Properties

Label 7644.2.e.b.4705.1
Level $7644$
Weight $2$
Character 7644.4705
Analytic conductor $61.038$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7644,2,Mod(4705,7644)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7644, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7644.4705");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4705.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 7644.4705
Dual form 7644.2.e.b.4705.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.00000i q^{5} +1.00000 q^{9} -6.00000i q^{11} +(-3.00000 + 2.00000i) q^{13} +2.00000i q^{15} +2.00000 q^{17} -8.00000 q^{23} +1.00000 q^{25} -1.00000 q^{27} +2.00000 q^{29} +8.00000i q^{31} +6.00000i q^{33} +8.00000i q^{37} +(3.00000 - 2.00000i) q^{39} +2.00000i q^{41} -8.00000 q^{43} -2.00000i q^{45} +6.00000i q^{47} -2.00000 q^{51} +6.00000 q^{53} -12.0000 q^{55} +2.00000i q^{59} -2.00000 q^{61} +(4.00000 + 6.00000i) q^{65} +4.00000i q^{67} +8.00000 q^{69} +6.00000i q^{71} +4.00000i q^{73} -1.00000 q^{75} +1.00000 q^{81} -14.0000i q^{83} -4.00000i q^{85} -2.00000 q^{87} -6.00000i q^{89} -8.00000i q^{93} +12.0000i q^{97} -6.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{9} - 6 q^{13} + 4 q^{17} - 16 q^{23} + 2 q^{25} - 2 q^{27} + 4 q^{29} + 6 q^{39} - 16 q^{43} - 4 q^{51} + 12 q^{53} - 24 q^{55} - 4 q^{61} + 8 q^{65} + 16 q^{69} - 2 q^{75} + 2 q^{81}+ \cdots - 4 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 2.00000i 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.00000i 1.80907i −0.426401 0.904534i \(-0.640219\pi\)
0.426401 0.904534i \(-0.359781\pi\)
\(12\) 0 0
\(13\) −3.00000 + 2.00000i −0.832050 + 0.554700i
\(14\) 0 0
\(15\) 2.00000i 0.516398i
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 8.00000i 1.43684i 0.695608 + 0.718421i \(0.255135\pi\)
−0.695608 + 0.718421i \(0.744865\pi\)
\(32\) 0 0
\(33\) 6.00000i 1.04447i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) 3.00000 2.00000i 0.480384 0.320256i
\(40\) 0 0
\(41\) 2.00000i 0.312348i 0.987730 + 0.156174i \(0.0499160\pi\)
−0.987730 + 0.156174i \(0.950084\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) 2.00000i 0.298142i
\(46\) 0 0
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000i 0.260378i 0.991489 + 0.130189i \(0.0415584\pi\)
−0.991489 + 0.130189i \(0.958442\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000 + 6.00000i 0.496139 + 0.744208i
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 6.00000i 0.712069i 0.934473 + 0.356034i \(0.115871\pi\)
−0.934473 + 0.356034i \(0.884129\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 14.0000i 1.53670i −0.640030 0.768350i \(-0.721078\pi\)
0.640030 0.768350i \(-0.278922\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) 6.00000i 0.635999i −0.948091 0.317999i \(-0.896989\pi\)
0.948091 0.317999i \(-0.103011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000i 1.21842i 0.793011 + 0.609208i \(0.208512\pi\)
−0.793011 + 0.609208i \(0.791488\pi\)
\(98\) 0 0
\(99\) 6.00000i 0.603023i
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 20.0000 1.93347 0.966736 0.255774i \(-0.0823304\pi\)
0.966736 + 0.255774i \(0.0823304\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i 0.981480 + 0.191565i \(0.0613564\pi\)
−0.981480 + 0.191565i \(0.938644\pi\)
\(110\) 0 0
\(111\) 8.00000i 0.759326i
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 16.0000i 1.49201i
\(116\) 0 0
\(117\) −3.00000 + 2.00000i −0.277350 + 0.184900i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −25.0000 −2.27273
\(122\) 0 0
\(123\) 2.00000i 0.180334i
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.00000i 0.172133i
\(136\) 0 0
\(137\) 10.0000i 0.854358i 0.904167 + 0.427179i \(0.140493\pi\)
−0.904167 + 0.427179i \(0.859507\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) 6.00000i 0.505291i
\(142\) 0 0
\(143\) 12.0000 + 18.0000i 1.00349 + 1.50524i
\(144\) 0 0
\(145\) 4.00000i 0.332182i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0000i 0.819232i −0.912258 0.409616i \(-0.865663\pi\)
0.912258 0.409616i \(-0.134337\pi\)
\(150\) 0 0
\(151\) 16.0000i 1.30206i 0.759051 + 0.651031i \(0.225663\pi\)
−0.759051 + 0.651031i \(0.774337\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000i 0.626608i −0.949653 0.313304i \(-0.898564\pi\)
0.949653 0.313304i \(-0.101436\pi\)
\(164\) 0 0
\(165\) 12.0000 0.934199
\(166\) 0 0
\(167\) 18.0000i 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.00000i 0.150329i
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 16.0000 1.17634
\(186\) 0 0
\(187\) 12.0000i 0.877527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) 8.00000i 0.575853i −0.957653 0.287926i \(-0.907034\pi\)
0.957653 0.287926i \(-0.0929658\pi\)
\(194\) 0 0
\(195\) −4.00000 6.00000i −0.286446 0.429669i
\(196\) 0 0
\(197\) 26.0000i 1.85242i 0.377004 + 0.926212i \(0.376954\pi\)
−0.377004 + 0.926212i \(0.623046\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 4.00000i 0.282138i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 0 0
\(207\) −8.00000 −0.556038
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 6.00000i 0.411113i
\(214\) 0 0
\(215\) 16.0000i 1.09119i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4.00000i 0.270295i
\(220\) 0 0
\(221\) −6.00000 + 4.00000i −0.403604 + 0.269069i
\(222\) 0 0
\(223\) 8.00000i 0.535720i 0.963458 + 0.267860i \(0.0863164\pi\)
−0.963458 + 0.267860i \(0.913684\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 2.00000i 0.132745i −0.997795 0.0663723i \(-0.978857\pi\)
0.997795 0.0663723i \(-0.0211425\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i 0.750546 + 0.660819i \(0.229791\pi\)
−0.750546 + 0.660819i \(0.770209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.0000i 0.646846i −0.946254 0.323423i \(-0.895166\pi\)
0.946254 0.323423i \(-0.104834\pi\)
\(240\) 0 0
\(241\) 20.0000i 1.28831i −0.764894 0.644157i \(-0.777208\pi\)
0.764894 0.644157i \(-0.222792\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 14.0000i 0.887214i
\(250\) 0 0
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 48.0000i 3.01773i
\(254\) 0 0
\(255\) 4.00000i 0.250490i
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 12.0000i 0.737154i
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) 22.0000 1.34136 0.670682 0.741745i \(-0.266002\pi\)
0.670682 + 0.741745i \(0.266002\pi\)
\(270\) 0 0
\(271\) 20.0000i 1.21491i −0.794353 0.607457i \(-0.792190\pi\)
0.794353 0.607457i \(-0.207810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000i 0.361814i
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 0 0
\(279\) 8.00000i 0.478947i
\(280\) 0 0
\(281\) 22.0000i 1.31241i −0.754583 0.656205i \(-0.772161\pi\)
0.754583 0.656205i \(-0.227839\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 12.0000i 0.703452i
\(292\) 0 0
\(293\) 14.0000i 0.817889i 0.912559 + 0.408944i \(0.134103\pi\)
−0.912559 + 0.408944i \(0.865897\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) 6.00000i 0.348155i
\(298\) 0 0
\(299\) 24.0000 16.0000i 1.38796 0.925304i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −10.0000 −0.574485
\(304\) 0 0
\(305\) 4.00000i 0.229039i
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 16.0000 0.907277 0.453638 0.891186i \(-0.350126\pi\)
0.453638 + 0.891186i \(0.350126\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) 12.0000i 0.671871i
\(320\) 0 0
\(321\) −20.0000 −1.11629
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −3.00000 + 2.00000i −0.166410 + 0.110940i
\(326\) 0 0
\(327\) 4.00000i 0.221201i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 28.0000i 1.53902i −0.638635 0.769510i \(-0.720501\pi\)
0.638635 0.769510i \(-0.279499\pi\)
\(332\) 0 0
\(333\) 8.00000i 0.438397i
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) 10.0000 0.543125
\(340\) 0 0
\(341\) 48.0000 2.59935
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 16.0000i 0.861411i
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 8.00000i 0.428230i −0.976808 0.214115i \(-0.931313\pi\)
0.976808 0.214115i \(-0.0686868\pi\)
\(350\) 0 0
\(351\) 3.00000 2.00000i 0.160128 0.106752i
\(352\) 0 0
\(353\) 10.0000i 0.532246i 0.963939 + 0.266123i \(0.0857428\pi\)
−0.963939 + 0.266123i \(0.914257\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.0000i 0.527780i 0.964553 + 0.263890i \(0.0850056\pi\)
−0.964553 + 0.263890i \(0.914994\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 25.0000 1.31216
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) 0 0
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 0 0
\(369\) 2.00000i 0.104116i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) 12.0000i 0.619677i
\(376\) 0 0
\(377\) −6.00000 + 4.00000i −0.309016 + 0.206010i
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 22.0000i 1.12415i 0.827087 + 0.562074i \(0.189996\pi\)
−0.827087 + 0.562074i \(0.810004\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.00000 −0.406663
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.0000i 0.803017i 0.915855 + 0.401508i \(0.131514\pi\)
−0.915855 + 0.401508i \(0.868486\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000i 0.299626i 0.988714 + 0.149813i \(0.0478671\pi\)
−0.988714 + 0.149813i \(0.952133\pi\)
\(402\) 0 0
\(403\) −16.0000 24.0000i −0.797017 1.19553i
\(404\) 0 0
\(405\) 2.00000i 0.0993808i
\(406\) 0 0
\(407\) 48.0000 2.37927
\(408\) 0 0
\(409\) 20.0000i 0.988936i 0.869196 + 0.494468i \(0.164637\pi\)
−0.869196 + 0.494468i \(0.835363\pi\)
\(410\) 0 0
\(411\) 10.0000i 0.493264i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −28.0000 −1.37447
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) 4.00000i 0.194948i −0.995238 0.0974740i \(-0.968924\pi\)
0.995238 0.0974740i \(-0.0310763\pi\)
\(422\) 0 0
\(423\) 6.00000i 0.291730i
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −12.0000 18.0000i −0.579365 0.869048i
\(430\) 0 0
\(431\) 10.0000i 0.481683i 0.970564 + 0.240842i \(0.0774234\pi\)
−0.970564 + 0.240842i \(0.922577\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 0 0
\(435\) 4.00000i 0.191785i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −36.0000 −1.71819 −0.859093 0.511819i \(-0.828972\pi\)
−0.859093 + 0.511819i \(0.828972\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) 10.0000i 0.472984i
\(448\) 0 0
\(449\) 30.0000i 1.41579i 0.706319 + 0.707894i \(0.250354\pi\)
−0.706319 + 0.707894i \(0.749646\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.00000i 0.187112i 0.995614 + 0.0935561i \(0.0298234\pi\)
−0.995614 + 0.0935561i \(0.970177\pi\)
\(458\) 0 0
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) 6.00000i 0.279448i 0.990190 + 0.139724i \(0.0446215\pi\)
−0.990190 + 0.139724i \(0.955378\pi\)
\(462\) 0 0
\(463\) 12.0000i 0.557687i 0.960337 + 0.278844i \(0.0899511\pi\)
−0.960337 + 0.278844i \(0.910049\pi\)
\(464\) 0 0
\(465\) −16.0000 −0.741982
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −14.0000 −0.645086
\(472\) 0 0
\(473\) 48.0000i 2.20704i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 18.0000i 0.822441i 0.911536 + 0.411220i \(0.134897\pi\)
−0.911536 + 0.411220i \(0.865103\pi\)
\(480\) 0 0
\(481\) −16.0000 24.0000i −0.729537 1.09431i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.0000 1.08978
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 8.00000i 0.361773i
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) −12.0000 −0.539360
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.00000i 0.179065i −0.995984 0.0895323i \(-0.971463\pi\)
0.995984 0.0895323i \(-0.0285372\pi\)
\(500\) 0 0
\(501\) 18.0000i 0.804181i
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 20.0000i 0.889988i
\(506\) 0 0
\(507\) −5.00000 + 12.0000i −0.222058 + 0.532939i
\(508\) 0 0
\(509\) 30.0000i 1.32973i 0.746965 + 0.664863i \(0.231510\pi\)
−0.746965 + 0.664863i \(0.768490\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.00000i 0.352522i
\(516\) 0 0
\(517\) 36.0000 1.58328
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 2.00000i 0.0867926i
\(532\) 0 0
\(533\) −4.00000 6.00000i −0.173259 0.259889i
\(534\) 0 0
\(535\) 40.0000i 1.72935i
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000i 0.859867i −0.902861 0.429934i \(-0.858537\pi\)
0.902861 0.429934i \(-0.141463\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) 8.00000 0.342682
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −16.0000 −0.679162
\(556\) 0 0
\(557\) 30.0000i 1.27114i −0.772043 0.635570i \(-0.780765\pi\)
0.772043 0.635570i \(-0.219235\pi\)
\(558\) 0 0
\(559\) 24.0000 16.0000i 1.01509 0.676728i
\(560\) 0 0
\(561\) 12.0000i 0.506640i
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 20.0000i 0.841406i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.0000 1.42535 0.712677 0.701492i \(-0.247483\pi\)
0.712677 + 0.701492i \(0.247483\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) 40.0000i 1.66522i 0.553858 + 0.832611i \(0.313155\pi\)
−0.553858 + 0.832611i \(0.686845\pi\)
\(578\) 0 0
\(579\) 8.00000i 0.332469i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 36.0000i 1.49097i
\(584\) 0 0
\(585\) 4.00000 + 6.00000i 0.165380 + 0.248069i
\(586\) 0 0
\(587\) 2.00000i 0.0825488i 0.999148 + 0.0412744i \(0.0131418\pi\)
−0.999148 + 0.0412744i \(0.986858\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 26.0000i 1.06950i
\(592\) 0 0
\(593\) 34.0000i 1.39621i 0.715994 + 0.698106i \(0.245974\pi\)
−0.715994 + 0.698106i \(0.754026\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 4.00000i 0.162893i
\(604\) 0 0
\(605\) 50.0000i 2.03279i
\(606\) 0 0
\(607\) −4.00000 −0.162355 −0.0811775 0.996700i \(-0.525868\pi\)
−0.0811775 + 0.996700i \(0.525868\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 18.0000i −0.485468 0.728202i
\(612\) 0 0
\(613\) 16.0000i 0.646234i 0.946359 + 0.323117i \(0.104731\pi\)
−0.946359 + 0.323117i \(0.895269\pi\)
\(614\) 0 0
\(615\) −4.00000 −0.161296
\(616\) 0 0
\(617\) 14.0000i 0.563619i 0.959470 + 0.281809i \(0.0909346\pi\)
−0.959470 + 0.281809i \(0.909065\pi\)
\(618\) 0 0
\(619\) 20.0000i 0.803868i 0.915669 + 0.401934i \(0.131662\pi\)
−0.915669 + 0.401934i \(0.868338\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.0000i 0.637962i
\(630\) 0 0
\(631\) 8.00000i 0.318475i −0.987240 0.159237i \(-0.949096\pi\)
0.987240 0.159237i \(-0.0509036\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) 16.0000i 0.634941i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.00000i 0.237356i
\(640\) 0 0
\(641\) −42.0000 −1.65890 −0.829450 0.558581i \(-0.811346\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) 36.0000i 1.41970i −0.704352 0.709851i \(-0.748762\pi\)
0.704352 0.709851i \(-0.251238\pi\)
\(644\) 0 0
\(645\) 16.0000i 0.629999i
\(646\) 0 0
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 8.00000i 0.312586i
\(656\) 0 0
\(657\) 4.00000i 0.156055i
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 32.0000i 1.24466i −0.782757 0.622328i \(-0.786187\pi\)
0.782757 0.622328i \(-0.213813\pi\)
\(662\) 0 0
\(663\) 6.00000 4.00000i 0.233021 0.155347i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0000 −0.619522
\(668\) 0 0
\(669\) 8.00000i 0.309298i
\(670\) 0 0
\(671\) 12.0000i 0.463255i
\(672\) 0 0
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.00000i 0.0766402i
\(682\) 0 0
\(683\) 6.00000i 0.229584i −0.993390 0.114792i \(-0.963380\pi\)
0.993390 0.114792i \(-0.0366201\pi\)
\(684\) 0 0
\(685\) 20.0000 0.764161
\(686\) 0 0
\(687\) 20.0000i 0.763048i
\(688\) 0 0
\(689\) −18.0000 + 12.0000i −0.685745 + 0.457164i
\(690\) 0 0
\(691\) 4.00000i 0.152167i 0.997101 + 0.0760836i \(0.0242416\pi\)
−0.997101 + 0.0760836i \(0.975758\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.0000i 0.606915i
\(696\) 0 0
\(697\) 4.00000i 0.151511i
\(698\) 0 0
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 36.0000i 1.35201i 0.736898 + 0.676004i \(0.236290\pi\)
−0.736898 + 0.676004i \(0.763710\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 64.0000i 2.39682i
\(714\) 0 0
\(715\) 36.0000 24.0000i 1.34632 0.897549i
\(716\) 0 0
\(717\) 10.0000i 0.373457i
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 20.0000i 0.743808i
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −16.0000 −0.591781
\(732\) 0 0
\(733\) 20.0000i 0.738717i 0.929287 + 0.369358i \(0.120423\pi\)
−0.929287 + 0.369358i \(0.879577\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000 0.884051
\(738\) 0 0
\(739\) 28.0000i 1.03000i 0.857191 + 0.514998i \(0.172207\pi\)
−0.857191 + 0.514998i \(0.827793\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.0000i 0.807102i 0.914957 + 0.403551i \(0.132224\pi\)
−0.914957 + 0.403551i \(0.867776\pi\)
\(744\) 0 0
\(745\) −20.0000 −0.732743
\(746\) 0 0
\(747\) 14.0000i 0.512233i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) 0 0
\(753\) 20.0000 0.728841
\(754\) 0 0
\(755\) 32.0000 1.16460
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 48.0000i 1.74229i
\(760\) 0 0
\(761\) 30.0000i 1.08750i 0.839248 + 0.543750i \(0.182996\pi\)
−0.839248 + 0.543750i \(0.817004\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4.00000i 0.144620i
\(766\) 0 0
\(767\) −4.00000 6.00000i −0.144432 0.216647i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) 18.0000i 0.647415i 0.946157 + 0.323708i \(0.104929\pi\)
−0.946157 + 0.323708i \(0.895071\pi\)
\(774\) 0 0
\(775\) 8.00000i 0.287368i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) 28.0000i 0.999363i
\(786\) 0 0
\(787\) 44.0000i 1.56843i −0.620489 0.784215i \(-0.713066\pi\)
0.620489 0.784215i \(-0.286934\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000 4.00000i 0.213066 0.142044i
\(794\) 0 0
\(795\) 12.0000i 0.425596i
\(796\) 0 0
\(797\) −10.0000 −0.354218 −0.177109 0.984191i \(-0.556675\pi\)
−0.177109 + 0.984191i \(0.556675\pi\)
\(798\) 0 0
\(799\) 12.0000i 0.424529i
\(800\) 0 0
\(801\) 6.00000i 0.212000i
\(802\) 0 0
\(803\) 24.0000 0.846942
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −22.0000 −0.774437
\(808\) 0 0
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) 0 0
\(811\) 40.0000i 1.40459i −0.711886 0.702295i \(-0.752159\pi\)
0.711886 0.702295i \(-0.247841\pi\)
\(812\) 0 0
\(813\) 20.0000i 0.701431i
\(814\) 0 0
\(815\) −16.0000 −0.560456
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 30.0000i 1.04701i 0.852023 + 0.523504i \(0.175375\pi\)
−0.852023 + 0.523504i \(0.824625\pi\)
\(822\) 0 0
\(823\) −36.0000 −1.25488 −0.627441 0.778664i \(-0.715897\pi\)
−0.627441 + 0.778664i \(0.715897\pi\)
\(824\) 0 0
\(825\) 6.00000i 0.208893i
\(826\) 0 0
\(827\) 18.0000i 0.625921i 0.949766 + 0.312961i \(0.101321\pi\)
−0.949766 + 0.312961i \(0.898679\pi\)
\(828\) 0 0
\(829\) 54.0000 1.87550 0.937749 0.347314i \(-0.112906\pi\)
0.937749 + 0.347314i \(0.112906\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −36.0000 −1.24583
\(836\) 0 0
\(837\) 8.00000i 0.276520i
\(838\) 0 0
\(839\) 10.0000i 0.345238i 0.984989 + 0.172619i \(0.0552230\pi\)
−0.984989 + 0.172619i \(0.944777\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 22.0000i 0.757720i
\(844\) 0 0
\(845\) −24.0000 10.0000i −0.825625 0.344010i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 64.0000i 2.19389i
\(852\) 0 0
\(853\) 16.0000i 0.547830i 0.961754 + 0.273915i \(0.0883186\pi\)
−0.961754 + 0.273915i \(0.911681\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −52.0000 −1.77422 −0.887109 0.461561i \(-0.847290\pi\)
−0.887109 + 0.461561i \(0.847290\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.0000i 1.15737i 0.815550 + 0.578687i \(0.196435\pi\)
−0.815550 + 0.578687i \(0.803565\pi\)
\(864\) 0 0
\(865\) 12.0000i 0.408012i
\(866\) 0 0
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 12.0000i −0.271070 0.406604i
\(872\) 0 0
\(873\) 12.0000i 0.406138i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.0000i 0.540282i −0.962821 0.270141i \(-0.912930\pi\)
0.962821 0.270141i \(-0.0870703\pi\)
\(878\) 0 0
\(879\) 14.0000i 0.472208i
\(880\) 0 0
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) −4.00000 −0.134459
\(886\) 0 0
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 6.00000i 0.201008i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 24.0000i 0.802232i
\(896\) 0 0
\(897\) −24.0000 + 16.0000i −0.801337 + 0.534224i
\(898\) 0 0
\(899\) 16.0000i 0.533630i
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.0000i 0.664822i
\(906\) 0 0
\(907\) −44.0000 −1.46100 −0.730498 0.682915i \(-0.760712\pi\)
−0.730498 + 0.682915i \(0.760712\pi\)
\(908\) 0 0
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −84.0000 −2.77999
\(914\) 0 0
\(915\) 4.00000i 0.132236i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 20.0000i 0.659022i
\(922\) 0 0
\(923\) −12.0000 18.0000i −0.394985 0.592477i
\(924\) 0 0
\(925\) 8.00000i 0.263038i
\(926\) 0 0
\(927\) 4.00000 0.131377
\(928\) 0 0
\(929\) 30.0000i 0.984268i −0.870519 0.492134i \(-0.836217\pi\)
0.870519 0.492134i \(-0.163783\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −16.0000 −0.523816
\(934\) 0 0
\(935\) −24.0000 −0.784884
\(936\) 0 0
\(937\) 50.0000 1.63343 0.816714 0.577042i \(-0.195793\pi\)
0.816714 + 0.577042i \(0.195793\pi\)
\(938\) 0 0
\(939\) −14.0000 −0.456873
\(940\) 0 0
\(941\) 38.0000i 1.23876i −0.785090 0.619382i \(-0.787383\pi\)
0.785090 0.619382i \(-0.212617\pi\)
\(942\) 0 0
\(943\) 16.0000i 0.521032i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.0000i 1.23483i 0.786636 + 0.617417i \(0.211821\pi\)
−0.786636 + 0.617417i \(0.788179\pi\)
\(948\) 0 0
\(949\) −8.00000 12.0000i −0.259691 0.389536i
\(950\) 0 0
\(951\) 18.0000i 0.583690i
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 0 0
\(955\) 48.0000i 1.55324i
\(956\) 0 0
\(957\) 12.0000i 0.387905i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) 20.0000 0.644491
\(964\) 0 0
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) 8.00000i 0.257263i 0.991692 + 0.128631i \(0.0410584\pi\)
−0.991692 + 0.128631i \(0.958942\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 3.00000 2.00000i 0.0960769 0.0640513i
\(976\) 0 0
\(977\) 30.0000i 0.959785i −0.877327 0.479893i \(-0.840676\pi\)
0.877327 0.479893i \(-0.159324\pi\)
\(978\) 0 0
\(979\) −36.0000 −1.15056
\(980\) 0 0
\(981\) 4.00000i 0.127710i
\(982\) 0 0
\(983\) 18.0000i 0.574111i 0.957914 + 0.287055i \(0.0926764\pi\)
−0.957914 + 0.287055i \(0.907324\pi\)
\(984\) 0 0
\(985\) 52.0000 1.65686
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 64.0000 2.03508
\(990\) 0 0
\(991\) −44.0000 −1.39771 −0.698853 0.715265i \(-0.746306\pi\)
−0.698853 + 0.715265i \(0.746306\pi\)
\(992\) 0 0
\(993\) 28.0000i 0.888553i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.00000 −0.190022 −0.0950110 0.995476i \(-0.530289\pi\)
−0.0950110 + 0.995476i \(0.530289\pi\)
\(998\) 0 0
\(999\) 8.00000i 0.253109i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7644.2.e.b.4705.1 2
7.6 odd 2 156.2.b.b.25.2 yes 2
13.12 even 2 inner 7644.2.e.b.4705.2 2
21.20 even 2 468.2.b.c.181.1 2
28.27 even 2 624.2.c.d.337.2 2
35.13 even 4 3900.2.j.e.649.2 2
35.27 even 4 3900.2.j.b.649.1 2
35.34 odd 2 3900.2.c.a.3301.1 2
56.13 odd 2 2496.2.c.b.961.1 2
56.27 even 2 2496.2.c.i.961.1 2
84.83 odd 2 1872.2.c.h.1585.1 2
91.6 even 12 2028.2.i.d.2005.1 2
91.20 even 12 2028.2.i.a.2005.1 2
91.34 even 4 2028.2.a.d.1.1 1
91.41 even 12 2028.2.i.d.529.1 2
91.48 odd 6 2028.2.q.e.361.2 4
91.55 odd 6 2028.2.q.e.1837.2 4
91.62 odd 6 2028.2.q.e.1837.1 4
91.69 odd 6 2028.2.q.e.361.1 4
91.76 even 12 2028.2.i.a.529.1 2
91.83 even 4 2028.2.a.f.1.1 1
91.90 odd 2 156.2.b.b.25.1 2
273.83 odd 4 6084.2.a.d.1.1 1
273.125 odd 4 6084.2.a.n.1.1 1
273.272 even 2 468.2.b.c.181.2 2
364.83 odd 4 8112.2.a.l.1.1 1
364.307 odd 4 8112.2.a.d.1.1 1
364.363 even 2 624.2.c.d.337.1 2
455.272 even 4 3900.2.j.e.649.1 2
455.363 even 4 3900.2.j.b.649.2 2
455.454 odd 2 3900.2.c.a.3301.2 2
728.181 odd 2 2496.2.c.b.961.2 2
728.363 even 2 2496.2.c.i.961.2 2
1092.1091 odd 2 1872.2.c.h.1585.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.b.b.25.1 2 91.90 odd 2
156.2.b.b.25.2 yes 2 7.6 odd 2
468.2.b.c.181.1 2 21.20 even 2
468.2.b.c.181.2 2 273.272 even 2
624.2.c.d.337.1 2 364.363 even 2
624.2.c.d.337.2 2 28.27 even 2
1872.2.c.h.1585.1 2 84.83 odd 2
1872.2.c.h.1585.2 2 1092.1091 odd 2
2028.2.a.d.1.1 1 91.34 even 4
2028.2.a.f.1.1 1 91.83 even 4
2028.2.i.a.529.1 2 91.76 even 12
2028.2.i.a.2005.1 2 91.20 even 12
2028.2.i.d.529.1 2 91.41 even 12
2028.2.i.d.2005.1 2 91.6 even 12
2028.2.q.e.361.1 4 91.69 odd 6
2028.2.q.e.361.2 4 91.48 odd 6
2028.2.q.e.1837.1 4 91.62 odd 6
2028.2.q.e.1837.2 4 91.55 odd 6
2496.2.c.b.961.1 2 56.13 odd 2
2496.2.c.b.961.2 2 728.181 odd 2
2496.2.c.i.961.1 2 56.27 even 2
2496.2.c.i.961.2 2 728.363 even 2
3900.2.c.a.3301.1 2 35.34 odd 2
3900.2.c.a.3301.2 2 455.454 odd 2
3900.2.j.b.649.1 2 35.27 even 4
3900.2.j.b.649.2 2 455.363 even 4
3900.2.j.e.649.1 2 455.272 even 4
3900.2.j.e.649.2 2 35.13 even 4
6084.2.a.d.1.1 1 273.83 odd 4
6084.2.a.n.1.1 1 273.125 odd 4
7644.2.e.b.4705.1 2 1.1 even 1 trivial
7644.2.e.b.4705.2 2 13.12 even 2 inner
8112.2.a.d.1.1 1 364.307 odd 4
8112.2.a.l.1.1 1 364.83 odd 4