Properties

Label 7744.2.a.bs.1.1
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 968)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.23607 q^{3} -2.23607 q^{5} +3.23607 q^{7} +7.47214 q^{9} +1.76393 q^{13} +7.23607 q^{15} -1.00000 q^{17} +5.70820 q^{19} -10.4721 q^{21} -0.763932 q^{23} -14.4721 q^{27} +1.76393 q^{29} -4.76393 q^{31} -7.23607 q^{35} +0.236068 q^{37} -5.70820 q^{39} -7.47214 q^{41} -10.4721 q^{43} -16.7082 q^{45} -5.70820 q^{47} +3.47214 q^{49} +3.23607 q^{51} +13.1803 q^{53} -18.4721 q^{57} -5.52786 q^{59} +14.9443 q^{61} +24.1803 q^{63} -3.94427 q^{65} -0.763932 q^{67} +2.47214 q^{69} +4.00000 q^{71} -3.52786 q^{73} -7.23607 q^{79} +24.4164 q^{81} -12.1803 q^{83} +2.23607 q^{85} -5.70820 q^{87} -12.4164 q^{89} +5.70820 q^{91} +15.4164 q^{93} -12.7639 q^{95} +11.9443 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{7} + 6 q^{9} + 8 q^{13} + 10 q^{15} - 2 q^{17} - 2 q^{19} - 12 q^{21} - 6 q^{23} - 20 q^{27} + 8 q^{29} - 14 q^{31} - 10 q^{35} - 4 q^{37} + 2 q^{39} - 6 q^{41} - 12 q^{43} - 20 q^{45}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.23607 −1.86834 −0.934172 0.356822i \(-0.883860\pi\)
−0.934172 + 0.356822i \(0.883860\pi\)
\(4\) 0 0
\(5\) −2.23607 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0 0
\(7\) 3.23607 1.22312 0.611559 0.791199i \(-0.290543\pi\)
0.611559 + 0.791199i \(0.290543\pi\)
\(8\) 0 0
\(9\) 7.47214 2.49071
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.76393 0.489227 0.244613 0.969621i \(-0.421339\pi\)
0.244613 + 0.969621i \(0.421339\pi\)
\(14\) 0 0
\(15\) 7.23607 1.86834
\(16\) 0 0
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) 5.70820 1.30955 0.654776 0.755823i \(-0.272763\pi\)
0.654776 + 0.755823i \(0.272763\pi\)
\(20\) 0 0
\(21\) −10.4721 −2.28521
\(22\) 0 0
\(23\) −0.763932 −0.159291 −0.0796454 0.996823i \(-0.525379\pi\)
−0.0796454 + 0.996823i \(0.525379\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −14.4721 −2.78516
\(28\) 0 0
\(29\) 1.76393 0.327554 0.163777 0.986497i \(-0.447632\pi\)
0.163777 + 0.986497i \(0.447632\pi\)
\(30\) 0 0
\(31\) −4.76393 −0.855627 −0.427814 0.903867i \(-0.640716\pi\)
−0.427814 + 0.903867i \(0.640716\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.23607 −1.22312
\(36\) 0 0
\(37\) 0.236068 0.0388093 0.0194047 0.999812i \(-0.493823\pi\)
0.0194047 + 0.999812i \(0.493823\pi\)
\(38\) 0 0
\(39\) −5.70820 −0.914044
\(40\) 0 0
\(41\) −7.47214 −1.16695 −0.583476 0.812131i \(-0.698308\pi\)
−0.583476 + 0.812131i \(0.698308\pi\)
\(42\) 0 0
\(43\) −10.4721 −1.59699 −0.798493 0.602004i \(-0.794369\pi\)
−0.798493 + 0.602004i \(0.794369\pi\)
\(44\) 0 0
\(45\) −16.7082 −2.49071
\(46\) 0 0
\(47\) −5.70820 −0.832627 −0.416314 0.909221i \(-0.636678\pi\)
−0.416314 + 0.909221i \(0.636678\pi\)
\(48\) 0 0
\(49\) 3.47214 0.496019
\(50\) 0 0
\(51\) 3.23607 0.453140
\(52\) 0 0
\(53\) 13.1803 1.81046 0.905229 0.424923i \(-0.139699\pi\)
0.905229 + 0.424923i \(0.139699\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −18.4721 −2.44669
\(58\) 0 0
\(59\) −5.52786 −0.719667 −0.359833 0.933017i \(-0.617166\pi\)
−0.359833 + 0.933017i \(0.617166\pi\)
\(60\) 0 0
\(61\) 14.9443 1.91342 0.956709 0.291046i \(-0.0940034\pi\)
0.956709 + 0.291046i \(0.0940034\pi\)
\(62\) 0 0
\(63\) 24.1803 3.04644
\(64\) 0 0
\(65\) −3.94427 −0.489227
\(66\) 0 0
\(67\) −0.763932 −0.0933292 −0.0466646 0.998911i \(-0.514859\pi\)
−0.0466646 + 0.998911i \(0.514859\pi\)
\(68\) 0 0
\(69\) 2.47214 0.297610
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) −3.52786 −0.412905 −0.206453 0.978457i \(-0.566192\pi\)
−0.206453 + 0.978457i \(0.566192\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.23607 −0.814121 −0.407061 0.913401i \(-0.633446\pi\)
−0.407061 + 0.913401i \(0.633446\pi\)
\(80\) 0 0
\(81\) 24.4164 2.71293
\(82\) 0 0
\(83\) −12.1803 −1.33697 −0.668483 0.743727i \(-0.733056\pi\)
−0.668483 + 0.743727i \(0.733056\pi\)
\(84\) 0 0
\(85\) 2.23607 0.242536
\(86\) 0 0
\(87\) −5.70820 −0.611984
\(88\) 0 0
\(89\) −12.4164 −1.31614 −0.658068 0.752958i \(-0.728626\pi\)
−0.658068 + 0.752958i \(0.728626\pi\)
\(90\) 0 0
\(91\) 5.70820 0.598382
\(92\) 0 0
\(93\) 15.4164 1.59861
\(94\) 0 0
\(95\) −12.7639 −1.30955
\(96\) 0 0
\(97\) 11.9443 1.21276 0.606379 0.795176i \(-0.292622\pi\)
0.606379 + 0.795176i \(0.292622\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 23.4164 2.28521
\(106\) 0 0
\(107\) −1.70820 −0.165138 −0.0825692 0.996585i \(-0.526313\pi\)
−0.0825692 + 0.996585i \(0.526313\pi\)
\(108\) 0 0
\(109\) −6.23607 −0.597307 −0.298653 0.954362i \(-0.596537\pi\)
−0.298653 + 0.954362i \(0.596537\pi\)
\(110\) 0 0
\(111\) −0.763932 −0.0725092
\(112\) 0 0
\(113\) 19.9443 1.87620 0.938100 0.346366i \(-0.112584\pi\)
0.938100 + 0.346366i \(0.112584\pi\)
\(114\) 0 0
\(115\) 1.70820 0.159291
\(116\) 0 0
\(117\) 13.1803 1.21852
\(118\) 0 0
\(119\) −3.23607 −0.296650
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 24.1803 2.18027
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) 0 0
\(127\) 18.4721 1.63914 0.819569 0.572981i \(-0.194213\pi\)
0.819569 + 0.572981i \(0.194213\pi\)
\(128\) 0 0
\(129\) 33.8885 2.98372
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 18.4721 1.60174
\(134\) 0 0
\(135\) 32.3607 2.78516
\(136\) 0 0
\(137\) 7.52786 0.643149 0.321574 0.946884i \(-0.395788\pi\)
0.321574 + 0.946884i \(0.395788\pi\)
\(138\) 0 0
\(139\) −15.2361 −1.29231 −0.646153 0.763208i \(-0.723623\pi\)
−0.646153 + 0.763208i \(0.723623\pi\)
\(140\) 0 0
\(141\) 18.4721 1.55563
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3.94427 −0.327554
\(146\) 0 0
\(147\) −11.2361 −0.926735
\(148\) 0 0
\(149\) −10.2361 −0.838571 −0.419286 0.907854i \(-0.637719\pi\)
−0.419286 + 0.907854i \(0.637719\pi\)
\(150\) 0 0
\(151\) −7.41641 −0.603539 −0.301769 0.953381i \(-0.597577\pi\)
−0.301769 + 0.953381i \(0.597577\pi\)
\(152\) 0 0
\(153\) −7.47214 −0.604086
\(154\) 0 0
\(155\) 10.6525 0.855627
\(156\) 0 0
\(157\) 12.4721 0.995385 0.497692 0.867354i \(-0.334181\pi\)
0.497692 + 0.867354i \(0.334181\pi\)
\(158\) 0 0
\(159\) −42.6525 −3.38256
\(160\) 0 0
\(161\) −2.47214 −0.194832
\(162\) 0 0
\(163\) 5.70820 0.447101 0.223551 0.974692i \(-0.428235\pi\)
0.223551 + 0.974692i \(0.428235\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.4164 0.883428 0.441714 0.897156i \(-0.354371\pi\)
0.441714 + 0.897156i \(0.354371\pi\)
\(168\) 0 0
\(169\) −9.88854 −0.760657
\(170\) 0 0
\(171\) 42.6525 3.26172
\(172\) 0 0
\(173\) −18.9443 −1.44031 −0.720153 0.693815i \(-0.755928\pi\)
−0.720153 + 0.693815i \(0.755928\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 17.8885 1.34459
\(178\) 0 0
\(179\) −2.47214 −0.184776 −0.0923881 0.995723i \(-0.529450\pi\)
−0.0923881 + 0.995723i \(0.529450\pi\)
\(180\) 0 0
\(181\) −12.7082 −0.944593 −0.472297 0.881440i \(-0.656575\pi\)
−0.472297 + 0.881440i \(0.656575\pi\)
\(182\) 0 0
\(183\) −48.3607 −3.57492
\(184\) 0 0
\(185\) −0.527864 −0.0388093
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −46.8328 −3.40659
\(190\) 0 0
\(191\) −5.52786 −0.399982 −0.199991 0.979798i \(-0.564091\pi\)
−0.199991 + 0.979798i \(0.564091\pi\)
\(192\) 0 0
\(193\) 3.94427 0.283915 0.141957 0.989873i \(-0.454660\pi\)
0.141957 + 0.989873i \(0.454660\pi\)
\(194\) 0 0
\(195\) 12.7639 0.914044
\(196\) 0 0
\(197\) −17.6525 −1.25769 −0.628843 0.777532i \(-0.716471\pi\)
−0.628843 + 0.777532i \(0.716471\pi\)
\(198\) 0 0
\(199\) 18.4721 1.30945 0.654727 0.755865i \(-0.272783\pi\)
0.654727 + 0.755865i \(0.272783\pi\)
\(200\) 0 0
\(201\) 2.47214 0.174371
\(202\) 0 0
\(203\) 5.70820 0.400637
\(204\) 0 0
\(205\) 16.7082 1.16695
\(206\) 0 0
\(207\) −5.70820 −0.396748
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.05573 0.485736 0.242868 0.970059i \(-0.421912\pi\)
0.242868 + 0.970059i \(0.421912\pi\)
\(212\) 0 0
\(213\) −12.9443 −0.886927
\(214\) 0 0
\(215\) 23.4164 1.59699
\(216\) 0 0
\(217\) −15.4164 −1.04653
\(218\) 0 0
\(219\) 11.4164 0.771449
\(220\) 0 0
\(221\) −1.76393 −0.118655
\(222\) 0 0
\(223\) −8.94427 −0.598953 −0.299476 0.954104i \(-0.596812\pi\)
−0.299476 + 0.954104i \(0.596812\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.47214 0.164081 0.0820407 0.996629i \(-0.473856\pi\)
0.0820407 + 0.996629i \(0.473856\pi\)
\(228\) 0 0
\(229\) 2.70820 0.178963 0.0894816 0.995988i \(-0.471479\pi\)
0.0894816 + 0.995988i \(0.471479\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) 12.7639 0.832627
\(236\) 0 0
\(237\) 23.4164 1.52106
\(238\) 0 0
\(239\) −20.1803 −1.30536 −0.652679 0.757635i \(-0.726355\pi\)
−0.652679 + 0.757635i \(0.726355\pi\)
\(240\) 0 0
\(241\) −3.52786 −0.227250 −0.113625 0.993524i \(-0.536246\pi\)
−0.113625 + 0.993524i \(0.536246\pi\)
\(242\) 0 0
\(243\) −35.5967 −2.28353
\(244\) 0 0
\(245\) −7.76393 −0.496019
\(246\) 0 0
\(247\) 10.0689 0.640668
\(248\) 0 0
\(249\) 39.4164 2.49791
\(250\) 0 0
\(251\) −20.7639 −1.31061 −0.655304 0.755365i \(-0.727459\pi\)
−0.655304 + 0.755365i \(0.727459\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −7.23607 −0.453140
\(256\) 0 0
\(257\) −14.5279 −0.906223 −0.453112 0.891454i \(-0.649686\pi\)
−0.453112 + 0.891454i \(0.649686\pi\)
\(258\) 0 0
\(259\) 0.763932 0.0474684
\(260\) 0 0
\(261\) 13.1803 0.815843
\(262\) 0 0
\(263\) 6.65248 0.410209 0.205105 0.978740i \(-0.434247\pi\)
0.205105 + 0.978740i \(0.434247\pi\)
\(264\) 0 0
\(265\) −29.4721 −1.81046
\(266\) 0 0
\(267\) 40.1803 2.45900
\(268\) 0 0
\(269\) −16.7082 −1.01872 −0.509359 0.860554i \(-0.670117\pi\)
−0.509359 + 0.860554i \(0.670117\pi\)
\(270\) 0 0
\(271\) 29.8885 1.81560 0.907800 0.419404i \(-0.137761\pi\)
0.907800 + 0.419404i \(0.137761\pi\)
\(272\) 0 0
\(273\) −18.4721 −1.11798
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.1246 1.56968 0.784838 0.619701i \(-0.212746\pi\)
0.784838 + 0.619701i \(0.212746\pi\)
\(278\) 0 0
\(279\) −35.5967 −2.13112
\(280\) 0 0
\(281\) 15.5279 0.926315 0.463157 0.886276i \(-0.346716\pi\)
0.463157 + 0.886276i \(0.346716\pi\)
\(282\) 0 0
\(283\) −11.4164 −0.678635 −0.339318 0.940672i \(-0.610196\pi\)
−0.339318 + 0.940672i \(0.610196\pi\)
\(284\) 0 0
\(285\) 41.3050 2.44669
\(286\) 0 0
\(287\) −24.1803 −1.42732
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) −38.6525 −2.26585
\(292\) 0 0
\(293\) −5.29180 −0.309150 −0.154575 0.987981i \(-0.549401\pi\)
−0.154575 + 0.987981i \(0.549401\pi\)
\(294\) 0 0
\(295\) 12.3607 0.719667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.34752 −0.0779293
\(300\) 0 0
\(301\) −33.8885 −1.95330
\(302\) 0 0
\(303\) −6.47214 −0.371814
\(304\) 0 0
\(305\) −33.4164 −1.91342
\(306\) 0 0
\(307\) −24.1803 −1.38004 −0.690022 0.723788i \(-0.742399\pi\)
−0.690022 + 0.723788i \(0.742399\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.5279 0.767095 0.383547 0.923521i \(-0.374702\pi\)
0.383547 + 0.923521i \(0.374702\pi\)
\(312\) 0 0
\(313\) 7.94427 0.449037 0.224518 0.974470i \(-0.427919\pi\)
0.224518 + 0.974470i \(0.427919\pi\)
\(314\) 0 0
\(315\) −54.0689 −3.04644
\(316\) 0 0
\(317\) −15.8885 −0.892390 −0.446195 0.894936i \(-0.647221\pi\)
−0.446195 + 0.894936i \(0.647221\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 5.52786 0.308535
\(322\) 0 0
\(323\) −5.70820 −0.317613
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 20.1803 1.11598
\(328\) 0 0
\(329\) −18.4721 −1.01840
\(330\) 0 0
\(331\) −6.47214 −0.355741 −0.177870 0.984054i \(-0.556921\pi\)
−0.177870 + 0.984054i \(0.556921\pi\)
\(332\) 0 0
\(333\) 1.76393 0.0966629
\(334\) 0 0
\(335\) 1.70820 0.0933292
\(336\) 0 0
\(337\) 6.41641 0.349524 0.174762 0.984611i \(-0.444084\pi\)
0.174762 + 0.984611i \(0.444084\pi\)
\(338\) 0 0
\(339\) −64.5410 −3.50539
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −11.4164 −0.616428
\(344\) 0 0
\(345\) −5.52786 −0.297610
\(346\) 0 0
\(347\) 11.4164 0.612865 0.306432 0.951892i \(-0.400865\pi\)
0.306432 + 0.951892i \(0.400865\pi\)
\(348\) 0 0
\(349\) 27.6525 1.48020 0.740102 0.672495i \(-0.234777\pi\)
0.740102 + 0.672495i \(0.234777\pi\)
\(350\) 0 0
\(351\) −25.5279 −1.36258
\(352\) 0 0
\(353\) 23.0000 1.22417 0.612083 0.790793i \(-0.290332\pi\)
0.612083 + 0.790793i \(0.290332\pi\)
\(354\) 0 0
\(355\) −8.94427 −0.474713
\(356\) 0 0
\(357\) 10.4721 0.554244
\(358\) 0 0
\(359\) −12.7639 −0.673655 −0.336827 0.941566i \(-0.609354\pi\)
−0.336827 + 0.941566i \(0.609354\pi\)
\(360\) 0 0
\(361\) 13.5836 0.714926
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.88854 0.412905
\(366\) 0 0
\(367\) 4.18034 0.218212 0.109106 0.994030i \(-0.465201\pi\)
0.109106 + 0.994030i \(0.465201\pi\)
\(368\) 0 0
\(369\) −55.8328 −2.90654
\(370\) 0 0
\(371\) 42.6525 2.21441
\(372\) 0 0
\(373\) 0.111456 0.00577098 0.00288549 0.999996i \(-0.499082\pi\)
0.00288549 + 0.999996i \(0.499082\pi\)
\(374\) 0 0
\(375\) −36.1803 −1.86834
\(376\) 0 0
\(377\) 3.11146 0.160248
\(378\) 0 0
\(379\) −3.05573 −0.156962 −0.0784811 0.996916i \(-0.525007\pi\)
−0.0784811 + 0.996916i \(0.525007\pi\)
\(380\) 0 0
\(381\) −59.7771 −3.06247
\(382\) 0 0
\(383\) −19.4164 −0.992132 −0.496066 0.868285i \(-0.665223\pi\)
−0.496066 + 0.868285i \(0.665223\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −78.2492 −3.97763
\(388\) 0 0
\(389\) 21.7639 1.10348 0.551738 0.834018i \(-0.313965\pi\)
0.551738 + 0.834018i \(0.313965\pi\)
\(390\) 0 0
\(391\) 0.763932 0.0386337
\(392\) 0 0
\(393\) 25.8885 1.30590
\(394\) 0 0
\(395\) 16.1803 0.814121
\(396\) 0 0
\(397\) 20.2361 1.01562 0.507810 0.861469i \(-0.330455\pi\)
0.507810 + 0.861469i \(0.330455\pi\)
\(398\) 0 0
\(399\) −59.7771 −2.99260
\(400\) 0 0
\(401\) −14.5279 −0.725487 −0.362743 0.931889i \(-0.618160\pi\)
−0.362743 + 0.931889i \(0.618160\pi\)
\(402\) 0 0
\(403\) −8.40325 −0.418596
\(404\) 0 0
\(405\) −54.5967 −2.71293
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 28.3050 1.39959 0.699795 0.714344i \(-0.253275\pi\)
0.699795 + 0.714344i \(0.253275\pi\)
\(410\) 0 0
\(411\) −24.3607 −1.20162
\(412\) 0 0
\(413\) −17.8885 −0.880238
\(414\) 0 0
\(415\) 27.2361 1.33697
\(416\) 0 0
\(417\) 49.3050 2.41447
\(418\) 0 0
\(419\) −24.1803 −1.18129 −0.590643 0.806933i \(-0.701126\pi\)
−0.590643 + 0.806933i \(0.701126\pi\)
\(420\) 0 0
\(421\) 8.81966 0.429844 0.214922 0.976631i \(-0.431050\pi\)
0.214922 + 0.976631i \(0.431050\pi\)
\(422\) 0 0
\(423\) −42.6525 −2.07383
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 48.3607 2.34034
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.3050 −1.02622 −0.513112 0.858322i \(-0.671507\pi\)
−0.513112 + 0.858322i \(0.671507\pi\)
\(432\) 0 0
\(433\) −9.00000 −0.432512 −0.216256 0.976337i \(-0.569385\pi\)
−0.216256 + 0.976337i \(0.569385\pi\)
\(434\) 0 0
\(435\) 12.7639 0.611984
\(436\) 0 0
\(437\) −4.36068 −0.208600
\(438\) 0 0
\(439\) −12.7639 −0.609189 −0.304595 0.952482i \(-0.598521\pi\)
−0.304595 + 0.952482i \(0.598521\pi\)
\(440\) 0 0
\(441\) 25.9443 1.23544
\(442\) 0 0
\(443\) −27.4164 −1.30259 −0.651296 0.758823i \(-0.725775\pi\)
−0.651296 + 0.758823i \(0.725775\pi\)
\(444\) 0 0
\(445\) 27.7639 1.31614
\(446\) 0 0
\(447\) 33.1246 1.56674
\(448\) 0 0
\(449\) −26.8885 −1.26895 −0.634474 0.772944i \(-0.718783\pi\)
−0.634474 + 0.772944i \(0.718783\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 24.0000 1.12762
\(454\) 0 0
\(455\) −12.7639 −0.598382
\(456\) 0 0
\(457\) −25.9443 −1.21362 −0.606811 0.794846i \(-0.707551\pi\)
−0.606811 + 0.794846i \(0.707551\pi\)
\(458\) 0 0
\(459\) 14.4721 0.675501
\(460\) 0 0
\(461\) −35.1803 −1.63851 −0.819256 0.573428i \(-0.805613\pi\)
−0.819256 + 0.573428i \(0.805613\pi\)
\(462\) 0 0
\(463\) −34.8328 −1.61882 −0.809409 0.587245i \(-0.800212\pi\)
−0.809409 + 0.587245i \(0.800212\pi\)
\(464\) 0 0
\(465\) −34.4721 −1.59861
\(466\) 0 0
\(467\) −22.4721 −1.03989 −0.519943 0.854201i \(-0.674047\pi\)
−0.519943 + 0.854201i \(0.674047\pi\)
\(468\) 0 0
\(469\) −2.47214 −0.114153
\(470\) 0 0
\(471\) −40.3607 −1.85972
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 98.4853 4.50933
\(478\) 0 0
\(479\) −22.8328 −1.04326 −0.521629 0.853172i \(-0.674675\pi\)
−0.521629 + 0.853172i \(0.674675\pi\)
\(480\) 0 0
\(481\) 0.416408 0.0189866
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) −26.7082 −1.21276
\(486\) 0 0
\(487\) 19.5967 0.888013 0.444007 0.896023i \(-0.353557\pi\)
0.444007 + 0.896023i \(0.353557\pi\)
\(488\) 0 0
\(489\) −18.4721 −0.835339
\(490\) 0 0
\(491\) 24.1803 1.09124 0.545622 0.838032i \(-0.316294\pi\)
0.545622 + 0.838032i \(0.316294\pi\)
\(492\) 0 0
\(493\) −1.76393 −0.0794435
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.9443 0.580630
\(498\) 0 0
\(499\) 41.3050 1.84906 0.924532 0.381105i \(-0.124456\pi\)
0.924532 + 0.381105i \(0.124456\pi\)
\(500\) 0 0
\(501\) −36.9443 −1.65055
\(502\) 0 0
\(503\) −31.5967 −1.40883 −0.704415 0.709789i \(-0.748790\pi\)
−0.704415 + 0.709789i \(0.748790\pi\)
\(504\) 0 0
\(505\) −4.47214 −0.199007
\(506\) 0 0
\(507\) 32.0000 1.42117
\(508\) 0 0
\(509\) −1.05573 −0.0467943 −0.0233972 0.999726i \(-0.507448\pi\)
−0.0233972 + 0.999726i \(0.507448\pi\)
\(510\) 0 0
\(511\) −11.4164 −0.505032
\(512\) 0 0
\(513\) −82.6099 −3.64732
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 61.3050 2.69099
\(520\) 0 0
\(521\) −13.4164 −0.587784 −0.293892 0.955839i \(-0.594951\pi\)
−0.293892 + 0.955839i \(0.594951\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.76393 0.207520
\(528\) 0 0
\(529\) −22.4164 −0.974626
\(530\) 0 0
\(531\) −41.3050 −1.79248
\(532\) 0 0
\(533\) −13.1803 −0.570904
\(534\) 0 0
\(535\) 3.81966 0.165138
\(536\) 0 0
\(537\) 8.00000 0.345225
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.52786 −0.151675 −0.0758374 0.997120i \(-0.524163\pi\)
−0.0758374 + 0.997120i \(0.524163\pi\)
\(542\) 0 0
\(543\) 41.1246 1.76483
\(544\) 0 0
\(545\) 13.9443 0.597307
\(546\) 0 0
\(547\) 18.4721 0.789812 0.394906 0.918722i \(-0.370777\pi\)
0.394906 + 0.918722i \(0.370777\pi\)
\(548\) 0 0
\(549\) 111.666 4.76577
\(550\) 0 0
\(551\) 10.0689 0.428949
\(552\) 0 0
\(553\) −23.4164 −0.995767
\(554\) 0 0
\(555\) 1.70820 0.0725092
\(556\) 0 0
\(557\) 35.8885 1.52065 0.760323 0.649545i \(-0.225041\pi\)
0.760323 + 0.649545i \(0.225041\pi\)
\(558\) 0 0
\(559\) −18.4721 −0.781288
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19.8197 −0.835299 −0.417650 0.908608i \(-0.637146\pi\)
−0.417650 + 0.908608i \(0.637146\pi\)
\(564\) 0 0
\(565\) −44.5967 −1.87620
\(566\) 0 0
\(567\) 79.0132 3.31824
\(568\) 0 0
\(569\) −26.3607 −1.10510 −0.552549 0.833481i \(-0.686345\pi\)
−0.552549 + 0.833481i \(0.686345\pi\)
\(570\) 0 0
\(571\) 12.7639 0.534154 0.267077 0.963675i \(-0.413942\pi\)
0.267077 + 0.963675i \(0.413942\pi\)
\(572\) 0 0
\(573\) 17.8885 0.747305
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −34.3050 −1.42813 −0.714067 0.700077i \(-0.753149\pi\)
−0.714067 + 0.700077i \(0.753149\pi\)
\(578\) 0 0
\(579\) −12.7639 −0.530451
\(580\) 0 0
\(581\) −39.4164 −1.63527
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −29.4721 −1.21852
\(586\) 0 0
\(587\) −1.34752 −0.0556183 −0.0278091 0.999613i \(-0.508853\pi\)
−0.0278091 + 0.999613i \(0.508853\pi\)
\(588\) 0 0
\(589\) −27.1935 −1.12049
\(590\) 0 0
\(591\) 57.1246 2.34979
\(592\) 0 0
\(593\) 22.4164 0.920532 0.460266 0.887781i \(-0.347754\pi\)
0.460266 + 0.887781i \(0.347754\pi\)
\(594\) 0 0
\(595\) 7.23607 0.296650
\(596\) 0 0
\(597\) −59.7771 −2.44651
\(598\) 0 0
\(599\) −5.70820 −0.233231 −0.116615 0.993177i \(-0.537205\pi\)
−0.116615 + 0.993177i \(0.537205\pi\)
\(600\) 0 0
\(601\) −32.7771 −1.33701 −0.668503 0.743710i \(-0.733064\pi\)
−0.668503 + 0.743710i \(0.733064\pi\)
\(602\) 0 0
\(603\) −5.70820 −0.232456
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −22.6525 −0.919436 −0.459718 0.888065i \(-0.652049\pi\)
−0.459718 + 0.888065i \(0.652049\pi\)
\(608\) 0 0
\(609\) −18.4721 −0.748529
\(610\) 0 0
\(611\) −10.0689 −0.407343
\(612\) 0 0
\(613\) −46.5967 −1.88202 −0.941012 0.338372i \(-0.890124\pi\)
−0.941012 + 0.338372i \(0.890124\pi\)
\(614\) 0 0
\(615\) −54.0689 −2.18027
\(616\) 0 0
\(617\) 15.3607 0.618398 0.309199 0.950997i \(-0.399939\pi\)
0.309199 + 0.950997i \(0.399939\pi\)
\(618\) 0 0
\(619\) 38.0689 1.53012 0.765059 0.643960i \(-0.222710\pi\)
0.765059 + 0.643960i \(0.222710\pi\)
\(620\) 0 0
\(621\) 11.0557 0.443651
\(622\) 0 0
\(623\) −40.1803 −1.60979
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.236068 −0.00941265
\(630\) 0 0
\(631\) −29.7082 −1.18266 −0.591332 0.806428i \(-0.701398\pi\)
−0.591332 + 0.806428i \(0.701398\pi\)
\(632\) 0 0
\(633\) −22.8328 −0.907523
\(634\) 0 0
\(635\) −41.3050 −1.63914
\(636\) 0 0
\(637\) 6.12461 0.242666
\(638\) 0 0
\(639\) 29.8885 1.18237
\(640\) 0 0
\(641\) 1.47214 0.0581459 0.0290729 0.999577i \(-0.490744\pi\)
0.0290729 + 0.999577i \(0.490744\pi\)
\(642\) 0 0
\(643\) −20.1803 −0.795835 −0.397917 0.917421i \(-0.630267\pi\)
−0.397917 + 0.917421i \(0.630267\pi\)
\(644\) 0 0
\(645\) −75.7771 −2.98372
\(646\) 0 0
\(647\) 37.8885 1.48955 0.744776 0.667314i \(-0.232556\pi\)
0.744776 + 0.667314i \(0.232556\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 49.8885 1.95529
\(652\) 0 0
\(653\) −39.3050 −1.53812 −0.769061 0.639176i \(-0.779276\pi\)
−0.769061 + 0.639176i \(0.779276\pi\)
\(654\) 0 0
\(655\) 17.8885 0.698963
\(656\) 0 0
\(657\) −26.3607 −1.02843
\(658\) 0 0
\(659\) 32.1803 1.25357 0.626784 0.779193i \(-0.284371\pi\)
0.626784 + 0.779193i \(0.284371\pi\)
\(660\) 0 0
\(661\) −23.1803 −0.901611 −0.450805 0.892622i \(-0.648863\pi\)
−0.450805 + 0.892622i \(0.648863\pi\)
\(662\) 0 0
\(663\) 5.70820 0.221688
\(664\) 0 0
\(665\) −41.3050 −1.60174
\(666\) 0 0
\(667\) −1.34752 −0.0521763
\(668\) 0 0
\(669\) 28.9443 1.11905
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 20.4721 0.789143 0.394571 0.918865i \(-0.370893\pi\)
0.394571 + 0.918865i \(0.370893\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28.7082 −1.10335 −0.551673 0.834061i \(-0.686010\pi\)
−0.551673 + 0.834061i \(0.686010\pi\)
\(678\) 0 0
\(679\) 38.6525 1.48335
\(680\) 0 0
\(681\) −8.00000 −0.306561
\(682\) 0 0
\(683\) −6.87539 −0.263079 −0.131540 0.991311i \(-0.541992\pi\)
−0.131540 + 0.991311i \(0.541992\pi\)
\(684\) 0 0
\(685\) −16.8328 −0.643149
\(686\) 0 0
\(687\) −8.76393 −0.334365
\(688\) 0 0
\(689\) 23.2492 0.885725
\(690\) 0 0
\(691\) 19.4164 0.738635 0.369317 0.929303i \(-0.379591\pi\)
0.369317 + 0.929303i \(0.379591\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 34.0689 1.29231
\(696\) 0 0
\(697\) 7.47214 0.283027
\(698\) 0 0
\(699\) −35.5967 −1.34639
\(700\) 0 0
\(701\) 35.6525 1.34658 0.673288 0.739381i \(-0.264882\pi\)
0.673288 + 0.739381i \(0.264882\pi\)
\(702\) 0 0
\(703\) 1.34752 0.0508228
\(704\) 0 0
\(705\) −41.3050 −1.55563
\(706\) 0 0
\(707\) 6.47214 0.243410
\(708\) 0 0
\(709\) 3.88854 0.146037 0.0730187 0.997331i \(-0.476737\pi\)
0.0730187 + 0.997331i \(0.476737\pi\)
\(710\) 0 0
\(711\) −54.0689 −2.02774
\(712\) 0 0
\(713\) 3.63932 0.136294
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 65.3050 2.43886
\(718\) 0 0
\(719\) −48.5410 −1.81027 −0.905137 0.425119i \(-0.860232\pi\)
−0.905137 + 0.425119i \(0.860232\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 11.4164 0.424581
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.29180 0.233350 0.116675 0.993170i \(-0.462776\pi\)
0.116675 + 0.993170i \(0.462776\pi\)
\(728\) 0 0
\(729\) 41.9443 1.55349
\(730\) 0 0
\(731\) 10.4721 0.387326
\(732\) 0 0
\(733\) 20.2361 0.747436 0.373718 0.927542i \(-0.378083\pi\)
0.373718 + 0.927542i \(0.378083\pi\)
\(734\) 0 0
\(735\) 25.1246 0.926735
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 14.2918 0.525732 0.262866 0.964832i \(-0.415332\pi\)
0.262866 + 0.964832i \(0.415332\pi\)
\(740\) 0 0
\(741\) −32.5836 −1.19699
\(742\) 0 0
\(743\) −28.5410 −1.04707 −0.523534 0.852005i \(-0.675387\pi\)
−0.523534 + 0.852005i \(0.675387\pi\)
\(744\) 0 0
\(745\) 22.8885 0.838571
\(746\) 0 0
\(747\) −91.0132 −3.33000
\(748\) 0 0
\(749\) −5.52786 −0.201984
\(750\) 0 0
\(751\) 45.8885 1.67450 0.837248 0.546823i \(-0.184163\pi\)
0.837248 + 0.546823i \(0.184163\pi\)
\(752\) 0 0
\(753\) 67.1935 2.44867
\(754\) 0 0
\(755\) 16.5836 0.603539
\(756\) 0 0
\(757\) 15.6525 0.568899 0.284449 0.958691i \(-0.408189\pi\)
0.284449 + 0.958691i \(0.408189\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.4721 1.06836 0.534182 0.845369i \(-0.320620\pi\)
0.534182 + 0.845369i \(0.320620\pi\)
\(762\) 0 0
\(763\) −20.1803 −0.730577
\(764\) 0 0
\(765\) 16.7082 0.604086
\(766\) 0 0
\(767\) −9.75078 −0.352080
\(768\) 0 0
\(769\) −18.8885 −0.681138 −0.340569 0.940219i \(-0.610620\pi\)
−0.340569 + 0.940219i \(0.610620\pi\)
\(770\) 0 0
\(771\) 47.0132 1.69314
\(772\) 0 0
\(773\) −22.0000 −0.791285 −0.395643 0.918405i \(-0.629478\pi\)
−0.395643 + 0.918405i \(0.629478\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2.47214 −0.0886874
\(778\) 0 0
\(779\) −42.6525 −1.52818
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −25.5279 −0.912291
\(784\) 0 0
\(785\) −27.8885 −0.995385
\(786\) 0 0
\(787\) 15.7771 0.562392 0.281196 0.959650i \(-0.409269\pi\)
0.281196 + 0.959650i \(0.409269\pi\)
\(788\) 0 0
\(789\) −21.5279 −0.766412
\(790\) 0 0
\(791\) 64.5410 2.29481
\(792\) 0 0
\(793\) 26.3607 0.936095
\(794\) 0 0
\(795\) 95.3738 3.38256
\(796\) 0 0
\(797\) −25.0557 −0.887519 −0.443760 0.896146i \(-0.646356\pi\)
−0.443760 + 0.896146i \(0.646356\pi\)
\(798\) 0 0
\(799\) 5.70820 0.201942
\(800\) 0 0
\(801\) −92.7771 −3.27812
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 5.52786 0.194832
\(806\) 0 0
\(807\) 54.0689 1.90331
\(808\) 0 0
\(809\) −26.3607 −0.926792 −0.463396 0.886151i \(-0.653369\pi\)
−0.463396 + 0.886151i \(0.653369\pi\)
\(810\) 0 0
\(811\) −22.4721 −0.789103 −0.394552 0.918874i \(-0.629100\pi\)
−0.394552 + 0.918874i \(0.629100\pi\)
\(812\) 0 0
\(813\) −96.7214 −3.39217
\(814\) 0 0
\(815\) −12.7639 −0.447101
\(816\) 0 0
\(817\) −59.7771 −2.09134
\(818\) 0 0
\(819\) 42.6525 1.49040
\(820\) 0 0
\(821\) 30.9443 1.07996 0.539981 0.841677i \(-0.318431\pi\)
0.539981 + 0.841677i \(0.318431\pi\)
\(822\) 0 0
\(823\) 10.4721 0.365036 0.182518 0.983203i \(-0.441575\pi\)
0.182518 + 0.983203i \(0.441575\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.70820 0.198494 0.0992468 0.995063i \(-0.468357\pi\)
0.0992468 + 0.995063i \(0.468357\pi\)
\(828\) 0 0
\(829\) 11.6525 0.404707 0.202354 0.979313i \(-0.435141\pi\)
0.202354 + 0.979313i \(0.435141\pi\)
\(830\) 0 0
\(831\) −84.5410 −2.93270
\(832\) 0 0
\(833\) −3.47214 −0.120302
\(834\) 0 0
\(835\) −25.5279 −0.883428
\(836\) 0 0
\(837\) 68.9443 2.38306
\(838\) 0 0
\(839\) 40.1803 1.38718 0.693590 0.720370i \(-0.256028\pi\)
0.693590 + 0.720370i \(0.256028\pi\)
\(840\) 0 0
\(841\) −25.8885 −0.892708
\(842\) 0 0
\(843\) −50.2492 −1.73068
\(844\) 0 0
\(845\) 22.1115 0.760657
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 36.9443 1.26792
\(850\) 0 0
\(851\) −0.180340 −0.00618197
\(852\) 0 0
\(853\) 12.5967 0.431304 0.215652 0.976470i \(-0.430812\pi\)
0.215652 + 0.976470i \(0.430812\pi\)
\(854\) 0 0
\(855\) −95.3738 −3.26172
\(856\) 0 0
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) −0.583592 −0.0199119 −0.00995595 0.999950i \(-0.503169\pi\)
−0.00995595 + 0.999950i \(0.503169\pi\)
\(860\) 0 0
\(861\) 78.2492 2.66673
\(862\) 0 0
\(863\) 35.5967 1.21173 0.605864 0.795568i \(-0.292828\pi\)
0.605864 + 0.795568i \(0.292828\pi\)
\(864\) 0 0
\(865\) 42.3607 1.44031
\(866\) 0 0
\(867\) 51.7771 1.75844
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1.34752 −0.0456591
\(872\) 0 0
\(873\) 89.2492 3.02063
\(874\) 0 0
\(875\) 36.1803 1.22312
\(876\) 0 0
\(877\) −16.7082 −0.564196 −0.282098 0.959386i \(-0.591030\pi\)
−0.282098 + 0.959386i \(0.591030\pi\)
\(878\) 0 0
\(879\) 17.1246 0.577599
\(880\) 0 0
\(881\) 4.52786 0.152548 0.0762738 0.997087i \(-0.475698\pi\)
0.0762738 + 0.997087i \(0.475698\pi\)
\(882\) 0 0
\(883\) 7.05573 0.237444 0.118722 0.992928i \(-0.462120\pi\)
0.118722 + 0.992928i \(0.462120\pi\)
\(884\) 0 0
\(885\) −40.0000 −1.34459
\(886\) 0 0
\(887\) 19.5967 0.657994 0.328997 0.944331i \(-0.393289\pi\)
0.328997 + 0.944331i \(0.393289\pi\)
\(888\) 0 0
\(889\) 59.7771 2.00486
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.5836 −1.09037
\(894\) 0 0
\(895\) 5.52786 0.184776
\(896\) 0 0
\(897\) 4.36068 0.145599
\(898\) 0 0
\(899\) −8.40325 −0.280264
\(900\) 0 0
\(901\) −13.1803 −0.439101
\(902\) 0 0
\(903\) 109.666 3.64944
\(904\) 0 0
\(905\) 28.4164 0.944593
\(906\) 0 0
\(907\) 29.8885 0.992433 0.496216 0.868199i \(-0.334722\pi\)
0.496216 + 0.868199i \(0.334722\pi\)
\(908\) 0 0
\(909\) 14.9443 0.495670
\(910\) 0 0
\(911\) −16.0000 −0.530104 −0.265052 0.964234i \(-0.585389\pi\)
−0.265052 + 0.964234i \(0.585389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 108.138 3.57492
\(916\) 0 0
\(917\) −25.8885 −0.854915
\(918\) 0 0
\(919\) −20.5836 −0.678990 −0.339495 0.940608i \(-0.610256\pi\)
−0.339495 + 0.940608i \(0.610256\pi\)
\(920\) 0 0
\(921\) 78.2492 2.57840
\(922\) 0 0
\(923\) 7.05573 0.232242
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18.0557 0.592389 0.296195 0.955128i \(-0.404282\pi\)
0.296195 + 0.955128i \(0.404282\pi\)
\(930\) 0 0
\(931\) 19.8197 0.649563
\(932\) 0 0
\(933\) −43.7771 −1.43320
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −21.5836 −0.705105 −0.352553 0.935792i \(-0.614686\pi\)
−0.352553 + 0.935792i \(0.614686\pi\)
\(938\) 0 0
\(939\) −25.7082 −0.838956
\(940\) 0 0
\(941\) 11.0689 0.360835 0.180418 0.983590i \(-0.442255\pi\)
0.180418 + 0.983590i \(0.442255\pi\)
\(942\) 0 0
\(943\) 5.70820 0.185885
\(944\) 0 0
\(945\) 104.721 3.40659
\(946\) 0 0
\(947\) −49.1246 −1.59634 −0.798168 0.602435i \(-0.794197\pi\)
−0.798168 + 0.602435i \(0.794197\pi\)
\(948\) 0 0
\(949\) −6.22291 −0.202004
\(950\) 0 0
\(951\) 51.4164 1.66729
\(952\) 0 0
\(953\) 54.7771 1.77440 0.887202 0.461381i \(-0.152646\pi\)
0.887202 + 0.461381i \(0.152646\pi\)
\(954\) 0 0
\(955\) 12.3607 0.399982
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.3607 0.786647
\(960\) 0 0
\(961\) −8.30495 −0.267902
\(962\) 0 0
\(963\) −12.7639 −0.411312
\(964\) 0 0
\(965\) −8.81966 −0.283915
\(966\) 0 0
\(967\) −39.9574 −1.28494 −0.642472 0.766309i \(-0.722091\pi\)
−0.642472 + 0.766309i \(0.722091\pi\)
\(968\) 0 0
\(969\) 18.4721 0.593411
\(970\) 0 0
\(971\) −40.7639 −1.30818 −0.654088 0.756418i \(-0.726948\pi\)
−0.654088 + 0.756418i \(0.726948\pi\)
\(972\) 0 0
\(973\) −49.3050 −1.58064
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.3050 0.521642 0.260821 0.965387i \(-0.416007\pi\)
0.260821 + 0.965387i \(0.416007\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −46.5967 −1.48772
\(982\) 0 0
\(983\) 53.8885 1.71878 0.859389 0.511323i \(-0.170844\pi\)
0.859389 + 0.511323i \(0.170844\pi\)
\(984\) 0 0
\(985\) 39.4721 1.25769
\(986\) 0 0
\(987\) 59.7771 1.90273
\(988\) 0 0
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) 29.8885 0.949441 0.474720 0.880137i \(-0.342549\pi\)
0.474720 + 0.880137i \(0.342549\pi\)
\(992\) 0 0
\(993\) 20.9443 0.664646
\(994\) 0 0
\(995\) −41.3050 −1.30945
\(996\) 0 0
\(997\) −2.81966 −0.0892995 −0.0446498 0.999003i \(-0.514217\pi\)
−0.0446498 + 0.999003i \(0.514217\pi\)
\(998\) 0 0
\(999\) −3.41641 −0.108090
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.bs.1.1 2
4.3 odd 2 7744.2.a.ct.1.2 2
8.3 odd 2 968.2.a.f.1.1 2
8.5 even 2 1936.2.a.x.1.2 2
11.10 odd 2 7744.2.a.br.1.1 2
24.11 even 2 8712.2.a.bj.1.1 2
44.43 even 2 7744.2.a.cu.1.2 2
88.3 odd 10 968.2.i.m.9.1 4
88.19 even 10 968.2.i.l.9.1 4
88.21 odd 2 1936.2.a.w.1.2 2
88.27 odd 10 968.2.i.a.729.1 4
88.35 even 10 968.2.i.b.81.1 4
88.43 even 2 968.2.a.g.1.1 yes 2
88.51 even 10 968.2.i.l.753.1 4
88.59 odd 10 968.2.i.m.753.1 4
88.75 odd 10 968.2.i.a.81.1 4
88.83 even 10 968.2.i.b.729.1 4
264.131 odd 2 8712.2.a.bk.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
968.2.a.f.1.1 2 8.3 odd 2
968.2.a.g.1.1 yes 2 88.43 even 2
968.2.i.a.81.1 4 88.75 odd 10
968.2.i.a.729.1 4 88.27 odd 10
968.2.i.b.81.1 4 88.35 even 10
968.2.i.b.729.1 4 88.83 even 10
968.2.i.l.9.1 4 88.19 even 10
968.2.i.l.753.1 4 88.51 even 10
968.2.i.m.9.1 4 88.3 odd 10
968.2.i.m.753.1 4 88.59 odd 10
1936.2.a.w.1.2 2 88.21 odd 2
1936.2.a.x.1.2 2 8.5 even 2
7744.2.a.br.1.1 2 11.10 odd 2
7744.2.a.bs.1.1 2 1.1 even 1 trivial
7744.2.a.ct.1.2 2 4.3 odd 2
7744.2.a.cu.1.2 2 44.43 even 2
8712.2.a.bj.1.1 2 24.11 even 2
8712.2.a.bk.1.1 2 264.131 odd 2