Properties

Label 7605.2.a.bh.1.2
Level $7605$
Weight $2$
Character 7605.1
Self dual yes
Analytic conductor $60.726$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7605,2,Mod(1,7605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7605.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.7262307372\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 7605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155 q^{2} +4.56155 q^{4} +1.00000 q^{5} +3.56155 q^{7} +6.56155 q^{8} +2.56155 q^{10} +5.56155 q^{11} +9.12311 q^{14} +7.68466 q^{16} -0.438447 q^{17} +1.12311 q^{19} +4.56155 q^{20} +14.2462 q^{22} +5.56155 q^{23} +1.00000 q^{25} +16.2462 q^{28} -8.24621 q^{29} -6.00000 q^{31} +6.56155 q^{32} -1.12311 q^{34} +3.56155 q^{35} -5.56155 q^{37} +2.87689 q^{38} +6.56155 q^{40} +0.438447 q^{41} -7.12311 q^{43} +25.3693 q^{44} +14.2462 q^{46} -4.00000 q^{47} +5.68466 q^{49} +2.56155 q^{50} +9.80776 q^{53} +5.56155 q^{55} +23.3693 q^{56} -21.1231 q^{58} +4.00000 q^{59} -8.43845 q^{61} -15.3693 q^{62} +1.43845 q^{64} +2.87689 q^{67} -2.00000 q^{68} +9.12311 q^{70} -8.68466 q^{71} -11.1231 q^{73} -14.2462 q^{74} +5.12311 q^{76} +19.8078 q^{77} -5.56155 q^{79} +7.68466 q^{80} +1.12311 q^{82} -13.3693 q^{83} -0.438447 q^{85} -18.2462 q^{86} +36.4924 q^{88} +1.31534 q^{89} +25.3693 q^{92} -10.2462 q^{94} +1.12311 q^{95} -14.9309 q^{97} +14.5616 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 5 q^{4} + 2 q^{5} + 3 q^{7} + 9 q^{8} + q^{10} + 7 q^{11} + 10 q^{14} + 3 q^{16} - 5 q^{17} - 6 q^{19} + 5 q^{20} + 12 q^{22} + 7 q^{23} + 2 q^{25} + 16 q^{28} - 12 q^{31} + 9 q^{32} + 6 q^{34}+ \cdots + 25 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.56155 1.81129 0.905646 0.424035i \(-0.139387\pi\)
0.905646 + 0.424035i \(0.139387\pi\)
\(3\) 0 0
\(4\) 4.56155 2.28078
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.56155 1.34614 0.673070 0.739579i \(-0.264975\pi\)
0.673070 + 0.739579i \(0.264975\pi\)
\(8\) 6.56155 2.31986
\(9\) 0 0
\(10\) 2.56155 0.810034
\(11\) 5.56155 1.67687 0.838436 0.545001i \(-0.183471\pi\)
0.838436 + 0.545001i \(0.183471\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 9.12311 2.43825
\(15\) 0 0
\(16\) 7.68466 1.92116
\(17\) −0.438447 −0.106339 −0.0531695 0.998586i \(-0.516932\pi\)
−0.0531695 + 0.998586i \(0.516932\pi\)
\(18\) 0 0
\(19\) 1.12311 0.257658 0.128829 0.991667i \(-0.458878\pi\)
0.128829 + 0.991667i \(0.458878\pi\)
\(20\) 4.56155 1.01999
\(21\) 0 0
\(22\) 14.2462 3.03730
\(23\) 5.56155 1.15966 0.579832 0.814736i \(-0.303118\pi\)
0.579832 + 0.814736i \(0.303118\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 16.2462 3.07025
\(29\) −8.24621 −1.53128 −0.765641 0.643268i \(-0.777578\pi\)
−0.765641 + 0.643268i \(0.777578\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 6.56155 1.15993
\(33\) 0 0
\(34\) −1.12311 −0.192611
\(35\) 3.56155 0.602012
\(36\) 0 0
\(37\) −5.56155 −0.914314 −0.457157 0.889386i \(-0.651132\pi\)
−0.457157 + 0.889386i \(0.651132\pi\)
\(38\) 2.87689 0.466694
\(39\) 0 0
\(40\) 6.56155 1.03747
\(41\) 0.438447 0.0684739 0.0342370 0.999414i \(-0.489100\pi\)
0.0342370 + 0.999414i \(0.489100\pi\)
\(42\) 0 0
\(43\) −7.12311 −1.08626 −0.543132 0.839648i \(-0.682762\pi\)
−0.543132 + 0.839648i \(0.682762\pi\)
\(44\) 25.3693 3.82457
\(45\) 0 0
\(46\) 14.2462 2.10049
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 5.68466 0.812094
\(50\) 2.56155 0.362258
\(51\) 0 0
\(52\) 0 0
\(53\) 9.80776 1.34720 0.673600 0.739096i \(-0.264747\pi\)
0.673600 + 0.739096i \(0.264747\pi\)
\(54\) 0 0
\(55\) 5.56155 0.749920
\(56\) 23.3693 3.12286
\(57\) 0 0
\(58\) −21.1231 −2.77360
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −8.43845 −1.08043 −0.540216 0.841526i \(-0.681658\pi\)
−0.540216 + 0.841526i \(0.681658\pi\)
\(62\) −15.3693 −1.95191
\(63\) 0 0
\(64\) 1.43845 0.179806
\(65\) 0 0
\(66\) 0 0
\(67\) 2.87689 0.351469 0.175734 0.984438i \(-0.443770\pi\)
0.175734 + 0.984438i \(0.443770\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 9.12311 1.09042
\(71\) −8.68466 −1.03068 −0.515340 0.856986i \(-0.672334\pi\)
−0.515340 + 0.856986i \(0.672334\pi\)
\(72\) 0 0
\(73\) −11.1231 −1.30186 −0.650931 0.759137i \(-0.725621\pi\)
−0.650931 + 0.759137i \(0.725621\pi\)
\(74\) −14.2462 −1.65609
\(75\) 0 0
\(76\) 5.12311 0.587661
\(77\) 19.8078 2.25730
\(78\) 0 0
\(79\) −5.56155 −0.625724 −0.312862 0.949799i \(-0.601288\pi\)
−0.312862 + 0.949799i \(0.601288\pi\)
\(80\) 7.68466 0.859171
\(81\) 0 0
\(82\) 1.12311 0.124026
\(83\) −13.3693 −1.46747 −0.733737 0.679434i \(-0.762225\pi\)
−0.733737 + 0.679434i \(0.762225\pi\)
\(84\) 0 0
\(85\) −0.438447 −0.0475563
\(86\) −18.2462 −1.96754
\(87\) 0 0
\(88\) 36.4924 3.89011
\(89\) 1.31534 0.139426 0.0697130 0.997567i \(-0.477792\pi\)
0.0697130 + 0.997567i \(0.477792\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 25.3693 2.64493
\(93\) 0 0
\(94\) −10.2462 −1.05682
\(95\) 1.12311 0.115228
\(96\) 0 0
\(97\) −14.9309 −1.51600 −0.758000 0.652254i \(-0.773823\pi\)
−0.758000 + 0.652254i \(0.773823\pi\)
\(98\) 14.5616 1.47094
\(99\) 0 0
\(100\) 4.56155 0.456155
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 25.1231 2.44017
\(107\) −0.684658 −0.0661884 −0.0330942 0.999452i \(-0.510536\pi\)
−0.0330942 + 0.999452i \(0.510536\pi\)
\(108\) 0 0
\(109\) 4.87689 0.467122 0.233561 0.972342i \(-0.424962\pi\)
0.233561 + 0.972342i \(0.424962\pi\)
\(110\) 14.2462 1.35832
\(111\) 0 0
\(112\) 27.3693 2.58616
\(113\) 20.2462 1.90460 0.952302 0.305158i \(-0.0987093\pi\)
0.952302 + 0.305158i \(0.0987093\pi\)
\(114\) 0 0
\(115\) 5.56155 0.518617
\(116\) −37.6155 −3.49251
\(117\) 0 0
\(118\) 10.2462 0.943240
\(119\) −1.56155 −0.143147
\(120\) 0 0
\(121\) 19.9309 1.81190
\(122\) −21.6155 −1.95698
\(123\) 0 0
\(124\) −27.3693 −2.45784
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −17.3693 −1.54128 −0.770639 0.637272i \(-0.780063\pi\)
−0.770639 + 0.637272i \(0.780063\pi\)
\(128\) −9.43845 −0.834249
\(129\) 0 0
\(130\) 0 0
\(131\) 2.24621 0.196252 0.0981262 0.995174i \(-0.468715\pi\)
0.0981262 + 0.995174i \(0.468715\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 7.36932 0.636612
\(135\) 0 0
\(136\) −2.87689 −0.246692
\(137\) −0.246211 −0.0210352 −0.0105176 0.999945i \(-0.503348\pi\)
−0.0105176 + 0.999945i \(0.503348\pi\)
\(138\) 0 0
\(139\) 17.5616 1.48955 0.744776 0.667315i \(-0.232556\pi\)
0.744776 + 0.667315i \(0.232556\pi\)
\(140\) 16.2462 1.37306
\(141\) 0 0
\(142\) −22.2462 −1.86686
\(143\) 0 0
\(144\) 0 0
\(145\) −8.24621 −0.684811
\(146\) −28.4924 −2.35805
\(147\) 0 0
\(148\) −25.3693 −2.08535
\(149\) −12.9309 −1.05934 −0.529669 0.848204i \(-0.677684\pi\)
−0.529669 + 0.848204i \(0.677684\pi\)
\(150\) 0 0
\(151\) −0.246211 −0.0200364 −0.0100182 0.999950i \(-0.503189\pi\)
−0.0100182 + 0.999950i \(0.503189\pi\)
\(152\) 7.36932 0.597731
\(153\) 0 0
\(154\) 50.7386 4.08864
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) −13.1231 −1.04734 −0.523669 0.851922i \(-0.675437\pi\)
−0.523669 + 0.851922i \(0.675437\pi\)
\(158\) −14.2462 −1.13337
\(159\) 0 0
\(160\) 6.56155 0.518736
\(161\) 19.8078 1.56107
\(162\) 0 0
\(163\) 3.56155 0.278962 0.139481 0.990225i \(-0.455457\pi\)
0.139481 + 0.990225i \(0.455457\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) −34.2462 −2.65802
\(167\) 2.24621 0.173817 0.0869085 0.996216i \(-0.472301\pi\)
0.0869085 + 0.996216i \(0.472301\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −1.12311 −0.0861383
\(171\) 0 0
\(172\) −32.4924 −2.47752
\(173\) −12.2462 −0.931062 −0.465531 0.885032i \(-0.654137\pi\)
−0.465531 + 0.885032i \(0.654137\pi\)
\(174\) 0 0
\(175\) 3.56155 0.269228
\(176\) 42.7386 3.22155
\(177\) 0 0
\(178\) 3.36932 0.252541
\(179\) 2.24621 0.167890 0.0839449 0.996470i \(-0.473248\pi\)
0.0839449 + 0.996470i \(0.473248\pi\)
\(180\) 0 0
\(181\) 7.56155 0.562046 0.281023 0.959701i \(-0.409326\pi\)
0.281023 + 0.959701i \(0.409326\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 36.4924 2.69026
\(185\) −5.56155 −0.408893
\(186\) 0 0
\(187\) −2.43845 −0.178317
\(188\) −18.2462 −1.33074
\(189\) 0 0
\(190\) 2.87689 0.208712
\(191\) −5.75379 −0.416330 −0.208165 0.978094i \(-0.566749\pi\)
−0.208165 + 0.978094i \(0.566749\pi\)
\(192\) 0 0
\(193\) 2.93087 0.210969 0.105484 0.994421i \(-0.466361\pi\)
0.105484 + 0.994421i \(0.466361\pi\)
\(194\) −38.2462 −2.74592
\(195\) 0 0
\(196\) 25.9309 1.85220
\(197\) 12.2462 0.872506 0.436253 0.899824i \(-0.356305\pi\)
0.436253 + 0.899824i \(0.356305\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 6.56155 0.463972
\(201\) 0 0
\(202\) −5.12311 −0.360460
\(203\) −29.3693 −2.06132
\(204\) 0 0
\(205\) 0.438447 0.0306225
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.24621 0.432059
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 44.7386 3.07266
\(213\) 0 0
\(214\) −1.75379 −0.119887
\(215\) −7.12311 −0.485792
\(216\) 0 0
\(217\) −21.3693 −1.45064
\(218\) 12.4924 0.846094
\(219\) 0 0
\(220\) 25.3693 1.71040
\(221\) 0 0
\(222\) 0 0
\(223\) 2.87689 0.192651 0.0963255 0.995350i \(-0.469291\pi\)
0.0963255 + 0.995350i \(0.469291\pi\)
\(224\) 23.3693 1.56143
\(225\) 0 0
\(226\) 51.8617 3.44979
\(227\) 26.7386 1.77471 0.887353 0.461091i \(-0.152542\pi\)
0.887353 + 0.461091i \(0.152542\pi\)
\(228\) 0 0
\(229\) 19.1231 1.26369 0.631845 0.775095i \(-0.282298\pi\)
0.631845 + 0.775095i \(0.282298\pi\)
\(230\) 14.2462 0.939367
\(231\) 0 0
\(232\) −54.1080 −3.55236
\(233\) 22.6847 1.48612 0.743061 0.669224i \(-0.233373\pi\)
0.743061 + 0.669224i \(0.233373\pi\)
\(234\) 0 0
\(235\) −4.00000 −0.260931
\(236\) 18.2462 1.18773
\(237\) 0 0
\(238\) −4.00000 −0.259281
\(239\) 13.5616 0.877224 0.438612 0.898677i \(-0.355470\pi\)
0.438612 + 0.898677i \(0.355470\pi\)
\(240\) 0 0
\(241\) 19.6155 1.26355 0.631774 0.775153i \(-0.282327\pi\)
0.631774 + 0.775153i \(0.282327\pi\)
\(242\) 51.0540 3.28187
\(243\) 0 0
\(244\) −38.4924 −2.46422
\(245\) 5.68466 0.363180
\(246\) 0 0
\(247\) 0 0
\(248\) −39.3693 −2.49995
\(249\) 0 0
\(250\) 2.56155 0.162007
\(251\) −1.36932 −0.0864305 −0.0432153 0.999066i \(-0.513760\pi\)
−0.0432153 + 0.999066i \(0.513760\pi\)
\(252\) 0 0
\(253\) 30.9309 1.94461
\(254\) −44.4924 −2.79170
\(255\) 0 0
\(256\) −27.0540 −1.69087
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) −19.8078 −1.23079
\(260\) 0 0
\(261\) 0 0
\(262\) 5.75379 0.355470
\(263\) 26.2462 1.61841 0.809205 0.587526i \(-0.199898\pi\)
0.809205 + 0.587526i \(0.199898\pi\)
\(264\) 0 0
\(265\) 9.80776 0.602486
\(266\) 10.2462 0.628236
\(267\) 0 0
\(268\) 13.1231 0.801621
\(269\) 13.6155 0.830153 0.415077 0.909786i \(-0.363755\pi\)
0.415077 + 0.909786i \(0.363755\pi\)
\(270\) 0 0
\(271\) −28.2462 −1.71584 −0.857918 0.513787i \(-0.828242\pi\)
−0.857918 + 0.513787i \(0.828242\pi\)
\(272\) −3.36932 −0.204295
\(273\) 0 0
\(274\) −0.630683 −0.0381010
\(275\) 5.56155 0.335374
\(276\) 0 0
\(277\) −2.87689 −0.172856 −0.0864279 0.996258i \(-0.527545\pi\)
−0.0864279 + 0.996258i \(0.527545\pi\)
\(278\) 44.9848 2.69801
\(279\) 0 0
\(280\) 23.3693 1.39658
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −25.8617 −1.53732 −0.768660 0.639657i \(-0.779076\pi\)
−0.768660 + 0.639657i \(0.779076\pi\)
\(284\) −39.6155 −2.35075
\(285\) 0 0
\(286\) 0 0
\(287\) 1.56155 0.0921755
\(288\) 0 0
\(289\) −16.8078 −0.988692
\(290\) −21.1231 −1.24039
\(291\) 0 0
\(292\) −50.7386 −2.96925
\(293\) 8.24621 0.481749 0.240874 0.970556i \(-0.422566\pi\)
0.240874 + 0.970556i \(0.422566\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) −36.4924 −2.12108
\(297\) 0 0
\(298\) −33.1231 −1.91877
\(299\) 0 0
\(300\) 0 0
\(301\) −25.3693 −1.46226
\(302\) −0.630683 −0.0362917
\(303\) 0 0
\(304\) 8.63068 0.495004
\(305\) −8.43845 −0.483184
\(306\) 0 0
\(307\) 3.06913 0.175165 0.0875823 0.996157i \(-0.472086\pi\)
0.0875823 + 0.996157i \(0.472086\pi\)
\(308\) 90.3542 5.14841
\(309\) 0 0
\(310\) −15.3693 −0.872919
\(311\) 15.1231 0.857553 0.428776 0.903411i \(-0.358945\pi\)
0.428776 + 0.903411i \(0.358945\pi\)
\(312\) 0 0
\(313\) 17.1231 0.967855 0.483928 0.875108i \(-0.339210\pi\)
0.483928 + 0.875108i \(0.339210\pi\)
\(314\) −33.6155 −1.89703
\(315\) 0 0
\(316\) −25.3693 −1.42714
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −45.8617 −2.56776
\(320\) 1.43845 0.0804116
\(321\) 0 0
\(322\) 50.7386 2.82755
\(323\) −0.492423 −0.0273991
\(324\) 0 0
\(325\) 0 0
\(326\) 9.12311 0.505282
\(327\) 0 0
\(328\) 2.87689 0.158850
\(329\) −14.2462 −0.785419
\(330\) 0 0
\(331\) 9.61553 0.528517 0.264259 0.964452i \(-0.414873\pi\)
0.264259 + 0.964452i \(0.414873\pi\)
\(332\) −60.9848 −3.34698
\(333\) 0 0
\(334\) 5.75379 0.314833
\(335\) 2.87689 0.157182
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −2.00000 −0.108465
\(341\) −33.3693 −1.80705
\(342\) 0 0
\(343\) −4.68466 −0.252948
\(344\) −46.7386 −2.51998
\(345\) 0 0
\(346\) −31.3693 −1.68642
\(347\) −10.9309 −0.586800 −0.293400 0.955990i \(-0.594787\pi\)
−0.293400 + 0.955990i \(0.594787\pi\)
\(348\) 0 0
\(349\) −8.87689 −0.475169 −0.237585 0.971367i \(-0.576356\pi\)
−0.237585 + 0.971367i \(0.576356\pi\)
\(350\) 9.12311 0.487651
\(351\) 0 0
\(352\) 36.4924 1.94505
\(353\) 18.8769 1.00472 0.502358 0.864660i \(-0.332466\pi\)
0.502358 + 0.864660i \(0.332466\pi\)
\(354\) 0 0
\(355\) −8.68466 −0.460934
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 5.75379 0.304097
\(359\) 26.2462 1.38522 0.692611 0.721311i \(-0.256460\pi\)
0.692611 + 0.721311i \(0.256460\pi\)
\(360\) 0 0
\(361\) −17.7386 −0.933612
\(362\) 19.3693 1.01803
\(363\) 0 0
\(364\) 0 0
\(365\) −11.1231 −0.582210
\(366\) 0 0
\(367\) −11.1231 −0.580621 −0.290311 0.956932i \(-0.593759\pi\)
−0.290311 + 0.956932i \(0.593759\pi\)
\(368\) 42.7386 2.22791
\(369\) 0 0
\(370\) −14.2462 −0.740625
\(371\) 34.9309 1.81352
\(372\) 0 0
\(373\) 33.6155 1.74055 0.870273 0.492570i \(-0.163942\pi\)
0.870273 + 0.492570i \(0.163942\pi\)
\(374\) −6.24621 −0.322984
\(375\) 0 0
\(376\) −26.2462 −1.35354
\(377\) 0 0
\(378\) 0 0
\(379\) −3.75379 −0.192819 −0.0964096 0.995342i \(-0.530736\pi\)
−0.0964096 + 0.995342i \(0.530736\pi\)
\(380\) 5.12311 0.262810
\(381\) 0 0
\(382\) −14.7386 −0.754094
\(383\) −5.36932 −0.274359 −0.137180 0.990546i \(-0.543804\pi\)
−0.137180 + 0.990546i \(0.543804\pi\)
\(384\) 0 0
\(385\) 19.8078 1.00950
\(386\) 7.50758 0.382126
\(387\) 0 0
\(388\) −68.1080 −3.45766
\(389\) 12.7386 0.645874 0.322937 0.946420i \(-0.395330\pi\)
0.322937 + 0.946420i \(0.395330\pi\)
\(390\) 0 0
\(391\) −2.43845 −0.123318
\(392\) 37.3002 1.88394
\(393\) 0 0
\(394\) 31.3693 1.58036
\(395\) −5.56155 −0.279832
\(396\) 0 0
\(397\) −24.3002 −1.21959 −0.609796 0.792559i \(-0.708749\pi\)
−0.609796 + 0.792559i \(0.708749\pi\)
\(398\) 20.4924 1.02719
\(399\) 0 0
\(400\) 7.68466 0.384233
\(401\) 6.49242 0.324216 0.162108 0.986773i \(-0.448171\pi\)
0.162108 + 0.986773i \(0.448171\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −9.12311 −0.453891
\(405\) 0 0
\(406\) −75.2311 −3.73365
\(407\) −30.9309 −1.53319
\(408\) 0 0
\(409\) 12.0000 0.593362 0.296681 0.954977i \(-0.404120\pi\)
0.296681 + 0.954977i \(0.404120\pi\)
\(410\) 1.12311 0.0554662
\(411\) 0 0
\(412\) 0 0
\(413\) 14.2462 0.701010
\(414\) 0 0
\(415\) −13.3693 −0.656274
\(416\) 0 0
\(417\) 0 0
\(418\) 16.0000 0.782586
\(419\) −27.6155 −1.34911 −0.674553 0.738226i \(-0.735664\pi\)
−0.674553 + 0.738226i \(0.735664\pi\)
\(420\) 0 0
\(421\) −25.3693 −1.23642 −0.618212 0.786011i \(-0.712143\pi\)
−0.618212 + 0.786011i \(0.712143\pi\)
\(422\) 10.2462 0.498778
\(423\) 0 0
\(424\) 64.3542 3.12531
\(425\) −0.438447 −0.0212678
\(426\) 0 0
\(427\) −30.0540 −1.45441
\(428\) −3.12311 −0.150961
\(429\) 0 0
\(430\) −18.2462 −0.879910
\(431\) −30.7386 −1.48063 −0.740314 0.672261i \(-0.765323\pi\)
−0.740314 + 0.672261i \(0.765323\pi\)
\(432\) 0 0
\(433\) 20.7386 0.996635 0.498318 0.866995i \(-0.333951\pi\)
0.498318 + 0.866995i \(0.333951\pi\)
\(434\) −54.7386 −2.62754
\(435\) 0 0
\(436\) 22.2462 1.06540
\(437\) 6.24621 0.298797
\(438\) 0 0
\(439\) −12.1922 −0.581904 −0.290952 0.956738i \(-0.593972\pi\)
−0.290952 + 0.956738i \(0.593972\pi\)
\(440\) 36.4924 1.73971
\(441\) 0 0
\(442\) 0 0
\(443\) 5.56155 0.264237 0.132119 0.991234i \(-0.457822\pi\)
0.132119 + 0.991234i \(0.457822\pi\)
\(444\) 0 0
\(445\) 1.31534 0.0623532
\(446\) 7.36932 0.348947
\(447\) 0 0
\(448\) 5.12311 0.242044
\(449\) −3.56155 −0.168080 −0.0840400 0.996462i \(-0.526782\pi\)
−0.0840400 + 0.996462i \(0.526782\pi\)
\(450\) 0 0
\(451\) 2.43845 0.114822
\(452\) 92.3542 4.34397
\(453\) 0 0
\(454\) 68.4924 3.21451
\(455\) 0 0
\(456\) 0 0
\(457\) −26.4384 −1.23674 −0.618369 0.785888i \(-0.712206\pi\)
−0.618369 + 0.785888i \(0.712206\pi\)
\(458\) 48.9848 2.28891
\(459\) 0 0
\(460\) 25.3693 1.18285
\(461\) 19.1771 0.893166 0.446583 0.894742i \(-0.352641\pi\)
0.446583 + 0.894742i \(0.352641\pi\)
\(462\) 0 0
\(463\) 41.8078 1.94297 0.971486 0.237098i \(-0.0761962\pi\)
0.971486 + 0.237098i \(0.0761962\pi\)
\(464\) −63.3693 −2.94185
\(465\) 0 0
\(466\) 58.1080 2.69180
\(467\) −26.9309 −1.24621 −0.623106 0.782137i \(-0.714129\pi\)
−0.623106 + 0.782137i \(0.714129\pi\)
\(468\) 0 0
\(469\) 10.2462 0.473126
\(470\) −10.2462 −0.472622
\(471\) 0 0
\(472\) 26.2462 1.20808
\(473\) −39.6155 −1.82152
\(474\) 0 0
\(475\) 1.12311 0.0515316
\(476\) −7.12311 −0.326487
\(477\) 0 0
\(478\) 34.7386 1.58891
\(479\) −18.0540 −0.824907 −0.412454 0.910979i \(-0.635328\pi\)
−0.412454 + 0.910979i \(0.635328\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 50.2462 2.28865
\(483\) 0 0
\(484\) 90.9157 4.13253
\(485\) −14.9309 −0.677976
\(486\) 0 0
\(487\) −4.05398 −0.183703 −0.0918516 0.995773i \(-0.529279\pi\)
−0.0918516 + 0.995773i \(0.529279\pi\)
\(488\) −55.3693 −2.50645
\(489\) 0 0
\(490\) 14.5616 0.657824
\(491\) −36.4924 −1.64688 −0.823440 0.567403i \(-0.807948\pi\)
−0.823440 + 0.567403i \(0.807948\pi\)
\(492\) 0 0
\(493\) 3.61553 0.162835
\(494\) 0 0
\(495\) 0 0
\(496\) −46.1080 −2.07031
\(497\) −30.9309 −1.38744
\(498\) 0 0
\(499\) 0.630683 0.0282333 0.0141166 0.999900i \(-0.495506\pi\)
0.0141166 + 0.999900i \(0.495506\pi\)
\(500\) 4.56155 0.203999
\(501\) 0 0
\(502\) −3.50758 −0.156551
\(503\) 7.50758 0.334746 0.167373 0.985894i \(-0.446472\pi\)
0.167373 + 0.985894i \(0.446472\pi\)
\(504\) 0 0
\(505\) −2.00000 −0.0889988
\(506\) 79.2311 3.52225
\(507\) 0 0
\(508\) −79.2311 −3.51531
\(509\) 7.06913 0.313334 0.156667 0.987652i \(-0.449925\pi\)
0.156667 + 0.987652i \(0.449925\pi\)
\(510\) 0 0
\(511\) −39.6155 −1.75249
\(512\) −50.4233 −2.22842
\(513\) 0 0
\(514\) −5.12311 −0.225971
\(515\) 0 0
\(516\) 0 0
\(517\) −22.2462 −0.978387
\(518\) −50.7386 −2.22933
\(519\) 0 0
\(520\) 0 0
\(521\) 43.3693 1.90004 0.950022 0.312183i \(-0.101060\pi\)
0.950022 + 0.312183i \(0.101060\pi\)
\(522\) 0 0
\(523\) 27.6155 1.20754 0.603771 0.797158i \(-0.293664\pi\)
0.603771 + 0.797158i \(0.293664\pi\)
\(524\) 10.2462 0.447608
\(525\) 0 0
\(526\) 67.2311 2.93141
\(527\) 2.63068 0.114594
\(528\) 0 0
\(529\) 7.93087 0.344820
\(530\) 25.1231 1.09128
\(531\) 0 0
\(532\) 18.2462 0.791074
\(533\) 0 0
\(534\) 0 0
\(535\) −0.684658 −0.0296004
\(536\) 18.8769 0.815358
\(537\) 0 0
\(538\) 34.8769 1.50365
\(539\) 31.6155 1.36178
\(540\) 0 0
\(541\) −4.49242 −0.193144 −0.0965722 0.995326i \(-0.530788\pi\)
−0.0965722 + 0.995326i \(0.530788\pi\)
\(542\) −72.3542 −3.10788
\(543\) 0 0
\(544\) −2.87689 −0.123346
\(545\) 4.87689 0.208903
\(546\) 0 0
\(547\) 4.38447 0.187466 0.0937332 0.995597i \(-0.470120\pi\)
0.0937332 + 0.995597i \(0.470120\pi\)
\(548\) −1.12311 −0.0479767
\(549\) 0 0
\(550\) 14.2462 0.607460
\(551\) −9.26137 −0.394547
\(552\) 0 0
\(553\) −19.8078 −0.842312
\(554\) −7.36932 −0.313092
\(555\) 0 0
\(556\) 80.1080 3.39733
\(557\) 6.49242 0.275093 0.137546 0.990495i \(-0.456078\pi\)
0.137546 + 0.990495i \(0.456078\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 27.3693 1.15656
\(561\) 0 0
\(562\) 56.3542 2.37716
\(563\) −13.1771 −0.555348 −0.277674 0.960675i \(-0.589563\pi\)
−0.277674 + 0.960675i \(0.589563\pi\)
\(564\) 0 0
\(565\) 20.2462 0.851765
\(566\) −66.2462 −2.78454
\(567\) 0 0
\(568\) −56.9848 −2.39103
\(569\) −10.4924 −0.439865 −0.219933 0.975515i \(-0.570584\pi\)
−0.219933 + 0.975515i \(0.570584\pi\)
\(570\) 0 0
\(571\) −3.31534 −0.138743 −0.0693714 0.997591i \(-0.522099\pi\)
−0.0693714 + 0.997591i \(0.522099\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 4.00000 0.166957
\(575\) 5.56155 0.231933
\(576\) 0 0
\(577\) −15.4233 −0.642080 −0.321040 0.947066i \(-0.604032\pi\)
−0.321040 + 0.947066i \(0.604032\pi\)
\(578\) −43.0540 −1.79081
\(579\) 0 0
\(580\) −37.6155 −1.56190
\(581\) −47.6155 −1.97542
\(582\) 0 0
\(583\) 54.5464 2.25908
\(584\) −72.9848 −3.02013
\(585\) 0 0
\(586\) 21.1231 0.872587
\(587\) −7.12311 −0.294002 −0.147001 0.989136i \(-0.546962\pi\)
−0.147001 + 0.989136i \(0.546962\pi\)
\(588\) 0 0
\(589\) −6.73863 −0.277661
\(590\) 10.2462 0.421830
\(591\) 0 0
\(592\) −42.7386 −1.75655
\(593\) 13.5076 0.554690 0.277345 0.960770i \(-0.410546\pi\)
0.277345 + 0.960770i \(0.410546\pi\)
\(594\) 0 0
\(595\) −1.56155 −0.0640174
\(596\) −58.9848 −2.41611
\(597\) 0 0
\(598\) 0 0
\(599\) −6.24621 −0.255213 −0.127607 0.991825i \(-0.540730\pi\)
−0.127607 + 0.991825i \(0.540730\pi\)
\(600\) 0 0
\(601\) 4.93087 0.201134 0.100567 0.994930i \(-0.467934\pi\)
0.100567 + 0.994930i \(0.467934\pi\)
\(602\) −64.9848 −2.64858
\(603\) 0 0
\(604\) −1.12311 −0.0456985
\(605\) 19.9309 0.810305
\(606\) 0 0
\(607\) −46.2462 −1.87708 −0.938538 0.345176i \(-0.887819\pi\)
−0.938538 + 0.345176i \(0.887819\pi\)
\(608\) 7.36932 0.298865
\(609\) 0 0
\(610\) −21.6155 −0.875187
\(611\) 0 0
\(612\) 0 0
\(613\) 3.80776 0.153794 0.0768971 0.997039i \(-0.475499\pi\)
0.0768971 + 0.997039i \(0.475499\pi\)
\(614\) 7.86174 0.317274
\(615\) 0 0
\(616\) 129.970 5.23663
\(617\) −16.2462 −0.654048 −0.327024 0.945016i \(-0.606046\pi\)
−0.327024 + 0.945016i \(0.606046\pi\)
\(618\) 0 0
\(619\) 30.0000 1.20580 0.602901 0.797816i \(-0.294011\pi\)
0.602901 + 0.797816i \(0.294011\pi\)
\(620\) −27.3693 −1.09918
\(621\) 0 0
\(622\) 38.7386 1.55328
\(623\) 4.68466 0.187687
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 43.8617 1.75307
\(627\) 0 0
\(628\) −59.8617 −2.38874
\(629\) 2.43845 0.0972273
\(630\) 0 0
\(631\) 38.9848 1.55196 0.775981 0.630756i \(-0.217255\pi\)
0.775981 + 0.630756i \(0.217255\pi\)
\(632\) −36.4924 −1.45159
\(633\) 0 0
\(634\) 15.3693 0.610394
\(635\) −17.3693 −0.689280
\(636\) 0 0
\(637\) 0 0
\(638\) −117.477 −4.65097
\(639\) 0 0
\(640\) −9.43845 −0.373087
\(641\) 2.87689 0.113630 0.0568152 0.998385i \(-0.481905\pi\)
0.0568152 + 0.998385i \(0.481905\pi\)
\(642\) 0 0
\(643\) 19.5616 0.771432 0.385716 0.922617i \(-0.373954\pi\)
0.385716 + 0.922617i \(0.373954\pi\)
\(644\) 90.3542 3.56045
\(645\) 0 0
\(646\) −1.26137 −0.0496278
\(647\) −26.5464 −1.04365 −0.521823 0.853054i \(-0.674748\pi\)
−0.521823 + 0.853054i \(0.674748\pi\)
\(648\) 0 0
\(649\) 22.2462 0.873240
\(650\) 0 0
\(651\) 0 0
\(652\) 16.2462 0.636251
\(653\) −16.7386 −0.655033 −0.327517 0.944845i \(-0.606212\pi\)
−0.327517 + 0.944845i \(0.606212\pi\)
\(654\) 0 0
\(655\) 2.24621 0.0877667
\(656\) 3.36932 0.131550
\(657\) 0 0
\(658\) −36.4924 −1.42262
\(659\) 39.6155 1.54320 0.771601 0.636107i \(-0.219456\pi\)
0.771601 + 0.636107i \(0.219456\pi\)
\(660\) 0 0
\(661\) −32.4924 −1.26381 −0.631904 0.775046i \(-0.717726\pi\)
−0.631904 + 0.775046i \(0.717726\pi\)
\(662\) 24.6307 0.957299
\(663\) 0 0
\(664\) −87.7235 −3.40433
\(665\) 4.00000 0.155113
\(666\) 0 0
\(667\) −45.8617 −1.77577
\(668\) 10.2462 0.396438
\(669\) 0 0
\(670\) 7.36932 0.284702
\(671\) −46.9309 −1.81175
\(672\) 0 0
\(673\) 34.1080 1.31476 0.657382 0.753557i \(-0.271664\pi\)
0.657382 + 0.753557i \(0.271664\pi\)
\(674\) 66.6004 2.56535
\(675\) 0 0
\(676\) 0 0
\(677\) −37.4233 −1.43829 −0.719147 0.694858i \(-0.755467\pi\)
−0.719147 + 0.694858i \(0.755467\pi\)
\(678\) 0 0
\(679\) −53.1771 −2.04075
\(680\) −2.87689 −0.110324
\(681\) 0 0
\(682\) −85.4773 −3.27309
\(683\) 19.1231 0.731725 0.365863 0.930669i \(-0.380774\pi\)
0.365863 + 0.930669i \(0.380774\pi\)
\(684\) 0 0
\(685\) −0.246211 −0.00940725
\(686\) −12.0000 −0.458162
\(687\) 0 0
\(688\) −54.7386 −2.08689
\(689\) 0 0
\(690\) 0 0
\(691\) 18.0000 0.684752 0.342376 0.939563i \(-0.388768\pi\)
0.342376 + 0.939563i \(0.388768\pi\)
\(692\) −55.8617 −2.12354
\(693\) 0 0
\(694\) −28.0000 −1.06287
\(695\) 17.5616 0.666148
\(696\) 0 0
\(697\) −0.192236 −0.00728146
\(698\) −22.7386 −0.860670
\(699\) 0 0
\(700\) 16.2462 0.614049
\(701\) 19.3693 0.731569 0.365785 0.930700i \(-0.380801\pi\)
0.365785 + 0.930700i \(0.380801\pi\)
\(702\) 0 0
\(703\) −6.24621 −0.235580
\(704\) 8.00000 0.301511
\(705\) 0 0
\(706\) 48.3542 1.81983
\(707\) −7.12311 −0.267892
\(708\) 0 0
\(709\) 48.0000 1.80268 0.901339 0.433114i \(-0.142585\pi\)
0.901339 + 0.433114i \(0.142585\pi\)
\(710\) −22.2462 −0.834885
\(711\) 0 0
\(712\) 8.63068 0.323449
\(713\) −33.3693 −1.24969
\(714\) 0 0
\(715\) 0 0
\(716\) 10.2462 0.382919
\(717\) 0 0
\(718\) 67.2311 2.50904
\(719\) 7.12311 0.265647 0.132824 0.991140i \(-0.457596\pi\)
0.132824 + 0.991140i \(0.457596\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −45.4384 −1.69104
\(723\) 0 0
\(724\) 34.4924 1.28190
\(725\) −8.24621 −0.306257
\(726\) 0 0
\(727\) −6.63068 −0.245918 −0.122959 0.992412i \(-0.539238\pi\)
−0.122959 + 0.992412i \(0.539238\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −28.4924 −1.05455
\(731\) 3.12311 0.115512
\(732\) 0 0
\(733\) 25.1771 0.929937 0.464968 0.885327i \(-0.346066\pi\)
0.464968 + 0.885327i \(0.346066\pi\)
\(734\) −28.4924 −1.05167
\(735\) 0 0
\(736\) 36.4924 1.34513
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) −36.7386 −1.35145 −0.675726 0.737153i \(-0.736170\pi\)
−0.675726 + 0.737153i \(0.736170\pi\)
\(740\) −25.3693 −0.932595
\(741\) 0 0
\(742\) 89.4773 3.28481
\(743\) 24.9848 0.916605 0.458303 0.888796i \(-0.348458\pi\)
0.458303 + 0.888796i \(0.348458\pi\)
\(744\) 0 0
\(745\) −12.9309 −0.473750
\(746\) 86.1080 3.15264
\(747\) 0 0
\(748\) −11.1231 −0.406701
\(749\) −2.43845 −0.0890989
\(750\) 0 0
\(751\) 48.3002 1.76250 0.881249 0.472652i \(-0.156703\pi\)
0.881249 + 0.472652i \(0.156703\pi\)
\(752\) −30.7386 −1.12092
\(753\) 0 0
\(754\) 0 0
\(755\) −0.246211 −0.00896054
\(756\) 0 0
\(757\) 14.8769 0.540710 0.270355 0.962761i \(-0.412859\pi\)
0.270355 + 0.962761i \(0.412859\pi\)
\(758\) −9.61553 −0.349252
\(759\) 0 0
\(760\) 7.36932 0.267313
\(761\) −0.246211 −0.00892515 −0.00446258 0.999990i \(-0.501420\pi\)
−0.00446258 + 0.999990i \(0.501420\pi\)
\(762\) 0 0
\(763\) 17.3693 0.628811
\(764\) −26.2462 −0.949555
\(765\) 0 0
\(766\) −13.7538 −0.496945
\(767\) 0 0
\(768\) 0 0
\(769\) −8.00000 −0.288487 −0.144244 0.989542i \(-0.546075\pi\)
−0.144244 + 0.989542i \(0.546075\pi\)
\(770\) 50.7386 1.82849
\(771\) 0 0
\(772\) 13.3693 0.481172
\(773\) 22.4924 0.808996 0.404498 0.914539i \(-0.367446\pi\)
0.404498 + 0.914539i \(0.367446\pi\)
\(774\) 0 0
\(775\) −6.00000 −0.215526
\(776\) −97.9697 −3.51691
\(777\) 0 0
\(778\) 32.6307 1.16987
\(779\) 0.492423 0.0176429
\(780\) 0 0
\(781\) −48.3002 −1.72832
\(782\) −6.24621 −0.223364
\(783\) 0 0
\(784\) 43.6847 1.56017
\(785\) −13.1231 −0.468384
\(786\) 0 0
\(787\) 6.87689 0.245135 0.122567 0.992460i \(-0.460887\pi\)
0.122567 + 0.992460i \(0.460887\pi\)
\(788\) 55.8617 1.98999
\(789\) 0 0
\(790\) −14.2462 −0.506857
\(791\) 72.1080 2.56386
\(792\) 0 0
\(793\) 0 0
\(794\) −62.2462 −2.20904
\(795\) 0 0
\(796\) 36.4924 1.29344
\(797\) −15.5616 −0.551218 −0.275609 0.961270i \(-0.588880\pi\)
−0.275609 + 0.961270i \(0.588880\pi\)
\(798\) 0 0
\(799\) 1.75379 0.0620446
\(800\) 6.56155 0.231986
\(801\) 0 0
\(802\) 16.6307 0.587250
\(803\) −61.8617 −2.18305
\(804\) 0 0
\(805\) 19.8078 0.698132
\(806\) 0 0
\(807\) 0 0
\(808\) −13.1231 −0.461669
\(809\) 6.87689 0.241779 0.120889 0.992666i \(-0.461425\pi\)
0.120889 + 0.992666i \(0.461425\pi\)
\(810\) 0 0
\(811\) 2.49242 0.0875208 0.0437604 0.999042i \(-0.486066\pi\)
0.0437604 + 0.999042i \(0.486066\pi\)
\(812\) −133.970 −4.70141
\(813\) 0 0
\(814\) −79.2311 −2.77705
\(815\) 3.56155 0.124756
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 30.7386 1.07475
\(819\) 0 0
\(820\) 2.00000 0.0698430
\(821\) −8.05398 −0.281086 −0.140543 0.990075i \(-0.544885\pi\)
−0.140543 + 0.990075i \(0.544885\pi\)
\(822\) 0 0
\(823\) −15.6155 −0.544323 −0.272162 0.962252i \(-0.587739\pi\)
−0.272162 + 0.962252i \(0.587739\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 36.4924 1.26973
\(827\) 34.7386 1.20798 0.603990 0.796992i \(-0.293577\pi\)
0.603990 + 0.796992i \(0.293577\pi\)
\(828\) 0 0
\(829\) −36.7386 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(830\) −34.2462 −1.18870
\(831\) 0 0
\(832\) 0 0
\(833\) −2.49242 −0.0863573
\(834\) 0 0
\(835\) 2.24621 0.0777333
\(836\) 28.4924 0.985431
\(837\) 0 0
\(838\) −70.7386 −2.44363
\(839\) 7.31534 0.252554 0.126277 0.991995i \(-0.459697\pi\)
0.126277 + 0.991995i \(0.459697\pi\)
\(840\) 0 0
\(841\) 39.0000 1.34483
\(842\) −64.9848 −2.23953
\(843\) 0 0
\(844\) 18.2462 0.628060
\(845\) 0 0
\(846\) 0 0
\(847\) 70.9848 2.43907
\(848\) 75.3693 2.58819
\(849\) 0 0
\(850\) −1.12311 −0.0385222
\(851\) −30.9309 −1.06030
\(852\) 0 0
\(853\) −22.9309 −0.785138 −0.392569 0.919723i \(-0.628414\pi\)
−0.392569 + 0.919723i \(0.628414\pi\)
\(854\) −76.9848 −2.63437
\(855\) 0 0
\(856\) −4.49242 −0.153548
\(857\) −7.56155 −0.258298 −0.129149 0.991625i \(-0.541225\pi\)
−0.129149 + 0.991625i \(0.541225\pi\)
\(858\) 0 0
\(859\) 26.5464 0.905751 0.452876 0.891574i \(-0.350398\pi\)
0.452876 + 0.891574i \(0.350398\pi\)
\(860\) −32.4924 −1.10798
\(861\) 0 0
\(862\) −78.7386 −2.68185
\(863\) −13.3693 −0.455097 −0.227548 0.973767i \(-0.573071\pi\)
−0.227548 + 0.973767i \(0.573071\pi\)
\(864\) 0 0
\(865\) −12.2462 −0.416384
\(866\) 53.1231 1.80520
\(867\) 0 0
\(868\) −97.4773 −3.30859
\(869\) −30.9309 −1.04926
\(870\) 0 0
\(871\) 0 0
\(872\) 32.0000 1.08366
\(873\) 0 0
\(874\) 16.0000 0.541208
\(875\) 3.56155 0.120402
\(876\) 0 0
\(877\) 27.1231 0.915882 0.457941 0.888983i \(-0.348587\pi\)
0.457941 + 0.888983i \(0.348587\pi\)
\(878\) −31.2311 −1.05400
\(879\) 0 0
\(880\) 42.7386 1.44072
\(881\) −47.3693 −1.59591 −0.797956 0.602715i \(-0.794086\pi\)
−0.797956 + 0.602715i \(0.794086\pi\)
\(882\) 0 0
\(883\) −8.49242 −0.285793 −0.142896 0.989738i \(-0.545642\pi\)
−0.142896 + 0.989738i \(0.545642\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 14.2462 0.478611
\(887\) −7.31534 −0.245625 −0.122813 0.992430i \(-0.539191\pi\)
−0.122813 + 0.992430i \(0.539191\pi\)
\(888\) 0 0
\(889\) −61.8617 −2.07478
\(890\) 3.36932 0.112940
\(891\) 0 0
\(892\) 13.1231 0.439394
\(893\) −4.49242 −0.150333
\(894\) 0 0
\(895\) 2.24621 0.0750826
\(896\) −33.6155 −1.12302
\(897\) 0 0
\(898\) −9.12311 −0.304442
\(899\) 49.4773 1.65016
\(900\) 0 0
\(901\) −4.30019 −0.143260
\(902\) 6.24621 0.207976
\(903\) 0 0
\(904\) 132.847 4.41841
\(905\) 7.56155 0.251355
\(906\) 0 0
\(907\) 14.7386 0.489388 0.244694 0.969600i \(-0.421312\pi\)
0.244694 + 0.969600i \(0.421312\pi\)
\(908\) 121.970 4.04771
\(909\) 0 0
\(910\) 0 0
\(911\) −21.3693 −0.707997 −0.353999 0.935246i \(-0.615178\pi\)
−0.353999 + 0.935246i \(0.615178\pi\)
\(912\) 0 0
\(913\) −74.3542 −2.46076
\(914\) −67.7235 −2.24009
\(915\) 0 0
\(916\) 87.2311 2.88220
\(917\) 8.00000 0.264183
\(918\) 0 0
\(919\) −44.7926 −1.47757 −0.738786 0.673940i \(-0.764601\pi\)
−0.738786 + 0.673940i \(0.764601\pi\)
\(920\) 36.4924 1.20312
\(921\) 0 0
\(922\) 49.1231 1.61778
\(923\) 0 0
\(924\) 0 0
\(925\) −5.56155 −0.182863
\(926\) 107.093 3.51929
\(927\) 0 0
\(928\) −54.1080 −1.77618
\(929\) −34.6847 −1.13797 −0.568983 0.822349i \(-0.692663\pi\)
−0.568983 + 0.822349i \(0.692663\pi\)
\(930\) 0 0
\(931\) 6.38447 0.209243
\(932\) 103.477 3.38951
\(933\) 0 0
\(934\) −68.9848 −2.25725
\(935\) −2.43845 −0.0797458
\(936\) 0 0
\(937\) −6.49242 −0.212098 −0.106049 0.994361i \(-0.533820\pi\)
−0.106049 + 0.994361i \(0.533820\pi\)
\(938\) 26.2462 0.856969
\(939\) 0 0
\(940\) −18.2462 −0.595126
\(941\) 9.31534 0.303671 0.151836 0.988406i \(-0.451482\pi\)
0.151836 + 0.988406i \(0.451482\pi\)
\(942\) 0 0
\(943\) 2.43845 0.0794068
\(944\) 30.7386 1.00046
\(945\) 0 0
\(946\) −101.477 −3.29931
\(947\) 15.5076 0.503929 0.251964 0.967737i \(-0.418923\pi\)
0.251964 + 0.967737i \(0.418923\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 2.87689 0.0933388
\(951\) 0 0
\(952\) −10.2462 −0.332082
\(953\) 21.3153 0.690472 0.345236 0.938516i \(-0.387799\pi\)
0.345236 + 0.938516i \(0.387799\pi\)
\(954\) 0 0
\(955\) −5.75379 −0.186188
\(956\) 61.8617 2.00075
\(957\) 0 0
\(958\) −46.2462 −1.49415
\(959\) −0.876894 −0.0283164
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 0 0
\(964\) 89.4773 2.88187
\(965\) 2.93087 0.0943480
\(966\) 0 0
\(967\) −38.1080 −1.22547 −0.612735 0.790289i \(-0.709931\pi\)
−0.612735 + 0.790289i \(0.709931\pi\)
\(968\) 130.777 4.20335
\(969\) 0 0
\(970\) −38.2462 −1.22801
\(971\) −20.8769 −0.669971 −0.334986 0.942223i \(-0.608731\pi\)
−0.334986 + 0.942223i \(0.608731\pi\)
\(972\) 0 0
\(973\) 62.5464 2.00515
\(974\) −10.3845 −0.332740
\(975\) 0 0
\(976\) −64.8466 −2.07569
\(977\) 27.3693 0.875622 0.437811 0.899067i \(-0.355754\pi\)
0.437811 + 0.899067i \(0.355754\pi\)
\(978\) 0 0
\(979\) 7.31534 0.233799
\(980\) 25.9309 0.828331
\(981\) 0 0
\(982\) −93.4773 −2.98298
\(983\) −42.7386 −1.36315 −0.681575 0.731748i \(-0.738705\pi\)
−0.681575 + 0.731748i \(0.738705\pi\)
\(984\) 0 0
\(985\) 12.2462 0.390197
\(986\) 9.26137 0.294942
\(987\) 0 0
\(988\) 0 0
\(989\) −39.6155 −1.25970
\(990\) 0 0
\(991\) −39.9157 −1.26796 −0.633982 0.773348i \(-0.718581\pi\)
−0.633982 + 0.773348i \(0.718581\pi\)
\(992\) −39.3693 −1.24998
\(993\) 0 0
\(994\) −79.2311 −2.51306
\(995\) 8.00000 0.253617
\(996\) 0 0
\(997\) 42.1080 1.33357 0.666786 0.745249i \(-0.267669\pi\)
0.666786 + 0.745249i \(0.267669\pi\)
\(998\) 1.61553 0.0511386
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7605.2.a.bh.1.2 2
3.2 odd 2 2535.2.a.p.1.1 2
13.5 odd 4 585.2.b.e.181.1 4
13.8 odd 4 585.2.b.e.181.4 4
13.12 even 2 7605.2.a.bc.1.1 2
39.5 even 4 195.2.b.c.181.4 yes 4
39.8 even 4 195.2.b.c.181.1 4
39.38 odd 2 2535.2.a.q.1.2 2
156.47 odd 4 3120.2.g.n.961.2 4
156.83 odd 4 3120.2.g.n.961.3 4
195.8 odd 4 975.2.h.e.649.2 4
195.44 even 4 975.2.b.f.376.1 4
195.47 odd 4 975.2.h.g.649.3 4
195.83 odd 4 975.2.h.g.649.4 4
195.122 odd 4 975.2.h.e.649.1 4
195.164 even 4 975.2.b.f.376.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.b.c.181.1 4 39.8 even 4
195.2.b.c.181.4 yes 4 39.5 even 4
585.2.b.e.181.1 4 13.5 odd 4
585.2.b.e.181.4 4 13.8 odd 4
975.2.b.f.376.1 4 195.44 even 4
975.2.b.f.376.4 4 195.164 even 4
975.2.h.e.649.1 4 195.122 odd 4
975.2.h.e.649.2 4 195.8 odd 4
975.2.h.g.649.3 4 195.47 odd 4
975.2.h.g.649.4 4 195.83 odd 4
2535.2.a.p.1.1 2 3.2 odd 2
2535.2.a.q.1.2 2 39.38 odd 2
3120.2.g.n.961.2 4 156.47 odd 4
3120.2.g.n.961.3 4 156.83 odd 4
7605.2.a.bc.1.1 2 13.12 even 2
7605.2.a.bh.1.2 2 1.1 even 1 trivial