Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [74,8,Mod(47,74)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(74, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("74.47");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.c (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(23.1164918858\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | 4.00000 | − | 6.92820i | −42.3772 | − | 73.3994i | −32.0000 | − | 55.4256i | 46.6582 | + | 80.8144i | −678.035 | −404.125 | − | 699.965i | −512.000 | −2498.15 | + | 4326.92i | 746.531 | ||||||
47.2 | 4.00000 | − | 6.92820i | −35.3899 | − | 61.2970i | −32.0000 | − | 55.4256i | −144.990 | − | 251.131i | −566.238 | 577.803 | + | 1000.78i | −512.000 | −1411.38 | + | 2444.59i | −2319.84 | ||||||
47.3 | 4.00000 | − | 6.92820i | −27.0658 | − | 46.8793i | −32.0000 | − | 55.4256i | 61.0458 | + | 105.734i | −433.053 | 612.092 | + | 1060.17i | −512.000 | −371.614 | + | 643.655i | 976.733 | ||||||
47.4 | 4.00000 | − | 6.92820i | −17.1122 | − | 29.6391i | −32.0000 | − | 55.4256i | 219.368 | + | 379.957i | −273.795 | −84.9006 | − | 147.052i | −512.000 | 507.848 | − | 879.619i | 3509.89 | ||||||
47.5 | 4.00000 | − | 6.92820i | −15.9241 | − | 27.5813i | −32.0000 | − | 55.4256i | −188.831 | − | 327.065i | −254.785 | −701.348 | − | 1214.77i | −512.000 | 586.348 | − | 1015.58i | −3021.29 | ||||||
47.6 | 4.00000 | − | 6.92820i | 1.38293 | + | 2.39530i | −32.0000 | − | 55.4256i | −125.036 | − | 216.569i | 22.1268 | 133.402 | + | 231.058i | −512.000 | 1089.68 | − | 1887.37i | −2000.58 | ||||||
47.7 | 4.00000 | − | 6.92820i | 7.34337 | + | 12.7191i | −32.0000 | − | 55.4256i | 179.527 | + | 310.950i | 117.494 | −211.144 | − | 365.712i | −512.000 | 985.650 | − | 1707.20i | 2872.43 | ||||||
47.8 | 4.00000 | − | 6.92820i | 8.02885 | + | 13.9064i | −32.0000 | − | 55.4256i | −60.7750 | − | 105.265i | 128.462 | 462.740 | + | 801.489i | −512.000 | 964.575 | − | 1670.69i | −972.400 | ||||||
47.9 | 4.00000 | − | 6.92820i | 27.4375 | + | 47.5231i | −32.0000 | − | 55.4256i | 8.21796 | + | 14.2339i | 439.000 | −392.558 | − | 679.931i | −512.000 | −412.133 | + | 713.835i | 131.487 | ||||||
47.10 | 4.00000 | − | 6.92820i | 34.1855 | + | 59.2110i | −32.0000 | − | 55.4256i | 13.0513 | + | 22.6056i | 546.968 | −837.864 | − | 1451.22i | −512.000 | −1243.79 | + | 2154.31i | 208.821 | ||||||
47.11 | 4.00000 | − | 6.92820i | 35.4964 | + | 61.4816i | −32.0000 | − | 55.4256i | 163.203 | + | 282.676i | 567.942 | 755.643 | + | 1308.81i | −512.000 | −1426.49 | + | 2470.75i | 2611.25 | ||||||
47.12 | 4.00000 | − | 6.92820i | 43.9945 | + | 76.2007i | −32.0000 | − | 55.4256i | −239.439 | − | 414.721i | 703.912 | 358.261 | + | 620.527i | −512.000 | −2777.54 | + | 4810.83i | −3831.03 | ||||||
63.1 | 4.00000 | + | 6.92820i | −42.3772 | + | 73.3994i | −32.0000 | + | 55.4256i | 46.6582 | − | 80.8144i | −678.035 | −404.125 | + | 699.965i | −512.000 | −2498.15 | − | 4326.92i | 746.531 | ||||||
63.2 | 4.00000 | + | 6.92820i | −35.3899 | + | 61.2970i | −32.0000 | + | 55.4256i | −144.990 | + | 251.131i | −566.238 | 577.803 | − | 1000.78i | −512.000 | −1411.38 | − | 2444.59i | −2319.84 | ||||||
63.3 | 4.00000 | + | 6.92820i | −27.0658 | + | 46.8793i | −32.0000 | + | 55.4256i | 61.0458 | − | 105.734i | −433.053 | 612.092 | − | 1060.17i | −512.000 | −371.614 | − | 643.655i | 976.733 | ||||||
63.4 | 4.00000 | + | 6.92820i | −17.1122 | + | 29.6391i | −32.0000 | + | 55.4256i | 219.368 | − | 379.957i | −273.795 | −84.9006 | + | 147.052i | −512.000 | 507.848 | + | 879.619i | 3509.89 | ||||||
63.5 | 4.00000 | + | 6.92820i | −15.9241 | + | 27.5813i | −32.0000 | + | 55.4256i | −188.831 | + | 327.065i | −254.785 | −701.348 | + | 1214.77i | −512.000 | 586.348 | + | 1015.58i | −3021.29 | ||||||
63.6 | 4.00000 | + | 6.92820i | 1.38293 | − | 2.39530i | −32.0000 | + | 55.4256i | −125.036 | + | 216.569i | 22.1268 | 133.402 | − | 231.058i | −512.000 | 1089.68 | + | 1887.37i | −2000.58 | ||||||
63.7 | 4.00000 | + | 6.92820i | 7.34337 | − | 12.7191i | −32.0000 | + | 55.4256i | 179.527 | − | 310.950i | 117.494 | −211.144 | + | 365.712i | −512.000 | 985.650 | + | 1707.20i | 2872.43 | ||||||
63.8 | 4.00000 | + | 6.92820i | 8.02885 | − | 13.9064i | −32.0000 | + | 55.4256i | −60.7750 | + | 105.265i | 128.462 | 462.740 | − | 801.489i | −512.000 | 964.575 | + | 1670.69i | −972.400 | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 74.8.c.b | ✓ | 24 |
37.c | even | 3 | 1 | inner | 74.8.c.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
74.8.c.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
74.8.c.b | ✓ | 24 | 37.c | even | 3 | 1 | inner |