Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [74,8,Mod(47,74)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(74, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("74.47");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 74.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
The algebraic -expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | 4.00000 | − | 6.92820i | −42.3772 | − | 73.3994i | −32.0000 | − | 55.4256i | 46.6582 | + | 80.8144i | −678.035 | −404.125 | − | 699.965i | −512.000 | −2498.15 | + | 4326.92i | 746.531 | ||||||
47.2 | 4.00000 | − | 6.92820i | −35.3899 | − | 61.2970i | −32.0000 | − | 55.4256i | −144.990 | − | 251.131i | −566.238 | 577.803 | + | 1000.78i | −512.000 | −1411.38 | + | 2444.59i | −2319.84 | ||||||
47.3 | 4.00000 | − | 6.92820i | −27.0658 | − | 46.8793i | −32.0000 | − | 55.4256i | 61.0458 | + | 105.734i | −433.053 | 612.092 | + | 1060.17i | −512.000 | −371.614 | + | 643.655i | 976.733 | ||||||
47.4 | 4.00000 | − | 6.92820i | −17.1122 | − | 29.6391i | −32.0000 | − | 55.4256i | 219.368 | + | 379.957i | −273.795 | −84.9006 | − | 147.052i | −512.000 | 507.848 | − | 879.619i | 3509.89 | ||||||
47.5 | 4.00000 | − | 6.92820i | −15.9241 | − | 27.5813i | −32.0000 | − | 55.4256i | −188.831 | − | 327.065i | −254.785 | −701.348 | − | 1214.77i | −512.000 | 586.348 | − | 1015.58i | −3021.29 | ||||||
47.6 | 4.00000 | − | 6.92820i | 1.38293 | + | 2.39530i | −32.0000 | − | 55.4256i | −125.036 | − | 216.569i | 22.1268 | 133.402 | + | 231.058i | −512.000 | 1089.68 | − | 1887.37i | −2000.58 | ||||||
47.7 | 4.00000 | − | 6.92820i | 7.34337 | + | 12.7191i | −32.0000 | − | 55.4256i | 179.527 | + | 310.950i | 117.494 | −211.144 | − | 365.712i | −512.000 | 985.650 | − | 1707.20i | 2872.43 | ||||||
47.8 | 4.00000 | − | 6.92820i | 8.02885 | + | 13.9064i | −32.0000 | − | 55.4256i | −60.7750 | − | 105.265i | 128.462 | 462.740 | + | 801.489i | −512.000 | 964.575 | − | 1670.69i | −972.400 | ||||||
47.9 | 4.00000 | − | 6.92820i | 27.4375 | + | 47.5231i | −32.0000 | − | 55.4256i | 8.21796 | + | 14.2339i | 439.000 | −392.558 | − | 679.931i | −512.000 | −412.133 | + | 713.835i | 131.487 | ||||||
47.10 | 4.00000 | − | 6.92820i | 34.1855 | + | 59.2110i | −32.0000 | − | 55.4256i | 13.0513 | + | 22.6056i | 546.968 | −837.864 | − | 1451.22i | −512.000 | −1243.79 | + | 2154.31i | 208.821 | ||||||
47.11 | 4.00000 | − | 6.92820i | 35.4964 | + | 61.4816i | −32.0000 | − | 55.4256i | 163.203 | + | 282.676i | 567.942 | 755.643 | + | 1308.81i | −512.000 | −1426.49 | + | 2470.75i | 2611.25 | ||||||
47.12 | 4.00000 | − | 6.92820i | 43.9945 | + | 76.2007i | −32.0000 | − | 55.4256i | −239.439 | − | 414.721i | 703.912 | 358.261 | + | 620.527i | −512.000 | −2777.54 | + | 4810.83i | −3831.03 | ||||||
63.1 | 4.00000 | + | 6.92820i | −42.3772 | + | 73.3994i | −32.0000 | + | 55.4256i | 46.6582 | − | 80.8144i | −678.035 | −404.125 | + | 699.965i | −512.000 | −2498.15 | − | 4326.92i | 746.531 | ||||||
63.2 | 4.00000 | + | 6.92820i | −35.3899 | + | 61.2970i | −32.0000 | + | 55.4256i | −144.990 | + | 251.131i | −566.238 | 577.803 | − | 1000.78i | −512.000 | −1411.38 | − | 2444.59i | −2319.84 | ||||||
63.3 | 4.00000 | + | 6.92820i | −27.0658 | + | 46.8793i | −32.0000 | + | 55.4256i | 61.0458 | − | 105.734i | −433.053 | 612.092 | − | 1060.17i | −512.000 | −371.614 | − | 643.655i | 976.733 | ||||||
63.4 | 4.00000 | + | 6.92820i | −17.1122 | + | 29.6391i | −32.0000 | + | 55.4256i | 219.368 | − | 379.957i | −273.795 | −84.9006 | + | 147.052i | −512.000 | 507.848 | + | 879.619i | 3509.89 | ||||||
63.5 | 4.00000 | + | 6.92820i | −15.9241 | + | 27.5813i | −32.0000 | + | 55.4256i | −188.831 | + | 327.065i | −254.785 | −701.348 | + | 1214.77i | −512.000 | 586.348 | + | 1015.58i | −3021.29 | ||||||
63.6 | 4.00000 | + | 6.92820i | 1.38293 | − | 2.39530i | −32.0000 | + | 55.4256i | −125.036 | + | 216.569i | 22.1268 | 133.402 | − | 231.058i | −512.000 | 1089.68 | + | 1887.37i | −2000.58 | ||||||
63.7 | 4.00000 | + | 6.92820i | 7.34337 | − | 12.7191i | −32.0000 | + | 55.4256i | 179.527 | − | 310.950i | 117.494 | −211.144 | + | 365.712i | −512.000 | 985.650 | + | 1707.20i | 2872.43 | ||||||
63.8 | 4.00000 | + | 6.92820i | 8.02885 | − | 13.9064i | −32.0000 | + | 55.4256i | −60.7750 | + | 105.265i | 128.462 | 462.740 | − | 801.489i | −512.000 | 964.575 | + | 1670.69i | −972.400 | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 74.8.c.b | ✓ | 24 |
37.c | even | 3 | 1 | inner | 74.8.c.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
74.8.c.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
74.8.c.b | ✓ | 24 | 37.c | even | 3 | 1 | inner |