Properties

Label 975.2.h.e.649.2
Level $975$
Weight $2$
Character 975.649
Analytic conductor $7.785$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(649,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.2
Root \(2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 975.649
Dual form 975.2.h.e.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155 q^{2} +1.00000i q^{3} +4.56155 q^{4} -2.56155i q^{6} -3.56155 q^{7} -6.56155 q^{8} -1.00000 q^{9} +5.56155i q^{11} +4.56155i q^{12} +(3.56155 - 0.561553i) q^{13} +9.12311 q^{14} +7.68466 q^{16} +0.438447i q^{17} +2.56155 q^{18} -1.12311i q^{19} -3.56155i q^{21} -14.2462i q^{22} +5.56155i q^{23} -6.56155i q^{24} +(-9.12311 + 1.43845i) q^{26} -1.00000i q^{27} -16.2462 q^{28} -8.24621 q^{29} -6.00000i q^{31} -6.56155 q^{32} -5.56155 q^{33} -1.12311i q^{34} -4.56155 q^{36} +5.56155 q^{37} +2.87689i q^{38} +(0.561553 + 3.56155i) q^{39} -0.438447i q^{41} +9.12311i q^{42} +7.12311i q^{43} +25.3693i q^{44} -14.2462i q^{46} -4.00000 q^{47} +7.68466i q^{48} +5.68466 q^{49} -0.438447 q^{51} +(16.2462 - 2.56155i) q^{52} -9.80776i q^{53} +2.56155i q^{54} +23.3693 q^{56} +1.12311 q^{57} +21.1231 q^{58} -4.00000i q^{59} -8.43845 q^{61} +15.3693i q^{62} +3.56155 q^{63} +1.43845 q^{64} +14.2462 q^{66} +2.87689 q^{67} +2.00000i q^{68} -5.56155 q^{69} +8.68466i q^{71} +6.56155 q^{72} -11.1231 q^{73} -14.2462 q^{74} -5.12311i q^{76} -19.8078i q^{77} +(-1.43845 - 9.12311i) q^{78} +5.56155 q^{79} +1.00000 q^{81} +1.12311i q^{82} -13.3693 q^{83} -16.2462i q^{84} -18.2462i q^{86} -8.24621i q^{87} -36.4924i q^{88} -1.31534i q^{89} +(-12.6847 + 2.00000i) q^{91} +25.3693i q^{92} +6.00000 q^{93} +10.2462 q^{94} -6.56155i q^{96} -14.9309 q^{97} -14.5616 q^{98} -5.56155i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 10 q^{4} - 6 q^{7} - 18 q^{8} - 4 q^{9} + 6 q^{13} + 20 q^{14} + 6 q^{16} + 2 q^{18} - 20 q^{26} - 32 q^{28} - 18 q^{32} - 14 q^{33} - 10 q^{36} + 14 q^{37} - 6 q^{39} - 16 q^{47} - 2 q^{49}+ \cdots - 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.56155 −1.81129 −0.905646 0.424035i \(-0.860613\pi\)
−0.905646 + 0.424035i \(0.860613\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 4.56155 2.28078
\(5\) 0 0
\(6\) 2.56155i 1.04575i
\(7\) −3.56155 −1.34614 −0.673070 0.739579i \(-0.735025\pi\)
−0.673070 + 0.739579i \(0.735025\pi\)
\(8\) −6.56155 −2.31986
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 5.56155i 1.67687i 0.545001 + 0.838436i \(0.316529\pi\)
−0.545001 + 0.838436i \(0.683471\pi\)
\(12\) 4.56155i 1.31681i
\(13\) 3.56155 0.561553i 0.987797 0.155747i
\(14\) 9.12311 2.43825
\(15\) 0 0
\(16\) 7.68466 1.92116
\(17\) 0.438447i 0.106339i 0.998586 + 0.0531695i \(0.0169324\pi\)
−0.998586 + 0.0531695i \(0.983068\pi\)
\(18\) 2.56155 0.603764
\(19\) 1.12311i 0.257658i −0.991667 0.128829i \(-0.958878\pi\)
0.991667 0.128829i \(-0.0411218\pi\)
\(20\) 0 0
\(21\) 3.56155i 0.777195i
\(22\) 14.2462i 3.03730i
\(23\) 5.56155i 1.15966i 0.814736 + 0.579832i \(0.196882\pi\)
−0.814736 + 0.579832i \(0.803118\pi\)
\(24\) 6.56155i 1.33937i
\(25\) 0 0
\(26\) −9.12311 + 1.43845i −1.78919 + 0.282103i
\(27\) 1.00000i 0.192450i
\(28\) −16.2462 −3.07025
\(29\) −8.24621 −1.53128 −0.765641 0.643268i \(-0.777578\pi\)
−0.765641 + 0.643268i \(0.777578\pi\)
\(30\) 0 0
\(31\) 6.00000i 1.07763i −0.842424 0.538816i \(-0.818872\pi\)
0.842424 0.538816i \(-0.181128\pi\)
\(32\) −6.56155 −1.15993
\(33\) −5.56155 −0.968142
\(34\) 1.12311i 0.192611i
\(35\) 0 0
\(36\) −4.56155 −0.760259
\(37\) 5.56155 0.914314 0.457157 0.889386i \(-0.348868\pi\)
0.457157 + 0.889386i \(0.348868\pi\)
\(38\) 2.87689i 0.466694i
\(39\) 0.561553 + 3.56155i 0.0899204 + 0.570305i
\(40\) 0 0
\(41\) 0.438447i 0.0684739i −0.999414 0.0342370i \(-0.989100\pi\)
0.999414 0.0342370i \(-0.0109001\pi\)
\(42\) 9.12311i 1.40773i
\(43\) 7.12311i 1.08626i 0.839648 + 0.543132i \(0.182762\pi\)
−0.839648 + 0.543132i \(0.817238\pi\)
\(44\) 25.3693i 3.82457i
\(45\) 0 0
\(46\) 14.2462i 2.10049i
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 7.68466i 1.10918i
\(49\) 5.68466 0.812094
\(50\) 0 0
\(51\) −0.438447 −0.0613949
\(52\) 16.2462 2.56155i 2.25294 0.355223i
\(53\) 9.80776i 1.34720i −0.739096 0.673600i \(-0.764747\pi\)
0.739096 0.673600i \(-0.235253\pi\)
\(54\) 2.56155i 0.348583i
\(55\) 0 0
\(56\) 23.3693 3.12286
\(57\) 1.12311 0.148759
\(58\) 21.1231 2.77360
\(59\) 4.00000i 0.520756i −0.965507 0.260378i \(-0.916153\pi\)
0.965507 0.260378i \(-0.0838471\pi\)
\(60\) 0 0
\(61\) −8.43845 −1.08043 −0.540216 0.841526i \(-0.681658\pi\)
−0.540216 + 0.841526i \(0.681658\pi\)
\(62\) 15.3693i 1.95191i
\(63\) 3.56155 0.448713
\(64\) 1.43845 0.179806
\(65\) 0 0
\(66\) 14.2462 1.75359
\(67\) 2.87689 0.351469 0.175734 0.984438i \(-0.443770\pi\)
0.175734 + 0.984438i \(0.443770\pi\)
\(68\) 2.00000i 0.242536i
\(69\) −5.56155 −0.669532
\(70\) 0 0
\(71\) 8.68466i 1.03068i 0.856986 + 0.515340i \(0.172334\pi\)
−0.856986 + 0.515340i \(0.827666\pi\)
\(72\) 6.56155 0.773286
\(73\) −11.1231 −1.30186 −0.650931 0.759137i \(-0.725621\pi\)
−0.650931 + 0.759137i \(0.725621\pi\)
\(74\) −14.2462 −1.65609
\(75\) 0 0
\(76\) 5.12311i 0.587661i
\(77\) 19.8078i 2.25730i
\(78\) −1.43845 9.12311i −0.162872 1.03299i
\(79\) 5.56155 0.625724 0.312862 0.949799i \(-0.398712\pi\)
0.312862 + 0.949799i \(0.398712\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 1.12311i 0.124026i
\(83\) −13.3693 −1.46747 −0.733737 0.679434i \(-0.762225\pi\)
−0.733737 + 0.679434i \(0.762225\pi\)
\(84\) 16.2462i 1.77261i
\(85\) 0 0
\(86\) 18.2462i 1.96754i
\(87\) 8.24621i 0.884087i
\(88\) 36.4924i 3.89011i
\(89\) 1.31534i 0.139426i −0.997567 0.0697130i \(-0.977792\pi\)
0.997567 0.0697130i \(-0.0222083\pi\)
\(90\) 0 0
\(91\) −12.6847 + 2.00000i −1.32971 + 0.209657i
\(92\) 25.3693i 2.64493i
\(93\) 6.00000 0.622171
\(94\) 10.2462 1.05682
\(95\) 0 0
\(96\) 6.56155i 0.669686i
\(97\) −14.9309 −1.51600 −0.758000 0.652254i \(-0.773823\pi\)
−0.758000 + 0.652254i \(0.773823\pi\)
\(98\) −14.5616 −1.47094
\(99\) 5.56155i 0.558957i
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 1.12311 0.111204
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −23.3693 + 3.68466i −2.29155 + 0.361310i
\(105\) 0 0
\(106\) 25.1231i 2.44017i
\(107\) 0.684658i 0.0661884i −0.999452 0.0330942i \(-0.989464\pi\)
0.999452 0.0330942i \(-0.0105361\pi\)
\(108\) 4.56155i 0.438936i
\(109\) 4.87689i 0.467122i −0.972342 0.233561i \(-0.924962\pi\)
0.972342 0.233561i \(-0.0750378\pi\)
\(110\) 0 0
\(111\) 5.56155i 0.527879i
\(112\) −27.3693 −2.58616
\(113\) 20.2462i 1.90460i −0.305158 0.952302i \(-0.598709\pi\)
0.305158 0.952302i \(-0.401291\pi\)
\(114\) −2.87689 −0.269446
\(115\) 0 0
\(116\) −37.6155 −3.49251
\(117\) −3.56155 + 0.561553i −0.329266 + 0.0519156i
\(118\) 10.2462i 0.943240i
\(119\) 1.56155i 0.143147i
\(120\) 0 0
\(121\) −19.9309 −1.81190
\(122\) 21.6155 1.95698
\(123\) 0.438447 0.0395335
\(124\) 27.3693i 2.45784i
\(125\) 0 0
\(126\) −9.12311 −0.812751
\(127\) 17.3693i 1.54128i −0.637272 0.770639i \(-0.719937\pi\)
0.637272 0.770639i \(-0.280063\pi\)
\(128\) 9.43845 0.834249
\(129\) −7.12311 −0.627154
\(130\) 0 0
\(131\) −2.24621 −0.196252 −0.0981262 0.995174i \(-0.531285\pi\)
−0.0981262 + 0.995174i \(0.531285\pi\)
\(132\) −25.3693 −2.20812
\(133\) 4.00000i 0.346844i
\(134\) −7.36932 −0.636612
\(135\) 0 0
\(136\) 2.87689i 0.246692i
\(137\) −0.246211 −0.0210352 −0.0105176 0.999945i \(-0.503348\pi\)
−0.0105176 + 0.999945i \(0.503348\pi\)
\(138\) 14.2462 1.21272
\(139\) −17.5616 −1.48955 −0.744776 0.667315i \(-0.767444\pi\)
−0.744776 + 0.667315i \(0.767444\pi\)
\(140\) 0 0
\(141\) 4.00000i 0.336861i
\(142\) 22.2462i 1.86686i
\(143\) 3.12311 + 19.8078i 0.261167 + 1.65641i
\(144\) −7.68466 −0.640388
\(145\) 0 0
\(146\) 28.4924 2.35805
\(147\) 5.68466i 0.468863i
\(148\) 25.3693 2.08535
\(149\) 12.9309i 1.05934i −0.848204 0.529669i \(-0.822316\pi\)
0.848204 0.529669i \(-0.177684\pi\)
\(150\) 0 0
\(151\) 0.246211i 0.0200364i 0.999950 + 0.0100182i \(0.00318894\pi\)
−0.999950 + 0.0100182i \(0.996811\pi\)
\(152\) 7.36932i 0.597731i
\(153\) 0.438447i 0.0354464i
\(154\) 50.7386i 4.08864i
\(155\) 0 0
\(156\) 2.56155 + 16.2462i 0.205088 + 1.30074i
\(157\) 13.1231i 1.04734i 0.851922 + 0.523669i \(0.175437\pi\)
−0.851922 + 0.523669i \(0.824563\pi\)
\(158\) −14.2462 −1.13337
\(159\) 9.80776 0.777806
\(160\) 0 0
\(161\) 19.8078i 1.56107i
\(162\) −2.56155 −0.201255
\(163\) 3.56155 0.278962 0.139481 0.990225i \(-0.455457\pi\)
0.139481 + 0.990225i \(0.455457\pi\)
\(164\) 2.00000i 0.156174i
\(165\) 0 0
\(166\) 34.2462 2.65802
\(167\) 2.24621 0.173817 0.0869085 0.996216i \(-0.472301\pi\)
0.0869085 + 0.996216i \(0.472301\pi\)
\(168\) 23.3693i 1.80298i
\(169\) 12.3693 4.00000i 0.951486 0.307692i
\(170\) 0 0
\(171\) 1.12311i 0.0858860i
\(172\) 32.4924i 2.47752i
\(173\) 12.2462i 0.931062i −0.885032 0.465531i \(-0.845863\pi\)
0.885032 0.465531i \(-0.154137\pi\)
\(174\) 21.1231i 1.60134i
\(175\) 0 0
\(176\) 42.7386i 3.22155i
\(177\) 4.00000 0.300658
\(178\) 3.36932i 0.252541i
\(179\) −2.24621 −0.167890 −0.0839449 0.996470i \(-0.526752\pi\)
−0.0839449 + 0.996470i \(0.526752\pi\)
\(180\) 0 0
\(181\) −7.56155 −0.562046 −0.281023 0.959701i \(-0.590674\pi\)
−0.281023 + 0.959701i \(0.590674\pi\)
\(182\) 32.4924 5.12311i 2.40850 0.379750i
\(183\) 8.43845i 0.623788i
\(184\) 36.4924i 2.69026i
\(185\) 0 0
\(186\) −15.3693 −1.12693
\(187\) −2.43845 −0.178317
\(188\) −18.2462 −1.33074
\(189\) 3.56155i 0.259065i
\(190\) 0 0
\(191\) 5.75379 0.416330 0.208165 0.978094i \(-0.433251\pi\)
0.208165 + 0.978094i \(0.433251\pi\)
\(192\) 1.43845i 0.103811i
\(193\) 2.93087 0.210969 0.105484 0.994421i \(-0.466361\pi\)
0.105484 + 0.994421i \(0.466361\pi\)
\(194\) 38.2462 2.74592
\(195\) 0 0
\(196\) 25.9309 1.85220
\(197\) −12.2462 −0.872506 −0.436253 0.899824i \(-0.643695\pi\)
−0.436253 + 0.899824i \(0.643695\pi\)
\(198\) 14.2462i 1.01243i
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 2.87689i 0.202920i
\(202\) 5.12311 0.360460
\(203\) 29.3693 2.06132
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 0 0
\(207\) 5.56155i 0.386555i
\(208\) 27.3693 4.31534i 1.89772 0.299215i
\(209\) 6.24621 0.432059
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 44.7386i 3.07266i
\(213\) −8.68466 −0.595063
\(214\) 1.75379i 0.119887i
\(215\) 0 0
\(216\) 6.56155i 0.446457i
\(217\) 21.3693i 1.45064i
\(218\) 12.4924i 0.846094i
\(219\) 11.1231i 0.751630i
\(220\) 0 0
\(221\) 0.246211 + 1.56155i 0.0165620 + 0.105041i
\(222\) 14.2462i 0.956143i
\(223\) −2.87689 −0.192651 −0.0963255 0.995350i \(-0.530709\pi\)
−0.0963255 + 0.995350i \(0.530709\pi\)
\(224\) 23.3693 1.56143
\(225\) 0 0
\(226\) 51.8617i 3.44979i
\(227\) −26.7386 −1.77471 −0.887353 0.461091i \(-0.847458\pi\)
−0.887353 + 0.461091i \(0.847458\pi\)
\(228\) 5.12311 0.339286
\(229\) 19.1231i 1.26369i 0.775095 + 0.631845i \(0.217702\pi\)
−0.775095 + 0.631845i \(0.782298\pi\)
\(230\) 0 0
\(231\) 19.8078 1.30326
\(232\) 54.1080 3.55236
\(233\) 22.6847i 1.48612i 0.669224 + 0.743061i \(0.266627\pi\)
−0.669224 + 0.743061i \(0.733373\pi\)
\(234\) 9.12311 1.43845i 0.596396 0.0940342i
\(235\) 0 0
\(236\) 18.2462i 1.18773i
\(237\) 5.56155i 0.361262i
\(238\) 4.00000i 0.259281i
\(239\) 13.5616i 0.877224i 0.898677 + 0.438612i \(0.144530\pi\)
−0.898677 + 0.438612i \(0.855470\pi\)
\(240\) 0 0
\(241\) 19.6155i 1.26355i −0.775153 0.631774i \(-0.782327\pi\)
0.775153 0.631774i \(-0.217673\pi\)
\(242\) 51.0540 3.28187
\(243\) 1.00000i 0.0641500i
\(244\) −38.4924 −2.46422
\(245\) 0 0
\(246\) −1.12311 −0.0716066
\(247\) −0.630683 4.00000i −0.0401294 0.254514i
\(248\) 39.3693i 2.49995i
\(249\) 13.3693i 0.847246i
\(250\) 0 0
\(251\) −1.36932 −0.0864305 −0.0432153 0.999066i \(-0.513760\pi\)
−0.0432153 + 0.999066i \(0.513760\pi\)
\(252\) 16.2462 1.02342
\(253\) −30.9309 −1.94461
\(254\) 44.4924i 2.79170i
\(255\) 0 0
\(256\) −27.0540 −1.69087
\(257\) 2.00000i 0.124757i 0.998053 + 0.0623783i \(0.0198685\pi\)
−0.998053 + 0.0623783i \(0.980131\pi\)
\(258\) 18.2462 1.13596
\(259\) −19.8078 −1.23079
\(260\) 0 0
\(261\) 8.24621 0.510428
\(262\) 5.75379 0.355470
\(263\) 26.2462i 1.61841i −0.587526 0.809205i \(-0.699898\pi\)
0.587526 0.809205i \(-0.300102\pi\)
\(264\) 36.4924 2.24595
\(265\) 0 0
\(266\) 10.2462i 0.628236i
\(267\) 1.31534 0.0804976
\(268\) 13.1231 0.801621
\(269\) 13.6155 0.830153 0.415077 0.909786i \(-0.363755\pi\)
0.415077 + 0.909786i \(0.363755\pi\)
\(270\) 0 0
\(271\) 28.2462i 1.71584i 0.513787 + 0.857918i \(0.328242\pi\)
−0.513787 + 0.857918i \(0.671758\pi\)
\(272\) 3.36932i 0.204295i
\(273\) −2.00000 12.6847i −0.121046 0.767710i
\(274\) 0.630683 0.0381010
\(275\) 0 0
\(276\) −25.3693 −1.52705
\(277\) 2.87689i 0.172856i −0.996258 0.0864279i \(-0.972455\pi\)
0.996258 0.0864279i \(-0.0275452\pi\)
\(278\) 44.9848 2.69801
\(279\) 6.00000i 0.359211i
\(280\) 0 0
\(281\) 22.0000i 1.31241i 0.754583 + 0.656205i \(0.227839\pi\)
−0.754583 + 0.656205i \(0.772161\pi\)
\(282\) 10.2462i 0.610153i
\(283\) 25.8617i 1.53732i 0.639657 + 0.768660i \(0.279076\pi\)
−0.639657 + 0.768660i \(0.720924\pi\)
\(284\) 39.6155i 2.35075i
\(285\) 0 0
\(286\) −8.00000 50.7386i −0.473050 3.00024i
\(287\) 1.56155i 0.0921755i
\(288\) 6.56155 0.386643
\(289\) 16.8078 0.988692
\(290\) 0 0
\(291\) 14.9309i 0.875263i
\(292\) −50.7386 −2.96925
\(293\) −8.24621 −0.481749 −0.240874 0.970556i \(-0.577434\pi\)
−0.240874 + 0.970556i \(0.577434\pi\)
\(294\) 14.5616i 0.849247i
\(295\) 0 0
\(296\) −36.4924 −2.12108
\(297\) 5.56155 0.322714
\(298\) 33.1231i 1.91877i
\(299\) 3.12311 + 19.8078i 0.180614 + 1.14551i
\(300\) 0 0
\(301\) 25.3693i 1.46226i
\(302\) 0.630683i 0.0362917i
\(303\) 2.00000i 0.114897i
\(304\) 8.63068i 0.495004i
\(305\) 0 0
\(306\) 1.12311i 0.0642037i
\(307\) −3.06913 −0.175165 −0.0875823 0.996157i \(-0.527914\pi\)
−0.0875823 + 0.996157i \(0.527914\pi\)
\(308\) 90.3542i 5.14841i
\(309\) 0 0
\(310\) 0 0
\(311\) 15.1231 0.857553 0.428776 0.903411i \(-0.358945\pi\)
0.428776 + 0.903411i \(0.358945\pi\)
\(312\) −3.68466 23.3693i −0.208603 1.32303i
\(313\) 17.1231i 0.967855i 0.875108 + 0.483928i \(0.160790\pi\)
−0.875108 + 0.483928i \(0.839210\pi\)
\(314\) 33.6155i 1.89703i
\(315\) 0 0
\(316\) 25.3693 1.42714
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) −25.1231 −1.40883
\(319\) 45.8617i 2.56776i
\(320\) 0 0
\(321\) 0.684658 0.0382139
\(322\) 50.7386i 2.82755i
\(323\) 0.492423 0.0273991
\(324\) 4.56155 0.253420
\(325\) 0 0
\(326\) −9.12311 −0.505282
\(327\) 4.87689 0.269693
\(328\) 2.87689i 0.158850i
\(329\) 14.2462 0.785419
\(330\) 0 0
\(331\) 9.61553i 0.528517i 0.964452 + 0.264259i \(0.0851272\pi\)
−0.964452 + 0.264259i \(0.914873\pi\)
\(332\) −60.9848 −3.34698
\(333\) −5.56155 −0.304771
\(334\) −5.75379 −0.314833
\(335\) 0 0
\(336\) 27.3693i 1.49312i
\(337\) 26.0000i 1.41631i 0.706057 + 0.708155i \(0.250472\pi\)
−0.706057 + 0.708155i \(0.749528\pi\)
\(338\) −31.6847 + 10.2462i −1.72342 + 0.557320i
\(339\) 20.2462 1.09962
\(340\) 0 0
\(341\) 33.3693 1.80705
\(342\) 2.87689i 0.155565i
\(343\) 4.68466 0.252948
\(344\) 46.7386i 2.51998i
\(345\) 0 0
\(346\) 31.3693i 1.68642i
\(347\) 10.9309i 0.586800i −0.955990 0.293400i \(-0.905213\pi\)
0.955990 0.293400i \(-0.0947867\pi\)
\(348\) 37.6155i 2.01640i
\(349\) 8.87689i 0.475169i −0.971367 0.237585i \(-0.923644\pi\)
0.971367 0.237585i \(-0.0763557\pi\)
\(350\) 0 0
\(351\) −0.561553 3.56155i −0.0299735 0.190102i
\(352\) 36.4924i 1.94505i
\(353\) 18.8769 1.00472 0.502358 0.864660i \(-0.332466\pi\)
0.502358 + 0.864660i \(0.332466\pi\)
\(354\) −10.2462 −0.544580
\(355\) 0 0
\(356\) 6.00000i 0.317999i
\(357\) 1.56155 0.0826461
\(358\) 5.75379 0.304097
\(359\) 26.2462i 1.38522i −0.721311 0.692611i \(-0.756460\pi\)
0.721311 0.692611i \(-0.243540\pi\)
\(360\) 0 0
\(361\) 17.7386 0.933612
\(362\) 19.3693 1.01803
\(363\) 19.9309i 1.04610i
\(364\) −57.8617 + 9.12311i −3.03278 + 0.478181i
\(365\) 0 0
\(366\) 21.6155i 1.12986i
\(367\) 11.1231i 0.580621i 0.956932 + 0.290311i \(0.0937587\pi\)
−0.956932 + 0.290311i \(0.906241\pi\)
\(368\) 42.7386i 2.22791i
\(369\) 0.438447i 0.0228246i
\(370\) 0 0
\(371\) 34.9309i 1.81352i
\(372\) 27.3693 1.41903
\(373\) 33.6155i 1.74055i 0.492570 + 0.870273i \(0.336058\pi\)
−0.492570 + 0.870273i \(0.663942\pi\)
\(374\) 6.24621 0.322984
\(375\) 0 0
\(376\) 26.2462 1.35354
\(377\) −29.3693 + 4.63068i −1.51260 + 0.238492i
\(378\) 9.12311i 0.469242i
\(379\) 3.75379i 0.192819i 0.995342 + 0.0964096i \(0.0307359\pi\)
−0.995342 + 0.0964096i \(0.969264\pi\)
\(380\) 0 0
\(381\) 17.3693 0.889857
\(382\) −14.7386 −0.754094
\(383\) −5.36932 −0.274359 −0.137180 0.990546i \(-0.543804\pi\)
−0.137180 + 0.990546i \(0.543804\pi\)
\(384\) 9.43845i 0.481654i
\(385\) 0 0
\(386\) −7.50758 −0.382126
\(387\) 7.12311i 0.362088i
\(388\) −68.1080 −3.45766
\(389\) −12.7386 −0.645874 −0.322937 0.946420i \(-0.604670\pi\)
−0.322937 + 0.946420i \(0.604670\pi\)
\(390\) 0 0
\(391\) −2.43845 −0.123318
\(392\) −37.3002 −1.88394
\(393\) 2.24621i 0.113306i
\(394\) 31.3693 1.58036
\(395\) 0 0
\(396\) 25.3693i 1.27486i
\(397\) 24.3002 1.21959 0.609796 0.792559i \(-0.291251\pi\)
0.609796 + 0.792559i \(0.291251\pi\)
\(398\) −20.4924 −1.02719
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) 6.49242i 0.324216i 0.986773 + 0.162108i \(0.0518293\pi\)
−0.986773 + 0.162108i \(0.948171\pi\)
\(402\) 7.36932i 0.367548i
\(403\) −3.36932 21.3693i −0.167838 1.06448i
\(404\) −9.12311 −0.453891
\(405\) 0 0
\(406\) −75.2311 −3.73365
\(407\) 30.9309i 1.53319i
\(408\) 2.87689 0.142427
\(409\) 12.0000i 0.593362i −0.954977 0.296681i \(-0.904120\pi\)
0.954977 0.296681i \(-0.0958798\pi\)
\(410\) 0 0
\(411\) 0.246211i 0.0121447i
\(412\) 0 0
\(413\) 14.2462i 0.701010i
\(414\) 14.2462i 0.700163i
\(415\) 0 0
\(416\) −23.3693 + 3.68466i −1.14578 + 0.180655i
\(417\) 17.5616i 0.859993i
\(418\) −16.0000 −0.782586
\(419\) −27.6155 −1.34911 −0.674553 0.738226i \(-0.735664\pi\)
−0.674553 + 0.738226i \(0.735664\pi\)
\(420\) 0 0
\(421\) 25.3693i 1.23642i −0.786011 0.618212i \(-0.787857\pi\)
0.786011 0.618212i \(-0.212143\pi\)
\(422\) −10.2462 −0.498778
\(423\) 4.00000 0.194487
\(424\) 64.3542i 3.12531i
\(425\) 0 0
\(426\) 22.2462 1.07783
\(427\) 30.0540 1.45441
\(428\) 3.12311i 0.150961i
\(429\) −19.8078 + 3.12311i −0.956328 + 0.150785i
\(430\) 0 0
\(431\) 30.7386i 1.48063i 0.672261 + 0.740314i \(0.265323\pi\)
−0.672261 + 0.740314i \(0.734677\pi\)
\(432\) 7.68466i 0.369728i
\(433\) 20.7386i 0.996635i −0.866995 0.498318i \(-0.833951\pi\)
0.866995 0.498318i \(-0.166049\pi\)
\(434\) 54.7386i 2.62754i
\(435\) 0 0
\(436\) 22.2462i 1.06540i
\(437\) 6.24621 0.298797
\(438\) 28.4924i 1.36142i
\(439\) −12.1922 −0.581904 −0.290952 0.956738i \(-0.593972\pi\)
−0.290952 + 0.956738i \(0.593972\pi\)
\(440\) 0 0
\(441\) −5.68466 −0.270698
\(442\) −0.630683 4.00000i −0.0299985 0.190261i
\(443\) 5.56155i 0.264237i −0.991234 0.132119i \(-0.957822\pi\)
0.991234 0.132119i \(-0.0421780\pi\)
\(444\) 25.3693i 1.20397i
\(445\) 0 0
\(446\) 7.36932 0.348947
\(447\) 12.9309 0.611609
\(448\) −5.12311 −0.242044
\(449\) 3.56155i 0.168080i 0.996462 + 0.0840400i \(0.0267824\pi\)
−0.996462 + 0.0840400i \(0.973218\pi\)
\(450\) 0 0
\(451\) 2.43845 0.114822
\(452\) 92.3542i 4.34397i
\(453\) −0.246211 −0.0115680
\(454\) 68.4924 3.21451
\(455\) 0 0
\(456\) −7.36932 −0.345100
\(457\) −26.4384 −1.23674 −0.618369 0.785888i \(-0.712206\pi\)
−0.618369 + 0.785888i \(0.712206\pi\)
\(458\) 48.9848i 2.28891i
\(459\) 0.438447 0.0204650
\(460\) 0 0
\(461\) 19.1771i 0.893166i −0.894742 0.446583i \(-0.852641\pi\)
0.894742 0.446583i \(-0.147359\pi\)
\(462\) −50.7386 −2.36057
\(463\) 41.8078 1.94297 0.971486 0.237098i \(-0.0761962\pi\)
0.971486 + 0.237098i \(0.0761962\pi\)
\(464\) −63.3693 −2.94185
\(465\) 0 0
\(466\) 58.1080i 2.69180i
\(467\) 26.9309i 1.24621i 0.782137 + 0.623106i \(0.214129\pi\)
−0.782137 + 0.623106i \(0.785871\pi\)
\(468\) −16.2462 + 2.56155i −0.750981 + 0.118408i
\(469\) −10.2462 −0.473126
\(470\) 0 0
\(471\) −13.1231 −0.604681
\(472\) 26.2462i 1.20808i
\(473\) −39.6155 −1.82152
\(474\) 14.2462i 0.654350i
\(475\) 0 0
\(476\) 7.12311i 0.326487i
\(477\) 9.80776i 0.449067i
\(478\) 34.7386i 1.58891i
\(479\) 18.0540i 0.824907i 0.910979 + 0.412454i \(0.135328\pi\)
−0.910979 + 0.412454i \(0.864672\pi\)
\(480\) 0 0
\(481\) 19.8078 3.12311i 0.903156 0.142401i
\(482\) 50.2462i 2.28865i
\(483\) 19.8078 0.901284
\(484\) −90.9157 −4.13253
\(485\) 0 0
\(486\) 2.56155i 0.116194i
\(487\) −4.05398 −0.183703 −0.0918516 0.995773i \(-0.529279\pi\)
−0.0918516 + 0.995773i \(0.529279\pi\)
\(488\) 55.3693 2.50645
\(489\) 3.56155i 0.161059i
\(490\) 0 0
\(491\) −36.4924 −1.64688 −0.823440 0.567403i \(-0.807948\pi\)
−0.823440 + 0.567403i \(0.807948\pi\)
\(492\) 2.00000 0.0901670
\(493\) 3.61553i 0.162835i
\(494\) 1.61553 + 10.2462i 0.0726860 + 0.460999i
\(495\) 0 0
\(496\) 46.1080i 2.07031i
\(497\) 30.9309i 1.38744i
\(498\) 34.2462i 1.53461i
\(499\) 0.630683i 0.0282333i −0.999900 0.0141166i \(-0.995506\pi\)
0.999900 0.0141166i \(-0.00449361\pi\)
\(500\) 0 0
\(501\) 2.24621i 0.100353i
\(502\) 3.50758 0.156551
\(503\) 7.50758i 0.334746i −0.985894 0.167373i \(-0.946472\pi\)
0.985894 0.167373i \(-0.0535285\pi\)
\(504\) −23.3693 −1.04095
\(505\) 0 0
\(506\) 79.2311 3.52225
\(507\) 4.00000 + 12.3693i 0.177646 + 0.549341i
\(508\) 79.2311i 3.51531i
\(509\) 7.06913i 0.313334i 0.987652 + 0.156667i \(0.0500749\pi\)
−0.987652 + 0.156667i \(0.949925\pi\)
\(510\) 0 0
\(511\) 39.6155 1.75249
\(512\) 50.4233 2.22842
\(513\) −1.12311 −0.0495863
\(514\) 5.12311i 0.225971i
\(515\) 0 0
\(516\) −32.4924 −1.43040
\(517\) 22.2462i 0.978387i
\(518\) 50.7386 2.22933
\(519\) 12.2462 0.537549
\(520\) 0 0
\(521\) −43.3693 −1.90004 −0.950022 0.312183i \(-0.898940\pi\)
−0.950022 + 0.312183i \(0.898940\pi\)
\(522\) −21.1231 −0.924533
\(523\) 27.6155i 1.20754i 0.797158 + 0.603771i \(0.206336\pi\)
−0.797158 + 0.603771i \(0.793664\pi\)
\(524\) −10.2462 −0.447608
\(525\) 0 0
\(526\) 67.2311i 2.93141i
\(527\) 2.63068 0.114594
\(528\) −42.7386 −1.85996
\(529\) −7.93087 −0.344820
\(530\) 0 0
\(531\) 4.00000i 0.173585i
\(532\) 18.2462i 0.791074i
\(533\) −0.246211 1.56155i −0.0106646 0.0676384i
\(534\) −3.36932 −0.145805
\(535\) 0 0
\(536\) −18.8769 −0.815358
\(537\) 2.24621i 0.0969312i
\(538\) −34.8769 −1.50365
\(539\) 31.6155i 1.36178i
\(540\) 0 0
\(541\) 4.49242i 0.193144i 0.995326 + 0.0965722i \(0.0307879\pi\)
−0.995326 + 0.0965722i \(0.969212\pi\)
\(542\) 72.3542i 3.10788i
\(543\) 7.56155i 0.324497i
\(544\) 2.87689i 0.123346i
\(545\) 0 0
\(546\) 5.12311 + 32.4924i 0.219249 + 1.39055i
\(547\) 4.38447i 0.187466i −0.995597 0.0937332i \(-0.970120\pi\)
0.995597 0.0937332i \(-0.0298801\pi\)
\(548\) −1.12311 −0.0479767
\(549\) 8.43845 0.360144
\(550\) 0 0
\(551\) 9.26137i 0.394547i
\(552\) 36.4924 1.55322
\(553\) −19.8078 −0.842312
\(554\) 7.36932i 0.313092i
\(555\) 0 0
\(556\) −80.1080 −3.39733
\(557\) 6.49242 0.275093 0.137546 0.990495i \(-0.456078\pi\)
0.137546 + 0.990495i \(0.456078\pi\)
\(558\) 15.3693i 0.650635i
\(559\) 4.00000 + 25.3693i 0.169182 + 1.07301i
\(560\) 0 0
\(561\) 2.43845i 0.102951i
\(562\) 56.3542i 2.37716i
\(563\) 13.1771i 0.555348i −0.960675 0.277674i \(-0.910437\pi\)
0.960675 0.277674i \(-0.0895635\pi\)
\(564\) 18.2462i 0.768304i
\(565\) 0 0
\(566\) 66.2462i 2.78454i
\(567\) −3.56155 −0.149571
\(568\) 56.9848i 2.39103i
\(569\) 10.4924 0.439865 0.219933 0.975515i \(-0.429416\pi\)
0.219933 + 0.975515i \(0.429416\pi\)
\(570\) 0 0
\(571\) 3.31534 0.138743 0.0693714 0.997591i \(-0.477901\pi\)
0.0693714 + 0.997591i \(0.477901\pi\)
\(572\) 14.2462 + 90.3542i 0.595664 + 3.77790i
\(573\) 5.75379i 0.240368i
\(574\) 4.00000i 0.166957i
\(575\) 0 0
\(576\) −1.43845 −0.0599353
\(577\) −15.4233 −0.642080 −0.321040 0.947066i \(-0.604032\pi\)
−0.321040 + 0.947066i \(0.604032\pi\)
\(578\) −43.0540 −1.79081
\(579\) 2.93087i 0.121803i
\(580\) 0 0
\(581\) 47.6155 1.97542
\(582\) 38.2462i 1.58536i
\(583\) 54.5464 2.25908
\(584\) 72.9848 3.02013
\(585\) 0 0
\(586\) 21.1231 0.872587
\(587\) 7.12311 0.294002 0.147001 0.989136i \(-0.453038\pi\)
0.147001 + 0.989136i \(0.453038\pi\)
\(588\) 25.9309i 1.06937i
\(589\) −6.73863 −0.277661
\(590\) 0 0
\(591\) 12.2462i 0.503742i
\(592\) 42.7386 1.75655
\(593\) −13.5076 −0.554690 −0.277345 0.960770i \(-0.589454\pi\)
−0.277345 + 0.960770i \(0.589454\pi\)
\(594\) −14.2462 −0.584529
\(595\) 0 0
\(596\) 58.9848i 2.41611i
\(597\) 8.00000i 0.327418i
\(598\) −8.00000 50.7386i −0.327144 2.07486i
\(599\) −6.24621 −0.255213 −0.127607 0.991825i \(-0.540730\pi\)
−0.127607 + 0.991825i \(0.540730\pi\)
\(600\) 0 0
\(601\) 4.93087 0.201134 0.100567 0.994930i \(-0.467934\pi\)
0.100567 + 0.994930i \(0.467934\pi\)
\(602\) 64.9848i 2.64858i
\(603\) −2.87689 −0.117156
\(604\) 1.12311i 0.0456985i
\(605\) 0 0
\(606\) 5.12311i 0.208112i
\(607\) 46.2462i 1.87708i 0.345176 + 0.938538i \(0.387819\pi\)
−0.345176 + 0.938538i \(0.612181\pi\)
\(608\) 7.36932i 0.298865i
\(609\) 29.3693i 1.19010i
\(610\) 0 0
\(611\) −14.2462 + 2.24621i −0.576340 + 0.0908720i
\(612\) 2.00000i 0.0808452i
\(613\) −3.80776 −0.153794 −0.0768971 0.997039i \(-0.524501\pi\)
−0.0768971 + 0.997039i \(0.524501\pi\)
\(614\) 7.86174 0.317274
\(615\) 0 0
\(616\) 129.970i 5.23663i
\(617\) 16.2462 0.654048 0.327024 0.945016i \(-0.393954\pi\)
0.327024 + 0.945016i \(0.393954\pi\)
\(618\) 0 0
\(619\) 30.0000i 1.20580i 0.797816 + 0.602901i \(0.205989\pi\)
−0.797816 + 0.602901i \(0.794011\pi\)
\(620\) 0 0
\(621\) 5.56155 0.223177
\(622\) −38.7386 −1.55328
\(623\) 4.68466i 0.187687i
\(624\) 4.31534 + 27.3693i 0.172752 + 1.09565i
\(625\) 0 0
\(626\) 43.8617i 1.75307i
\(627\) 6.24621i 0.249450i
\(628\) 59.8617i 2.38874i
\(629\) 2.43845i 0.0972273i
\(630\) 0 0
\(631\) 38.9848i 1.55196i −0.630756 0.775981i \(-0.717255\pi\)
0.630756 0.775981i \(-0.282745\pi\)
\(632\) −36.4924 −1.45159
\(633\) 4.00000i 0.158986i
\(634\) 15.3693 0.610394
\(635\) 0 0
\(636\) 44.7386 1.77400
\(637\) 20.2462 3.19224i 0.802184 0.126481i
\(638\) 117.477i 4.65097i
\(639\) 8.68466i 0.343560i
\(640\) 0 0
\(641\) 2.87689 0.113630 0.0568152 0.998385i \(-0.481905\pi\)
0.0568152 + 0.998385i \(0.481905\pi\)
\(642\) −1.75379 −0.0692165
\(643\) −19.5616 −0.771432 −0.385716 0.922617i \(-0.626046\pi\)
−0.385716 + 0.922617i \(0.626046\pi\)
\(644\) 90.3542i 3.56045i
\(645\) 0 0
\(646\) −1.26137 −0.0496278
\(647\) 26.5464i 1.04365i 0.853054 + 0.521823i \(0.174748\pi\)
−0.853054 + 0.521823i \(0.825252\pi\)
\(648\) −6.56155 −0.257762
\(649\) 22.2462 0.873240
\(650\) 0 0
\(651\) −21.3693 −0.837530
\(652\) 16.2462 0.636251
\(653\) 16.7386i 0.655033i 0.944845 + 0.327517i \(0.106212\pi\)
−0.944845 + 0.327517i \(0.893788\pi\)
\(654\) −12.4924 −0.488492
\(655\) 0 0
\(656\) 3.36932i 0.131550i
\(657\) 11.1231 0.433954
\(658\) −36.4924 −1.42262
\(659\) 39.6155 1.54320 0.771601 0.636107i \(-0.219456\pi\)
0.771601 + 0.636107i \(0.219456\pi\)
\(660\) 0 0
\(661\) 32.4924i 1.26381i 0.775046 + 0.631904i \(0.217726\pi\)
−0.775046 + 0.631904i \(0.782274\pi\)
\(662\) 24.6307i 0.957299i
\(663\) −1.56155 + 0.246211i −0.0606457 + 0.00956205i
\(664\) 87.7235 3.40433
\(665\) 0 0
\(666\) 14.2462 0.552029
\(667\) 45.8617i 1.77577i
\(668\) 10.2462 0.396438
\(669\) 2.87689i 0.111227i
\(670\) 0 0
\(671\) 46.9309i 1.81175i
\(672\) 23.3693i 0.901491i
\(673\) 34.1080i 1.31476i −0.753557 0.657382i \(-0.771664\pi\)
0.753557 0.657382i \(-0.228336\pi\)
\(674\) 66.6004i 2.56535i
\(675\) 0 0
\(676\) 56.4233 18.2462i 2.17013 0.701777i
\(677\) 37.4233i 1.43829i −0.694858 0.719147i \(-0.744533\pi\)
0.694858 0.719147i \(-0.255467\pi\)
\(678\) −51.8617 −1.99174
\(679\) 53.1771 2.04075
\(680\) 0 0
\(681\) 26.7386i 1.02463i
\(682\) −85.4773 −3.27309
\(683\) −19.1231 −0.731725 −0.365863 0.930669i \(-0.619226\pi\)
−0.365863 + 0.930669i \(0.619226\pi\)
\(684\) 5.12311i 0.195887i
\(685\) 0 0
\(686\) −12.0000 −0.458162
\(687\) −19.1231 −0.729592
\(688\) 54.7386i 2.08689i
\(689\) −5.50758 34.9309i −0.209822 1.33076i
\(690\) 0 0
\(691\) 18.0000i 0.684752i 0.939563 + 0.342376i \(0.111232\pi\)
−0.939563 + 0.342376i \(0.888768\pi\)
\(692\) 55.8617i 2.12354i
\(693\) 19.8078i 0.752435i
\(694\) 28.0000i 1.06287i
\(695\) 0 0
\(696\) 54.1080i 2.05096i
\(697\) 0.192236 0.00728146
\(698\) 22.7386i 0.860670i
\(699\) −22.6847 −0.858013
\(700\) 0 0
\(701\) 19.3693 0.731569 0.365785 0.930700i \(-0.380801\pi\)
0.365785 + 0.930700i \(0.380801\pi\)
\(702\) 1.43845 + 9.12311i 0.0542907 + 0.344329i
\(703\) 6.24621i 0.235580i
\(704\) 8.00000i 0.301511i
\(705\) 0 0
\(706\) −48.3542 −1.81983
\(707\) 7.12311 0.267892
\(708\) 18.2462 0.685735
\(709\) 48.0000i 1.80268i 0.433114 + 0.901339i \(0.357415\pi\)
−0.433114 + 0.901339i \(0.642585\pi\)
\(710\) 0 0
\(711\) −5.56155 −0.208575
\(712\) 8.63068i 0.323449i
\(713\) 33.3693 1.24969
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) −10.2462 −0.382919
\(717\) −13.5616 −0.506465
\(718\) 67.2311i 2.50904i
\(719\) −7.12311 −0.265647 −0.132824 0.991140i \(-0.542404\pi\)
−0.132824 + 0.991140i \(0.542404\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −45.4384 −1.69104
\(723\) 19.6155 0.729509
\(724\) −34.4924 −1.28190
\(725\) 0 0
\(726\) 51.0540i 1.89479i
\(727\) 6.63068i 0.245918i −0.992412 0.122959i \(-0.960762\pi\)
0.992412 0.122959i \(-0.0392384\pi\)
\(728\) 83.2311 13.1231i 3.08475 0.486375i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −3.12311 −0.115512
\(732\) 38.4924i 1.42272i
\(733\) −25.1771 −0.929937 −0.464968 0.885327i \(-0.653934\pi\)
−0.464968 + 0.885327i \(0.653934\pi\)
\(734\) 28.4924i 1.05167i
\(735\) 0 0
\(736\) 36.4924i 1.34513i
\(737\) 16.0000i 0.589368i
\(738\) 1.12311i 0.0413421i
\(739\) 36.7386i 1.35145i −0.737153 0.675726i \(-0.763830\pi\)
0.737153 0.675726i \(-0.236170\pi\)
\(740\) 0 0
\(741\) 4.00000 0.630683i 0.146944 0.0231687i
\(742\) 89.4773i 3.28481i
\(743\) 24.9848 0.916605 0.458303 0.888796i \(-0.348458\pi\)
0.458303 + 0.888796i \(0.348458\pi\)
\(744\) −39.3693 −1.44335
\(745\) 0 0
\(746\) 86.1080i 3.15264i
\(747\) 13.3693 0.489158
\(748\) −11.1231 −0.406701
\(749\) 2.43845i 0.0890989i
\(750\) 0 0
\(751\) −48.3002 −1.76250 −0.881249 0.472652i \(-0.843297\pi\)
−0.881249 + 0.472652i \(0.843297\pi\)
\(752\) −30.7386 −1.12092
\(753\) 1.36932i 0.0499007i
\(754\) 75.2311 11.8617i 2.73975 0.431979i
\(755\) 0 0
\(756\) 16.2462i 0.590869i
\(757\) 14.8769i 0.540710i −0.962761 0.270355i \(-0.912859\pi\)
0.962761 0.270355i \(-0.0871411\pi\)
\(758\) 9.61553i 0.349252i
\(759\) 30.9309i 1.12272i
\(760\) 0 0
\(761\) 0.246211i 0.00892515i −0.999990 0.00446258i \(-0.998580\pi\)
0.999990 0.00446258i \(-0.00142049\pi\)
\(762\) −44.4924 −1.61179
\(763\) 17.3693i 0.628811i
\(764\) 26.2462 0.949555
\(765\) 0 0
\(766\) 13.7538 0.496945
\(767\) −2.24621 14.2462i −0.0811060 0.514401i
\(768\) 27.0540i 0.976226i
\(769\) 8.00000i 0.288487i 0.989542 + 0.144244i \(0.0460749\pi\)
−0.989542 + 0.144244i \(0.953925\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 13.3693 0.481172
\(773\) 22.4924 0.808996 0.404498 0.914539i \(-0.367446\pi\)
0.404498 + 0.914539i \(0.367446\pi\)
\(774\) 18.2462i 0.655847i
\(775\) 0 0
\(776\) 97.9697 3.51691
\(777\) 19.8078i 0.710600i
\(778\) 32.6307 1.16987
\(779\) −0.492423 −0.0176429
\(780\) 0 0
\(781\) −48.3002 −1.72832
\(782\) 6.24621 0.223364
\(783\) 8.24621i 0.294696i
\(784\) 43.6847 1.56017
\(785\) 0 0
\(786\) 5.75379i 0.205231i
\(787\) −6.87689 −0.245135 −0.122567 0.992460i \(-0.539113\pi\)
−0.122567 + 0.992460i \(0.539113\pi\)
\(788\) −55.8617 −1.98999
\(789\) 26.2462 0.934390
\(790\) 0 0
\(791\) 72.1080i 2.56386i
\(792\) 36.4924i 1.29670i
\(793\) −30.0540 + 4.73863i −1.06725 + 0.168274i
\(794\) −62.2462 −2.20904
\(795\) 0 0
\(796\) 36.4924 1.29344
\(797\) 15.5616i 0.551218i 0.961270 + 0.275609i \(0.0888796\pi\)
−0.961270 + 0.275609i \(0.911120\pi\)
\(798\) 10.2462 0.362712
\(799\) 1.75379i 0.0620446i
\(800\) 0 0
\(801\) 1.31534i 0.0464753i
\(802\) 16.6307i 0.587250i
\(803\) 61.8617i 2.18305i
\(804\) 13.1231i 0.462816i
\(805\) 0 0
\(806\) 8.63068 + 54.7386i 0.304003 + 1.92809i
\(807\) 13.6155i 0.479289i
\(808\) 13.1231 0.461669
\(809\) 6.87689 0.241779 0.120889 0.992666i \(-0.461425\pi\)
0.120889 + 0.992666i \(0.461425\pi\)
\(810\) 0 0
\(811\) 2.49242i 0.0875208i 0.999042 + 0.0437604i \(0.0139338\pi\)
−0.999042 + 0.0437604i \(0.986066\pi\)
\(812\) 133.970 4.70141
\(813\) −28.2462 −0.990638
\(814\) 79.2311i 2.77705i
\(815\) 0 0
\(816\) −3.36932 −0.117950
\(817\) 8.00000 0.279885
\(818\) 30.7386i 1.07475i
\(819\) 12.6847 2.00000i 0.443238 0.0698857i
\(820\) 0 0
\(821\) 8.05398i 0.281086i 0.990075 + 0.140543i \(0.0448848\pi\)
−0.990075 + 0.140543i \(0.955115\pi\)
\(822\) 0.630683i 0.0219976i
\(823\) 15.6155i 0.544323i 0.962252 + 0.272162i \(0.0877385\pi\)
−0.962252 + 0.272162i \(0.912261\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 36.4924i 1.26973i
\(827\) 34.7386 1.20798 0.603990 0.796992i \(-0.293577\pi\)
0.603990 + 0.796992i \(0.293577\pi\)
\(828\) 25.3693i 0.881645i
\(829\) −36.7386 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(830\) 0 0
\(831\) 2.87689 0.0997984
\(832\) 5.12311 0.807764i 0.177612 0.0280042i
\(833\) 2.49242i 0.0863573i
\(834\) 44.9848i 1.55770i
\(835\) 0 0
\(836\) 28.4924 0.985431
\(837\) −6.00000 −0.207390
\(838\) 70.7386 2.44363
\(839\) 7.31534i 0.252554i −0.991995 0.126277i \(-0.959697\pi\)
0.991995 0.126277i \(-0.0403028\pi\)
\(840\) 0 0
\(841\) 39.0000 1.34483
\(842\) 64.9848i 2.23953i
\(843\) −22.0000 −0.757720
\(844\) 18.2462 0.628060
\(845\) 0 0
\(846\) −10.2462 −0.352272
\(847\) 70.9848 2.43907
\(848\) 75.3693i 2.58819i
\(849\) −25.8617 −0.887573
\(850\) 0 0
\(851\) 30.9309i 1.06030i
\(852\) −39.6155 −1.35721
\(853\) −22.9309 −0.785138 −0.392569 0.919723i \(-0.628414\pi\)
−0.392569 + 0.919723i \(0.628414\pi\)
\(854\) −76.9848 −2.63437
\(855\) 0 0
\(856\) 4.49242i 0.153548i
\(857\) 7.56155i 0.258298i 0.991625 + 0.129149i \(0.0412245\pi\)
−0.991625 + 0.129149i \(0.958775\pi\)
\(858\) 50.7386 8.00000i 1.73219 0.273115i
\(859\) −26.5464 −0.905751 −0.452876 0.891574i \(-0.649602\pi\)
−0.452876 + 0.891574i \(0.649602\pi\)
\(860\) 0 0
\(861\) −1.56155 −0.0532176
\(862\) 78.7386i 2.68185i
\(863\) −13.3693 −0.455097 −0.227548 0.973767i \(-0.573071\pi\)
−0.227548 + 0.973767i \(0.573071\pi\)
\(864\) 6.56155i 0.223229i
\(865\) 0 0
\(866\) 53.1231i 1.80520i
\(867\) 16.8078i 0.570822i
\(868\) 97.4773i 3.30859i
\(869\) 30.9309i 1.04926i
\(870\) 0 0
\(871\) 10.2462 1.61553i 0.347180 0.0547401i
\(872\) 32.0000i 1.08366i
\(873\) 14.9309 0.505333
\(874\) −16.0000 −0.541208
\(875\) 0 0
\(876\) 50.7386i 1.71430i
\(877\) 27.1231 0.915882 0.457941 0.888983i \(-0.348587\pi\)
0.457941 + 0.888983i \(0.348587\pi\)
\(878\) 31.2311 1.05400
\(879\) 8.24621i 0.278138i
\(880\) 0 0
\(881\) −47.3693 −1.59591 −0.797956 0.602715i \(-0.794086\pi\)
−0.797956 + 0.602715i \(0.794086\pi\)
\(882\) 14.5616 0.490313
\(883\) 8.49242i 0.285793i 0.989738 + 0.142896i \(0.0456416\pi\)
−0.989738 + 0.142896i \(0.954358\pi\)
\(884\) 1.12311 + 7.12311i 0.0377741 + 0.239576i
\(885\) 0 0
\(886\) 14.2462i 0.478611i
\(887\) 7.31534i 0.245625i −0.992430 0.122813i \(-0.960809\pi\)
0.992430 0.122813i \(-0.0391914\pi\)
\(888\) 36.4924i 1.22461i
\(889\) 61.8617i 2.07478i
\(890\) 0 0
\(891\) 5.56155i 0.186319i
\(892\) −13.1231 −0.439394
\(893\) 4.49242i 0.150333i
\(894\) −33.1231 −1.10780
\(895\) 0 0
\(896\) −33.6155 −1.12302
\(897\) −19.8078 + 3.12311i −0.661362 + 0.104277i
\(898\) 9.12311i 0.304442i
\(899\) 49.4773i 1.65016i
\(900\) 0 0
\(901\) 4.30019 0.143260
\(902\) −6.24621 −0.207976
\(903\) 25.3693 0.844238
\(904\) 132.847i 4.41841i
\(905\) 0 0
\(906\) 0.630683 0.0209530
\(907\) 14.7386i 0.489388i 0.969600 + 0.244694i \(0.0786876\pi\)
−0.969600 + 0.244694i \(0.921312\pi\)
\(908\) −121.970 −4.04771
\(909\) 2.00000 0.0663358
\(910\) 0 0
\(911\) 21.3693 0.707997 0.353999 0.935246i \(-0.384822\pi\)
0.353999 + 0.935246i \(0.384822\pi\)
\(912\) 8.63068 0.285790
\(913\) 74.3542i 2.46076i
\(914\) 67.7235 2.24009
\(915\) 0 0
\(916\) 87.2311i 2.88220i
\(917\) 8.00000 0.264183
\(918\) −1.12311 −0.0370680
\(919\) 44.7926 1.47757 0.738786 0.673940i \(-0.235399\pi\)
0.738786 + 0.673940i \(0.235399\pi\)
\(920\) 0 0
\(921\) 3.06913i 0.101131i
\(922\) 49.1231i 1.61778i
\(923\) 4.87689 + 30.9309i 0.160525 + 1.01810i
\(924\) 90.3542 2.97243
\(925\) 0 0
\(926\) −107.093 −3.51929
\(927\) 0 0
\(928\) 54.1080 1.77618
\(929\) 34.6847i 1.13797i −0.822349 0.568983i \(-0.807337\pi\)
0.822349 0.568983i \(-0.192663\pi\)
\(930\) 0 0
\(931\) 6.38447i 0.209243i
\(932\) 103.477i 3.38951i
\(933\) 15.1231i 0.495108i
\(934\) 68.9848i 2.25725i
\(935\) 0 0
\(936\) 23.3693 3.68466i 0.763850 0.120437i
\(937\) 6.49242i 0.212098i 0.994361 + 0.106049i \(0.0338201\pi\)
−0.994361 + 0.106049i \(0.966180\pi\)
\(938\) 26.2462 0.856969
\(939\) −17.1231 −0.558791
\(940\) 0 0
\(941\) 9.31534i 0.303671i −0.988406 0.151836i \(-0.951482\pi\)
0.988406 0.151836i \(-0.0485185\pi\)
\(942\) 33.6155 1.09525
\(943\) 2.43845 0.0794068
\(944\) 30.7386i 1.00046i
\(945\) 0 0
\(946\) 101.477 3.29931
\(947\) 15.5076 0.503929 0.251964 0.967737i \(-0.418923\pi\)
0.251964 + 0.967737i \(0.418923\pi\)
\(948\) 25.3693i 0.823957i
\(949\) −39.6155 + 6.24621i −1.28597 + 0.202761i
\(950\) 0 0
\(951\) 6.00000i 0.194563i
\(952\) 10.2462i 0.332082i
\(953\) 21.3153i 0.690472i 0.938516 + 0.345236i \(0.112201\pi\)
−0.938516 + 0.345236i \(0.887799\pi\)
\(954\) 25.1231i 0.813391i
\(955\) 0 0
\(956\) 61.8617i 2.00075i
\(957\) 45.8617 1.48250
\(958\) 46.2462i 1.49415i
\(959\) 0.876894 0.0283164
\(960\) 0 0
\(961\) −5.00000 −0.161290
\(962\) −50.7386 + 8.00000i −1.63588 + 0.257930i
\(963\) 0.684658i 0.0220628i
\(964\) 89.4773i 2.88187i
\(965\) 0 0
\(966\) −50.7386 −1.63249
\(967\) −38.1080 −1.22547 −0.612735 0.790289i \(-0.709931\pi\)
−0.612735 + 0.790289i \(0.709931\pi\)
\(968\) 130.777 4.20335
\(969\) 0.492423i 0.0158189i
\(970\) 0 0
\(971\) 20.8769 0.669971 0.334986 0.942223i \(-0.391269\pi\)
0.334986 + 0.942223i \(0.391269\pi\)
\(972\) 4.56155i 0.146312i
\(973\) 62.5464 2.00515
\(974\) 10.3845 0.332740
\(975\) 0 0
\(976\) −64.8466 −2.07569
\(977\) −27.3693 −0.875622 −0.437811 0.899067i \(-0.644246\pi\)
−0.437811 + 0.899067i \(0.644246\pi\)
\(978\) 9.12311i 0.291725i
\(979\) 7.31534 0.233799
\(980\) 0 0
\(981\) 4.87689i 0.155707i
\(982\) 93.4773 2.98298
\(983\) 42.7386 1.36315 0.681575 0.731748i \(-0.261295\pi\)
0.681575 + 0.731748i \(0.261295\pi\)
\(984\) −2.87689 −0.0917120
\(985\) 0 0
\(986\) 9.26137i 0.294942i
\(987\) 14.2462i 0.453462i
\(988\) −2.87689 18.2462i −0.0915262 0.580489i
\(989\) −39.6155 −1.25970
\(990\) 0 0
\(991\) −39.9157 −1.26796 −0.633982 0.773348i \(-0.718581\pi\)
−0.633982 + 0.773348i \(0.718581\pi\)
\(992\) 39.3693i 1.24998i
\(993\) −9.61553 −0.305140
\(994\) 79.2311i 2.51306i
\(995\) 0 0
\(996\) 60.9848i 1.93238i
\(997\) 42.1080i 1.33357i −0.745249 0.666786i \(-0.767669\pi\)
0.745249 0.666786i \(-0.232331\pi\)
\(998\) 1.61553i 0.0511386i
\(999\) 5.56155i 0.175960i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.h.e.649.2 4
5.2 odd 4 195.2.b.c.181.1 4
5.3 odd 4 975.2.b.f.376.4 4
5.4 even 2 975.2.h.g.649.3 4
13.12 even 2 975.2.h.g.649.4 4
15.2 even 4 585.2.b.e.181.4 4
20.7 even 4 3120.2.g.n.961.2 4
65.12 odd 4 195.2.b.c.181.4 yes 4
65.38 odd 4 975.2.b.f.376.1 4
65.47 even 4 2535.2.a.q.1.2 2
65.57 even 4 2535.2.a.p.1.1 2
65.64 even 2 inner 975.2.h.e.649.1 4
195.47 odd 4 7605.2.a.bc.1.1 2
195.77 even 4 585.2.b.e.181.1 4
195.122 odd 4 7605.2.a.bh.1.2 2
260.207 even 4 3120.2.g.n.961.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.b.c.181.1 4 5.2 odd 4
195.2.b.c.181.4 yes 4 65.12 odd 4
585.2.b.e.181.1 4 195.77 even 4
585.2.b.e.181.4 4 15.2 even 4
975.2.b.f.376.1 4 65.38 odd 4
975.2.b.f.376.4 4 5.3 odd 4
975.2.h.e.649.1 4 65.64 even 2 inner
975.2.h.e.649.2 4 1.1 even 1 trivial
975.2.h.g.649.3 4 5.4 even 2
975.2.h.g.649.4 4 13.12 even 2
2535.2.a.p.1.1 2 65.57 even 4
2535.2.a.q.1.2 2 65.47 even 4
3120.2.g.n.961.2 4 20.7 even 4
3120.2.g.n.961.3 4 260.207 even 4
7605.2.a.bc.1.1 2 195.47 odd 4
7605.2.a.bh.1.2 2 195.122 odd 4