\) 3.64543 + 1.32683i 0.281251 + 0.102367i
\(169\) −7.43448 + 6.23827i −0.571883 + 0.479867i
\(170\) −5.39440 + 4.52644i −0.413732 + 0.347162i
\(171\) −1.82635 + 3.16333i −0.139665 + 0.241906i
\(172\) 8.39053 3.05390i 0.639772 0.232858i
\(173\) 0.182266 + 1.03368i 0.0138575 + 0.0785895i 0.990952 0.134215i \(-0.0428513\pi\)
−0.977095 + 0.212805i \(0.931740\pi\)
\(174\) 6.93242 + 12.0073i 0.525545 + 0.910271i
\(175\) −0.645430 + 1.11792i −0.0487899 + 0.0845066i
\(176\) −1.05303 0.383273i −0.0793754 0.0288903i
\(177\) −6.41534 11.1117i −0.482207 0.835207i
\(178\) 9.95336 + 8.35186i 0.746036 + 0.625999i
\(179\) 9.15570 0.684329 0.342164 0.939640i \(-0.388840\pi\)
0.342164 + 0.939640i \(0.388840\pi\)
\(180\) 1.17365 + 0.984808i 0.0874786 + 0.0734032i
\(181\) 21.2408 7.73103i 1.57882 0.574643i 0.603871 0.797082i \(-0.293624\pi\)
0.974947 + 0.222439i \(0.0714019\pi\)
\(182\) 0.798133 4.52644i 0.0591616 0.335522i
\(183\) −0.694593 3.93923i −0.0513458 0.291196i
\(184\) −9.10607 −0.671308
\(185\) 4.26991 13.6246i 0.313930 1.00170i
\(186\) 6.94356 0.509127
\(187\) −0.583778 3.31077i −0.0426901 0.242108i
\(188\) −0.0675813 + 0.383273i −0.00492888 + 0.0279530i
\(189\) 13.3157 4.84651i 0.968573 0.352532i
\(190\) −10.0628 8.44372i −0.730035 0.612572i
\(191\) −19.1334 −1.38444 −0.692222 0.721684i \(-0.743368\pi\)
−0.692222 + 0.721684i \(0.743368\pi\)
\(192\) 1.17365 + 0.984808i 0.0847008 + 0.0710724i
\(193\) 9.50640 + 16.4656i 0.684285 + 1.18522i 0.973661 + 0.228001i \(0.0732191\pi\)
−0.289375 + 0.957216i \(0.593448\pi\)
\(194\) −13.8084 5.02585i −0.991385 0.360835i
\(195\) −3.26399 + 5.65339i −0.233739 + 0.404848i
\(196\) 0.294263 + 0.509678i 0.0210188 + 0.0364056i
\(197\) 3.20914 + 18.1999i 0.228642 + 1.29669i 0.855599 + 0.517639i \(0.173189\pi\)
−0.626958 + 0.779053i \(0.715700\pi\)
\(198\) −0.687319 + 0.250164i −0.0488456 + 0.0177784i
\(199\) 2.78699 4.82721i 0.197564 0.342192i −0.750174 0.661241i \(-0.770030\pi\)
0.947738 + 0.319049i \(0.103364\pi\)
\(200\) −0.390530 + 0.327693i −0.0276146 + 0.0231714i
\(201\) 8.62314 7.23567i 0.608229 0.510365i
\(202\) 2.84477 + 1.03541i 0.200157 + 0.0728513i
\(203\) 3.97906 22.5663i 0.279275 1.58385i
\(204\) −0.798133 + 4.52644i −0.0558805 + 0.316914i
\(205\) −16.3969 5.96799i −1.14521 0.416823i
\(206\) −6.44743 + 5.41004i −0.449214 + 0.376935i
\(207\) −4.55303 + 3.82045i −0.316458 + 0.265540i
\(208\) 0.907604 1.57202i 0.0629310 0.109000i
\(209\) 5.89306 2.14490i 0.407631 0.148366i
\(210\) 1.58125 + 8.96773i 0.109117 + 0.618832i
\(211\) −10.8550 18.8015i −0.747292 1.29435i −0.949116 0.314925i \(-0.898021\pi\)
0.201825 0.979422i \(-0.435313\pi\)
\(212\) 6.02481 10.4353i 0.413786 0.716698i
\(213\) 3.71688 + 1.35283i 0.254677 + 0.0926947i
\(214\) 3.02094 + 5.23243i 0.206508 + 0.357682i
\(215\) 16.0556 + 13.4722i 1.09498 + 0.918797i
\(216\) 5.59627 0.380778
\(217\) −8.79086 7.37641i −0.596762 0.500743i
\(218\) −18.8268 + 6.85240i −1.27511 + 0.464103i
\(219\) −0.188663 + 1.06996i −0.0127487 + 0.0723012i
\(220\) −0.456767 2.59045i −0.0307952 0.174648i
\(221\) 5.44562 0.366312
\(222\) −3.58125 8.60375i −0.240358 0.577446i
\(223\) −10.1429 −0.679219 −0.339610 0.940567i \(-0.610295\pi\)
−0.339610 + 0.940567i \(0.610295\pi\)
\(224\) −0.439693 2.49362i −0.0293782 0.166612i
\(225\) −0.0577812 + 0.327693i −0.00385208 + 0.0218462i
\(226\) −2.39306 + 0.871001i −0.159184 + 0.0579381i
\(227\) −3.34524 2.80699i −0.222031 0.186306i 0.524986 0.851111i \(-0.324070\pi\)
−0.747017 + 0.664804i \(0.768515\pi\)
\(228\) −8.57398 −0.567826
\(229\) −9.01889 7.56774i −0.595985 0.500091i 0.294167 0.955754i \(-0.404958\pi\)
−0.890152 + 0.455663i \(0.849402\pi\)
\(230\) −10.6873 18.5110i −0.704701 1.22058i
\(231\) −4.08512 1.48686i −0.268781 0.0978284i
\(232\) 4.52481 7.83721i 0.297069 0.514538i
\(233\) −8.13816 14.0957i −0.533148 0.923440i −0.999251 0.0387091i \(-0.987675\pi\)
0.466102 0.884731i \(-0.345658\pi\)
\(234\) −0.205737 1.16679i −0.0134495 0.0762756i
\(235\) −0.858441 + 0.312447i −0.0559985 + 0.0203818i
\(236\) −4.18732 + 7.25265i −0.272571 + 0.472107i
\(237\) 5.20368 4.36640i 0.338015 0.283628i
\(238\) 5.81908 4.88279i 0.377195 0.316504i
\(239\) 14.6493 + 5.33191i 0.947584 + 0.344893i 0.769157 0.639060i \(-0.220677\pi\)
0.178428 + 0.983953i \(0.442899\pi\)
\(240\) −0.624485 + 3.54163i −0.0403103 + 0.228611i
\(241\) −0.151826 + 0.861050i −0.00977999 + 0.0554651i −0.989307 0.145847i \(-0.953409\pi\)
0.979527 + 0.201312i \(0.0645205\pi\)
\(242\) −9.15657 3.33272i −0.588607 0.214235i
\(243\) 5.09627 4.27628i 0.326926 0.274323i
\(244\) −2.00000 + 1.67820i −0.128037 + 0.107436i
\(245\) −0.690722 + 1.19637i −0.0441286 + 0.0764330i
\(246\) −10.7023 + 3.89533i −0.682356 + 0.248357i
\(247\) 1.76399 + 10.0041i 0.112240 + 0.636543i
\(248\) −2.26604 3.92490i −0.143894 0.249232i
\(249\) 5.55303 9.61814i 0.351909 0.609525i
\(250\) 9.90420 + 3.60483i 0.626397 + 0.227990i
\(251\) 1.26991 + 2.19956i 0.0801563 + 0.138835i 0.903317 0.428974i \(-0.141125\pi\)
−0.823161 + 0.567809i \(0.807791\pi\)
\(252\) −1.26604 1.06234i −0.0797533 0.0669210i
\(253\) 10.2044 0.641545
\(254\) 5.38326 + 4.51709i 0.337775 + 0.283427i
\(255\) −10.1382 + 3.68999i −0.634876 + 0.231076i
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) 2.89187 + 16.4006i 0.180390 + 1.02304i 0.931736 + 0.363135i \(0.118294\pi\)
−0.751346 + 0.659908i \(0.770595\pi\)
\(258\) 13.6800 0.851682
\(259\) −4.60607 + 14.6972i −0.286207 + 0.913242i
\(260\) 4.26083 0.264245
\(261\) −1.02569 5.81699i −0.0634888 0.360063i
\(262\) 0.157451 0.892951i 0.00972738 0.0551667i
\(263\) 6.14068 2.23503i 0.378651 0.137818i −0.145681 0.989332i \(-0.546537\pi\)
0.524332 + 0.851514i \(0.324315\pi\)
\(264\) −1.31521 1.10359i −0.0809454 0.0679213i
\(265\) 28.2841 1.73748
\(266\) 10.8550 + 9.10846i 0.665565 + 0.558475i
\(267\) 9.95336 + 17.2397i 0.609136 + 1.05505i
\(268\) −6.90420 2.51292i −0.421741 0.153501i
\(269\) 4.42902 7.67128i 0.270042 0.467726i −0.698830 0.715287i \(-0.746296\pi\)
0.968872 + 0.247561i \(0.0796291\pi\)
\(270\) 6.56805 + 11.3762i 0.399719 + 0.692333i
\(271\) 1.64930 + 9.35365i 0.100188 + 0.568194i 0.993034 + 0.117831i \(0.0375941\pi\)
−0.892846 + 0.450362i \(0.851295\pi\)
\(272\) 2.81908 1.02606i 0.170932 0.0622141i
\(273\) 3.52094 6.09845i 0.213097 0.369095i
\(274\) −1.50000 + 1.25865i −0.0906183 + 0.0760378i
\(275\) 0.437633 0.367218i 0.0263903 0.0221441i
\(276\) −13.1099 4.77163i −0.789125 0.287218i
\(277\) −5.11040 + 28.9825i −0.307054 + 1.74139i 0.306619 + 0.951832i \(0.400802\pi\)
−0.613674 + 0.789560i \(0.710309\pi\)
\(278\) −2.36184 + 13.3947i −0.141654 + 0.803360i
\(279\) −2.77972 1.01173i −0.166417 0.0605709i
\(280\) 4.55303 3.82045i 0.272096 0.228315i
\(281\) 4.54323 3.81223i 0.271027 0.227418i −0.497137 0.867672i \(-0.665615\pi\)
0.768163 + 0.640254i \(0.221171\pi\)
\(282\) −0.298133 + 0.516382i −0.0177536 + 0.0307501i
\(283\) −21.2062 + 7.71843i −1.26058 + 0.458813i −0.883963 0.467557i \(-0.845134\pi\)
−0.376615 + 0.926370i \(0.622912\pi\)
\(284\) −0.448311 2.54250i −0.0266023 0.150869i
\(285\) −10.0628 17.4293i −0.596071 1.03242i
\(286\) −1.01707 + 1.76162i −0.0601409 + 0.104167i
\(287\) 17.6878 + 6.43783i 1.04408 + 0.380013i
\(288\) −0.326352 0.565258i −0.0192305 0.0333081i
\(289\) −6.12836 5.14230i −0.360492 0.302488i
\(290\) 21.2422 1.24738
\(291\) −17.2463 14.4713i −1.01099 0.848325i
\(292\) 0.666374 0.242540i 0.0389966 0.0141936i
\(293\) −0.705737 + 4.00243i −0.0412296 + 0.233825i −0.998458 0.0555078i \(-0.982322\pi\)
0.957229 + 0.289333i \(0.0934333\pi\)
\(294\) 0.156574 + 0.887975i 0.00913158 + 0.0517878i
\(295\) −19.6578 −1.14452
\(296\) −3.69459 + 4.83218i −0.214744 + 0.280865i
\(297\) −6.27126 −0.363895
\(298\) 1.16978 + 6.63414i 0.0677634 + 0.384305i
\(299\) −2.87030 + 16.2783i −0.165994 + 0.941397i
\(300\) −0.733956 + 0.267138i −0.0423749 + 0.0154232i
\(301\) −17.3195 14.5328i −0.998282 0.837658i
\(302\) −4.79561 −0.275956
\(303\) 3.55303 + 2.98135i 0.204116 + 0.171274i
\(304\) 2.79813 + 4.84651i 0.160484 + 0.277966i
\(305\) −5.75877 2.09602i −0.329746 0.120018i
\(306\) 0.979055 1.69577i 0.0559689 0.0969409i
\(307\) 5.59240 + 9.68631i 0.319175 + 0.552827i 0.980316 0.197434i \(-0.0632609\pi\)
−0.661141 + 0.750261i \(0.729928\pi\)
\(308\) 0.492726 + 2.79439i 0.0280757 + 0.159225i
\(309\) −12.1172 + 4.41030i −0.689324 + 0.250893i
\(310\) 5.31908 9.21291i 0.302103 0.523258i
\(311\) 6.32501 5.30731i 0.358658 0.300950i −0.445597 0.895233i \(-0.647009\pi\)
0.804256 + 0.594283i \(0.202564\pi\)
\(312\) 2.13041 1.78763i 0.120611 0.101205i
\(313\) 11.0633 + 4.02671i 0.625335 + 0.227603i 0.635199 0.772348i \(-0.280918\pi\)
−0.00986477 + 0.999951i \(0.503140\pi\)
\(314\) 2.51233 14.2481i 0.141779 0.804067i
\(315\) 0.673648 3.82045i 0.0379558 0.215258i
\(316\) −4.16637 1.51644i −0.234377 0.0853062i
\(317\) 10.1441 8.51190i 0.569749 0.478076i −0.311814 0.950143i \(-0.600937\pi\)
0.881562 + 0.472067i \(0.156492\pi\)
\(318\) 14.1420 11.8666i 0.793045 0.665444i
\(319\) −5.07057 + 8.78249i −0.283898 + 0.491725i
\(320\) 2.20574 0.802823i 0.123304 0.0448791i
\(321\) 1.60741 + 9.11608i 0.0897169 + 0.508810i
\(322\) 11.5287 + 19.9683i 0.642469 + 1.11279i
\(323\) −8.39440 + 14.5395i −0.467077 + 0.809001i
\(324\) 6.21688 + 2.26276i 0.345382 + 0.125709i
\(325\) 0.462697 + 0.801414i 0.0256658 + 0.0444544i
\(326\) −7.69846 6.45978i −0.426378 0.357774i
\(327\) −30.6955 −1.69747
\(328\) 5.69459 + 4.77833i 0.314431 + 0.263839i
\(329\) 0.926022 0.337044i 0.0510532 0.0185819i
\(330\) 0.699807 3.96880i 0.0385231 0.218475i
\(331\) 4.26217 + 24.1720i 0.234270 + 1.32861i 0.844145 + 0.536115i \(0.180109\pi\)
−0.609875 + 0.792498i \(0.708780\pi\)
\(332\) −7.24897 −0.397839
\(333\) 0.180045 + 3.96616i 0.00986639 + 0.217344i
\(334\) −10.4415 −0.571334
\(335\) −2.99479 16.9843i −0.163623 0.927950i
\(336\) 0.673648 3.82045i 0.0367505 0.208423i
\(337\) −11.3576 + 4.13381i −0.618686 + 0.225183i −0.632299 0.774724i \(-0.717889\pi\)
0.0136136 + 0.999907i \(0.495667\pi\)
\(338\) 7.43448 + 6.23827i 0.404382 + 0.339317i
\(339\) −3.90167 −0.211910
\(340\) 5.39440 + 4.52644i 0.292552 + 0.245481i
\(341\) 2.53936 + 4.39831i 0.137514 + 0.238182i
\(342\) 3.43242 + 1.24930i 0.185604 + 0.0675543i
\(343\) 9.60741 16.6405i 0.518751 0.898504i
\(344\) −4.46451 7.73275i −0.240710 0.416922i
\(345\) −5.68660 32.2503i −0.306156 1.73630i
\(346\) 0.986329 0.358995i 0.0530254 0.0192997i
\(347\) 0.904200 1.56612i 0.0485400 0.0840738i −0.840735 0.541447i \(-0.817876\pi\)
0.889275 + 0.457374i \(0.151210\pi\)
\(348\) 10.6211 8.91215i 0.569350 0.477741i
\(349\) 3.95677 3.32012i 0.211801 0.177722i −0.530715 0.847550i \(-0.678077\pi\)
0.742516 + 0.669828i \(0.233632\pi\)
\(350\) 1.21301 + 0.441500i 0.0648382 + 0.0235992i
\(351\) 1.76399 10.0041i 0.0941546 0.533977i
\(352\) −0.194593 + 1.10359i −0.0103718 + 0.0588216i
\(353\) 29.1570 + 10.6123i 1.55187 + 0.564835i 0.968856 0.247625i \(-0.0796500\pi\)
0.583017 + 0.812460i \(0.301872\pi\)
\(354\) −9.82888 + 8.24741i −0.522399 + 0.438345i
\(355\) 4.64227 3.89533i 0.246386 0.206743i
\(356\) 6.49660 11.2524i 0.344319 0.596378i
\(357\) 10.9363 3.98048i 0.578810 0.210670i
\(358\) −1.58987 9.01660i −0.0840272 0.476542i
\(359\) −1.51367 2.62175i −0.0798885 0.138371i 0.823313 0.567587i \(-0.192123\pi\)
−0.903202 + 0.429216i \(0.858790\pi\)
\(360\) 0.766044 1.32683i 0.0403741 0.0699300i
\(361\) −11.5753 4.21307i −0.609227 0.221741i
\(362\) −11.3020 19.5756i −0.594020 1.02887i
\(363\) −11.4363 9.59619i −0.600250 0.503669i
\(364\) −4.59627 −0.240910
\(365\) 1.27513 + 1.06996i 0.0667433 + 0.0560043i
\(366\) −3.75877 + 1.36808i −0.196474 + 0.0715107i
\(367\) 4.82651 27.3725i 0.251942 1.42883i −0.551860 0.833937i \(-0.686082\pi\)
0.803802 0.594897i \(-0.202807\pi\)
\(368\) 1.58125 + 8.96773i 0.0824285 + 0.467475i
\(369\) 4.85204 0.252587
\(370\) −14.1591 1.83915i −0.736097 0.0956131i
\(371\) −30.5107 −1.58404
\(372\) −1.20574 6.83807i −0.0625146 0.354538i
\(373\) 0.898681 5.09667i 0.0465319 0.263896i −0.952662 0.304030i \(-0.901668\pi\)
0.999194 + 0.0401346i \(0.0127787\pi\)
\(374\) −3.15910 + 1.14982i −0.163353 + 0.0594557i
\(375\) 12.3701 + 10.3797i 0.638787 + 0.536006i
\(376\) 0.389185 0.0200707
\(377\) −12.5838 10.5590i −0.648098 0.543818i
\(378\) −7.08512 12.2718i −0.364419 0.631193i
\(379\) 19.8195 + 7.21372i 1.01806 + 0.370544i 0.796523 0.604608i \(-0.206670\pi\)
0.221538 + 0.975152i \(0.428892\pi\)
\(380\) −6.56805 + 11.3762i −0.336934 + 0.583586i
\(381\) 5.38326 + 9.32407i 0.275793 + 0.477687i
\(382\) 3.32248 + 18.8427i 0.169993 + 0.964078i
\(383\) 36.6771 13.3494i 1.87411 0.682121i 0.911455 0.411400i \(-0.134960\pi\)
0.962658 0.270721i \(-0.0872621\pi\)
\(384\) 0.766044 1.32683i 0.0390920 0.0677094i
\(385\) −5.10220 + 4.28125i −0.260032 + 0.218193i
\(386\) 14.5646 12.2212i 0.741321 0.622042i
\(387\) −5.47653 1.99329i −0.278388 0.101325i
\(388\) −2.55169 + 14.4713i −0.129542 + 0.734671i
\(389\) 2.78312 15.7838i 0.141110 0.800273i −0.829299 0.558805i \(-0.811260\pi\)
0.970409 0.241468i \(-0.0776289\pi\)
\(390\) 6.13429 + 2.23270i 0.310622 + 0.113057i
\(391\) −20.9270 + 17.5598i −1.05832 + 0.888037i
\(392\) 0.450837 0.378297i 0.0227707 0.0191069i
\(393\) 0.694593 1.20307i 0.0350376 0.0606868i
\(394\) 17.3662 6.32077i 0.874896 0.318436i
\(395\) −1.80722 10.2492i −0.0909310 0.515695i
\(396\) 0.365715 + 0.633436i 0.0183779 + 0.0318314i
\(397\) −7.32042 + 12.6793i −0.367401 + 0.636358i −0.989158 0.146852i \(-0.953086\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(398\) −5.23783 1.90641i −0.262548 0.0955598i
\(399\) 10.8550 + 18.8015i 0.543432 + 0.941251i
\(400\) 0.390530 + 0.327693i 0.0195265 + 0.0163847i
\(401\) 11.8075 0.589637 0.294818 0.955553i \(-0.404741\pi\)
0.294818 + 0.955553i \(0.404741\pi\)
\(402\) −8.62314 7.23567i −0.430083 0.360883i
\(403\) −7.73055 + 2.81369i −0.385086 + 0.140160i
\(404\) 0.525692 2.98135i 0.0261542 0.148328i
\(405\) 2.69665 + 15.2935i 0.133998 + 0.759939i
\(406\) −22.9145 −1.13723
\(407\) 4.14022 5.41501i 0.205223 0.268412i
\(408\) 4.59627 0.227549
\(409\) 0.975652 + 5.53320i 0.0482429 + 0.273599i 0.999382 0.0351652i \(-0.0111957\pi\)
−0.951139 + 0.308764i \(0.900085\pi\)
\(410\) −3.03003 + 17.1842i −0.149642 + 0.848665i
\(411\) −2.81908 + 1.02606i −0.139055 + 0.0506118i
\(412\) 6.44743 + 5.41004i 0.317642 + 0.266533i
\(413\) 21.2053 1.04345
\(414\) 4.55303 + 3.82045i 0.223769 + 0.187765i
\(415\) −8.50774 14.7358i −0.417629 0.723354i
\(416\) −1.70574 0.620838i −0.0836306 0.0304391i
\(417\) −10.4192 + 18.0466i −0.510231 + 0.883746i
\(418\) −3.13563 5.43107i −0.153369 0.265642i
\(419\) −1.76171 9.99114i −0.0860650 0.488099i −0.997122 0.0758179i \(-0.975843\pi\)
0.911057 0.412281i \(-0.135268\pi\)
\(420\) 8.55690 3.11446i 0.417534 0.151970i
\(421\) −5.48158 + 9.49438i −0.267156 + 0.462728i −0.968126 0.250463i \(-0.919417\pi\)
0.700970 + 0.713190i \(0.252751\pi\)
\(422\) −16.6309 + 13.9550i −0.809579 + 0.679317i
\(423\) 0.194593 0.163283i 0.00946142 0.00793908i
\(424\) −11.3229 4.12122i −0.549891 0.200144i
\(425\) −0.265578 + 1.50617i −0.0128824 + 0.0730598i
\(426\) 0.686852 3.89533i 0.0332781 0.188729i
\(427\) 6.21213 + 2.26103i 0.300626 + 0.109419i
\(428\) 4.62836 3.88365i 0.223720 0.187723i
\(429\) −2.38737 + 2.00324i −0.115264 + 0.0967176i
\(430\) 10.4795 18.1511i 0.505367 0.875322i
\(431\) −4.80066 + 1.74730i −0.231240 + 0.0841643i −0.455041 0.890470i \(-0.650375\pi\)
0.223802 + 0.974635i \(0.428153\pi\)
\(432\) −0.971782 5.51125i −0.0467549 0.265160i
\(433\) 13.8712 + 24.0257i 0.666609 + 1.15460i 0.978846 + 0.204596i \(0.0655882\pi\)
−0.312237 + 0.950004i \(0.601078\pi\)
\(434\) −5.73783 + 9.93821i −0.275424 + 0.477049i
\(435\) 30.5822 + 11.1310i 1.46630 + 0.533691i
\(436\) 10.0175 + 17.3509i 0.479753 + 0.830957i
\(437\) −39.0376 32.7564i −1.86742 1.56695i
\(438\) 1.08647 0.0519134
\(439\) −22.3214 18.7298i −1.06534 0.893927i −0.0707180 0.997496i \(-0.522529\pi\)
−0.994622 + 0.103570i \(0.966973\pi\)
\(440\) −2.47178 + 0.899655i −0.117838 + 0.0428894i
\(441\) 0.0667040 0.378297i 0.00317638 0.0180141i
\(442\) −0.945622 5.36289i −0.0449787 0.255087i
\(443\) 6.97864 0.331565 0.165783 0.986162i \(-0.446985\pi\)
0.165783 + 0.986162i \(0.446985\pi\)
\(444\) −7.85117 + 5.02087i −0.372600 + 0.238280i
\(445\) 30.4989 1.44579
\(446\) 1.76130 + 9.98881i 0.0833998 + 0.472984i
\(447\) −1.79220 + 10.1641i −0.0847683 + 0.480745i
\(448\) −2.37939 + 0.866025i −0.112415 + 0.0409159i
\(449\) 13.9834 + 11.7335i 0.659917 + 0.553736i 0.910062 0.414472i \(-0.136034\pi\)
−0.250145 + 0.968208i \(0.580478\pi\)
\(450\) 0.332748 0.0156859
\(451\) −6.38144 5.35467i −0.300490 0.252141i
\(452\) 1.27332 + 2.20545i 0.0598919 + 0.103736i
\(453\) −6.90420 2.51292i −0.324388 0.118067i
\(454\) −2.18345 + 3.78184i −0.102474 + 0.177491i
\(455\) −5.39440 9.34337i −0.252893 0.438024i
\(456\) 1.48886 + 8.44372i 0.0697221 + 0.395413i
\(457\) 21.4209 7.79656i 1.00203 0.364708i 0.211660 0.977343i \(-0.432113\pi\)
0.790365 + 0.612636i \(0.209891\pi\)
\(458\) −5.88666 + 10.1960i −0.275066 + 0.476427i
\(459\) 12.8610 10.7916i 0.600299 0.503710i
\(460\) −16.3739 + 13.7394i −0.763438 + 0.640601i
\(461\) −8.17277 2.97465i −0.380644 0.138543i 0.144610 0.989489i \(-0.453807\pi\)
−0.525254 + 0.850946i \(0.676030\pi\)
\(462\) −0.754900 + 4.28125i −0.0351211 + 0.199182i
\(463\) 0.592701 3.36137i 0.0275451 0.156216i −0.967933 0.251209i \(-0.919172\pi\)
0.995478 + 0.0949930i \(0.0302829\pi\)
\(464\) −8.50387 3.09516i −0.394782 0.143689i
\(465\) 12.4855 10.4765i 0.578999 0.485838i
\(466\) −12.4684 + 10.4622i −0.577586 + 0.484653i
\(467\) −18.3170 + 31.7260i −0.847611 + 1.46810i 0.0357242 + 0.999362i \(0.488626\pi\)
−0.883335 + 0.468743i \(0.844707\pi\)
\(468\) −1.11334 + 0.405223i −0.0514642 + 0.0187314i
\(469\) 3.23055 + 18.3214i 0.149173 + 0.846002i
\(470\) 0.456767 + 0.791143i 0.0210691 + 0.0364927i
\(471\) 11.0831 19.1964i 0.510681 0.884525i
\(472\) 7.86959 + 2.86429i 0.362227 + 0.131840i
\(473\) 5.00299 + 8.66544i 0.230038 + 0.398437i
\(474\) −5.20368 4.36640i −0.239013 0.200556i
\(475\) −2.85298 −0.130904
\(476\) −5.81908 4.88279i −0.266717 0.223802i
\(477\) −7.39053 + 2.68993i −0.338389 + 0.123164i
\(478\) 2.70708 15.3526i 0.123819 0.702213i
\(479\) −3.57832 20.2936i −0.163497 0.927240i −0.950600 0.310418i \(-0.899531\pi\)
0.787103 0.616822i \(-0.211580\pi\)
\(480\) 3.59627 0.164146
\(481\) 7.47359 + 8.12771i 0.340766 + 0.370592i
\(482\) 0.874333 0.0398248
\(483\) 6.13429 + 34.7893i 0.279120 + 1.58297i
\(484\) −1.69207 + 9.59619i −0.0769121 + 0.436190i
\(485\) −32.4124 + 11.7972i −1.47177 + 0.535681i
\(486\) −5.09627 4.27628i −0.231171 0.193976i
\(487\) 42.2867 1.91620 0.958098 0.286442i \(-0.0924726\pi\)
0.958098 + 0.286442i \(0.0924726\pi\)
\(488\) 2.00000 + 1.67820i 0.0905357 + 0.0759685i
\(489\) −7.69846 13.3341i −0.348137 0.602990i
\(490\) 1.29813 + 0.472482i 0.0586437 + 0.0213446i
\(491\) −16.5560 + 28.6759i −0.747163 + 1.29412i 0.202014 + 0.979383i \(0.435251\pi\)
−0.949177 + 0.314742i \(0.898082\pi\)
\(492\) 5.69459 + 9.86332i 0.256732 + 0.444673i
\(493\) −4.71436 26.7364i −0.212324 1.20415i
\(494\) 9.54576 3.47437i 0.429484 0.156319i
\(495\) −0.858441 + 1.48686i −0.0385840 + 0.0668295i
\(496\) −3.47178 + 2.91317i −0.155888 + 0.130805i
\(497\) −5.00774 + 4.20199i −0.224628 + 0.188485i
\(498\) −10.4363 3.79850i −0.467661 0.170215i
\(499\) −1.73577 + 9.84402i −0.0777036 + 0.440679i 0.920990 + 0.389586i \(0.127382\pi\)
−0.998694 + 0.0510934i \(0.983729\pi\)
\(500\) 1.83022 10.3797i 0.0818500 0.464195i
\(501\) −15.0326 5.47140i −0.671605 0.244444i
\(502\) 1.94562 1.63257i 0.0868374 0.0728652i
\(503\) 25.5023 21.3990i 1.13709 0.954132i 0.137751 0.990467i \(-0.456013\pi\)
0.999340 + 0.0363348i \(0.0115683\pi\)
\(504\) −0.826352 + 1.43128i −0.0368086 + 0.0637544i
\(505\) 6.67752 2.43042i 0.297146 0.108152i
\(506\) −1.77197 10.0494i −0.0787739 0.446749i
\(507\) 7.43448 + 12.8769i 0.330177 + 0.571883i
\(508\) 3.51367 6.08586i 0.155894 0.270016i
\(509\) −19.3751 7.05196i −0.858786 0.312573i −0.125169 0.992135i \(-0.539947\pi\)
−0.733617 + 0.679563i \(0.762170\pi\)
\(510\) 5.39440 + 9.34337i 0.238868 + 0.413732i
\(511\) −1.37551 1.15419i −0.0608492 0.0510585i
\(512\) −1.00000 −0.0441942
\(513\) 23.9911 + 20.1310i 1.05923 + 0.888803i
\(514\) 15.6493 5.69588i 0.690261 0.251234i
\(515\) −3.43061 + 19.4559i −0.151171 + 0.857331i
\(516\) −2.37551 13.4722i −0.104576 0.593081i
\(517\) −0.436127 −0.0191808
\(518\) 15.2738 + 1.98394i 0.671092 + 0.0871694i
\(519\) 1.60813 0.0705889
\(520\) −0.739885 4.19610i −0.0324461 0.184011i
\(521\) −4.53121 + 25.6978i −0.198516 + 1.12584i 0.708806 + 0.705404i \(0.249234\pi\)
−0.907322 + 0.420437i \(0.861877\pi\)
\(522\) −5.55051 + 2.02022i −0.242939 + 0.0884226i
\(523\) 1.10535 + 0.927500i 0.0483337 + 0.0405567i 0.666634 0.745385i \(-0.267734\pi\)
−0.618301 + 0.785942i \(0.712179\pi\)
\(524\) −0.906726 −0.0396105
\(525\) 1.51501 + 1.27125i 0.0661207 + 0.0554818i
\(526\) −3.26739 5.65928i −0.142465 0.246756i
\(527\) −12.7763 4.65020i −0.556545 0.202566i
\(528\) −0.858441 + 1.48686i −0.0373588 + 0.0647074i
\(529\) −29.9602 51.8926i −1.30262 2.25620i
\(530\) −4.91147 27.8544i −0.213341 1.20992i
\(531\) 5.13651 1.86954i 0.222905 0.0811309i
\(532\) 7.08512 12.2718i 0.307179 0.532050i
\(533\) 10.3369 8.67366i 0.447739 0.375698i
\(534\) 15.2494 12.7958i 0.659908 0.553728i
\(535\) 13.3268 + 4.85057i 0.576169 + 0.209708i
\(536\) −1.27584 + 7.23567i −0.0551081 + 0.312534i
\(537\) 2.43582 13.8142i 0.105113 0.596128i
\(538\) −8.32383 3.02962i −0.358866 0.130616i
\(539\) −0.505215 + 0.423925i −0.0217611 + 0.0182598i
\(540\) 10.0628 8.44372i 0.433035 0.363360i
\(541\) 2.72921 4.72713i 0.117338 0.203235i −0.801374 0.598164i \(-0.795897\pi\)
0.918712 + 0.394929i \(0.129231\pi\)
\(542\) 8.92514 3.24849i 0.383368 0.139534i
\(543\) −6.01367 34.1052i −0.258071 1.46360i
\(544\) −1.50000 2.59808i −0.0643120 0.111392i
\(545\) −23.5141 + 40.7277i −1.00723 + 1.74458i
\(546\) −6.61721 2.40847i −0.283190 0.103073i
\(547\) −20.1086 34.8291i −0.859781 1.48918i −0.872137 0.489261i \(-0.837266\pi\)
0.0123559 0.999924i \(-0.496067\pi\)
\(548\) 1.50000 + 1.25865i 0.0640768 + 0.0537668i
\(549\) 1.70409 0.0727287
\(550\) −0.437633 0.367218i −0.0186607 0.0156582i
\(551\) 47.5899 17.3213i 2.02740 0.737913i
\(552\) −2.42262 + 13.7394i −0.103113 + 0.584786i
\(553\) 1.94949 + 11.0561i 0.0829009 + 0.470154i
\(554\) 29.4296 1.25035
\(555\) −19.4210 10.0673i −0.824377 0.427331i
\(556\) 13.6013 0.576824
\(557\) −3.06640 17.3904i −0.129928 0.736856i −0.978259 0.207389i \(-0.933503\pi\)
0.848331 0.529466i \(-0.177608\pi\)
\(558\) −0.513671 + 2.91317i −0.0217454 + 0.123324i
\(559\) −15.2306 + 5.54347i −0.644184 + 0.234464i
\(560\) −4.55303 3.82045i −0.192401 0.161443i
\(561\) −5.15064 −0.217460
\(562\) −4.54323 3.81223i −0.191645 0.160809i
\(563\) −1.15523 2.00092i −0.0486871 0.0843286i 0.840655 0.541571i \(-0.182170\pi\)
−0.889342 + 0.457243i \(0.848837\pi\)
\(564\) 0.560307 + 0.203935i 0.0235932 + 0.00858722i
\(565\) −2.98886 + 5.17685i −0.125742 + 0.217792i
\(566\) 11.2836 + 19.5437i 0.474284 + 0.821485i
\(567\) −2.90895 16.4975i −0.122164 0.692828i
\(568\) −2.42602 + 0.883000i −0.101794 + 0.0370498i
\(569\) 0.141559 0.245188i 0.00593447 0.0102788i −0.863043 0.505131i \(-0.831444\pi\)
0.868977 + 0.494852i \(0.164778\pi\)
\(570\) −15.4172 + 12.9365i −0.645754 + 0.541852i
\(571\) −8.40420 + 7.05196i −0.351705 + 0.295115i −0.801474 0.598029i \(-0.795951\pi\)
0.449769 + 0.893145i \(0.351506\pi\)
\(572\) 1.91147 + 0.695720i 0.0799227 + 0.0290895i
\(573\) −5.09034 + 28.8687i −0.212652 + 1.20601i
\(574\) 3.26857 18.5370i 0.136428 0.773719i
\(575\) −4.36231 1.58775i −0.181921 0.0662138i
\(576\) −0.500000 + 0.419550i −0.0208333 + 0.0174812i
\(577\) −12.1382 + 10.1851i −0.505318 + 0.424012i −0.859478 0.511173i \(-0.829211\pi\)
0.354160 + 0.935185i \(0.384767\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 27.3726 9.96280i 1.13757 0.414040i
\(580\) −3.68866 20.9194i −0.153163 0.868633i
\(581\) 9.17752 + 15.8959i 0.380748 + 0.659474i
\(582\) −11.2567 + 19.4972i −0.466606 + 0.808185i
\(583\) 12.6887 + 4.61830i 0.525511 + 0.191270i
\(584\) −0.354570 0.614134i −0.0146722 0.0254130i
\(585\) −2.13041 1.78763i −0.0880818 0.0739094i
\(586\) 4.06418 0.167890
\(587\) −14.2947 11.9947i −0.590007 0.495074i 0.298209 0.954500i \(-0.403611\pi\)
−0.888216 + 0.459426i \(0.848055\pi\)
\(588\) 0.847296 0.308391i 0.0349419 0.0127178i
\(589\) 4.40420 24.9775i 0.181472 1.02918i
\(590\) 3.41353 + 19.3591i 0.140533 + 0.797002i
\(591\) 28.3141 1.16469
\(592\) 5.40033 + 2.79936i 0.221952 + 0.115053i
\(593\) −39.4329 −1.61932 −0.809658 0.586901i \(-0.800348\pi\)
−0.809658 + 0.586901i \(0.800348\pi\)
\(594\) 1.08899 + 6.17598i 0.0446819 + 0.253404i
\(595\) 3.09627 17.5598i 0.126935 0.719882i
\(596\) 6.33022 2.30401i 0.259296 0.0943760i
\(597\) −6.54189 5.48930i −0.267742 0.224662i
\(598\) 16.5294 0.675937
\(599\) 5.35710 + 4.49514i 0.218885 + 0.183666i 0.745636 0.666353i \(-0.232146\pi\)
−0.526751 + 0.850019i \(0.676590\pi\)
\(600\) 0.390530 + 0.676417i 0.0159433 + 0.0276146i
\(601\) −33.7301 12.2768i −1.37588 0.500780i −0.454954 0.890515i \(-0.650344\pi\)
−0.920927 + 0.389735i \(0.872567\pi\)
\(602\) −11.3045 + 19.5800i −0.460738 + 0.798022i
\(603\) 2.39780 + 4.15312i 0.0976461 + 0.169128i
\(604\) 0.832748 + 4.72275i 0.0338841 + 0.192166i
\(605\) −21.4932 + 7.82288i −0.873823 + 0.318045i
\(606\) 2.31908 4.01676i 0.0942061 0.163170i
\(607\) 8.60788 7.22287i 0.349383 0.293167i −0.451159 0.892443i \(-0.648989\pi\)
0.800542 + 0.599276i \(0.204545\pi\)
\(608\) 4.28699 3.59721i 0.173860 0.145886i
\(609\) −32.9898 12.0073i −1.33681 0.486560i
\(610\) −1.06418 + 6.03525i −0.0430873 + 0.244360i
\(611\) 0.122674 0.695720i 0.00496286 0.0281458i
\(612\) −1.84002 0.669713i −0.0743785 0.0270716i
\(613\) 0.735767 0.617381i 0.0297173 0.0249358i −0.627808 0.778368i \(-0.716048\pi\)
0.657525 + 0.753432i \(0.271603\pi\)
\(614\) 8.56805 7.18945i 0.345778 0.290142i
\(615\) −13.3669 + 23.1521i −0.539005 + 0.933585i
\(616\) 2.66637 0.970481i 0.107431 0.0391018i
\(617\) −3.71641 21.0768i −0.149617 0.848521i −0.963543 0.267553i \(-0.913785\pi\)
0.813926 0.580969i \(-0.197326\pi\)
\(618\) 6.44743 + 11.1673i 0.259354 + 0.449214i
\(619\) −5.72550 + 9.91686i −0.230127 + 0.398592i −0.957845 0.287284i \(-0.907248\pi\)
0.727718 + 0.685876i \(0.240581\pi\)
\(620\) −9.99660 3.63846i −0.401473 0.146124i
\(621\) 25.4800 + 44.1326i 1.02248 + 1.77098i
\(622\) −6.32501 5.30731i −0.253610 0.212804i
\(623\) −32.8999 −1.31811
\(624\) −2.13041 1.78763i −0.0852849 0.0715625i
\(625\) 25.6434 9.33342i 1.02573 0.373337i
\(626\) 2.04442 11.5945i 0.0817113 0.463408i
\(627\) −1.66843 9.46216i −0.0666308 0.377882i
\(628\) −14.4679 −0.577333
\(629\) 0.827534 + 18.2295i 0.0329959 + 0.726858i
\(630\) −3.87939 −0.154558
\(631\) 8.35710 + 47.3954i 0.332691 + 1.88678i 0.448938 + 0.893563i \(0.351802\pi\)
−0.116247 + 0.993220i \(0.537087\pi\)
\(632\) −0.769915 + 4.36640i −0.0306256 + 0.173686i
\(633\) −31.2558 + 11.3762i −1.24231 + 0.452163i
\(634\) −10.1441 8.51190i −0.402873 0.338051i
\(635\) 16.4953 0.654594
\(636\) −14.1420 11.8666i −0.560768 0.470540i
\(637\) −0.534148 0.925172i −0.0211637 0.0366566i
\(638\) 9.52956 + 3.46848i 0.377279 + 0.137318i
\(639\) −0.842549 + 1.45934i −0.0333307 + 0.0577305i
\(640\) −1.17365 2.03282i −0.0463925 0.0803542i
\(641\) 5.53121 + 31.3691i 0.218470 + 1.23900i 0.874783 + 0.484515i \(0.161004\pi\)
−0.656313 + 0.754488i \(0.727885\pi\)
\(642\) 8.69846 3.16598i 0.343301 0.124951i
\(643\) −11.2897 + 19.5543i −0.445221 + 0.771146i −0.998068 0.0621372i \(-0.980208\pi\)
0.552846 + 0.833283i \(0.313542\pi\)
\(644\) 17.6630 14.8210i 0.696019 0.584029i
\(645\) 24.5985 20.6406i 0.968567 0.812724i
\(646\) 15.7763 + 5.74211i 0.620711 + 0.225920i
\(647\) 5.12954 29.0911i 0.201663 1.14369i −0.700942 0.713218i \(-0.747237\pi\)
0.902605 0.430469i \(-0.141652\pi\)
\(648\) 1.14883 6.51536i 0.0451304 0.255947i
\(649\) −8.81877 3.20977i −0.346167 0.125995i
\(650\) 0.708892 0.594831i 0.0278050 0.0233312i
\(651\) −13.4684 + 11.3013i −0.527867 + 0.442933i
\(652\) −5.02481 + 8.70323i −0.196787 + 0.340845i
\(653\) 8.71600 3.17237i 0.341084 0.124144i −0.165799 0.986160i \(-0.553020\pi\)
0.506882 + 0.862015i \(0.330798\pi\)
\(654\) 5.33022 + 30.2292i 0.208428 + 1.18205i
\(655\) −1.06418 1.84321i −0.0415809 0.0720202i
\(656\) 3.71688 6.43783i 0.145120 0.251355i
\(657\) −0.434945 0.158307i −0.0169688 0.00617614i
\(658\) −0.492726 0.853427i −0.0192085 0.0332700i
\(659\) 20.8418 + 17.4884i 0.811883 + 0.681250i 0.951056 0.309018i \(-0.100000\pi\)
−0.139174 + 0.990268i \(0.544445\pi\)
\(660\) −4.03003 −0.156869
\(661\) 8.43763 + 7.08001i 0.328186 + 0.275381i 0.791960 0.610573i \(-0.209061\pi\)
−0.463774 + 0.885953i \(0.653505\pi\)
\(662\) 23.0646 8.39484i 0.896433 0.326275i
\(663\) 1.44878 8.21643i 0.0562659 0.319100i
\(664\) 1.25877 + 7.13884i 0.0488498 + 0.277041i
\(665\) 33.2618 1.28984
\(666\) 3.87464 0.866025i 0.150139 0.0335578i
\(667\) 82.4065 3.19079
\(668\) 1.81315 + 10.2829i 0.0701528 + 0.397856i
\(669\) −2.69846 + 15.3037i −0.104329 + 0.591677i
\(670\) −16.2062 + 5.89858i −0.626100 + 0.227882i
\(671\) −2.24123 1.88061i −0.0865217 0.0726003i
\(672\) −3.87939 −0.149651
\(673\) 10.1141 + 8.48670i 0.389868 + 0.327138i 0.816562 0.577258i \(-0.195877\pi\)
−0.426694 + 0.904396i \(0.640322\pi\)
\(674\) 6.04323 + 10.4672i 0.232777 + 0.403181i
\(675\) 2.68092 + 0.975776i 0.103189 + 0.0375576i
\(676\) 4.85251 8.40480i 0.186635 0.323261i
\(677\) 17.7763 + 30.7895i 0.683199 + 1.18334i 0.973999 + 0.226552i \(0.0727452\pi\)
−0.290800 + 0.956784i \(0.593921\pi\)
\(678\) 0.677519 + 3.84240i 0.0260199 + 0.147566i
\(679\) 34.9641 12.7259i 1.34180 0.488375i
\(680\) 3.52094 6.09845i 0.135022 0.233865i
\(681\) −5.12520 + 4.30055i −0.196398 + 0.164798i
\(682\) 3.89053 3.26454i 0.148976 0.125006i
\(683\) −30.8756 11.2378i −1.18142 0.430002i −0.324717 0.945811i \(-0.605269\pi\)
−0.856704 + 0.515809i \(0.827491\pi\)
\(684\) 0.634285 3.59721i 0.0242525 0.137543i
\(685\) −0.798133 + 4.52644i −0.0304951 + 0.172946i
\(686\) −18.0560 6.57186i −0.689382 0.250915i
\(687\) −13.8177 + 11.5945i −0.527179 + 0.442356i
\(688\) −6.84002 + 5.73946i −0.260773 + 0.218815i
\(689\) −10.9363 + 18.9422i −0.416639 + 0.721641i
\(690\) −30.7729 + 11.2004i −1.17150 + 0.426393i
\(691\) −7.38089 41.8591i −0.280782 1.59240i −0.719973 0.694002i \(-0.755846\pi\)
0.439191 0.898394i \(-0.355265\pi\)
\(692\) −0.524815 0.909006i −0.0199505 0.0345552i
\(693\) 0.926022 1.60392i 0.0351767 0.0609278i
\(694\) −1.69934 0.618509i −0.0645061 0.0234783i
\(695\) 15.9632 + 27.6490i 0.605517 + 1.04879i
\(696\) −10.6211 8.91215i −0.402591 0.337814i
\(697\) 22.3013 0.844722
\(698\) −3.95677 3.32012i −0.149766 0.125668i
\(699\) −23.4329 + 8.52887i −0.886313 + 0.322592i
\(700\) 0.224155 1.27125i 0.00847228 0.0480487i
\(701\) −2.88161 16.3424i −0.108837 0.617244i −0.989618 0.143721i \(-0.954093\pi\)
0.880781 0.473523i \(-0.157018\pi\)
\(702\) −10.1584 −0.383404
\(703\) −33.2211 + 7.42528i −1.25296 + 0.280050i
\(704\) 1.12061 0.0422348
\(705\) 0.243041 + 1.37835i 0.00915344 + 0.0519117i
\(706\) 5.38800 30.5569i 0.202780 1.15002i
\(707\) −7.20321 + 2.62175i −0.270905 + 0.0986012i
\(708\) 9.82888 + 8.24741i 0.369392 + 0.309957i
\(709\) 5.68779 0.213609 0.106805 0.994280i \(-0.465938\pi\)
0.106805 + 0.994280i \(0.465938\pi\)
\(710\) −4.64227 3.89533i −0.174221 0.146189i
\(711\) 1.44697 + 2.50622i 0.0542655 + 0.0939906i
\(712\) −12.2096 4.44393i −0.457574 0.166543i
\(713\) 20.6348 35.7404i 0.772778 1.33849i
\(714\) −5.81908 10.0789i −0.217774 0.377195i
\(715\) 0.829126 + 4.70221i 0.0310076 + 0.175853i
\(716\) −8.60354 + 3.13143i −0.321529 + 0.117027i
\(717\) 11.9422 20.6845i 0.445990 0.772478i
\(718\) −2.31908 + 1.94594i −0.0865472 + 0.0726217i
\(719\) 9.21735 7.73427i 0.343749 0.288440i −0.454525 0.890734i \(-0.650191\pi\)
0.798274 + 0.602294i \(0.205747\pi\)
\(720\) −1.43969 0.524005i −0.0536542 0.0195285i
\(721\) 3.70068 20.9876i 0.137821 0.781620i
\(722\) −2.13903 + 12.1311i −0.0796066 + 0.451471i
\(723\) 1.25877 + 0.458155i 0.0468142 + 0.0170390i
\(724\) −17.3157 + 14.5296i −0.643532 + 0.539987i
\(725\) 3.53415 2.96550i 0.131255 0.110136i
\(726\) −7.46451 + 12.9289i −0.277034 + 0.479837i
\(727\) −25.5898 + 9.31391i −0.949072 + 0.345434i −0.769742 0.638355i \(-0.779615\pi\)
−0.179330 + 0.983789i \(0.557393\pi\)
\(728\) 0.798133 + 4.52644i 0.0295808 + 0.167761i
\(729\) −15.0201 26.0155i −0.556299 0.963538i
\(730\) 0.832282 1.44155i 0.0308041 0.0533543i
\(731\) −25.1716 9.16171i −0.931005 0.338858i
\(732\) 2.00000 + 3.46410i 0.0739221 + 0.128037i
\(733\) −16.2324 13.6206i −0.599556 0.503087i 0.291747 0.956496i \(-0.405764\pi\)
−0.891303 + 0.453408i \(0.850208\pi\)
\(734\) −27.7948 −1.02592
\(735\) 1.62133 + 1.36046i 0.0598037 + 0.0501812i
\(736\) 8.55690 3.11446i 0.315412 0.114800i
\(737\) 1.42973 8.10840i 0.0526648 0.298677i
\(738\) −0.842549 4.77833i −0.0310146 0.175893i
\(739\) −30.6195 −1.12636 −0.563178 0.826336i \(-0.690421\pi\)
−0.563178 + 0.826336i \(0.690421\pi\)
\(740\) 0.647489 + 14.2634i 0.0238022 + 0.524331i
\(741\) 15.5635 0.571741
\(742\) 5.29813 + 30.0472i 0.194501 + 1.10307i
\(743\) −2.98798 + 16.9457i −0.109618 + 0.621676i 0.879656 + 0.475610i \(0.157772\pi\)
−0.989275 + 0.146067i \(0.953339\pi\)
\(744\) −6.52481 + 2.37484i −0.239211 + 0.0870658i
\(745\) 12.1131 + 10.1641i 0.443789 + 0.372383i
\(746\) −5.17530 −0.189481
\(747\) 3.62449 + 3.04130i 0.132613 + 0.111275i
\(748\) 1.68092 + 2.91144i 0.0614606 + 0.106453i
\(749\) −14.3760 5.23243i −0.525287 0.191189i
\(750\) 8.07398 13.9845i 0.294820 0.510643i
\(751\) 13.7506 + 23.8168i 0.501767 + 0.869086i 0.999998 + 0.00204181i \(0.000649930\pi\)
−0.498231 + 0.867045i \(0.666017\pi\)
\(752\) −0.0675813 0.383273i −0.00246444 0.0139765i
\(753\) 3.65657 1.33088i 0.133253 0.0485001i
\(754\) −8.21348 + 14.2262i −0.299117 + 0.518086i
\(755\) −8.62314 + 7.23567i −0.313828 + 0.263333i
\(756\) −10.8550 + 9.10846i −0.394794 + 0.331271i
\(757\) −18.0753 6.57888i −0.656959 0.239113i −0.00803598 0.999968i \(-0.502558\pi\)
−0.648923 + 0.760854i \(0.724780\pi\)
\(758\) 3.66250 20.7711i 0.133028 0.754440i
\(759\) 2.71482 15.3965i 0.0985418 0.558858i
\(760\) 12.3439 + 4.49281i 0.447760 + 0.162971i
\(761\) 30.1313 25.2832i 1.09226 0.916515i 0.0953800 0.995441i \(-0.469593\pi\)
0.996881 + 0.0789255i \(0.0251489\pi\)
\(762\) 8.24763 6.92058i 0.298780 0.250706i
\(763\) 25.3653 43.9340i 0.918286 1.59052i
\(764\) 17.9795 6.54401i 0.650476 0.236754i
\(765\) −0.798133 4.52644i −0.0288566 0.163654i
\(766\) −19.5155 33.8018i −0.705123 1.22131i
\(767\) 7.60085 13.1651i 0.274451 0.475363i
\(768\) −1.43969 0.524005i −0.0519504 0.0189084i
\(769\) −6.48087 11.2252i −0.233706 0.404791i 0.725190 0.688549i \(-0.241752\pi\)
−0.958896 + 0.283758i \(0.908419\pi\)
\(770\) 5.10220 + 4.28125i 0.183870 + 0.154286i
\(771\) 25.5149 0.918895
\(772\) −14.5646 12.2212i −0.524193 0.439850i
\(773\) −11.1878 + 4.07202i −0.402397 + 0.146460i −0.535287 0.844670i \(-0.679796\pi\)
0.132890 + 0.991131i \(0.457574\pi\)
\(774\) −1.01202 + 5.73946i −0.0363764 + 0.206301i
\(775\) −0.401207 2.27536i −0.0144118 0.0817333i
\(776\) 14.6946 0.527505
\(777\) 20.9500 + 10.8598i 0.751576 + 0.389594i
\(778\) −16.0273 −0.574608
\(779\) 7.22399 + 40.9693i 0.258826 + 1.46788i
\(780\) 1.13357 6.42880i 0.0405883 0.230188i
\(781\) 2.71864 0.989503i 0.0972804 0.0354072i
\(782\) 20.9270 + 17.5598i 0.748346 + 0.627937i
\(783\) −50.6441 −1.80987
\(784\) −0.450837 0.378297i −0.0161013 0.0135106i
\(785\) −16.9802 29.4106i −0.606051 1.04971i
\(786\) −1.30541 0.475129i −0.0465623 0.0169473i
\(787\) −10.4618 + 18.1204i −0.372924 + 0.645923i −0.990014 0.140970i \(-0.954978\pi\)
0.617090 + 0.786892i \(0.288311\pi\)
\(788\) −9.24035 16.0048i −0.329174 0.570146i
\(789\) −1.73854 9.85976i −0.0618937 0.351017i
\(790\) −9.77972 + 3.55953i −0.347947 + 0.126642i
\(791\) 3.22416 5.58440i 0.114638 0.198558i
\(792\) 0.560307 0.470154i 0.0199097 0.0167062i
\(793\) 3.63041 3.04628i 0.128920 0.108177i
\(794\) 13.7579 + 5.00746i 0.488249 + 0.177708i
\(795\) 7.52481 42.6753i 0.266878 1.51354i
\(796\) −0.967911 + 5.48930i −0.0343067 + 0.194563i
\(797\) 3.67752 + 1.33851i 0.130264 + 0.0474124i 0.406330 0.913726i \(-0.366808\pi\)
−0.276065 + 0.961139i \(0.589031\pi\)
\(798\) 16.6309 13.9550i 0.588727 0.494000i
\(799\) 0.894400 0.750491i 0.0316416 0.0265505i
\(800\) 0.254900 0.441500i 0.00901208 0.0156094i
\(801\) −7.96926 + 2.90057i −0.281580 + 0.102487i
\(802\) −2.05035 11.6281i −0.0724002 0.410602i
\(803\) 0.397337 + 0.688207i 0.0140217 + 0.0242863i
\(804\) −5.62836 + 9.74860i −0.198497 + 0.343807i
\(805\) 50.8585 + 18.5110i 1.79253 + 0.652426i
\(806\) 4.11334 + 7.12452i 0.144886 + 0.250950i
\(807\) −10.3962 8.72346i −0.365964 0.307080i
\(808\) −3.02734 −0.106501
\(809\) 11.5921 + 9.72697i 0.407558 + 0.341982i 0.823406 0.567452i \(-0.192071\pi\)
−0.415848 + 0.909434i \(0.636515\pi\)
\(810\) 14.5929 5.31137i 0.512741 0.186622i
\(811\) 6.99629 39.6779i 0.245673 1.39328i −0.573251 0.819380i \(-0.694318\pi\)
0.818924 0.573901i \(-0.194571\pi\)
\(812\) 3.97906 + 22.5663i 0.139637 + 0.791923i
\(813\) 14.5517 0.510350
\(814\) −6.05169 3.13701i −0.212112 0.109952i
\(815\) −23.5895 −0.826303
\(816\) −0.798133 4.52644i −0.0279403 0.158457i
\(817\) 8.67705 49.2100i 0.303572 1.72164i
\(818\) 5.27972 1.92166i 0.184601 0.0671892i
\(819\) 2.29813 + 1.92836i 0.0803033 + 0.0673825i
\(820\) 17.4492 0.609354
\(821\) 19.4008 + 16.2792i 0.677092 + 0.568148i 0.915155 0.403102i \(-0.132068\pi\)
−0.238063 + 0.971250i \(0.576512\pi\)
\(822\) 1.50000 + 2.59808i 0.0523185 + 0.0906183i
\(823\) −26.7212 9.72573i −0.931443 0.339018i −0.168662 0.985674i \(-0.553945\pi\)
−0.762781 + 0.646656i \(0.776167\pi\)
\(824\) 4.20826 7.28893i 0.146602 0.253922i
\(825\) −0.437633 0.758003i −0.0152364 0.0263903i
\(826\) −3.68227 20.8832i −0.128122 0.726618i
\(827\) −2.64068 + 0.961130i −0.0918255 + 0.0334218i −0.387524 0.921859i \(-0.626670\pi\)
0.295699 + 0.955281i \(0.404447\pi\)
\(828\) 2.97178 5.14728i 0.103277 0.178880i
\(829\) −15.2585 + 12.8034i −0.529950 + 0.444681i −0.868084 0.496417i \(-0.834649\pi\)
0.338134 + 0.941098i \(0.390204\pi\)
\(830\) −13.0346 + 10.9373i −0.452438 + 0.379641i
\(831\) 42.3696 + 15.4213i 1.46979 + 0.534959i
\(832\) −0.315207 + 1.78763i −0.0109279 + 0.0619749i
\(833\) 0.306589 1.73875i 0.0106227 0.0602443i
\(834\) 19.5817 + 7.12716i 0.678059 + 0.246793i
\(835\) −18.7752 + 15.7543i −0.649743 + 0.545199i
\(836\) −4.80406 + 4.03109i −0.166152 + 0.139418i
\(837\) −12.6814 + 21.9648i −0.438333 + 0.759215i
\(838\) −9.53343 + 3.46989i −0.329327 + 0.119865i
\(839\) 6.48726 + 36.7911i 0.223965 + 1.27017i 0.864654 + 0.502369i \(0.167538\pi\)
−0.640688 + 0.767801i \(0.721351\pi\)
\(840\) −4.55303 7.88609i −0.157095 0.272096i
\(841\) −26.4479 + 45.8091i −0.911997 + 1.57962i
\(842\) 10.3020 + 3.74962i 0.355030 + 0.129221i
\(843\) −4.54323 7.86911i −0.156477 0.271027i
\(844\) 16.6309 + 13.9550i 0.572459 + 0.480350i
\(845\) 22.7806 0.783675
\(846\) −0.194593 0.163283i −0.00669024 0.00561377i
\(847\) 23.1853 8.43874i 0.796655 0.289959i
\(848\) −2.09240 + 11.8666i −0.0718532 + 0.407500i
\(849\) 6.00387 + 34.0496i 0.206052 + 1.16858i
\(850\) 1.52940 0.0524580
\(851\) −54.9286 7.13479i −1.88293 0.244577i
\(852\) −3.95542 −0.135511
\(853\) 3.87227 + 21.9608i 0.132584 + 0.751922i 0.976512 + 0.215465i \(0.0691266\pi\)
−0.843928 + 0.536457i \(0.819762\pi\)
\(854\) 1.14796 6.51038i 0.0392822 0.222781i
\(855\) 8.05690 2.93247i 0.275540 0.100288i
\(856\) −4.62836 3.88365i −0.158194 0.132740i
\(857\) −18.2817 −0.624491 −0.312245 0.950002i \(-0.601081\pi\)
−0.312245 + 0.950002i \(0.601081\pi\)
\(858\) 2.38737 + 2.00324i 0.0815036 + 0.0683897i
\(859\) 7.59358 + 13.1525i 0.259090 + 0.448756i 0.965998 0.258549i \(-0.0832442\pi\)
−0.706909 + 0.707305i \(0.749911\pi\)
\(860\) −19.6951 7.16842i −0.671596 0.244441i
\(861\) 14.4192 24.9748i 0.491406 0.851139i
\(862\) 2.55438 + 4.42431i 0.0870024 + 0.150693i
\(863\) 0.353855 + 2.00681i 0.0120454 + 0.0683127i 0.990238 0.139387i \(-0.0445133\pi\)
−0.978193 + 0.207700i \(0.933402\pi\)
\(864\) −5.25877 + 1.91404i −0.178907 + 0.0651168i
\(865\) 1.23190 2.13371i 0.0418857 0.0725482i
\(866\) 21.2520 17.8325i 0.722171 0.605974i
\(867\) −9.38919 + 7.87846i −0.318873 + 0.267567i
\(868\) 10.7836 + 3.92490i 0.366019 + 0.133220i
\(869\) 0.862778 4.89306i 0.0292677 0.165986i
\(870\) 5.65136 32.0505i 0.191599 1.08661i
\(871\) 12.5326 + 4.56148i 0.424649 + 0.154560i
\(872\) 15.3478 12.8783i 0.519741 0.436114i
\(873\) 7.34730 6.16511i 0.248668 0.208657i
\(874\) −25.4800 + 44.1326i −0.861873 + 1.49281i
\(875\) −25.0783 + 9.12776i −0.847802 + 0.308575i
\(876\) −0.188663 1.06996i −0.00637433 0.0361506i
\(877\) −1.13445 1.96492i −0.0383076 0.0663507i 0.846236 0.532808i \(-0.178863\pi\)
−0.884544 + 0.466458i \(0.845530\pi\)
\(878\) −14.5692 + 25.2346i −0.491688 + 0.851628i
\(879\) 5.85117 + 2.12965i 0.197355 + 0.0718313i
\(880\) 1.31521 + 2.27801i 0.0443356 + 0.0767916i
\(881\) 23.1616 + 19.4349i 0.780335 + 0.654779i 0.943333 0.331848i \(-0.107672\pi\)
−0.162998 + 0.986626i \(0.552116\pi\)
\(882\) −0.384133 −0.0129344
\(883\) −1.65136 1.38566i −0.0555727 0.0466310i 0.614578 0.788856i \(-0.289326\pi\)
−0.670151 + 0.742225i \(0.733771\pi\)
\(884\) −5.11721 + 1.86251i −0.172110 + 0.0626431i
\(885\) −5.22984 + 29.6599i −0.175799 + 0.997006i
\(886\) −1.21183 6.87262i −0.0407122 0.230890i
\(887\) −30.0387 −1.00860 −0.504300 0.863528i \(-0.668250\pi\)
−0.504300 + 0.863528i \(0.668250\pi\)
\(888\) 6.30793 + 6.86002i 0.211680 + 0.230207i
\(889\) −17.7939 −0.596787
\(890\) −5.29607 30.0355i −0.177525 1.00679i
\(891\) −1.28740 + 7.30121i −0.0431295 + 0.244600i
\(892\) 9.53121 3.46908i 0.319129 0.116153i
\(893\) 1.66843 + 1.39998i 0.0558320 + 0.0468486i
\(894\) 10.3209 0.345182
\(895\) −16.4632 13.8142i −0.550303 0.461759i
\(896\) 1.26604 + 2.19285i 0.0422956 + 0.0732581i
\(897\) 23.7973 + 8.66149i 0.794567 + 0.289199i
\(898\) 9.12701 15.8084i 0.304572 0.527535i
\(899\) 20.5069 + 35.5189i 0.683942 + 1.18462i
\(900\) −0.0577812 0.327693i −0.00192604 0.0109231i
\(901\) −33.9688 + 12.3636i −1.13167 + 0.411893i
\(902\) −4.16519 + 7.21432i −0.138686 + 0.240211i
\(903\) −26.5351 + 22.2656i −0.883032 + 0.740952i
\(904\) 1.95084 1.63695i 0.0648839 0.0544440i
\(905\) −49.8585 18.1470i −1.65735 0.603227i
\(906\) −1.27584 + 7.23567i −0.0423871 + 0.240389i
\(907\) −0.218474 + 1.23903i −0.00725431 + 0.0411412i −0.988220 0.153040i \(-0.951094\pi\)
0.980966 + 0.194181i \(0.0622049\pi\)
\(908\) 4.10354 + 1.49357i 0.136181 + 0.0495657i
\(909\) −1.51367 + 1.27012i −0.0502053 + 0.0421272i
\(910\) −8.26470 + 6.93491i −0.273972 + 0.229890i
\(911\) 22.8371 39.5550i 0.756626 1.31052i −0.187935 0.982181i \(-0.560180\pi\)
0.944562 0.328334i \(-0.106487\pi\)
\(912\) 8.05690 2.93247i 0.266791 0.0971039i
\(913\) −1.41060 7.99989i −0.0466839 0.264758i
\(914\) −11.3978 19.7416i −0.377006 0.652993i
\(915\) −4.69459 + 8.13127i −0.155198 + 0.268812i
\(916\) 11.0633 + 4.02671i 0.365542 + 0.133046i
\(917\) 1.14796 + 1.98832i 0.0379088 + 0.0656600i
\(918\) −12.8610 10.7916i −0.424475 0.356177i
\(919\) −12.5006 −0.412358 −0.206179 0.978514i \(-0.566103\pi\)
−0.206179 + 0.978514i \(0.566103\pi\)
\(920\) 16.3739 + 13.7394i 0.539832 + 0.452973i
\(921\) 16.1027 5.86089i 0.530601 0.193123i
\(922\) −1.51027 + 8.56515i −0.0497380 + 0.282078i
\(923\) 0.813777 + 4.61516i 0.0267858 + 0.151910i
\(924\) 4.34730 0.143016
\(925\) −2.61246 + 1.67069i −0.0858973 + 0.0549318i
\(926\) −3.41323 −0.112166
\(927\) −0.953936 5.41004i −0.0313314 0.177689i
\(928\) −1.57145 + 8.91215i −0.0515854 + 0.292556i
\(929\) −14.8769 + 5.41473i −0.488094 + 0.177652i −0.574331 0.818623i \(-0.694738\pi\)
0.0862374 + 0.996275i \(0.472516\pi\)
\(930\) −12.4855 10.4765i −0.409414 0.343539i
\(931\) 3.29355 0.107942
\(932\) 12.4684 + 10.4622i 0.408415 + 0.342701i
\(933\) −6.32501 10.9552i −0.207071 0.358658i
\(934\) 34.4247 + 12.5296i 1.12641 + 0.409980i
\(935\) −3.94562 + 6.83402i −0.129036 + 0.223496i
\(936\) 0.592396 + 1.02606i 0.0193631 + 0.0335378i
\(937\) 7.32454 + 41.5395i 0.239282 + 1.35704i 0.833405 + 0.552663i \(0.186388\pi\)
−0.594123 + 0.804375i \(0.702501\pi\)
\(938\) 17.4820 6.36295i 0.570809 0.207758i
\(939\) 9.01889 15.6212i 0.294320 0.509778i
\(940\) 0.699807 0.587208i 0.0228252 0.0191526i
\(941\) 40.3469 33.8551i 1.31527 1.10364i 0.327986 0.944683i \(-0.393630\pi\)
0.987285 0.158961i \(-0.0508143\pi\)
\(942\) −20.8293 7.58126i −0.678657 0.247011i
\(943\) −11.7547 + 66.6639i −0.382784 + 2.17088i
\(944\) 1.45424 8.24741i 0.0473315 0.268430i
\(945\) −31.2558 11.3762i −1.01675 0.370068i
\(946\) 7.66503 6.43172i 0.249212 0.209113i
\(947\) 3.45929 2.90269i 0.112412 0.0943248i −0.584849 0.811142i \(-0.698846\pi\)
0.697261 + 0.716817i \(0.254402\pi\)
\(948\) −3.39646 + 5.88284i −0.110312 + 0.191066i
\(949\) −1.20961 + 0.440261i −0.0392655 + 0.0142915i
\(950\) 0.495414 + 2.80963i 0.0160734 + 0.0911566i
\(951\) −10.1441 17.5701i −0.328945 0.569749i
\(952\) −3.79813 + 6.57856i −0.123098 + 0.213212i
\(953\) −44.1715 16.0771i −1.43085 0.520789i −0.493678 0.869645i \(-0.664348\pi\)
−0.937176 + 0.348856i \(0.886570\pi\)
\(954\) 3.93242 + 6.81115i 0.127317 + 0.220519i
\(955\) 34.4044 + 28.8687i 1.11330 + 0.934170i
\(956\) −15.5895 −0.504199
\(957\) 11.9021 + 9.98708i 0.384742 + 0.322837i
\(958\) −19.3640 + 7.04791i −0.625621 + 0.227707i
\(959\) 0.860967 4.88279i 0.0278021 0.157673i
\(960\) −0.624485 3.54163i −0.0201552 0.114306i
\(961\) −10.4602 −0.337425
\(962\) 6.70645 8.77141i 0.216225 0.282802i
\(963\) −3.94356 −0.127080
\(964\) −0.151826 0.861050i −0.00489000 0.0277325i
\(965\) 7.74969 43.9507i 0.249471 1.41482i
\(966\) 33.1955 12.0822i 1.06805 0.388738i
\(967\) 0.149548 + 0.125486i 0.00480915 + 0.00403536i 0.645189 0.764023i \(-0.276779\pi\)
−0.640380 + 0.768058i \(0.721223\pi\)
\(968\) 9.74422 0.313191
\(969\) 19.7041 + 16.5337i 0.632988 + 0.531140i
\(970\) 17.2463 + 29.8714i 0.553745 + 0.959114i
\(971\) −0.752679 0.273953i −0.0241546 0.00879156i 0.329915 0.944011i \(-0.392980\pi\)
−0.354069 + 0.935219i \(0.615202\pi\)
\(972\) −3.32635 + 5.76141i −0.106693 + 0.184797i
\(973\) −17.2199 29.8257i −0.552044 0.956168i
\(974\) −7.34302 41.6443i −0.235285 1.33437i
\(975\) 1.33228 0.484911i 0.0426672 0.0155296i
\(976\) 1.30541 2.26103i 0.0417851 0.0723739i
\(977\) −12.6438 + 10.6094i −0.404512 + 0.339426i −0.822235 0.569149i \(-0.807273\pi\)
0.417722 + 0.908575i \(0.362828\pi\)
\(978\) −11.7947 + 9.89695i −0.377154 + 0.316470i
\(979\) 13.6823 + 4.97994i 0.437287 + 0.159159i
\(980\) 0.239885 1.36046i 0.00766286 0.0434582i
\(981\) 2.27079 12.8783i 0.0725008 0.411173i
\(982\) 31.1152 + 11.3250i 0.992924 + 0.361395i
\(983\) −22.4466 + 18.8349i −0.715934 + 0.600740i −0.926257 0.376892i \(-0.876993\pi\)
0.210323 + 0.977632i \(0.432548\pi\)
\(984\) 8.72462 7.32083i 0.278131 0.233379i
\(985\) 21.6898 37.5679i 0.691096 1.19701i
\(986\) −25.5116 + 9.28547i −0.812455 + 0.295710i
\(987\) −0.262174 1.48686i −0.00834509 0.0473274i
\(988\) −5.07919 8.79742i −0.161591 0.279883i
\(989\) 40.6541 70.4150i 1.29273 2.23907i
\(990\) 1.61334 + 0.587208i 0.0512753 + 0.0186627i
\(991\) 6.89393 + 11.9406i 0.218993 + 0.379307i 0.954500 0.298210i \(-0.0963895\pi\)
−0.735507 + 0.677517i \(0.763056\pi\)
\(992\) 3.47178 + 2.91317i 0.110229 + 0.0924933i
\(993\) 37.6049 1.19336
\(994\) 5.00774 + 4.20199i 0.158836 + 0.133279i
\(995\) −12.2947 + 4.47492i −0.389769 + 0.141864i
\(996\) −1.92855 + 10.9373i −0.0611084 + 0.346563i
\(997\) 3.43170 + 19.4622i 0.108683 + 0.616373i 0.989685 + 0.143260i \(0.0457585\pi\)
−0.881002 + 0.473113i \(0.843130\pi\)
\(998\) 9.99588 0.316414
\(999\) 33.7572 + 4.38479i 1.06803 + 0.138729i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 74.2.f.a.9.1 6
3.2 odd 2 666.2.x.c.379.1 6
4.3 odd 2 592.2.bc.b.305.1 6
37.12 even 9 2738.2.a.m.1.3 3
37.25 even 18 2738.2.a.p.1.3 3
37.33 even 9 inner 74.2.f.a.33.1 yes 6
111.107 odd 18 666.2.x.c.181.1 6
148.107 odd 18 592.2.bc.b.33.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.2.f.a.9.1 6 1.1 even 1 trivial
74.2.f.a.33.1 yes 6 37.33 even 9 inner
592.2.bc.b.33.1 6 148.107 odd 18
592.2.bc.b.305.1 6 4.3 odd 2
666.2.x.c.181.1 6 111.107 odd 18
666.2.x.c.379.1 6 3.2 odd 2
2738.2.a.m.1.3 3 37.12 even 9
2738.2.a.p.1.3 3 37.25 even 18