Properties

Label 74.8.c.b
Level $74$
Weight $8$
Character orbit 74.c
Analytic conductor $23.116$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [74,8,Mod(47,74)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(74, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("74.47");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 74 = 2 \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 74.c (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1164918858\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 96 q^{2} + 40 q^{3} - 768 q^{4} - 136 q^{5} + 640 q^{6} + 536 q^{7} - 12288 q^{8} - 12014 q^{9} - 2176 q^{10} - 3448 q^{11} + 2560 q^{12} + 186 q^{13} + 8576 q^{14} + 10628 q^{15} - 49152 q^{16}+ \cdots + 16388620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1 4.00000 6.92820i −42.3772 73.3994i −32.0000 55.4256i 46.6582 + 80.8144i −678.035 −404.125 699.965i −512.000 −2498.15 + 4326.92i 746.531
47.2 4.00000 6.92820i −35.3899 61.2970i −32.0000 55.4256i −144.990 251.131i −566.238 577.803 + 1000.78i −512.000 −1411.38 + 2444.59i −2319.84
47.3 4.00000 6.92820i −27.0658 46.8793i −32.0000 55.4256i 61.0458 + 105.734i −433.053 612.092 + 1060.17i −512.000 −371.614 + 643.655i 976.733
47.4 4.00000 6.92820i −17.1122 29.6391i −32.0000 55.4256i 219.368 + 379.957i −273.795 −84.9006 147.052i −512.000 507.848 879.619i 3509.89
47.5 4.00000 6.92820i −15.9241 27.5813i −32.0000 55.4256i −188.831 327.065i −254.785 −701.348 1214.77i −512.000 586.348 1015.58i −3021.29
47.6 4.00000 6.92820i 1.38293 + 2.39530i −32.0000 55.4256i −125.036 216.569i 22.1268 133.402 + 231.058i −512.000 1089.68 1887.37i −2000.58
47.7 4.00000 6.92820i 7.34337 + 12.7191i −32.0000 55.4256i 179.527 + 310.950i 117.494 −211.144 365.712i −512.000 985.650 1707.20i 2872.43
47.8 4.00000 6.92820i 8.02885 + 13.9064i −32.0000 55.4256i −60.7750 105.265i 128.462 462.740 + 801.489i −512.000 964.575 1670.69i −972.400
47.9 4.00000 6.92820i 27.4375 + 47.5231i −32.0000 55.4256i 8.21796 + 14.2339i 439.000 −392.558 679.931i −512.000 −412.133 + 713.835i 131.487
47.10 4.00000 6.92820i 34.1855 + 59.2110i −32.0000 55.4256i 13.0513 + 22.6056i 546.968 −837.864 1451.22i −512.000 −1243.79 + 2154.31i 208.821
47.11 4.00000 6.92820i 35.4964 + 61.4816i −32.0000 55.4256i 163.203 + 282.676i 567.942 755.643 + 1308.81i −512.000 −1426.49 + 2470.75i 2611.25
47.12 4.00000 6.92820i 43.9945 + 76.2007i −32.0000 55.4256i −239.439 414.721i 703.912 358.261 + 620.527i −512.000 −2777.54 + 4810.83i −3831.03
63.1 4.00000 + 6.92820i −42.3772 + 73.3994i −32.0000 + 55.4256i 46.6582 80.8144i −678.035 −404.125 + 699.965i −512.000 −2498.15 4326.92i 746.531
63.2 4.00000 + 6.92820i −35.3899 + 61.2970i −32.0000 + 55.4256i −144.990 + 251.131i −566.238 577.803 1000.78i −512.000 −1411.38 2444.59i −2319.84
63.3 4.00000 + 6.92820i −27.0658 + 46.8793i −32.0000 + 55.4256i 61.0458 105.734i −433.053 612.092 1060.17i −512.000 −371.614 643.655i 976.733
63.4 4.00000 + 6.92820i −17.1122 + 29.6391i −32.0000 + 55.4256i 219.368 379.957i −273.795 −84.9006 + 147.052i −512.000 507.848 + 879.619i 3509.89
63.5 4.00000 + 6.92820i −15.9241 + 27.5813i −32.0000 + 55.4256i −188.831 + 327.065i −254.785 −701.348 + 1214.77i −512.000 586.348 + 1015.58i −3021.29
63.6 4.00000 + 6.92820i 1.38293 2.39530i −32.0000 + 55.4256i −125.036 + 216.569i 22.1268 133.402 231.058i −512.000 1089.68 + 1887.37i −2000.58
63.7 4.00000 + 6.92820i 7.34337 12.7191i −32.0000 + 55.4256i 179.527 310.950i 117.494 −211.144 + 365.712i −512.000 985.650 + 1707.20i 2872.43
63.8 4.00000 + 6.92820i 8.02885 13.9064i −32.0000 + 55.4256i −60.7750 + 105.265i 128.462 462.740 801.489i −512.000 964.575 + 1670.69i −972.400
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 47.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 74.8.c.b 24
37.c even 3 1 inner 74.8.c.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
74.8.c.b 24 1.a even 1 1 trivial
74.8.c.b 24 37.c even 3 1 inner