Properties

Label 7744.2.a.cf.1.2
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $2$
CM discriminant -4
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3872)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46410 q^{5} -3.00000 q^{9} -0.464102 q^{13} +5.92820 q^{17} +1.07180 q^{25} -8.46410 q^{29} -11.3923 q^{37} -11.9282 q^{41} -7.39230 q^{45} -7.00000 q^{49} +3.53590 q^{53} +10.0000 q^{61} -1.14359 q^{65} -6.00000 q^{73} +9.00000 q^{81} +14.6077 q^{85} -18.8564 q^{89} -15.9282 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 6 q^{9} + 6 q^{13} - 2 q^{17} + 16 q^{25} - 10 q^{29} - 2 q^{37} - 10 q^{41} + 6 q^{45} - 14 q^{49} + 14 q^{53} + 20 q^{61} - 30 q^{65} - 12 q^{73} + 18 q^{81} + 50 q^{85} - 10 q^{89} - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 2.46410 1.10198 0.550990 0.834512i \(-0.314250\pi\)
0.550990 + 0.834512i \(0.314250\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −0.464102 −0.128719 −0.0643593 0.997927i \(-0.520500\pi\)
−0.0643593 + 0.997927i \(0.520500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.92820 1.43780 0.718900 0.695113i \(-0.244646\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.07180 0.214359
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.46410 −1.57174 −0.785872 0.618389i \(-0.787786\pi\)
−0.785872 + 0.618389i \(0.787786\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −11.3923 −1.87288 −0.936442 0.350823i \(-0.885902\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.9282 −1.86287 −0.931436 0.363905i \(-0.881443\pi\)
−0.931436 + 0.363905i \(0.881443\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −7.39230 −1.10198
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.53590 0.485693 0.242846 0.970065i \(-0.421919\pi\)
0.242846 + 0.970065i \(0.421919\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.14359 −0.141845
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 14.6077 1.58443
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.8564 −1.99878 −0.999388 0.0349934i \(-0.988859\pi\)
−0.999388 + 0.0349934i \(0.988859\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −15.9282 −1.61726 −0.808632 0.588315i \(-0.799792\pi\)
−0.808632 + 0.588315i \(0.799792\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 20.3205 1.94635 0.973176 0.230063i \(-0.0738931\pi\)
0.973176 + 0.230063i \(0.0738931\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.8564 1.96201 0.981003 0.193993i \(-0.0621440\pi\)
0.981003 + 0.193993i \(0.0621440\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.39230 0.128719
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.67949 −0.865760
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −22.0000 −1.87959 −0.939793 0.341743i \(-0.888983\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −20.8564 −1.73203
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 24.3205 1.99241 0.996207 0.0870170i \(-0.0277334\pi\)
0.996207 + 0.0870170i \(0.0277334\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −17.7846 −1.43780
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −12.7846 −0.983432
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 26.0000 1.97674 0.988372 0.152057i \(-0.0485898\pi\)
0.988372 + 0.152057i \(0.0485898\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −26.3205 −1.95639 −0.978194 0.207693i \(-0.933404\pi\)
−0.978194 + 0.207693i \(0.933404\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −28.0718 −2.06388
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −13.7846 −0.992238 −0.496119 0.868255i \(-0.665242\pi\)
−0.496119 + 0.868255i \(0.665242\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −25.2487 −1.79890 −0.899448 0.437028i \(-0.856031\pi\)
−0.899448 + 0.437028i \(0.856031\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −29.3923 −2.05285
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.75129 −0.185072
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −3.21539 −0.214359
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 18.4641 1.22014 0.610071 0.792347i \(-0.291141\pi\)
0.610071 + 0.792347i \(0.291141\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.856406 0.0561051 0.0280525 0.999606i \(-0.491069\pi\)
0.0280525 + 0.999606i \(0.491069\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −30.0000 −1.93247 −0.966235 0.257663i \(-0.917048\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.2487 −1.10198
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 26.7128 1.66630 0.833150 0.553047i \(-0.186535\pi\)
0.833150 + 0.553047i \(0.186535\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 25.3923 1.57174
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 8.71281 0.535224
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.32051 0.263426 0.131713 0.991288i \(-0.457952\pi\)
0.131713 + 0.991288i \(0.457952\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 15.2487 0.916206 0.458103 0.888899i \(-0.348529\pi\)
0.458103 + 0.888899i \(0.348529\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 18.1436 1.06727
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.5359 −0.790776 −0.395388 0.918514i \(-0.629390\pi\)
−0.395388 + 0.918514i \(0.629390\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.6410 1.41094
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −33.7846 −1.90962 −0.954810 0.297218i \(-0.903941\pi\)
−0.954810 + 0.297218i \(0.903941\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.0000 −1.23564 −0.617822 0.786318i \(-0.711985\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.497423 −0.0275920
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 34.1769 1.87288
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −36.7128 −1.99987 −0.999937 0.0112091i \(-0.996432\pi\)
−0.999937 + 0.0112091i \(0.996432\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 26.1769 1.40122 0.700609 0.713545i \(-0.252912\pi\)
0.700609 + 0.713545i \(0.252912\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.14359 −0.167317 −0.0836583 0.996495i \(-0.526660\pi\)
−0.0836583 + 0.996495i \(0.526660\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.7846 −0.773862
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 35.7846 1.86287
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.92820 0.202313
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −34.3205 −1.74012 −0.870059 0.492947i \(-0.835920\pi\)
−0.870059 + 0.492947i \(0.835920\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 29.3923 1.47516 0.737579 0.675261i \(-0.235969\pi\)
0.737579 + 0.675261i \(0.235969\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −35.6410 −1.77983 −0.889914 0.456129i \(-0.849236\pi\)
−0.889914 + 0.456129i \(0.849236\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 22.1769 1.10198
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 37.6410 1.86123 0.930614 0.366002i \(-0.119274\pi\)
0.930614 + 0.366002i \(0.119274\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 39.2487 1.91287 0.956433 0.291953i \(-0.0943052\pi\)
0.956433 + 0.291953i \(0.0943052\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.35383 0.308206
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 3.78461 0.181877 0.0909384 0.995857i \(-0.471013\pi\)
0.0909384 + 0.995857i \(0.471013\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −46.4641 −2.20261
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 41.6410 1.96516 0.982581 0.185837i \(-0.0594997\pi\)
0.982581 + 0.185837i \(0.0594997\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −27.9282 −1.30643 −0.653213 0.757174i \(-0.726579\pi\)
−0.653213 + 0.757174i \(0.726579\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.67949 0.0782217 0.0391109 0.999235i \(-0.487547\pi\)
0.0391109 + 0.999235i \(0.487547\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10.6077 −0.485693
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 5.28719 0.241075
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −39.2487 −1.78219
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −50.1769 −2.25985
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 4.92820 0.219302
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.53590 0.239786
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 42.0000 1.80572 0.902861 0.429934i \(-0.141463\pi\)
0.902861 + 0.429934i \(0.141463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 50.0718 2.14484
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) −30.0000 −1.28037
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −38.0000 −1.61011 −0.805056 0.593199i \(-0.797865\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 51.3923 2.16209
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 40.5692 1.68892 0.844459 0.535620i \(-0.179922\pi\)
0.844459 + 0.535620i \(0.179922\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 3.43078 0.141845
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.14359 0.375482 0.187741 0.982219i \(-0.439883\pi\)
0.187741 + 0.982219i \(0.439883\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −46.5692 −1.89960 −0.949799 0.312861i \(-0.898713\pi\)
−0.949799 + 0.312861i \(0.898713\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −48.1769 −1.94585 −0.972924 0.231127i \(-0.925759\pi\)
−0.972924 + 0.231127i \(0.925759\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.71281 −0.350765 −0.175382 0.984500i \(-0.556116\pi\)
−0.175382 + 0.984500i \(0.556116\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −29.2102 −1.16841
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −67.5359 −2.69283
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.24871 0.128719
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.0718 −0.713793 −0.356897 0.934144i \(-0.616165\pi\)
−0.356897 + 0.934144i \(0.616165\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.0000 1.01746 0.508729 0.860927i \(-0.330115\pi\)
0.508729 + 0.860927i \(0.330115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 18.0000 0.702247
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −14.6077 −0.568173 −0.284087 0.958799i \(-0.591690\pi\)
−0.284087 + 0.958799i \(0.591690\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −46.0000 −1.77317 −0.886585 0.462566i \(-0.846929\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 44.0333 1.69234 0.846169 0.532915i \(-0.178903\pi\)
0.846169 + 0.532915i \(0.178903\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) −54.2102 −2.07127
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.64102 −0.0625177
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −70.7128 −2.67844
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −50.0333 −1.88973 −0.944866 0.327457i \(-0.893808\pi\)
−0.944866 + 0.327457i \(0.893808\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.07180 −0.336918
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 30.4641 1.12522 0.562609 0.826723i \(-0.309798\pi\)
0.562609 + 0.826723i \(0.309798\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 59.9282 2.19560
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −54.0333 −1.96387 −0.981937 0.189207i \(-0.939408\pi\)
−0.981937 + 0.189207i \(0.939408\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.6410 −0.566986 −0.283493 0.958974i \(-0.591493\pi\)
−0.283493 + 0.958974i \(0.591493\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −43.8231 −1.58443
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −4.21539 −0.152011 −0.0760054 0.997107i \(-0.524217\pi\)
−0.0760054 + 0.997107i \(0.524217\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34.0000 1.22290 0.611448 0.791285i \(-0.290588\pi\)
0.611448 + 0.791285i \(0.290588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −54.2102 −1.93485
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −4.64102 −0.164807
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22.0000 −0.779280 −0.389640 0.920967i \(-0.627401\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 56.5692 1.99878
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 50.0000 1.74501 0.872506 0.488603i \(-0.162493\pi\)
0.872506 + 0.488603i \(0.162493\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 9.67949 0.336183 0.168091 0.985771i \(-0.446240\pi\)
0.168091 + 0.985771i \(0.446240\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −41.4974 −1.43780
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 42.6410 1.47038
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −31.5026 −1.08372
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 54.1769 1.85498 0.927491 0.373845i \(-0.121961\pi\)
0.927491 + 0.373845i \(0.121961\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 58.0000 1.98124 0.990621 0.136637i \(-0.0436295\pi\)
0.990621 + 0.136637i \(0.0436295\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 64.0666 2.17833
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 47.7846 1.61726
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.6077 −0.628337 −0.314169 0.949367i \(-0.601726\pi\)
−0.314169 + 0.949367i \(0.601726\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −52.7128 −1.77594 −0.887970 0.459902i \(-0.847885\pi\)
−0.887970 + 0.459902i \(0.847885\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 20.9615 0.698330
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −64.8564 −2.15590
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −12.2102 −0.401470
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 57.6410 1.89114 0.945570 0.325418i \(-0.105505\pi\)
0.945570 + 0.325418i \(0.105505\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 60.5692 1.97871 0.989355 0.145522i \(-0.0464860\pi\)
0.989355 + 0.145522i \(0.0464860\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −46.3205 −1.51001 −0.755003 0.655722i \(-0.772364\pi\)
−0.755003 + 0.655722i \(0.772364\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 2.78461 0.0903923
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −61.4974 −1.99210 −0.996048 0.0888114i \(-0.971693\pi\)
−0.996048 + 0.0888114i \(0.971693\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −33.9667 −1.09343
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.9282 1.21343 0.606715 0.794919i \(-0.292487\pi\)
0.606715 + 0.794919i \(0.292487\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −60.9615 −1.94635
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −62.2154 −1.98235
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20.6077 0.652652 0.326326 0.945257i \(-0.394189\pi\)
0.326326 + 0.945257i \(0.394189\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.cf.1.2 2
4.3 odd 2 CM 7744.2.a.cf.1.2 2
8.3 odd 2 3872.2.a.v.1.1 2
8.5 even 2 3872.2.a.v.1.1 2
11.10 odd 2 7744.2.a.ce.1.2 2
44.43 even 2 7744.2.a.ce.1.2 2
88.21 odd 2 3872.2.a.w.1.1 yes 2
88.43 even 2 3872.2.a.w.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3872.2.a.v.1.1 2 8.3 odd 2
3872.2.a.v.1.1 2 8.5 even 2
3872.2.a.w.1.1 yes 2 88.21 odd 2
3872.2.a.w.1.1 yes 2 88.43 even 2
7744.2.a.ce.1.2 2 11.10 odd 2
7744.2.a.ce.1.2 2 44.43 even 2
7744.2.a.cf.1.2 2 1.1 even 1 trivial
7744.2.a.cf.1.2 2 4.3 odd 2 CM