Properties

Label 968.2.i.b.729.1
Level $968$
Weight $2$
Character 968.729
Analytic conductor $7.730$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(9,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 729.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 968.729
Dual form 968.2.i.b.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 3.07768i) q^{3} +(-1.80902 - 1.31433i) q^{5} +(1.00000 - 3.07768i) q^{7} +(-6.04508 + 4.39201i) q^{9} +(-1.42705 + 1.03681i) q^{13} +(-2.23607 + 6.88191i) q^{15} +(-0.809017 - 0.587785i) q^{17} +(-1.76393 - 5.42882i) q^{19} -10.4721 q^{21} +0.763932 q^{23} +(11.7082 + 8.50651i) q^{27} +(0.545085 - 1.67760i) q^{29} +(-3.85410 + 2.80017i) q^{31} +(-5.85410 + 4.25325i) q^{35} +(-0.0729490 + 0.224514i) q^{37} +(4.61803 + 3.35520i) q^{39} +(2.30902 + 7.10642i) q^{41} +10.4721 q^{43} +16.7082 q^{45} +(1.76393 + 5.42882i) q^{47} +(-2.80902 - 2.04087i) q^{49} +(-1.00000 + 3.07768i) q^{51} +(10.6631 - 7.74721i) q^{53} +(-14.9443 + 10.8576i) q^{57} +(-1.70820 + 5.25731i) q^{59} +(-12.0902 - 8.78402i) q^{61} +(7.47214 + 22.9969i) q^{63} +3.94427 q^{65} -0.763932 q^{67} +(-0.763932 - 2.35114i) q^{69} +(3.23607 + 2.35114i) q^{71} +(1.09017 - 3.35520i) q^{73} +(5.85410 - 4.25325i) q^{79} +(7.54508 - 23.2214i) q^{81} +(-9.85410 - 7.15942i) q^{83} +(0.690983 + 2.12663i) q^{85} -5.70820 q^{87} -12.4164 q^{89} +(1.76393 + 5.42882i) q^{91} +(12.4721 + 9.06154i) q^{93} +(-3.94427 + 12.1392i) q^{95} +(-9.66312 + 7.02067i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 5 q^{5} + 4 q^{7} - 13 q^{9} + q^{13} - q^{17} - 16 q^{19} - 24 q^{21} + 12 q^{23} + 20 q^{27} - 9 q^{29} - 2 q^{31} - 10 q^{35} - 7 q^{37} + 14 q^{39} + 7 q^{41} + 24 q^{43} + 40 q^{45}+ \cdots - 23 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 3.07768i −0.577350 1.77690i −0.628033 0.778187i \(-0.716140\pi\)
0.0506828 0.998715i \(-0.483860\pi\)
\(4\) 0 0
\(5\) −1.80902 1.31433i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(6\) 0 0
\(7\) 1.00000 3.07768i 0.377964 1.16326i −0.563492 0.826121i \(-0.690543\pi\)
0.941457 0.337134i \(-0.109457\pi\)
\(8\) 0 0
\(9\) −6.04508 + 4.39201i −2.01503 + 1.46400i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −1.42705 + 1.03681i −0.395793 + 0.287560i −0.767825 0.640660i \(-0.778661\pi\)
0.372032 + 0.928220i \(0.378661\pi\)
\(14\) 0 0
\(15\) −2.23607 + 6.88191i −0.577350 + 1.77690i
\(16\) 0 0
\(17\) −0.809017 0.587785i −0.196215 0.142559i 0.485340 0.874326i \(-0.338696\pi\)
−0.681555 + 0.731767i \(0.738696\pi\)
\(18\) 0 0
\(19\) −1.76393 5.42882i −0.404674 1.24546i −0.921167 0.389167i \(-0.872763\pi\)
0.516494 0.856291i \(-0.327237\pi\)
\(20\) 0 0
\(21\) −10.4721 −2.28521
\(22\) 0 0
\(23\) 0.763932 0.159291 0.0796454 0.996823i \(-0.474621\pi\)
0.0796454 + 0.996823i \(0.474621\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 11.7082 + 8.50651i 2.25324 + 1.63708i
\(28\) 0 0
\(29\) 0.545085 1.67760i 0.101220 0.311522i −0.887605 0.460606i \(-0.847632\pi\)
0.988825 + 0.149083i \(0.0476323\pi\)
\(30\) 0 0
\(31\) −3.85410 + 2.80017i −0.692217 + 0.502925i −0.877388 0.479781i \(-0.840716\pi\)
0.185171 + 0.982706i \(0.440716\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.85410 + 4.25325i −0.989524 + 0.718931i
\(36\) 0 0
\(37\) −0.0729490 + 0.224514i −0.0119927 + 0.0369099i −0.956874 0.290504i \(-0.906177\pi\)
0.944881 + 0.327414i \(0.106177\pi\)
\(38\) 0 0
\(39\) 4.61803 + 3.35520i 0.739477 + 0.537262i
\(40\) 0 0
\(41\) 2.30902 + 7.10642i 0.360608 + 1.10984i 0.952686 + 0.303956i \(0.0983077\pi\)
−0.592078 + 0.805881i \(0.701692\pi\)
\(42\) 0 0
\(43\) 10.4721 1.59699 0.798493 0.602004i \(-0.205631\pi\)
0.798493 + 0.602004i \(0.205631\pi\)
\(44\) 0 0
\(45\) 16.7082 2.49071
\(46\) 0 0
\(47\) 1.76393 + 5.42882i 0.257296 + 0.791875i 0.993369 + 0.114973i \(0.0366781\pi\)
−0.736073 + 0.676902i \(0.763322\pi\)
\(48\) 0 0
\(49\) −2.80902 2.04087i −0.401288 0.291553i
\(50\) 0 0
\(51\) −1.00000 + 3.07768i −0.140028 + 0.430962i
\(52\) 0 0
\(53\) 10.6631 7.74721i 1.46469 1.06416i 0.482582 0.875851i \(-0.339699\pi\)
0.982110 0.188311i \(-0.0603011\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −14.9443 + 10.8576i −1.97942 + 1.43813i
\(58\) 0 0
\(59\) −1.70820 + 5.25731i −0.222389 + 0.684444i 0.776157 + 0.630540i \(0.217166\pi\)
−0.998546 + 0.0539038i \(0.982834\pi\)
\(60\) 0 0
\(61\) −12.0902 8.78402i −1.54799 1.12468i −0.945067 0.326878i \(-0.894003\pi\)
−0.602921 0.797801i \(-0.705997\pi\)
\(62\) 0 0
\(63\) 7.47214 + 22.9969i 0.941401 + 2.89733i
\(64\) 0 0
\(65\) 3.94427 0.489227
\(66\) 0 0
\(67\) −0.763932 −0.0933292 −0.0466646 0.998911i \(-0.514859\pi\)
−0.0466646 + 0.998911i \(0.514859\pi\)
\(68\) 0 0
\(69\) −0.763932 2.35114i −0.0919666 0.283044i
\(70\) 0 0
\(71\) 3.23607 + 2.35114i 0.384051 + 0.279029i 0.763013 0.646383i \(-0.223719\pi\)
−0.378963 + 0.925412i \(0.623719\pi\)
\(72\) 0 0
\(73\) 1.09017 3.35520i 0.127595 0.392696i −0.866770 0.498708i \(-0.833808\pi\)
0.994365 + 0.106012i \(0.0338081\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.85410 4.25325i 0.658638 0.478528i −0.207565 0.978221i \(-0.566554\pi\)
0.866203 + 0.499693i \(0.166554\pi\)
\(80\) 0 0
\(81\) 7.54508 23.2214i 0.838343 2.58015i
\(82\) 0 0
\(83\) −9.85410 7.15942i −1.08163 0.785849i −0.103662 0.994613i \(-0.533056\pi\)
−0.977966 + 0.208764i \(0.933056\pi\)
\(84\) 0 0
\(85\) 0.690983 + 2.12663i 0.0749476 + 0.230665i
\(86\) 0 0
\(87\) −5.70820 −0.611984
\(88\) 0 0
\(89\) −12.4164 −1.31614 −0.658068 0.752958i \(-0.728626\pi\)
−0.658068 + 0.752958i \(0.728626\pi\)
\(90\) 0 0
\(91\) 1.76393 + 5.42882i 0.184910 + 0.569095i
\(92\) 0 0
\(93\) 12.4721 + 9.06154i 1.29330 + 0.939638i
\(94\) 0 0
\(95\) −3.94427 + 12.1392i −0.404674 + 1.24546i
\(96\) 0 0
\(97\) −9.66312 + 7.02067i −0.981141 + 0.712841i −0.957963 0.286891i \(-0.907378\pi\)
−0.0231777 + 0.999731i \(0.507378\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.61803 + 1.17557i −0.161000 + 0.116974i −0.665368 0.746515i \(-0.731726\pi\)
0.504368 + 0.863489i \(0.331726\pi\)
\(102\) 0 0
\(103\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(104\) 0 0
\(105\) 18.9443 + 13.7638i 1.84877 + 1.34321i
\(106\) 0 0
\(107\) 0.527864 + 1.62460i 0.0510305 + 0.157056i 0.973324 0.229434i \(-0.0736875\pi\)
−0.922294 + 0.386490i \(0.873687\pi\)
\(108\) 0 0
\(109\) −6.23607 −0.597307 −0.298653 0.954362i \(-0.596537\pi\)
−0.298653 + 0.954362i \(0.596537\pi\)
\(110\) 0 0
\(111\) 0.763932 0.0725092
\(112\) 0 0
\(113\) 6.16312 + 18.9681i 0.579777 + 1.78437i 0.619302 + 0.785153i \(0.287416\pi\)
−0.0395244 + 0.999219i \(0.512584\pi\)
\(114\) 0 0
\(115\) −1.38197 1.00406i −0.128869 0.0936288i
\(116\) 0 0
\(117\) 4.07295 12.5352i 0.376544 1.15888i
\(118\) 0 0
\(119\) −2.61803 + 1.90211i −0.239995 + 0.174366i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 19.5623 14.2128i 1.76387 1.28153i
\(124\) 0 0
\(125\) −3.45492 + 10.6331i −0.309017 + 0.951057i
\(126\) 0 0
\(127\) −14.9443 10.8576i −1.32609 0.963461i −0.999835 0.0181787i \(-0.994213\pi\)
−0.326255 0.945282i \(-0.605787\pi\)
\(128\) 0 0
\(129\) −10.4721 32.2299i −0.922020 2.83769i
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −18.4721 −1.60174
\(134\) 0 0
\(135\) −10.0000 30.7768i −0.860663 2.64885i
\(136\) 0 0
\(137\) −6.09017 4.42477i −0.520318 0.378033i 0.296405 0.955062i \(-0.404212\pi\)
−0.816724 + 0.577029i \(0.804212\pi\)
\(138\) 0 0
\(139\) 4.70820 14.4904i 0.399345 1.22906i −0.526181 0.850372i \(-0.676377\pi\)
0.925526 0.378684i \(-0.123623\pi\)
\(140\) 0 0
\(141\) 14.9443 10.8576i 1.25853 0.914379i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3.19098 + 2.31838i −0.264997 + 0.192531i
\(146\) 0 0
\(147\) −3.47214 + 10.6861i −0.286377 + 0.881378i
\(148\) 0 0
\(149\) 8.28115 + 6.01661i 0.678418 + 0.492900i 0.872833 0.488020i \(-0.162281\pi\)
−0.194414 + 0.980920i \(0.562281\pi\)
\(150\) 0 0
\(151\) −2.29180 7.05342i −0.186504 0.573999i 0.813467 0.581611i \(-0.197577\pi\)
−0.999971 + 0.00761121i \(0.997577\pi\)
\(152\) 0 0
\(153\) 7.47214 0.604086
\(154\) 0 0
\(155\) 10.6525 0.855627
\(156\) 0 0
\(157\) −3.85410 11.8617i −0.307591 0.946667i −0.978698 0.205307i \(-0.934181\pi\)
0.671107 0.741361i \(-0.265819\pi\)
\(158\) 0 0
\(159\) −34.5066 25.0705i −2.73655 1.98822i
\(160\) 0 0
\(161\) 0.763932 2.35114i 0.0602063 0.185296i
\(162\) 0 0
\(163\) −4.61803 + 3.35520i −0.361712 + 0.262799i −0.753766 0.657143i \(-0.771765\pi\)
0.392054 + 0.919942i \(0.371765\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.23607 + 6.71040i −0.714708 + 0.519266i −0.884689 0.466181i \(-0.845629\pi\)
0.169981 + 0.985447i \(0.445629\pi\)
\(168\) 0 0
\(169\) −3.05573 + 9.40456i −0.235056 + 0.723428i
\(170\) 0 0
\(171\) 34.5066 + 25.0705i 2.63878 + 1.91719i
\(172\) 0 0
\(173\) −5.85410 18.0171i −0.445079 1.36981i −0.882397 0.470506i \(-0.844072\pi\)
0.437318 0.899307i \(-0.355928\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 17.8885 1.34459
\(178\) 0 0
\(179\) −0.763932 2.35114i −0.0570990 0.175733i 0.918439 0.395562i \(-0.129450\pi\)
−0.975538 + 0.219829i \(0.929450\pi\)
\(180\) 0 0
\(181\) −10.2812 7.46969i −0.764192 0.555218i 0.136001 0.990709i \(-0.456575\pi\)
−0.900193 + 0.435491i \(0.856575\pi\)
\(182\) 0 0
\(183\) −14.9443 + 45.9937i −1.10471 + 3.39996i
\(184\) 0 0
\(185\) 0.427051 0.310271i 0.0313974 0.0228116i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 37.8885 27.5276i 2.75599 2.00234i
\(190\) 0 0
\(191\) 1.70820 5.25731i 0.123601 0.380406i −0.870042 0.492977i \(-0.835909\pi\)
0.993644 + 0.112571i \(0.0359087\pi\)
\(192\) 0 0
\(193\) 3.19098 + 2.31838i 0.229692 + 0.166881i 0.696679 0.717383i \(-0.254660\pi\)
−0.466987 + 0.884264i \(0.654660\pi\)
\(194\) 0 0
\(195\) −3.94427 12.1392i −0.282455 0.869308i
\(196\) 0 0
\(197\) −17.6525 −1.25769 −0.628843 0.777532i \(-0.716471\pi\)
−0.628843 + 0.777532i \(0.716471\pi\)
\(198\) 0 0
\(199\) −18.4721 −1.30945 −0.654727 0.755865i \(-0.727217\pi\)
−0.654727 + 0.755865i \(0.727217\pi\)
\(200\) 0 0
\(201\) 0.763932 + 2.35114i 0.0538836 + 0.165837i
\(202\) 0 0
\(203\) −4.61803 3.35520i −0.324122 0.235489i
\(204\) 0 0
\(205\) 5.16312 15.8904i 0.360608 1.10984i
\(206\) 0 0
\(207\) −4.61803 + 3.35520i −0.320976 + 0.233202i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 5.70820 4.14725i 0.392969 0.285509i −0.373702 0.927549i \(-0.621912\pi\)
0.766671 + 0.642040i \(0.221912\pi\)
\(212\) 0 0
\(213\) 4.00000 12.3107i 0.274075 0.843518i
\(214\) 0 0
\(215\) −18.9443 13.7638i −1.29199 0.938685i
\(216\) 0 0
\(217\) 4.76393 + 14.6619i 0.323397 + 0.995313i
\(218\) 0 0
\(219\) −11.4164 −0.771449
\(220\) 0 0
\(221\) 1.76393 0.118655
\(222\) 0 0
\(223\) 2.76393 + 8.50651i 0.185087 + 0.569638i 0.999950 0.0100153i \(-0.00318802\pi\)
−0.814863 + 0.579653i \(0.803188\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.763932 + 2.35114i −0.0507039 + 0.156051i −0.973202 0.229950i \(-0.926144\pi\)
0.922499 + 0.386001i \(0.126144\pi\)
\(228\) 0 0
\(229\) 2.19098 1.59184i 0.144784 0.105192i −0.513035 0.858368i \(-0.671479\pi\)
0.657819 + 0.753176i \(0.271479\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.89919 6.46564i 0.583005 0.423578i −0.256801 0.966464i \(-0.582669\pi\)
0.839806 + 0.542886i \(0.182669\pi\)
\(234\) 0 0
\(235\) 3.94427 12.1392i 0.257296 0.791875i
\(236\) 0 0
\(237\) −18.9443 13.7638i −1.23056 0.894056i
\(238\) 0 0
\(239\) −6.23607 19.1926i −0.403378 1.24147i −0.922242 0.386612i \(-0.873645\pi\)
0.518865 0.854856i \(-0.326355\pi\)
\(240\) 0 0
\(241\) 3.52786 0.227250 0.113625 0.993524i \(-0.463754\pi\)
0.113625 + 0.993524i \(0.463754\pi\)
\(242\) 0 0
\(243\) −35.5967 −2.28353
\(244\) 0 0
\(245\) 2.39919 + 7.38394i 0.153278 + 0.471743i
\(246\) 0 0
\(247\) 8.14590 + 5.91834i 0.518311 + 0.376575i
\(248\) 0 0
\(249\) −12.1803 + 37.4872i −0.771898 + 2.37566i
\(250\) 0 0
\(251\) 16.7984 12.2047i 1.06030 0.770356i 0.0861594 0.996281i \(-0.472541\pi\)
0.974145 + 0.225925i \(0.0725406\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 5.85410 4.25325i 0.366598 0.266349i
\(256\) 0 0
\(257\) −4.48936 + 13.8168i −0.280038 + 0.861870i 0.707804 + 0.706409i \(0.249686\pi\)
−0.987842 + 0.155460i \(0.950314\pi\)
\(258\) 0 0
\(259\) 0.618034 + 0.449028i 0.0384028 + 0.0279012i
\(260\) 0 0
\(261\) 4.07295 + 12.5352i 0.252109 + 0.775912i
\(262\) 0 0
\(263\) 6.65248 0.410209 0.205105 0.978740i \(-0.434247\pi\)
0.205105 + 0.978740i \(0.434247\pi\)
\(264\) 0 0
\(265\) −29.4721 −1.81046
\(266\) 0 0
\(267\) 12.4164 + 38.2138i 0.759872 + 2.33864i
\(268\) 0 0
\(269\) −13.5172 9.82084i −0.824160 0.598787i 0.0937414 0.995597i \(-0.470117\pi\)
−0.917901 + 0.396810i \(0.870117\pi\)
\(270\) 0 0
\(271\) 9.23607 28.4257i 0.561051 1.72674i −0.118351 0.992972i \(-0.537761\pi\)
0.679402 0.733766i \(-0.262239\pi\)
\(272\) 0 0
\(273\) 14.9443 10.8576i 0.904468 0.657135i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −21.1353 + 15.3557i −1.26989 + 0.922632i −0.999198 0.0400326i \(-0.987254\pi\)
−0.270696 + 0.962665i \(0.587254\pi\)
\(278\) 0 0
\(279\) 11.0000 33.8545i 0.658553 2.02682i
\(280\) 0 0
\(281\) 12.5623 + 9.12705i 0.749404 + 0.544474i 0.895642 0.444775i \(-0.146716\pi\)
−0.146238 + 0.989249i \(0.546716\pi\)
\(282\) 0 0
\(283\) 3.52786 + 10.8576i 0.209710 + 0.645420i 0.999487 + 0.0320265i \(0.0101961\pi\)
−0.789777 + 0.613394i \(0.789804\pi\)
\(284\) 0 0
\(285\) 41.3050 2.44669
\(286\) 0 0
\(287\) 24.1803 1.42732
\(288\) 0 0
\(289\) −4.94427 15.2169i −0.290840 0.895112i
\(290\) 0 0
\(291\) 31.2705 + 22.7194i 1.83311 + 1.33183i
\(292\) 0 0
\(293\) −1.63525 + 5.03280i −0.0955326 + 0.294019i −0.987392 0.158293i \(-0.949401\pi\)
0.891860 + 0.452313i \(0.149401\pi\)
\(294\) 0 0
\(295\) 10.0000 7.26543i 0.582223 0.423009i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.09017 + 0.792055i −0.0630462 + 0.0458057i
\(300\) 0 0
\(301\) 10.4721 32.2299i 0.603604 1.85770i
\(302\) 0 0
\(303\) 5.23607 + 3.80423i 0.300804 + 0.218547i
\(304\) 0 0
\(305\) 10.3262 + 31.7809i 0.591279 + 1.81977i
\(306\) 0 0
\(307\) 24.1803 1.38004 0.690022 0.723788i \(-0.257601\pi\)
0.690022 + 0.723788i \(0.257601\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.18034 12.8658i −0.237045 0.729551i −0.996844 0.0793915i \(-0.974702\pi\)
0.759798 0.650159i \(-0.225298\pi\)
\(312\) 0 0
\(313\) −6.42705 4.66953i −0.363278 0.263937i 0.391140 0.920331i \(-0.372081\pi\)
−0.754418 + 0.656394i \(0.772081\pi\)
\(314\) 0 0
\(315\) 16.7082 51.4226i 0.941401 2.89733i
\(316\) 0 0
\(317\) −12.8541 + 9.33905i −0.721958 + 0.524533i −0.887009 0.461752i \(-0.847221\pi\)
0.165051 + 0.986285i \(0.447221\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 4.47214 3.24920i 0.249610 0.181352i
\(322\) 0 0
\(323\) −1.76393 + 5.42882i −0.0981478 + 0.302068i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 6.23607 + 19.1926i 0.344855 + 1.06136i
\(328\) 0 0
\(329\) 18.4721 1.01840
\(330\) 0 0
\(331\) −6.47214 −0.355741 −0.177870 0.984054i \(-0.556921\pi\)
−0.177870 + 0.984054i \(0.556921\pi\)
\(332\) 0 0
\(333\) −0.545085 1.67760i −0.0298705 0.0919319i
\(334\) 0 0
\(335\) 1.38197 + 1.00406i 0.0755049 + 0.0548575i
\(336\) 0 0
\(337\) −1.98278 + 6.10237i −0.108009 + 0.332417i −0.990425 0.138053i \(-0.955916\pi\)
0.882416 + 0.470470i \(0.155916\pi\)
\(338\) 0 0
\(339\) 52.2148 37.9363i 2.83592 2.06041i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 9.23607 6.71040i 0.498701 0.362327i
\(344\) 0 0
\(345\) −1.70820 + 5.25731i −0.0919666 + 0.283044i
\(346\) 0 0
\(347\) 9.23607 + 6.71040i 0.495818 + 0.360233i 0.807417 0.589981i \(-0.200865\pi\)
−0.311599 + 0.950214i \(0.600865\pi\)
\(348\) 0 0
\(349\) 8.54508 + 26.2991i 0.457408 + 1.40776i 0.868285 + 0.496066i \(0.165223\pi\)
−0.410877 + 0.911691i \(0.634777\pi\)
\(350\) 0 0
\(351\) −25.5279 −1.36258
\(352\) 0 0
\(353\) 23.0000 1.22417 0.612083 0.790793i \(-0.290332\pi\)
0.612083 + 0.790793i \(0.290332\pi\)
\(354\) 0 0
\(355\) −2.76393 8.50651i −0.146694 0.451479i
\(356\) 0 0
\(357\) 8.47214 + 6.15537i 0.448393 + 0.325777i
\(358\) 0 0
\(359\) −3.94427 + 12.1392i −0.208171 + 0.640684i 0.791398 + 0.611302i \(0.209354\pi\)
−0.999568 + 0.0293817i \(0.990646\pi\)
\(360\) 0 0
\(361\) −10.9894 + 7.98424i −0.578387 + 0.420223i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.38197 + 4.63677i −0.334047 + 0.242700i
\(366\) 0 0
\(367\) −1.29180 + 3.97574i −0.0674312 + 0.207532i −0.979094 0.203406i \(-0.934799\pi\)
0.911663 + 0.410938i \(0.134799\pi\)
\(368\) 0 0
\(369\) −45.1697 32.8177i −2.35144 1.70842i
\(370\) 0 0
\(371\) −13.1803 40.5649i −0.684289 2.10603i
\(372\) 0 0
\(373\) 0.111456 0.00577098 0.00288549 0.999996i \(-0.499082\pi\)
0.00288549 + 0.999996i \(0.499082\pi\)
\(374\) 0 0
\(375\) 36.1803 1.86834
\(376\) 0 0
\(377\) 0.961493 + 2.95917i 0.0495194 + 0.152405i
\(378\) 0 0
\(379\) 2.47214 + 1.79611i 0.126985 + 0.0922601i 0.649465 0.760392i \(-0.274993\pi\)
−0.522480 + 0.852652i \(0.674993\pi\)
\(380\) 0 0
\(381\) −18.4721 + 56.8514i −0.946356 + 2.91258i
\(382\) 0 0
\(383\) −15.7082 + 11.4127i −0.802652 + 0.583161i −0.911691 0.410877i \(-0.865223\pi\)
0.109039 + 0.994037i \(0.465223\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −63.3050 + 45.9937i −3.21797 + 2.33799i
\(388\) 0 0
\(389\) −6.72542 + 20.6987i −0.340993 + 1.04947i 0.622702 + 0.782459i \(0.286035\pi\)
−0.963694 + 0.267008i \(0.913965\pi\)
\(390\) 0 0
\(391\) −0.618034 0.449028i −0.0312553 0.0227083i
\(392\) 0 0
\(393\) −8.00000 24.6215i −0.403547 1.24199i
\(394\) 0 0
\(395\) −16.1803 −0.814121
\(396\) 0 0
\(397\) −20.2361 −1.01562 −0.507810 0.861469i \(-0.669545\pi\)
−0.507810 + 0.861469i \(0.669545\pi\)
\(398\) 0 0
\(399\) 18.4721 + 56.8514i 0.924763 + 2.84613i
\(400\) 0 0
\(401\) 11.7533 + 8.53926i 0.586931 + 0.426431i 0.841216 0.540699i \(-0.181840\pi\)
−0.254285 + 0.967129i \(0.581840\pi\)
\(402\) 0 0
\(403\) 2.59675 7.99197i 0.129353 0.398108i
\(404\) 0 0
\(405\) −44.1697 + 32.0912i −2.19481 + 1.59462i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 22.8992 16.6372i 1.13229 0.822658i 0.146265 0.989245i \(-0.453275\pi\)
0.986027 + 0.166587i \(0.0532747\pi\)
\(410\) 0 0
\(411\) −7.52786 + 23.1684i −0.371322 + 1.14281i
\(412\) 0 0
\(413\) 14.4721 + 10.5146i 0.712127 + 0.517391i
\(414\) 0 0
\(415\) 8.41641 + 25.9030i 0.413145 + 1.27153i
\(416\) 0 0
\(417\) −49.3050 −2.41447
\(418\) 0 0
\(419\) −24.1803 −1.18129 −0.590643 0.806933i \(-0.701126\pi\)
−0.590643 + 0.806933i \(0.701126\pi\)
\(420\) 0 0
\(421\) −2.72542 8.38800i −0.132829 0.408806i 0.862417 0.506199i \(-0.168950\pi\)
−0.995246 + 0.0973927i \(0.968950\pi\)
\(422\) 0 0
\(423\) −34.5066 25.0705i −1.67777 1.21897i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −39.1246 + 28.4257i −1.89337 + 1.37562i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.2361 12.5227i 0.830232 0.603199i −0.0893928 0.995996i \(-0.528493\pi\)
0.919625 + 0.392797i \(0.128493\pi\)
\(432\) 0 0
\(433\) −2.78115 + 8.55951i −0.133654 + 0.411344i −0.995378 0.0960328i \(-0.969385\pi\)
0.861724 + 0.507376i \(0.169385\pi\)
\(434\) 0 0
\(435\) 10.3262 + 7.50245i 0.495105 + 0.359715i
\(436\) 0 0
\(437\) −1.34752 4.14725i −0.0644608 0.198390i
\(438\) 0 0
\(439\) −12.7639 −0.609189 −0.304595 0.952482i \(-0.598521\pi\)
−0.304595 + 0.952482i \(0.598521\pi\)
\(440\) 0 0
\(441\) 25.9443 1.23544
\(442\) 0 0
\(443\) −8.47214 26.0746i −0.402523 1.23884i −0.922946 0.384930i \(-0.874225\pi\)
0.520422 0.853909i \(-0.325775\pi\)
\(444\) 0 0
\(445\) 22.4615 + 16.3192i 1.06478 + 0.773606i
\(446\) 0 0
\(447\) 10.2361 31.5034i 0.484149 1.49006i
\(448\) 0 0
\(449\) 21.7533 15.8047i 1.02660 0.745869i 0.0589756 0.998259i \(-0.481217\pi\)
0.967626 + 0.252390i \(0.0812166\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −19.4164 + 14.1068i −0.912262 + 0.662797i
\(454\) 0 0
\(455\) 3.94427 12.1392i 0.184910 0.569095i
\(456\) 0 0
\(457\) −20.9894 15.2497i −0.981841 0.713349i −0.0237215 0.999719i \(-0.507551\pi\)
−0.958119 + 0.286370i \(0.907551\pi\)
\(458\) 0 0
\(459\) −4.47214 13.7638i −0.208741 0.642440i
\(460\) 0 0
\(461\) −35.1803 −1.63851 −0.819256 0.573428i \(-0.805613\pi\)
−0.819256 + 0.573428i \(0.805613\pi\)
\(462\) 0 0
\(463\) 34.8328 1.61882 0.809409 0.587245i \(-0.199788\pi\)
0.809409 + 0.587245i \(0.199788\pi\)
\(464\) 0 0
\(465\) −10.6525 32.7849i −0.493997 1.52037i
\(466\) 0 0
\(467\) 18.1803 + 13.2088i 0.841286 + 0.611230i 0.922730 0.385448i \(-0.125953\pi\)
−0.0814437 + 0.996678i \(0.525953\pi\)
\(468\) 0 0
\(469\) −0.763932 + 2.35114i −0.0352751 + 0.108566i
\(470\) 0 0
\(471\) −32.6525 + 23.7234i −1.50455 + 1.09312i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −30.4336 + 93.6651i −1.39346 + 4.28863i
\(478\) 0 0
\(479\) 18.4721 + 13.4208i 0.844013 + 0.613212i 0.923489 0.383625i \(-0.125325\pi\)
−0.0794755 + 0.996837i \(0.525325\pi\)
\(480\) 0 0
\(481\) −0.128677 0.396027i −0.00586717 0.0180573i
\(482\) 0 0
\(483\) −8.00000 −0.364013
\(484\) 0 0
\(485\) 26.7082 1.21276
\(486\) 0 0
\(487\) −6.05573 18.6376i −0.274411 0.844551i −0.989375 0.145389i \(-0.953557\pi\)
0.714963 0.699162i \(-0.246443\pi\)
\(488\) 0 0
\(489\) 14.9443 + 10.8576i 0.675803 + 0.491000i
\(490\) 0 0
\(491\) −7.47214 + 22.9969i −0.337213 + 1.03783i 0.628409 + 0.777883i \(0.283706\pi\)
−0.965622 + 0.259951i \(0.916294\pi\)
\(492\) 0 0
\(493\) −1.42705 + 1.03681i −0.0642711 + 0.0466957i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.4721 7.60845i 0.469739 0.341286i
\(498\) 0 0
\(499\) 12.7639 39.2833i 0.571392 1.75856i −0.0767563 0.997050i \(-0.524456\pi\)
0.648148 0.761514i \(-0.275544\pi\)
\(500\) 0 0
\(501\) 29.8885 + 21.7153i 1.33532 + 0.970168i
\(502\) 0 0
\(503\) −9.76393 30.0503i −0.435352 1.33988i −0.892725 0.450601i \(-0.851210\pi\)
0.457373 0.889275i \(-0.348790\pi\)
\(504\) 0 0
\(505\) 4.47214 0.199007
\(506\) 0 0
\(507\) 32.0000 1.42117
\(508\) 0 0
\(509\) 0.326238 + 1.00406i 0.0144602 + 0.0445040i 0.958026 0.286680i \(-0.0925518\pi\)
−0.943566 + 0.331184i \(0.892552\pi\)
\(510\) 0 0
\(511\) −9.23607 6.71040i −0.408580 0.296850i
\(512\) 0 0
\(513\) 25.5279 78.5667i 1.12708 3.46880i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −49.5967 + 36.0341i −2.17706 + 1.58172i
\(520\) 0 0
\(521\) −4.14590 + 12.7598i −0.181635 + 0.559015i −0.999874 0.0158627i \(-0.994951\pi\)
0.818239 + 0.574878i \(0.194951\pi\)
\(522\) 0 0
\(523\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.76393 0.207520
\(528\) 0 0
\(529\) −22.4164 −0.974626
\(530\) 0 0
\(531\) −12.7639 39.2833i −0.553907 1.70475i
\(532\) 0 0
\(533\) −10.6631 7.74721i −0.461871 0.335569i
\(534\) 0 0
\(535\) 1.18034 3.63271i 0.0510305 0.157056i
\(536\) 0 0
\(537\) −6.47214 + 4.70228i −0.279293 + 0.202918i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.85410 2.07363i 0.122707 0.0891522i −0.524739 0.851263i \(-0.675837\pi\)
0.647446 + 0.762111i \(0.275837\pi\)
\(542\) 0 0
\(543\) −12.7082 + 39.1118i −0.545361 + 1.67845i
\(544\) 0 0
\(545\) 11.2812 + 8.19624i 0.483231 + 0.351088i
\(546\) 0 0
\(547\) −5.70820 17.5680i −0.244065 0.751155i −0.995789 0.0916771i \(-0.970777\pi\)
0.751724 0.659478i \(-0.229223\pi\)
\(548\) 0 0
\(549\) 111.666 4.76577
\(550\) 0 0
\(551\) −10.0689 −0.428949
\(552\) 0 0
\(553\) −7.23607 22.2703i −0.307709 0.947031i
\(554\) 0 0
\(555\) −1.38197 1.00406i −0.0586612 0.0426198i
\(556\) 0 0
\(557\) 11.0902 34.1320i 0.469906 1.44622i −0.382801 0.923831i \(-0.625041\pi\)
0.852707 0.522390i \(-0.174959\pi\)
\(558\) 0 0
\(559\) −14.9443 + 10.8576i −0.632075 + 0.459230i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.0344 + 11.6497i −0.675771 + 0.490976i −0.871952 0.489591i \(-0.837146\pi\)
0.196181 + 0.980568i \(0.437146\pi\)
\(564\) 0 0
\(565\) 13.7812 42.4140i 0.579777 1.78437i
\(566\) 0 0
\(567\) −63.9230 46.4428i −2.68451 1.95041i
\(568\) 0 0
\(569\) 8.14590 + 25.0705i 0.341494 + 1.05101i 0.963434 + 0.267945i \(0.0863446\pi\)
−0.621940 + 0.783065i \(0.713655\pi\)
\(570\) 0 0
\(571\) −12.7639 −0.534154 −0.267077 0.963675i \(-0.586058\pi\)
−0.267077 + 0.963675i \(0.586058\pi\)
\(572\) 0 0
\(573\) −17.8885 −0.747305
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 27.7533 + 20.1639i 1.15538 + 0.839436i 0.989187 0.146657i \(-0.0468512\pi\)
0.166197 + 0.986093i \(0.446851\pi\)
\(578\) 0 0
\(579\) 3.94427 12.1392i 0.163918 0.504489i
\(580\) 0 0
\(581\) −31.8885 + 23.1684i −1.32296 + 0.961186i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −23.8435 + 17.3233i −0.985806 + 0.716230i
\(586\) 0 0
\(587\) −0.416408 + 1.28157i −0.0171870 + 0.0528961i −0.959282 0.282449i \(-0.908853\pi\)
0.942095 + 0.335346i \(0.108853\pi\)
\(588\) 0 0
\(589\) 22.0000 + 15.9839i 0.906494 + 0.658607i
\(590\) 0 0
\(591\) 17.6525 + 54.3287i 0.726126 + 2.23479i
\(592\) 0 0
\(593\) −22.4164 −0.920532 −0.460266 0.887781i \(-0.652246\pi\)
−0.460266 + 0.887781i \(0.652246\pi\)
\(594\) 0 0
\(595\) 7.23607 0.296650
\(596\) 0 0
\(597\) 18.4721 + 56.8514i 0.756014 + 2.32677i
\(598\) 0 0
\(599\) −4.61803 3.35520i −0.188688 0.137090i 0.489431 0.872042i \(-0.337205\pi\)
−0.678119 + 0.734952i \(0.737205\pi\)
\(600\) 0 0
\(601\) 10.1287 31.1729i 0.413157 1.27157i −0.500731 0.865603i \(-0.666936\pi\)
0.913889 0.405965i \(-0.133064\pi\)
\(602\) 0 0
\(603\) 4.61803 3.35520i 0.188061 0.136634i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18.3262 13.3148i 0.743839 0.540431i −0.150072 0.988675i \(-0.547951\pi\)
0.893911 + 0.448244i \(0.147951\pi\)
\(608\) 0 0
\(609\) −5.70820 + 17.5680i −0.231308 + 0.711893i
\(610\) 0 0
\(611\) −8.14590 5.91834i −0.329548 0.239430i
\(612\) 0 0
\(613\) −14.3992 44.3161i −0.581578 1.78991i −0.612600 0.790393i \(-0.709876\pi\)
0.0310220 0.999519i \(-0.490124\pi\)
\(614\) 0 0
\(615\) −54.0689 −2.18027
\(616\) 0 0
\(617\) 15.3607 0.618398 0.309199 0.950997i \(-0.399939\pi\)
0.309199 + 0.950997i \(0.399939\pi\)
\(618\) 0 0
\(619\) 11.7639 + 36.2057i 0.472832 + 1.45523i 0.848859 + 0.528619i \(0.177290\pi\)
−0.376027 + 0.926609i \(0.622710\pi\)
\(620\) 0 0
\(621\) 8.94427 + 6.49839i 0.358921 + 0.260772i
\(622\) 0 0
\(623\) −12.4164 + 38.2138i −0.497453 + 1.53100i
\(624\) 0 0
\(625\) 20.2254 14.6946i 0.809017 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.190983 0.138757i 0.00761499 0.00553261i
\(630\) 0 0
\(631\) 9.18034 28.2542i 0.365464 1.12478i −0.584227 0.811591i \(-0.698602\pi\)
0.949690 0.313191i \(-0.101398\pi\)
\(632\) 0 0
\(633\) −18.4721 13.4208i −0.734201 0.533429i
\(634\) 0 0
\(635\) 12.7639 + 39.2833i 0.506521 + 1.55891i
\(636\) 0 0
\(637\) 6.12461 0.242666
\(638\) 0 0
\(639\) −29.8885 −1.18237
\(640\) 0 0
\(641\) 0.454915 + 1.40008i 0.0179681 + 0.0553000i 0.959639 0.281236i \(-0.0907445\pi\)
−0.941670 + 0.336536i \(0.890744\pi\)
\(642\) 0 0
\(643\) 16.3262 + 11.8617i 0.643844 + 0.467780i 0.861169 0.508319i \(-0.169733\pi\)
−0.217325 + 0.976099i \(0.569733\pi\)
\(644\) 0 0
\(645\) −23.4164 + 72.0683i −0.922020 + 2.83769i
\(646\) 0 0
\(647\) 30.6525 22.2703i 1.20507 0.875537i 0.210299 0.977637i \(-0.432556\pi\)
0.994774 + 0.102100i \(0.0325562\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 40.3607 29.3238i 1.58186 1.14929i
\(652\) 0 0
\(653\) 12.1459 37.3812i 0.475306 1.46284i −0.370239 0.928936i \(-0.620724\pi\)
0.845545 0.533904i \(-0.179276\pi\)
\(654\) 0 0
\(655\) −14.4721 10.5146i −0.565473 0.410840i
\(656\) 0 0
\(657\) 8.14590 + 25.0705i 0.317802 + 0.978093i
\(658\) 0 0
\(659\) −32.1803 −1.25357 −0.626784 0.779193i \(-0.715629\pi\)
−0.626784 + 0.779193i \(0.715629\pi\)
\(660\) 0 0
\(661\) 23.1803 0.901611 0.450805 0.892622i \(-0.351137\pi\)
0.450805 + 0.892622i \(0.351137\pi\)
\(662\) 0 0
\(663\) −1.76393 5.42882i −0.0685054 0.210838i
\(664\) 0 0
\(665\) 33.4164 + 24.2784i 1.29583 + 0.941478i
\(666\) 0 0
\(667\) 0.416408 1.28157i 0.0161234 0.0496227i
\(668\) 0 0
\(669\) 23.4164 17.0130i 0.905331 0.657761i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 16.5623 12.0332i 0.638430 0.463847i −0.220880 0.975301i \(-0.570893\pi\)
0.859310 + 0.511454i \(0.170893\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23.2254 + 16.8743i 0.892626 + 0.648530i 0.936561 0.350504i \(-0.113990\pi\)
−0.0439357 + 0.999034i \(0.513990\pi\)
\(678\) 0 0
\(679\) 11.9443 + 36.7607i 0.458379 + 1.41075i
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) −6.87539 −0.263079 −0.131540 0.991311i \(-0.541992\pi\)
−0.131540 + 0.991311i \(0.541992\pi\)
\(684\) 0 0
\(685\) 5.20163 + 16.0090i 0.198744 + 0.611671i
\(686\) 0 0
\(687\) −7.09017 5.15131i −0.270507 0.196535i
\(688\) 0 0
\(689\) −7.18441 + 22.1113i −0.273704 + 0.842374i
\(690\) 0 0
\(691\) −15.7082 + 11.4127i −0.597568 + 0.434159i −0.845015 0.534743i \(-0.820409\pi\)
0.247447 + 0.968902i \(0.420409\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −27.5623 + 20.0252i −1.04550 + 0.759599i
\(696\) 0 0
\(697\) 2.30902 7.10642i 0.0874603 0.269175i
\(698\) 0 0
\(699\) −28.7984 20.9232i −1.08925 0.791390i
\(700\) 0 0
\(701\) 11.0172 + 33.9075i 0.416115 + 1.28067i 0.911250 + 0.411854i \(0.135118\pi\)
−0.495135 + 0.868816i \(0.664882\pi\)
\(702\) 0 0
\(703\) 1.34752 0.0508228
\(704\) 0 0
\(705\) −41.3050 −1.55563
\(706\) 0 0
\(707\) 2.00000 + 6.15537i 0.0752177 + 0.231496i
\(708\) 0 0
\(709\) 3.14590 + 2.28563i 0.118147 + 0.0858386i 0.645290 0.763938i \(-0.276737\pi\)
−0.527143 + 0.849777i \(0.676737\pi\)
\(710\) 0 0
\(711\) −16.7082 + 51.4226i −0.626607 + 1.92850i
\(712\) 0 0
\(713\) −2.94427 + 2.13914i −0.110264 + 0.0801114i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −52.8328 + 38.3853i −1.97308 + 1.43352i
\(718\) 0 0
\(719\) 15.0000 46.1653i 0.559406 1.72167i −0.124610 0.992206i \(-0.539768\pi\)
0.684015 0.729468i \(-0.260232\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −3.52786 10.8576i −0.131203 0.403800i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −6.29180 −0.233350 −0.116675 0.993170i \(-0.537224\pi\)
−0.116675 + 0.993170i \(0.537224\pi\)
\(728\) 0 0
\(729\) 12.9615 + 39.8914i 0.480055 + 1.47746i
\(730\) 0 0
\(731\) −8.47214 6.15537i −0.313353 0.227664i
\(732\) 0 0
\(733\) 6.25329 19.2456i 0.230970 0.710854i −0.766660 0.642053i \(-0.778083\pi\)
0.997630 0.0688007i \(-0.0219173\pi\)
\(734\) 0 0
\(735\) 20.3262 14.7679i 0.749745 0.544721i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 11.5623 8.40051i 0.425326 0.309018i −0.354451 0.935075i \(-0.615332\pi\)
0.779777 + 0.626057i \(0.215332\pi\)
\(740\) 0 0
\(741\) 10.0689 30.9888i 0.369890 1.13840i
\(742\) 0 0
\(743\) 23.0902 + 16.7760i 0.847096 + 0.615451i 0.924344 0.381561i \(-0.124613\pi\)
−0.0772477 + 0.997012i \(0.524613\pi\)
\(744\) 0 0
\(745\) −7.07295 21.7683i −0.259133 0.797529i
\(746\) 0 0
\(747\) 91.0132 3.33000
\(748\) 0 0
\(749\) 5.52786 0.201984
\(750\) 0 0
\(751\) −14.1803 43.6426i −0.517448 1.59254i −0.778783 0.627293i \(-0.784163\pi\)
0.261335 0.965248i \(-0.415837\pi\)
\(752\) 0 0
\(753\) −54.3607 39.4953i −1.98101 1.43929i
\(754\) 0 0
\(755\) −5.12461 + 15.7719i −0.186504 + 0.573999i
\(756\) 0 0
\(757\) 12.6631 9.20029i 0.460249 0.334390i −0.333380 0.942793i \(-0.608189\pi\)
0.793629 + 0.608402i \(0.208189\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.8435 17.3233i 0.864325 0.627969i −0.0647334 0.997903i \(-0.520620\pi\)
0.929058 + 0.369934i \(0.120620\pi\)
\(762\) 0 0
\(763\) −6.23607 + 19.1926i −0.225761 + 0.694820i
\(764\) 0 0
\(765\) −13.5172 9.82084i −0.488716 0.355073i
\(766\) 0 0
\(767\) −3.01316 9.27354i −0.108799 0.334848i
\(768\) 0 0
\(769\) 18.8885 0.681138 0.340569 0.940219i \(-0.389380\pi\)
0.340569 + 0.940219i \(0.389380\pi\)
\(770\) 0 0
\(771\) 47.0132 1.69314
\(772\) 0 0
\(773\) 6.79837 + 20.9232i 0.244521 + 0.752557i 0.995715 + 0.0924757i \(0.0294781\pi\)
−0.751194 + 0.660081i \(0.770522\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.763932 2.35114i 0.0274059 0.0843467i
\(778\) 0 0
\(779\) 34.5066 25.0705i 1.23633 0.898244i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 20.6525 15.0049i 0.738059 0.536231i
\(784\) 0 0
\(785\) −8.61803 + 26.5236i −0.307591 + 0.946667i
\(786\) 0 0
\(787\) 12.7639 + 9.27354i 0.454985 + 0.330566i 0.791561 0.611090i \(-0.209269\pi\)
−0.336576 + 0.941656i \(0.609269\pi\)
\(788\) 0 0
\(789\) −6.65248 20.4742i −0.236834 0.728901i
\(790\) 0 0
\(791\) 64.5410 2.29481
\(792\) 0 0
\(793\) 26.3607 0.936095
\(794\) 0 0
\(795\) 29.4721 + 90.7059i 1.04527 + 3.21701i
\(796\) 0 0
\(797\) −20.2705 14.7274i −0.718018 0.521671i 0.167732 0.985833i \(-0.446356\pi\)
−0.885750 + 0.464162i \(0.846356\pi\)
\(798\) 0 0
\(799\) 1.76393 5.42882i 0.0624034 0.192058i
\(800\) 0 0
\(801\) 75.0582 54.5330i 2.65205 1.92683i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −4.47214 + 3.24920i −0.157622 + 0.114519i
\(806\) 0 0
\(807\) −16.7082 + 51.4226i −0.588157 + 1.81016i
\(808\) 0 0
\(809\) −21.3262 15.4944i −0.749791 0.544755i 0.145971 0.989289i \(-0.453369\pi\)
−0.895762 + 0.444534i \(0.853369\pi\)
\(810\) 0 0
\(811\) 6.94427 + 21.3723i 0.243846 + 0.750482i 0.995824 + 0.0912934i \(0.0291001\pi\)
−0.751978 + 0.659189i \(0.770900\pi\)
\(812\) 0 0
\(813\) −96.7214 −3.39217
\(814\) 0 0
\(815\) 12.7639 0.447101
\(816\) 0 0
\(817\) −18.4721 56.8514i −0.646258 1.98898i
\(818\) 0 0
\(819\) −34.5066 25.0705i −1.20576 0.876034i
\(820\) 0 0
\(821\) 9.56231 29.4298i 0.333727 1.02711i −0.633619 0.773645i \(-0.718431\pi\)
0.967346 0.253460i \(-0.0815687\pi\)
\(822\) 0 0
\(823\) 8.47214 6.15537i 0.295320 0.214563i −0.430252 0.902709i \(-0.641575\pi\)
0.725572 + 0.688146i \(0.241575\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.61803 3.35520i 0.160585 0.116672i −0.504591 0.863359i \(-0.668357\pi\)
0.665176 + 0.746687i \(0.268357\pi\)
\(828\) 0 0
\(829\) −3.60081 + 11.0822i −0.125061 + 0.384899i −0.993912 0.110174i \(-0.964859\pi\)
0.868851 + 0.495074i \(0.164859\pi\)
\(830\) 0 0
\(831\) 68.3951 + 49.6920i 2.37260 + 1.72380i
\(832\) 0 0
\(833\) 1.07295 + 3.30220i 0.0371755 + 0.114414i
\(834\) 0 0
\(835\) 25.5279 0.883428
\(836\) 0 0
\(837\) −68.9443 −2.38306
\(838\) 0 0
\(839\) −12.4164 38.2138i −0.428662 1.31929i −0.899444 0.437036i \(-0.856028\pi\)
0.470782 0.882250i \(-0.343972\pi\)
\(840\) 0 0
\(841\) 20.9443 + 15.2169i 0.722216 + 0.524721i
\(842\) 0 0
\(843\) 15.5279 47.7899i 0.534808 1.64597i
\(844\) 0 0
\(845\) 17.8885 12.9968i 0.615385 0.447103i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 29.8885 21.7153i 1.02577 0.745267i
\(850\) 0 0
\(851\) −0.0557281 + 0.171513i −0.00191033 + 0.00587940i
\(852\) 0 0
\(853\) −10.1910 7.40418i −0.348933 0.253514i 0.399488 0.916738i \(-0.369188\pi\)
−0.748421 + 0.663224i \(0.769188\pi\)
\(854\) 0 0
\(855\) −29.4721 90.7059i −1.00793 3.10208i
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −0.583592 −0.0199119 −0.00995595 0.999950i \(-0.503169\pi\)
−0.00995595 + 0.999950i \(0.503169\pi\)
\(860\) 0 0
\(861\) −24.1803 74.4194i −0.824064 2.53621i
\(862\) 0 0
\(863\) 28.7984 + 20.9232i 0.980308 + 0.712235i 0.957777 0.287511i \(-0.0928277\pi\)
0.0225306 + 0.999746i \(0.492828\pi\)
\(864\) 0 0
\(865\) −13.0902 + 40.2874i −0.445079 + 1.36981i
\(866\) 0 0
\(867\) −41.8885 + 30.4338i −1.42261 + 1.03359i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 1.09017 0.792055i 0.0369390 0.0268378i
\(872\) 0 0
\(873\) 27.5795 84.8811i 0.933426 2.87279i
\(874\) 0 0
\(875\) 29.2705 + 21.2663i 0.989524 + 0.718931i
\(876\) 0 0
\(877\) −5.16312 15.8904i −0.174346 0.536582i 0.825257 0.564758i \(-0.191030\pi\)
−0.999603 + 0.0281753i \(0.991030\pi\)
\(878\) 0 0
\(879\) 17.1246 0.577599
\(880\) 0 0
\(881\) 4.52786 0.152548 0.0762738 0.997087i \(-0.475698\pi\)
0.0762738 + 0.997087i \(0.475698\pi\)
\(882\) 0 0
\(883\) 2.18034 + 6.71040i 0.0733743 + 0.225823i 0.981017 0.193920i \(-0.0621202\pi\)
−0.907643 + 0.419743i \(0.862120\pi\)
\(884\) 0 0
\(885\) −32.3607 23.5114i −1.08779 0.790327i
\(886\) 0 0
\(887\) 6.05573 18.6376i 0.203331 0.625790i −0.796446 0.604709i \(-0.793289\pi\)
0.999778 0.0210806i \(-0.00671067\pi\)
\(888\) 0 0
\(889\) −48.3607 + 35.1361i −1.62197 + 1.17843i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 26.3607 19.1522i 0.882127 0.640902i
\(894\) 0 0
\(895\) −1.70820 + 5.25731i −0.0570990 + 0.175733i
\(896\) 0 0
\(897\) 3.52786 + 2.56314i 0.117792 + 0.0855809i
\(898\) 0 0
\(899\) 2.59675 + 7.99197i 0.0866064 + 0.266547i
\(900\) 0 0
\(901\) −13.1803 −0.439101
\(902\) 0 0
\(903\) −109.666 −3.64944
\(904\) 0 0
\(905\) 8.78115 + 27.0256i 0.291895 + 0.898362i
\(906\) 0 0
\(907\) −24.1803 17.5680i −0.802895 0.583337i 0.108867 0.994056i \(-0.465278\pi\)
−0.911762 + 0.410719i \(0.865278\pi\)
\(908\) 0 0
\(909\) 4.61803 14.2128i 0.153171 0.471410i
\(910\) 0 0
\(911\) −12.9443 + 9.40456i −0.428863 + 0.311587i −0.781194 0.624288i \(-0.785389\pi\)
0.352331 + 0.935875i \(0.385389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 87.4853 63.5618i 2.89217 2.10129i
\(916\) 0 0
\(917\) 8.00000 24.6215i 0.264183 0.813073i
\(918\) 0 0
\(919\) 16.6525 + 12.0987i 0.549314 + 0.399100i 0.827533 0.561418i \(-0.189744\pi\)
−0.278218 + 0.960518i \(0.589744\pi\)
\(920\) 0 0
\(921\) −24.1803 74.4194i −0.796769 2.45220i
\(922\) 0 0
\(923\) −7.05573 −0.232242
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.6074 10.6129i −0.479253 0.348198i 0.321783 0.946813i \(-0.395718\pi\)
−0.801036 + 0.598616i \(0.795718\pi\)
\(930\) 0 0
\(931\) −6.12461 + 18.8496i −0.200726 + 0.617771i
\(932\) 0 0
\(933\) −35.4164 + 25.7315i −1.15948 + 0.842412i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −17.4615 + 12.6865i −0.570442 + 0.414450i −0.835266 0.549846i \(-0.814686\pi\)
0.264824 + 0.964297i \(0.414686\pi\)
\(938\) 0 0
\(939\) −7.94427 + 24.4500i −0.259252 + 0.797894i
\(940\) 0 0
\(941\) −8.95492 6.50613i −0.291922 0.212094i 0.432179 0.901788i \(-0.357745\pi\)
−0.724101 + 0.689694i \(0.757745\pi\)
\(942\) 0 0
\(943\) 1.76393 + 5.42882i 0.0574415 + 0.176787i
\(944\) 0 0
\(945\) −104.721 −3.40659
\(946\) 0 0
\(947\) −49.1246 −1.59634 −0.798168 0.602435i \(-0.794197\pi\)
−0.798168 + 0.602435i \(0.794197\pi\)
\(948\) 0 0
\(949\) 1.92299 + 5.91834i 0.0624228 + 0.192117i
\(950\) 0 0
\(951\) 41.5967 + 30.2218i 1.34887 + 0.980009i
\(952\) 0 0
\(953\) −16.9271 + 52.0961i −0.548321 + 1.68756i 0.164639 + 0.986354i \(0.447354\pi\)
−0.712960 + 0.701205i \(0.752646\pi\)
\(954\) 0 0
\(955\) −10.0000 + 7.26543i −0.323592 + 0.235104i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −19.7082 + 14.3188i −0.636411 + 0.462380i
\(960\) 0 0
\(961\) −2.56637 + 7.89848i −0.0827862 + 0.254790i
\(962\) 0 0
\(963\) −10.3262 7.50245i −0.332758 0.241763i
\(964\) 0 0
\(965\) −2.72542 8.38800i −0.0877345 0.270019i
\(966\) 0 0
\(967\) −39.9574 −1.28494 −0.642472 0.766309i \(-0.722091\pi\)
−0.642472 + 0.766309i \(0.722091\pi\)
\(968\) 0 0
\(969\) 18.4721 0.593411
\(970\) 0 0
\(971\) −12.5967 38.7688i −0.404249 1.24415i −0.921521 0.388329i \(-0.873052\pi\)
0.517272 0.855821i \(-0.326948\pi\)
\(972\) 0 0
\(973\) −39.8885 28.9807i −1.27877 0.929079i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.1910 + 9.58381i −0.422017 + 0.306613i −0.778449 0.627708i \(-0.783993\pi\)
0.356432 + 0.934321i \(0.383993\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 37.6976 27.3889i 1.20359 0.874460i
\(982\) 0 0
\(983\) −16.6525 + 51.2511i −0.531131 + 1.63465i 0.220731 + 0.975335i \(0.429156\pi\)
−0.751863 + 0.659320i \(0.770844\pi\)
\(984\) 0 0
\(985\) 31.9336 + 23.2011i 1.01749 + 0.739250i
\(986\) 0 0
\(987\) −18.4721 56.8514i −0.587975 1.80960i
\(988\) 0 0
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) −29.8885 −0.949441 −0.474720 0.880137i \(-0.657451\pi\)
−0.474720 + 0.880137i \(0.657451\pi\)
\(992\) 0 0
\(993\) 6.47214 + 19.9192i 0.205387 + 0.632116i
\(994\) 0 0
\(995\) 33.4164 + 24.2784i 1.05937 + 0.769678i
\(996\) 0 0
\(997\) −0.871323 + 2.68166i −0.0275951 + 0.0849289i −0.963906 0.266244i \(-0.914217\pi\)
0.936310 + 0.351173i \(0.114217\pi\)
\(998\) 0 0
\(999\) −2.76393 + 2.00811i −0.0874469 + 0.0635339i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.i.b.729.1 4
11.2 odd 10 968.2.a.f.1.1 2
11.3 even 5 968.2.i.l.753.1 4
11.4 even 5 inner 968.2.i.b.81.1 4
11.5 even 5 968.2.i.l.9.1 4
11.6 odd 10 968.2.i.m.9.1 4
11.7 odd 10 968.2.i.a.81.1 4
11.8 odd 10 968.2.i.m.753.1 4
11.9 even 5 968.2.a.g.1.1 yes 2
11.10 odd 2 968.2.i.a.729.1 4
33.2 even 10 8712.2.a.bj.1.1 2
33.20 odd 10 8712.2.a.bk.1.1 2
44.31 odd 10 1936.2.a.w.1.2 2
44.35 even 10 1936.2.a.x.1.2 2
88.13 odd 10 7744.2.a.ct.1.2 2
88.35 even 10 7744.2.a.bs.1.1 2
88.53 even 10 7744.2.a.cu.1.2 2
88.75 odd 10 7744.2.a.br.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
968.2.a.f.1.1 2 11.2 odd 10
968.2.a.g.1.1 yes 2 11.9 even 5
968.2.i.a.81.1 4 11.7 odd 10
968.2.i.a.729.1 4 11.10 odd 2
968.2.i.b.81.1 4 11.4 even 5 inner
968.2.i.b.729.1 4 1.1 even 1 trivial
968.2.i.l.9.1 4 11.5 even 5
968.2.i.l.753.1 4 11.3 even 5
968.2.i.m.9.1 4 11.6 odd 10
968.2.i.m.753.1 4 11.8 odd 10
1936.2.a.w.1.2 2 44.31 odd 10
1936.2.a.x.1.2 2 44.35 even 10
7744.2.a.br.1.1 2 88.75 odd 10
7744.2.a.bs.1.1 2 88.35 even 10
7744.2.a.ct.1.2 2 88.13 odd 10
7744.2.a.cu.1.2 2 88.53 even 10
8712.2.a.bj.1.1 2 33.2 even 10
8712.2.a.bk.1.1 2 33.20 odd 10