Properties

Label 784.2.m.k.197.8
Level $784$
Weight $2$
Character 784.197
Analytic conductor $6.260$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(197,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 197.8
Character \(\chi\) \(=\) 784.197
Dual form 784.2.m.k.589.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.844695 + 1.13424i) q^{2} +(-0.614312 + 0.614312i) q^{3} +(-0.572980 + 1.91617i) q^{4} +(-2.31562 - 2.31562i) q^{5} +(-1.21568 - 0.177868i) q^{6} +(-2.65738 + 0.968682i) q^{8} +2.24524i q^{9} +(0.670466 - 4.58245i) q^{10} +(-2.10128 - 2.10128i) q^{11} +(-0.825135 - 1.52911i) q^{12} +(3.63293 - 3.63293i) q^{13} +2.84503 q^{15} +(-3.34339 - 2.19585i) q^{16} -3.63712 q^{17} +(-2.54663 + 1.89654i) q^{18} +(1.17340 - 1.17340i) q^{19} +(5.76392 - 3.11031i) q^{20} +(0.608405 - 4.15828i) q^{22} -6.16261i q^{23} +(1.03739 - 2.22753i) q^{24} +5.72420i q^{25} +(7.18931 + 1.05188i) q^{26} +(-3.22221 - 3.22221i) q^{27} +(5.10266 - 5.10266i) q^{29} +(2.40318 + 3.22693i) q^{30} -2.01521 q^{31} +(-0.333530 - 5.64701i) q^{32} +2.58168 q^{33} +(-3.07226 - 4.12535i) q^{34} +(-4.30226 - 1.28648i) q^{36} +(4.07871 + 4.07871i) q^{37} +(2.32209 + 0.339748i) q^{38} +4.46350i q^{39} +(8.39658 + 3.91038i) q^{40} -3.71244i q^{41} +(-2.91640 - 2.91640i) q^{43} +(5.23039 - 2.82241i) q^{44} +(5.19913 - 5.19913i) q^{45} +(6.98986 - 5.20553i) q^{46} -10.1313 q^{47} +(3.40282 - 0.704944i) q^{48} +(-6.49259 + 4.83520i) q^{50} +(2.23433 - 2.23433i) q^{51} +(4.87970 + 9.04289i) q^{52} +(-2.69609 - 2.69609i) q^{53} +(0.932961 - 6.37654i) q^{54} +9.73153i q^{55} +1.44167i q^{57} +(10.0978 + 1.47743i) q^{58} +(-2.67184 - 2.67184i) q^{59} +(-1.63014 + 5.45154i) q^{60} +(-4.79291 + 4.79291i) q^{61} +(-1.70224 - 2.28573i) q^{62} +(6.12331 - 5.14831i) q^{64} -16.8250 q^{65} +(2.18073 + 2.92823i) q^{66} +(-4.30731 + 4.30731i) q^{67} +(2.08400 - 6.96933i) q^{68} +(3.78577 + 3.78577i) q^{69} +9.55168i q^{71} +(-2.17492 - 5.96646i) q^{72} -1.14315i q^{73} +(-1.18095 + 8.07148i) q^{74} +(-3.51644 - 3.51644i) q^{75} +(1.57610 + 2.92078i) q^{76} +(-5.06266 + 3.77030i) q^{78} -0.241393 q^{79} +(2.65726 + 12.8268i) q^{80} -2.77684 q^{81} +(4.21079 - 3.13588i) q^{82} +(0.459183 - 0.459183i) q^{83} +(8.42219 + 8.42219i) q^{85} +(0.844416 - 5.77135i) q^{86} +6.26924i q^{87} +(7.61936 + 3.54842i) q^{88} -4.35118i q^{89} +(10.2887 + 1.50536i) q^{90} +(11.8086 + 3.53106i) q^{92} +(1.23797 - 1.23797i) q^{93} +(-8.55785 - 11.4913i) q^{94} -5.43432 q^{95} +(3.67392 + 3.26414i) q^{96} -6.80176 q^{97} +(4.71788 - 4.71788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 4 q^{4} + 4 q^{5} + 2 q^{6} - 2 q^{8} - 2 q^{10} + 4 q^{11} + 2 q^{12} + 12 q^{13} - 20 q^{15} - 16 q^{16} + 8 q^{17} - 18 q^{18} - 4 q^{19} + 8 q^{20} + 18 q^{24} - 10 q^{26} + 12 q^{27}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.844695 + 1.13424i 0.597290 + 0.802026i
\(3\) −0.614312 + 0.614312i −0.354673 + 0.354673i −0.861845 0.507172i \(-0.830691\pi\)
0.507172 + 0.861845i \(0.330691\pi\)
\(4\) −0.572980 + 1.91617i −0.286490 + 0.958083i
\(5\) −2.31562 2.31562i −1.03558 1.03558i −0.999343 0.0362338i \(-0.988464\pi\)
−0.0362338 0.999343i \(-0.511536\pi\)
\(6\) −1.21568 0.177868i −0.496299 0.0726143i
\(7\) 0 0
\(8\) −2.65738 + 0.968682i −0.939525 + 0.342481i
\(9\) 2.24524i 0.748414i
\(10\) 0.670466 4.58245i 0.212020 1.44910i
\(11\) −2.10128 2.10128i −0.633559 0.633559i 0.315400 0.948959i \(-0.397861\pi\)
−0.948959 + 0.315400i \(0.897861\pi\)
\(12\) −0.825135 1.52911i −0.238196 0.441417i
\(13\) 3.63293 3.63293i 1.00759 1.00759i 0.00762179 0.999971i \(-0.497574\pi\)
0.999971 0.00762179i \(-0.00242611\pi\)
\(14\) 0 0
\(15\) 2.84503 0.734583
\(16\) −3.34339 2.19585i −0.835847 0.548963i
\(17\) −3.63712 −0.882131 −0.441066 0.897475i \(-0.645399\pi\)
−0.441066 + 0.897475i \(0.645399\pi\)
\(18\) −2.54663 + 1.89654i −0.600247 + 0.447020i
\(19\) 1.17340 1.17340i 0.269197 0.269197i −0.559579 0.828777i \(-0.689037\pi\)
0.828777 + 0.559579i \(0.189037\pi\)
\(20\) 5.76392 3.11031i 1.28885 0.695486i
\(21\) 0 0
\(22\) 0.608405 4.15828i 0.129712 0.886549i
\(23\) 6.16261i 1.28499i −0.766288 0.642497i \(-0.777899\pi\)
0.766288 0.642497i \(-0.222101\pi\)
\(24\) 1.03739 2.22753i 0.211756 0.454693i
\(25\) 5.72420i 1.14484i
\(26\) 7.18931 + 1.05188i 1.40994 + 0.206291i
\(27\) −3.22221 3.22221i −0.620115 0.620115i
\(28\) 0 0
\(29\) 5.10266 5.10266i 0.947539 0.947539i −0.0511514 0.998691i \(-0.516289\pi\)
0.998691 + 0.0511514i \(0.0162891\pi\)
\(30\) 2.40318 + 3.22693i 0.438759 + 0.589154i
\(31\) −2.01521 −0.361943 −0.180972 0.983488i \(-0.557924\pi\)
−0.180972 + 0.983488i \(0.557924\pi\)
\(32\) −0.333530 5.64701i −0.0589603 0.998260i
\(33\) 2.58168 0.449413
\(34\) −3.07226 4.12535i −0.526888 0.707492i
\(35\) 0 0
\(36\) −4.30226 1.28648i −0.717043 0.214413i
\(37\) 4.07871 + 4.07871i 0.670536 + 0.670536i 0.957839 0.287304i \(-0.0927590\pi\)
−0.287304 + 0.957839i \(0.592759\pi\)
\(38\) 2.32209 + 0.339748i 0.376692 + 0.0551144i
\(39\) 4.46350i 0.714732i
\(40\) 8.39658 + 3.91038i 1.32762 + 0.618285i
\(41\) 3.71244i 0.579786i −0.957059 0.289893i \(-0.906380\pi\)
0.957059 0.289893i \(-0.0936198\pi\)
\(42\) 0 0
\(43\) −2.91640 2.91640i −0.444747 0.444747i 0.448857 0.893604i \(-0.351831\pi\)
−0.893604 + 0.448857i \(0.851831\pi\)
\(44\) 5.23039 2.82241i 0.788511 0.425494i
\(45\) 5.19913 5.19913i 0.775040 0.775040i
\(46\) 6.98986 5.20553i 1.03060 0.767513i
\(47\) −10.1313 −1.47780 −0.738900 0.673815i \(-0.764655\pi\)
−0.738900 + 0.673815i \(0.764655\pi\)
\(48\) 3.40282 0.704944i 0.491155 0.101750i
\(49\) 0 0
\(50\) −6.49259 + 4.83520i −0.918191 + 0.683801i
\(51\) 2.23433 2.23433i 0.312868 0.312868i
\(52\) 4.87970 + 9.04289i 0.676692 + 1.25402i
\(53\) −2.69609 2.69609i −0.370336 0.370336i 0.497264 0.867600i \(-0.334338\pi\)
−0.867600 + 0.497264i \(0.834338\pi\)
\(54\) 0.932961 6.37654i 0.126960 0.867737i
\(55\) 9.73153i 1.31220i
\(56\) 0 0
\(57\) 1.44167i 0.190954i
\(58\) 10.0978 + 1.47743i 1.32591 + 0.193995i
\(59\) −2.67184 2.67184i −0.347845 0.347845i 0.511462 0.859306i \(-0.329104\pi\)
−0.859306 + 0.511462i \(0.829104\pi\)
\(60\) −1.63014 + 5.45154i −0.210451 + 0.703791i
\(61\) −4.79291 + 4.79291i −0.613670 + 0.613670i −0.943900 0.330231i \(-0.892873\pi\)
0.330231 + 0.943900i \(0.392873\pi\)
\(62\) −1.70224 2.28573i −0.216185 0.290288i
\(63\) 0 0
\(64\) 6.12331 5.14831i 0.765414 0.643538i
\(65\) −16.8250 −2.08688
\(66\) 2.18073 + 2.92823i 0.268430 + 0.360441i
\(67\) −4.30731 + 4.30731i −0.526222 + 0.526222i −0.919444 0.393222i \(-0.871361\pi\)
0.393222 + 0.919444i \(0.371361\pi\)
\(68\) 2.08400 6.96933i 0.252722 0.845155i
\(69\) 3.78577 + 3.78577i 0.455753 + 0.455753i
\(70\) 0 0
\(71\) 9.55168i 1.13358i 0.823864 + 0.566788i \(0.191814\pi\)
−0.823864 + 0.566788i \(0.808186\pi\)
\(72\) −2.17492 5.96646i −0.256317 0.703154i
\(73\) 1.14315i 0.133796i −0.997760 0.0668980i \(-0.978690\pi\)
0.997760 0.0668980i \(-0.0213102\pi\)
\(74\) −1.18095 + 8.07148i −0.137283 + 0.938291i
\(75\) −3.51644 3.51644i −0.406044 0.406044i
\(76\) 1.57610 + 2.92078i 0.180791 + 0.335036i
\(77\) 0 0
\(78\) −5.06266 + 3.77030i −0.573233 + 0.426902i
\(79\) −0.241393 −0.0271588 −0.0135794 0.999908i \(-0.504323\pi\)
−0.0135794 + 0.999908i \(0.504323\pi\)
\(80\) 2.65726 + 12.8268i 0.297090 + 1.43408i
\(81\) −2.77684 −0.308538
\(82\) 4.21079 3.13588i 0.465004 0.346300i
\(83\) 0.459183 0.459183i 0.0504018 0.0504018i −0.681457 0.731858i \(-0.738653\pi\)
0.731858 + 0.681457i \(0.238653\pi\)
\(84\) 0 0
\(85\) 8.42219 + 8.42219i 0.913515 + 0.913515i
\(86\) 0.844416 5.77135i 0.0910557 0.622341i
\(87\) 6.26924i 0.672133i
\(88\) 7.61936 + 3.54842i 0.812226 + 0.378263i
\(89\) 4.35118i 0.461224i −0.973046 0.230612i \(-0.925927\pi\)
0.973046 0.230612i \(-0.0740728\pi\)
\(90\) 10.2887 + 1.50536i 1.08453 + 0.158679i
\(91\) 0 0
\(92\) 11.8086 + 3.53106i 1.23113 + 0.368138i
\(93\) 1.23797 1.23797i 0.128371 0.128371i
\(94\) −8.55785 11.4913i −0.882675 1.18523i
\(95\) −5.43432 −0.557549
\(96\) 3.67392 + 3.26414i 0.374968 + 0.333144i
\(97\) −6.80176 −0.690614 −0.345307 0.938490i \(-0.612225\pi\)
−0.345307 + 0.938490i \(0.612225\pi\)
\(98\) 0 0
\(99\) 4.71788 4.71788i 0.474165 0.474165i
\(100\) −10.9685 3.27985i −1.09685 0.327985i
\(101\) 2.25232 + 2.25232i 0.224114 + 0.224114i 0.810229 0.586114i \(-0.199343\pi\)
−0.586114 + 0.810229i \(0.699343\pi\)
\(102\) 4.42158 + 0.646928i 0.437801 + 0.0640554i
\(103\) 3.75921i 0.370406i 0.982700 + 0.185203i \(0.0592942\pi\)
−0.982700 + 0.185203i \(0.940706\pi\)
\(104\) −6.13491 + 13.1732i −0.601577 + 1.29174i
\(105\) 0 0
\(106\) 0.780626 5.33537i 0.0758211 0.518217i
\(107\) 0.268184 + 0.268184i 0.0259263 + 0.0259263i 0.719951 0.694025i \(-0.244164\pi\)
−0.694025 + 0.719951i \(0.744164\pi\)
\(108\) 8.02056 4.32803i 0.771779 0.416465i
\(109\) 7.06908 7.06908i 0.677095 0.677095i −0.282247 0.959342i \(-0.591080\pi\)
0.959342 + 0.282247i \(0.0910796\pi\)
\(110\) −11.0378 + 8.22017i −1.05242 + 0.783763i
\(111\) −5.01120 −0.475642
\(112\) 0 0
\(113\) 2.62015 0.246483 0.123242 0.992377i \(-0.460671\pi\)
0.123242 + 0.992377i \(0.460671\pi\)
\(114\) −1.63520 + 1.21777i −0.153150 + 0.114055i
\(115\) −14.2703 + 14.2703i −1.33071 + 1.33071i
\(116\) 6.85382 + 12.7013i 0.636361 + 1.17928i
\(117\) 8.15680 + 8.15680i 0.754097 + 0.754097i
\(118\) 0.773607 5.28739i 0.0712163 0.486744i
\(119\) 0 0
\(120\) −7.56031 + 2.75592i −0.690159 + 0.251580i
\(121\) 2.16926i 0.197205i
\(122\) −9.48484 1.38774i −0.858717 0.125640i
\(123\) 2.28060 + 2.28060i 0.205635 + 0.205635i
\(124\) 1.15468 3.86148i 0.103693 0.346772i
\(125\) 1.67697 1.67697i 0.149993 0.149993i
\(126\) 0 0
\(127\) −12.8840 −1.14327 −0.571635 0.820508i \(-0.693691\pi\)
−0.571635 + 0.820508i \(0.693691\pi\)
\(128\) 11.0117 + 2.59653i 0.973308 + 0.229503i
\(129\) 3.58316 0.315479
\(130\) −14.2120 19.0835i −1.24647 1.67373i
\(131\) −6.57048 + 6.57048i −0.574065 + 0.574065i −0.933262 0.359197i \(-0.883051\pi\)
0.359197 + 0.933262i \(0.383051\pi\)
\(132\) −1.47925 + 4.94693i −0.128752 + 0.430575i
\(133\) 0 0
\(134\) −8.52388 1.24714i −0.736351 0.107737i
\(135\) 14.9229i 1.28435i
\(136\) 9.66520 3.52321i 0.828784 0.302113i
\(137\) 11.8024i 1.00834i −0.863604 0.504172i \(-0.831798\pi\)
0.863604 0.504172i \(-0.168202\pi\)
\(138\) −1.09613 + 7.49177i −0.0933090 + 0.637742i
\(139\) −8.15708 8.15708i −0.691874 0.691874i 0.270770 0.962644i \(-0.412722\pi\)
−0.962644 + 0.270770i \(0.912722\pi\)
\(140\) 0 0
\(141\) 6.22377 6.22377i 0.524136 0.524136i
\(142\) −10.8339 + 8.06825i −0.909157 + 0.677073i
\(143\) −15.2676 −1.27674
\(144\) 4.93022 7.50671i 0.410852 0.625559i
\(145\) −23.6316 −1.96250
\(146\) 1.29660 0.965616i 0.107308 0.0799149i
\(147\) 0 0
\(148\) −10.1525 + 5.47846i −0.834531 + 0.450327i
\(149\) −8.30787 8.30787i −0.680607 0.680607i 0.279530 0.960137i \(-0.409821\pi\)
−0.960137 + 0.279530i \(0.909821\pi\)
\(150\) 1.01815 6.95880i 0.0831318 0.568184i
\(151\) 19.6074i 1.59563i −0.602903 0.797815i \(-0.705989\pi\)
0.602903 0.797815i \(-0.294011\pi\)
\(152\) −1.98152 + 4.25483i −0.160723 + 0.345113i
\(153\) 8.16622i 0.660199i
\(154\) 0 0
\(155\) 4.66647 + 4.66647i 0.374820 + 0.374820i
\(156\) −8.55281 2.55750i −0.684773 0.204764i
\(157\) 3.82384 3.82384i 0.305176 0.305176i −0.537859 0.843035i \(-0.680767\pi\)
0.843035 + 0.537859i \(0.180767\pi\)
\(158\) −0.203903 0.273796i −0.0162217 0.0217821i
\(159\) 3.31248 0.262696
\(160\) −12.3040 + 13.8487i −0.972718 + 1.09483i
\(161\) 0 0
\(162\) −2.34558 3.14959i −0.184286 0.247455i
\(163\) 7.97599 7.97599i 0.624727 0.624727i −0.322009 0.946737i \(-0.604358\pi\)
0.946737 + 0.322009i \(0.104358\pi\)
\(164\) 7.11366 + 2.12716i 0.555484 + 0.166103i
\(165\) −5.97819 5.97819i −0.465402 0.465402i
\(166\) 0.908690 + 0.132952i 0.0705280 + 0.0103191i
\(167\) 21.8111i 1.68779i 0.536508 + 0.843895i \(0.319743\pi\)
−0.536508 + 0.843895i \(0.680257\pi\)
\(168\) 0 0
\(169\) 13.3963i 1.03049i
\(170\) −2.43857 + 16.6669i −0.187029 + 1.27830i
\(171\) 2.63458 + 2.63458i 0.201471 + 0.201471i
\(172\) 7.25935 3.91727i 0.553520 0.298689i
\(173\) 16.0601 16.0601i 1.22103 1.22103i 0.253759 0.967267i \(-0.418333\pi\)
0.967267 0.253759i \(-0.0816671\pi\)
\(174\) −7.11080 + 5.29560i −0.539068 + 0.401458i
\(175\) 0 0
\(176\) 2.41129 + 11.6395i 0.181758 + 0.877359i
\(177\) 3.28269 0.246742
\(178\) 4.93526 3.67542i 0.369913 0.275484i
\(179\) −15.2220 + 15.2220i −1.13774 + 1.13774i −0.148888 + 0.988854i \(0.547569\pi\)
−0.988854 + 0.148888i \(0.952431\pi\)
\(180\) 6.98340 + 12.9414i 0.520512 + 0.964595i
\(181\) 11.8484 + 11.8484i 0.880684 + 0.880684i 0.993604 0.112920i \(-0.0360205\pi\)
−0.112920 + 0.993604i \(0.536020\pi\)
\(182\) 0 0
\(183\) 5.88869i 0.435304i
\(184\) 5.96961 + 16.3764i 0.440086 + 1.20728i
\(185\) 18.8895i 1.38878i
\(186\) 2.44986 + 0.358442i 0.179632 + 0.0262823i
\(187\) 7.64260 + 7.64260i 0.558882 + 0.558882i
\(188\) 5.80503 19.4132i 0.423375 1.41586i
\(189\) 0 0
\(190\) −4.59034 6.16380i −0.333018 0.447169i
\(191\) 7.88799 0.570755 0.285377 0.958415i \(-0.407881\pi\)
0.285377 + 0.958415i \(0.407881\pi\)
\(192\) −0.598958 + 6.92429i −0.0432261 + 0.499717i
\(193\) 24.8808 1.79096 0.895478 0.445105i \(-0.146834\pi\)
0.895478 + 0.445105i \(0.146834\pi\)
\(194\) −5.74541 7.71480i −0.412497 0.553890i
\(195\) 10.3358 10.3358i 0.740160 0.740160i
\(196\) 0 0
\(197\) −7.75408 7.75408i −0.552455 0.552455i 0.374694 0.927149i \(-0.377748\pi\)
−0.927149 + 0.374694i \(0.877748\pi\)
\(198\) 9.33635 + 1.36602i 0.663506 + 0.0970786i
\(199\) 11.4472i 0.811469i 0.913991 + 0.405734i \(0.132984\pi\)
−0.913991 + 0.405734i \(0.867016\pi\)
\(200\) −5.54493 15.2114i −0.392086 1.07561i
\(201\) 5.29207i 0.373274i
\(202\) −0.652139 + 4.45719i −0.0458843 + 0.313607i
\(203\) 0 0
\(204\) 3.00112 + 5.56157i 0.210120 + 0.389387i
\(205\) −8.59661 + 8.59661i −0.600414 + 0.600414i
\(206\) −4.26383 + 3.17539i −0.297075 + 0.221240i
\(207\) 13.8366 0.961707
\(208\) −20.1237 + 4.16891i −1.39532 + 0.289062i
\(209\) −4.93130 −0.341105
\(210\) 0 0
\(211\) −8.69524 + 8.69524i −0.598605 + 0.598605i −0.939941 0.341336i \(-0.889120\pi\)
0.341336 + 0.939941i \(0.389120\pi\)
\(212\) 6.71096 3.62135i 0.460910 0.248715i
\(213\) −5.86771 5.86771i −0.402049 0.402049i
\(214\) −0.0776500 + 0.530717i −0.00530805 + 0.0362791i
\(215\) 13.5066i 0.921139i
\(216\) 11.6839 + 5.44134i 0.794991 + 0.370236i
\(217\) 0 0
\(218\) 13.9892 + 2.04679i 0.947470 + 0.138626i
\(219\) 0.702252 + 0.702252i 0.0474538 + 0.0474538i
\(220\) −18.6472 5.57597i −1.25720 0.375932i
\(221\) −13.2134 + 13.2134i −0.888829 + 0.888829i
\(222\) −4.23293 5.68388i −0.284096 0.381477i
\(223\) −21.9483 −1.46976 −0.734882 0.678195i \(-0.762762\pi\)
−0.734882 + 0.678195i \(0.762762\pi\)
\(224\) 0 0
\(225\) −12.8522 −0.856814
\(226\) 2.21323 + 2.97187i 0.147222 + 0.197686i
\(227\) 17.4436 17.4436i 1.15777 1.15777i 0.172820 0.984953i \(-0.444712\pi\)
0.984953 0.172820i \(-0.0552878\pi\)
\(228\) −2.76248 0.826050i −0.182950 0.0547065i
\(229\) 6.72768 + 6.72768i 0.444578 + 0.444578i 0.893547 0.448969i \(-0.148209\pi\)
−0.448969 + 0.893547i \(0.648209\pi\)
\(230\) −28.2399 4.13182i −1.86208 0.272444i
\(231\) 0 0
\(232\) −8.61684 + 18.5025i −0.565723 + 1.21475i
\(233\) 22.2376i 1.45684i 0.685133 + 0.728418i \(0.259744\pi\)
−0.685133 + 0.728418i \(0.740256\pi\)
\(234\) −2.36172 + 16.1417i −0.154391 + 1.05522i
\(235\) 23.4602 + 23.4602i 1.53038 + 1.53038i
\(236\) 6.65061 3.58878i 0.432918 0.233610i
\(237\) 0.148290 0.148290i 0.00963250 0.00963250i
\(238\) 0 0
\(239\) 14.9579 0.967548 0.483774 0.875193i \(-0.339266\pi\)
0.483774 + 0.875193i \(0.339266\pi\)
\(240\) −9.51202 6.24726i −0.613999 0.403259i
\(241\) 24.3500 1.56852 0.784262 0.620430i \(-0.213042\pi\)
0.784262 + 0.620430i \(0.213042\pi\)
\(242\) 2.46045 1.83236i 0.158164 0.117789i
\(243\) 11.3725 11.3725i 0.729545 0.729545i
\(244\) −6.43777 11.9303i −0.412136 0.763757i
\(245\) 0 0
\(246\) −0.660325 + 4.51315i −0.0421008 + 0.287748i
\(247\) 8.52578i 0.542483i
\(248\) 5.35518 1.95210i 0.340055 0.123958i
\(249\) 0.564162i 0.0357523i
\(250\) 3.31862 + 0.485552i 0.209888 + 0.0307090i
\(251\) 3.50509 + 3.50509i 0.221239 + 0.221239i 0.809020 0.587781i \(-0.199998\pi\)
−0.587781 + 0.809020i \(0.699998\pi\)
\(252\) 0 0
\(253\) −12.9494 + 12.9494i −0.814120 + 0.814120i
\(254\) −10.8831 14.6135i −0.682863 0.916932i
\(255\) −10.3477 −0.647998
\(256\) 6.35647 + 14.6832i 0.397279 + 0.917698i
\(257\) −6.49705 −0.405275 −0.202638 0.979254i \(-0.564951\pi\)
−0.202638 + 0.979254i \(0.564951\pi\)
\(258\) 3.02668 + 4.06415i 0.188433 + 0.253023i
\(259\) 0 0
\(260\) 9.64038 32.2394i 0.597871 1.99940i
\(261\) 11.4567 + 11.4567i 0.709152 + 0.709152i
\(262\) −13.0025 1.90242i −0.803298 0.117532i
\(263\) 24.7362i 1.52530i −0.646811 0.762650i \(-0.723898\pi\)
0.646811 0.762650i \(-0.276102\pi\)
\(264\) −6.86050 + 2.50083i −0.422235 + 0.153915i
\(265\) 12.4862i 0.767023i
\(266\) 0 0
\(267\) 2.67298 + 2.67298i 0.163584 + 0.163584i
\(268\) −5.78552 10.7215i −0.353407 0.654922i
\(269\) 1.05961 1.05961i 0.0646055 0.0646055i −0.674066 0.738671i \(-0.735454\pi\)
0.738671 + 0.674066i \(0.235454\pi\)
\(270\) −16.9260 + 12.6053i −1.03009 + 0.767132i
\(271\) 7.36247 0.447238 0.223619 0.974677i \(-0.428213\pi\)
0.223619 + 0.974677i \(0.428213\pi\)
\(272\) 12.1603 + 7.98658i 0.737327 + 0.484257i
\(273\) 0 0
\(274\) 13.3866 9.96939i 0.808717 0.602273i
\(275\) 12.0281 12.0281i 0.725324 0.725324i
\(276\) −9.42333 + 5.08499i −0.567218 + 0.306080i
\(277\) −3.20233 3.20233i −0.192410 0.192410i 0.604327 0.796737i \(-0.293442\pi\)
−0.796737 + 0.604327i \(0.793442\pi\)
\(278\) 2.36180 16.1423i 0.141652 0.968151i
\(279\) 4.52464i 0.270883i
\(280\) 0 0
\(281\) 9.72875i 0.580369i 0.956971 + 0.290184i \(0.0937166\pi\)
−0.956971 + 0.290184i \(0.906283\pi\)
\(282\) 12.3164 + 1.80203i 0.733432 + 0.107310i
\(283\) −2.84445 2.84445i −0.169085 0.169085i 0.617492 0.786577i \(-0.288149\pi\)
−0.786577 + 0.617492i \(0.788149\pi\)
\(284\) −18.3026 5.47292i −1.08606 0.324758i
\(285\) 3.33837 3.33837i 0.197748 0.197748i
\(286\) −12.8965 17.3170i −0.762583 1.02398i
\(287\) 0 0
\(288\) 12.6789 0.748855i 0.747112 0.0441267i
\(289\) −3.77136 −0.221844
\(290\) −19.9615 26.8038i −1.17218 1.57398i
\(291\) 4.17840 4.17840i 0.244942 0.244942i
\(292\) 2.19047 + 0.655004i 0.128188 + 0.0383312i
\(293\) −1.88131 1.88131i −0.109908 0.109908i 0.650014 0.759922i \(-0.274763\pi\)
−0.759922 + 0.650014i \(0.774763\pi\)
\(294\) 0 0
\(295\) 12.3740i 0.720440i
\(296\) −14.7896 6.88770i −0.859630 0.400339i
\(297\) 13.5415i 0.785760i
\(298\) 2.40546 16.4407i 0.139345 0.952384i
\(299\) −22.3883 22.3883i −1.29475 1.29475i
\(300\) 8.75295 4.72324i 0.505352 0.272696i
\(301\) 0 0
\(302\) 22.2394 16.5623i 1.27974 0.953053i
\(303\) −2.76726 −0.158975
\(304\) −6.49977 + 1.34652i −0.372787 + 0.0772284i
\(305\) 22.1971 1.27100
\(306\) 9.26241 6.89796i 0.529497 0.394330i
\(307\) −3.98977 + 3.98977i −0.227708 + 0.227708i −0.811735 0.584026i \(-0.801476\pi\)
0.584026 + 0.811735i \(0.301476\pi\)
\(308\) 0 0
\(309\) −2.30933 2.30933i −0.131373 0.131373i
\(310\) −1.35113 + 9.23462i −0.0767391 + 0.524491i
\(311\) 0.808093i 0.0458228i 0.999737 + 0.0229114i \(0.00729356\pi\)
−0.999737 + 0.0229114i \(0.992706\pi\)
\(312\) −4.32371 11.8612i −0.244782 0.671509i
\(313\) 23.2955i 1.31674i 0.752694 + 0.658371i \(0.228754\pi\)
−0.752694 + 0.658371i \(0.771246\pi\)
\(314\) 7.56712 + 1.10716i 0.427037 + 0.0624805i
\(315\) 0 0
\(316\) 0.138313 0.462549i 0.00778073 0.0260204i
\(317\) −2.20803 + 2.20803i −0.124015 + 0.124015i −0.766390 0.642375i \(-0.777949\pi\)
0.642375 + 0.766390i \(0.277949\pi\)
\(318\) 2.79803 + 3.75713i 0.156906 + 0.210689i
\(319\) −21.4442 −1.20064
\(320\) −26.1008 2.25775i −1.45908 0.126212i
\(321\) −0.329497 −0.0183907
\(322\) 0 0
\(323\) −4.26781 + 4.26781i −0.237467 + 0.237467i
\(324\) 1.59107 5.32088i 0.0883930 0.295605i
\(325\) 20.7956 + 20.7956i 1.15353 + 1.15353i
\(326\) 15.7839 + 2.30937i 0.874191 + 0.127904i
\(327\) 8.68524i 0.480295i
\(328\) 3.59618 + 9.86537i 0.198566 + 0.544724i
\(329\) 0 0
\(330\) 1.73093 11.8304i 0.0952845 0.651244i
\(331\) −11.1391 11.1391i −0.612258 0.612258i 0.331276 0.943534i \(-0.392521\pi\)
−0.943534 + 0.331276i \(0.892521\pi\)
\(332\) 0.616767 + 1.14297i 0.0338495 + 0.0627288i
\(333\) −9.15769 + 9.15769i −0.501838 + 0.501838i
\(334\) −24.7389 + 18.4237i −1.35365 + 1.00810i
\(335\) 19.9482 1.08989
\(336\) 0 0
\(337\) −5.36065 −0.292013 −0.146007 0.989284i \(-0.546642\pi\)
−0.146007 + 0.989284i \(0.546642\pi\)
\(338\) 15.1946 11.3158i 0.826476 0.615499i
\(339\) −1.60959 + 1.60959i −0.0874210 + 0.0874210i
\(340\) −20.9641 + 11.3126i −1.13694 + 0.613510i
\(341\) 4.23452 + 4.23452i 0.229312 + 0.229312i
\(342\) −0.762816 + 5.21364i −0.0412484 + 0.281922i
\(343\) 0 0
\(344\) 10.5750 + 4.92491i 0.570168 + 0.265534i
\(345\) 17.5328i 0.943934i
\(346\) 31.7818 + 4.65005i 1.70860 + 0.249988i
\(347\) −11.7410 11.7410i −0.630292 0.630292i 0.317849 0.948141i \(-0.397039\pi\)
−0.948141 + 0.317849i \(0.897039\pi\)
\(348\) −12.0129 3.59215i −0.643960 0.192560i
\(349\) 22.2799 22.2799i 1.19262 1.19262i 0.216286 0.976330i \(-0.430606\pi\)
0.976330 0.216286i \(-0.0693943\pi\)
\(350\) 0 0
\(351\) −23.4121 −1.24965
\(352\) −11.1651 + 12.5668i −0.595102 + 0.669812i
\(353\) −13.6875 −0.728510 −0.364255 0.931299i \(-0.618676\pi\)
−0.364255 + 0.931299i \(0.618676\pi\)
\(354\) 2.77287 + 3.72334i 0.147377 + 0.197894i
\(355\) 22.1181 22.1181i 1.17390 1.17390i
\(356\) 8.33758 + 2.49314i 0.441891 + 0.132136i
\(357\) 0 0
\(358\) −30.1232 4.40737i −1.59206 0.232937i
\(359\) 6.32231i 0.333679i 0.985984 + 0.166840i \(0.0533562\pi\)
−0.985984 + 0.166840i \(0.946644\pi\)
\(360\) −8.77975 + 18.8524i −0.462733 + 0.993606i
\(361\) 16.2462i 0.855066i
\(362\) −3.43059 + 23.4471i −0.180308 + 1.23235i
\(363\) 1.33260 + 1.33260i 0.0699434 + 0.0699434i
\(364\) 0 0
\(365\) −2.64711 + 2.64711i −0.138556 + 0.138556i
\(366\) 6.67916 4.97414i 0.349125 0.260003i
\(367\) 37.2328 1.94354 0.971768 0.235939i \(-0.0758165\pi\)
0.971768 + 0.235939i \(0.0758165\pi\)
\(368\) −13.5322 + 20.6040i −0.705414 + 1.07406i
\(369\) 8.33534 0.433920
\(370\) 21.4251 15.9559i 1.11384 0.829505i
\(371\) 0 0
\(372\) 1.66282 + 3.08149i 0.0862134 + 0.159768i
\(373\) 3.05659 + 3.05659i 0.158264 + 0.158264i 0.781797 0.623533i \(-0.214303\pi\)
−0.623533 + 0.781797i \(0.714303\pi\)
\(374\) −2.21284 + 15.1242i −0.114423 + 0.782053i
\(375\) 2.06037i 0.106397i
\(376\) 26.9227 9.81400i 1.38843 0.506118i
\(377\) 37.0752i 1.90947i
\(378\) 0 0
\(379\) −11.5118 11.5118i −0.591323 0.591323i 0.346666 0.937989i \(-0.387314\pi\)
−0.937989 + 0.346666i \(0.887314\pi\)
\(380\) 3.11376 10.4131i 0.159732 0.534179i
\(381\) 7.91479 7.91479i 0.405487 0.405487i
\(382\) 6.66295 + 8.94684i 0.340906 + 0.457760i
\(383\) 19.7267 1.00799 0.503993 0.863708i \(-0.331864\pi\)
0.503993 + 0.863708i \(0.331864\pi\)
\(384\) −8.35971 + 5.16955i −0.426605 + 0.263808i
\(385\) 0 0
\(386\) 21.0167 + 28.2206i 1.06972 + 1.43639i
\(387\) 6.54802 6.54802i 0.332855 0.332855i
\(388\) 3.89728 13.0333i 0.197854 0.661666i
\(389\) −4.19887 4.19887i −0.212891 0.212891i 0.592603 0.805494i \(-0.298100\pi\)
−0.805494 + 0.592603i \(0.798100\pi\)
\(390\) 20.4538 + 2.99262i 1.03572 + 0.151537i
\(391\) 22.4142i 1.13353i
\(392\) 0 0
\(393\) 8.07264i 0.407211i
\(394\) 2.24512 15.3448i 0.113107 0.773059i
\(395\) 0.558974 + 0.558974i 0.0281250 + 0.0281250i
\(396\) 6.33699 + 11.7435i 0.318446 + 0.590133i
\(397\) 18.0822 18.0822i 0.907520 0.907520i −0.0885515 0.996072i \(-0.528224\pi\)
0.996072 + 0.0885515i \(0.0282238\pi\)
\(398\) −12.9838 + 9.66937i −0.650819 + 0.484682i
\(399\) 0 0
\(400\) 12.5695 19.1382i 0.628475 0.956911i
\(401\) 3.60293 0.179922 0.0899610 0.995945i \(-0.471326\pi\)
0.0899610 + 0.995945i \(0.471326\pi\)
\(402\) 6.00245 4.47018i 0.299375 0.222952i
\(403\) −7.32112 + 7.32112i −0.364691 + 0.364691i
\(404\) −5.60636 + 3.02529i −0.278927 + 0.150514i
\(405\) 6.43010 + 6.43010i 0.319514 + 0.319514i
\(406\) 0 0
\(407\) 17.1410i 0.849648i
\(408\) −3.77310 + 8.10180i −0.186796 + 0.401099i
\(409\) 15.3319i 0.758114i 0.925373 + 0.379057i \(0.123751\pi\)
−0.925373 + 0.379057i \(0.876249\pi\)
\(410\) −17.0121 2.48907i −0.840168 0.122926i
\(411\) 7.25032 + 7.25032i 0.357632 + 0.357632i
\(412\) −7.20327 2.15395i −0.354880 0.106118i
\(413\) 0 0
\(414\) 11.6877 + 15.6939i 0.574418 + 0.771314i
\(415\) −2.12659 −0.104390
\(416\) −21.7269 19.3035i −1.06525 0.946432i
\(417\) 10.0220 0.490778
\(418\) −4.16544 5.59325i −0.203738 0.273575i
\(419\) 17.2949 17.2949i 0.844910 0.844910i −0.144583 0.989493i \(-0.546184\pi\)
0.989493 + 0.144583i \(0.0461841\pi\)
\(420\) 0 0
\(421\) 18.2430 + 18.2430i 0.889111 + 0.889111i 0.994438 0.105327i \(-0.0335888\pi\)
−0.105327 + 0.994438i \(0.533589\pi\)
\(422\) −17.2073 2.51762i −0.837637 0.122556i
\(423\) 22.7472i 1.10601i
\(424\) 9.77617 + 4.55287i 0.474773 + 0.221107i
\(425\) 20.8196i 1.00990i
\(426\) 1.69894 11.6118i 0.0823138 0.562593i
\(427\) 0 0
\(428\) −0.667549 + 0.360221i −0.0322672 + 0.0174119i
\(429\) 9.37906 9.37906i 0.452825 0.452825i
\(430\) −15.3196 + 11.4089i −0.738777 + 0.550187i
\(431\) 33.6195 1.61940 0.809698 0.586846i \(-0.199631\pi\)
0.809698 + 0.586846i \(0.199631\pi\)
\(432\) 3.69760 + 17.8486i 0.177901 + 0.858742i
\(433\) −26.5511 −1.27596 −0.637982 0.770051i \(-0.720231\pi\)
−0.637982 + 0.770051i \(0.720231\pi\)
\(434\) 0 0
\(435\) 14.5172 14.5172i 0.696046 0.696046i
\(436\) 9.49509 + 17.5960i 0.454732 + 0.842695i
\(437\) −7.23124 7.23124i −0.345917 0.345917i
\(438\) −0.203330 + 1.38971i −0.00971550 + 0.0664028i
\(439\) 19.6106i 0.935962i 0.883739 + 0.467981i \(0.155018\pi\)
−0.883739 + 0.467981i \(0.844982\pi\)
\(440\) −9.42675 25.8603i −0.449403 1.23284i
\(441\) 0 0
\(442\) −26.1484 3.82581i −1.24375 0.181975i
\(443\) 4.82383 + 4.82383i 0.229187 + 0.229187i 0.812353 0.583166i \(-0.198186\pi\)
−0.583166 + 0.812353i \(0.698186\pi\)
\(444\) 2.87132 9.60229i 0.136267 0.455704i
\(445\) −10.0757 + 10.0757i −0.477633 + 0.477633i
\(446\) −18.5396 24.8945i −0.877875 1.17879i
\(447\) 10.2072 0.482786
\(448\) 0 0
\(449\) 6.32412 0.298454 0.149227 0.988803i \(-0.452322\pi\)
0.149227 + 0.988803i \(0.452322\pi\)
\(450\) −10.8562 14.5774i −0.511766 0.687187i
\(451\) −7.80088 + 7.80088i −0.367329 + 0.367329i
\(452\) −1.50130 + 5.02065i −0.0706151 + 0.236152i
\(453\) 12.0451 + 12.0451i 0.565927 + 0.565927i
\(454\) 34.5197 + 5.05063i 1.62009 + 0.237038i
\(455\) 0 0
\(456\) −1.39652 3.83107i −0.0653981 0.179406i
\(457\) 39.4984i 1.84766i −0.382805 0.923829i \(-0.625042\pi\)
0.382805 0.923829i \(-0.374958\pi\)
\(458\) −1.94794 + 13.3136i −0.0910211 + 0.622104i
\(459\) 11.7196 + 11.7196i 0.547023 + 0.547023i
\(460\) −19.1676 35.5208i −0.893696 1.65617i
\(461\) 1.26773 1.26773i 0.0590440 0.0590440i −0.676968 0.736012i \(-0.736707\pi\)
0.736012 + 0.676968i \(0.236707\pi\)
\(462\) 0 0
\(463\) −14.4427 −0.671208 −0.335604 0.942003i \(-0.608940\pi\)
−0.335604 + 0.942003i \(0.608940\pi\)
\(464\) −28.2648 + 5.85548i −1.31216 + 0.271834i
\(465\) −5.73334 −0.265877
\(466\) −25.2227 + 18.7840i −1.16842 + 0.870153i
\(467\) 12.2835 12.2835i 0.568412 0.568412i −0.363271 0.931683i \(-0.618340\pi\)
0.931683 + 0.363271i \(0.118340\pi\)
\(468\) −20.3035 + 10.9561i −0.938528 + 0.506446i
\(469\) 0 0
\(470\) −6.79269 + 46.4262i −0.313323 + 2.14148i
\(471\) 4.69806i 0.216475i
\(472\) 9.68827 + 4.51193i 0.445939 + 0.207679i
\(473\) 12.2563i 0.563547i
\(474\) 0.293456 + 0.0429361i 0.0134789 + 0.00197212i
\(475\) 6.71680 + 6.71680i 0.308188 + 0.308188i
\(476\) 0 0
\(477\) 6.05337 6.05337i 0.277165 0.277165i
\(478\) 12.6349 + 16.9658i 0.577907 + 0.775999i
\(479\) 4.78688 0.218718 0.109359 0.994002i \(-0.465120\pi\)
0.109359 + 0.994002i \(0.465120\pi\)
\(480\) −0.948901 16.0659i −0.0433112 0.733305i
\(481\) 29.6353 1.35125
\(482\) 20.5684 + 27.6187i 0.936863 + 1.25800i
\(483\) 0 0
\(484\) 4.15666 + 1.24294i 0.188939 + 0.0564974i
\(485\) 15.7503 + 15.7503i 0.715184 + 0.715184i
\(486\) 22.5054 + 3.29279i 1.02086 + 0.149364i
\(487\) 26.8699i 1.21759i 0.793328 + 0.608795i \(0.208347\pi\)
−0.793328 + 0.608795i \(0.791653\pi\)
\(488\) 8.09377 17.3794i 0.366388 0.786728i
\(489\) 9.79948i 0.443148i
\(490\) 0 0
\(491\) −11.7576 11.7576i −0.530611 0.530611i 0.390143 0.920754i \(-0.372426\pi\)
−0.920754 + 0.390143i \(0.872426\pi\)
\(492\) −5.67674 + 3.06327i −0.255927 + 0.138103i
\(493\) −18.5590 + 18.5590i −0.835854 + 0.835854i
\(494\) 9.67025 7.20169i 0.435085 0.324019i
\(495\) −21.8496 −0.982068
\(496\) 6.73764 + 4.42511i 0.302529 + 0.198693i
\(497\) 0 0
\(498\) −0.639893 + 0.476545i −0.0286743 + 0.0213545i
\(499\) −13.9362 + 13.9362i −0.623868 + 0.623868i −0.946518 0.322650i \(-0.895426\pi\)
0.322650 + 0.946518i \(0.395426\pi\)
\(500\) 2.25249 + 4.17424i 0.100734 + 0.186677i
\(501\) −13.3988 13.3988i −0.598614 0.598614i
\(502\) −1.01487 + 6.93633i −0.0452957 + 0.309584i
\(503\) 23.6387i 1.05400i −0.849866 0.526999i \(-0.823317\pi\)
0.849866 0.526999i \(-0.176683\pi\)
\(504\) 0 0
\(505\) 10.4311i 0.464176i
\(506\) −25.6259 3.74937i −1.13921 0.166680i
\(507\) 8.22952 + 8.22952i 0.365486 + 0.365486i
\(508\) 7.38228 24.6879i 0.327536 1.09535i
\(509\) −24.0695 + 24.0695i −1.06686 + 1.06686i −0.0692630 + 0.997598i \(0.522065\pi\)
−0.997598 + 0.0692630i \(0.977935\pi\)
\(510\) −8.74065 11.7367i −0.387043 0.519711i
\(511\) 0 0
\(512\) −11.2849 + 19.6125i −0.498726 + 0.866760i
\(513\) −7.56192 −0.333867
\(514\) −5.48803 7.36919i −0.242067 0.325041i
\(515\) 8.70490 8.70490i 0.383584 0.383584i
\(516\) −2.05308 + 6.86593i −0.0903818 + 0.302256i
\(517\) 21.2887 + 21.2887i 0.936274 + 0.936274i
\(518\) 0 0
\(519\) 19.7318i 0.866131i
\(520\) 44.7103 16.2980i 1.96068 0.714716i
\(521\) 17.6401i 0.772828i −0.922325 0.386414i \(-0.873714\pi\)
0.922325 0.386414i \(-0.126286\pi\)
\(522\) −3.31718 + 22.6720i −0.145189 + 0.992327i
\(523\) −10.1679 10.1679i −0.444612 0.444612i 0.448946 0.893559i \(-0.351799\pi\)
−0.893559 + 0.448946i \(0.851799\pi\)
\(524\) −8.82537 16.3549i −0.385538 0.714466i
\(525\) 0 0
\(526\) 28.0567 20.8946i 1.22333 0.911046i
\(527\) 7.32957 0.319281
\(528\) −8.63155 5.66899i −0.375640 0.246711i
\(529\) −14.9778 −0.651209
\(530\) −14.1623 + 10.5471i −0.615172 + 0.458135i
\(531\) 5.99894 5.99894i 0.260332 0.260332i
\(532\) 0 0
\(533\) −13.4870 13.4870i −0.584189 0.584189i
\(534\) −0.773936 + 5.28964i −0.0334915 + 0.228905i
\(535\) 1.24202i 0.0536974i
\(536\) 7.27374 15.6186i 0.314178 0.674620i
\(537\) 18.7020i 0.807053i
\(538\) 2.09689 + 0.306800i 0.0904035 + 0.0132271i
\(539\) 0 0
\(540\) −28.5947 8.55050i −1.23052 0.367955i
\(541\) 21.0200 21.0200i 0.903721 0.903721i −0.0920350 0.995756i \(-0.529337\pi\)
0.995756 + 0.0920350i \(0.0293372\pi\)
\(542\) 6.21904 + 8.35077i 0.267131 + 0.358696i
\(543\) −14.5572 −0.624710
\(544\) 1.21309 + 20.5389i 0.0520107 + 0.880597i
\(545\) −32.7386 −1.40237
\(546\) 0 0
\(547\) 27.6503 27.6503i 1.18224 1.18224i 0.203076 0.979163i \(-0.434906\pi\)
0.979163 0.203076i \(-0.0650940\pi\)
\(548\) 22.6153 + 6.76252i 0.966077 + 0.288880i
\(549\) −10.7613 10.7613i −0.459279 0.459279i
\(550\) 23.8029 + 3.48263i 1.01496 + 0.148500i
\(551\) 11.9750i 0.510150i
\(552\) −13.7274 6.39301i −0.584277 0.272105i
\(553\) 0 0
\(554\) 0.927205 6.33720i 0.0393932 0.269242i
\(555\) 11.6040 + 11.6040i 0.492564 + 0.492564i
\(556\) 20.3042 10.9565i 0.861089 0.464658i
\(557\) 4.65226 4.65226i 0.197123 0.197123i −0.601643 0.798765i \(-0.705487\pi\)
0.798765 + 0.601643i \(0.205487\pi\)
\(558\) 5.13201 3.82194i 0.217255 0.161796i
\(559\) −21.1901 −0.896247
\(560\) 0 0
\(561\) −9.38988 −0.396441
\(562\) −11.0347 + 8.21783i −0.465471 + 0.346648i
\(563\) 18.8252 18.8252i 0.793386 0.793386i −0.188657 0.982043i \(-0.560413\pi\)
0.982043 + 0.188657i \(0.0604134\pi\)
\(564\) 8.35968 + 15.4919i 0.352006 + 0.652326i
\(565\) −6.06728 6.06728i −0.255253 0.255253i
\(566\) 0.823582 5.62896i 0.0346178 0.236603i
\(567\) 0 0
\(568\) −9.25253 25.3824i −0.388228 1.06502i
\(569\) 2.54263i 0.106593i 0.998579 + 0.0532963i \(0.0169728\pi\)
−0.998579 + 0.0532963i \(0.983027\pi\)
\(570\) 6.60639 + 0.966592i 0.276711 + 0.0404861i
\(571\) −28.3705 28.3705i −1.18727 1.18727i −0.977819 0.209450i \(-0.932833\pi\)
−0.209450 0.977819i \(-0.567167\pi\)
\(572\) 8.74803 29.2552i 0.365773 1.22322i
\(573\) −4.84569 + 4.84569i −0.202431 + 0.202431i
\(574\) 0 0
\(575\) 35.2760 1.47111
\(576\) 11.5592 + 13.7483i 0.481633 + 0.572847i
\(577\) −34.7511 −1.44671 −0.723354 0.690478i \(-0.757400\pi\)
−0.723354 + 0.690478i \(0.757400\pi\)
\(578\) −3.18565 4.27760i −0.132505 0.177925i
\(579\) −15.2845 + 15.2845i −0.635204 + 0.635204i
\(580\) 13.5405 45.2821i 0.562237 1.88024i
\(581\) 0 0
\(582\) 8.26877 + 1.20982i 0.342751 + 0.0501485i
\(583\) 11.3305i 0.469260i
\(584\) 1.10735 + 3.03779i 0.0458225 + 0.125705i
\(585\) 37.7761i 1.56185i
\(586\) 0.544717 3.72299i 0.0225020 0.153795i
\(587\) −20.1643 20.1643i −0.832268 0.832268i 0.155559 0.987827i \(-0.450282\pi\)
−0.987827 + 0.155559i \(0.950282\pi\)
\(588\) 0 0
\(589\) −2.36466 + 2.36466i −0.0974341 + 0.0974341i
\(590\) −14.0350 + 10.4522i −0.577811 + 0.430311i
\(591\) 9.52684 0.391882
\(592\) −4.68046 22.5929i −0.192366 0.928564i
\(593\) −8.40923 −0.345326 −0.172663 0.984981i \(-0.555237\pi\)
−0.172663 + 0.984981i \(0.555237\pi\)
\(594\) −15.3593 + 11.4385i −0.630199 + 0.469326i
\(595\) 0 0
\(596\) 20.6795 11.1590i 0.847065 0.457091i
\(597\) −7.03213 7.03213i −0.287806 0.287806i
\(598\) 6.48233 44.3049i 0.265082 1.81176i
\(599\) 3.56073i 0.145488i −0.997351 0.0727438i \(-0.976824\pi\)
0.997351 0.0727438i \(-0.0231755\pi\)
\(600\) 12.7508 + 5.93821i 0.520551 + 0.242426i
\(601\) 45.3712i 1.85073i 0.379076 + 0.925365i \(0.376242\pi\)
−0.379076 + 0.925365i \(0.623758\pi\)
\(602\) 0 0
\(603\) −9.67096 9.67096i −0.393832 0.393832i
\(604\) 37.5711 + 11.2347i 1.52875 + 0.457132i
\(605\) −5.02318 + 5.02318i −0.204221 + 0.204221i
\(606\) −2.33749 3.13872i −0.0949540 0.127502i
\(607\) 4.90180 0.198958 0.0994789 0.995040i \(-0.468282\pi\)
0.0994789 + 0.995040i \(0.468282\pi\)
\(608\) −7.01759 6.23486i −0.284601 0.252857i
\(609\) 0 0
\(610\) 18.7498 + 25.1768i 0.759158 + 1.01938i
\(611\) −36.8062 + 36.8062i −1.48902 + 1.48902i
\(612\) 15.6478 + 4.67908i 0.632526 + 0.189141i
\(613\) −5.64844 5.64844i −0.228138 0.228138i 0.583776 0.811915i \(-0.301575\pi\)
−0.811915 + 0.583776i \(0.801575\pi\)
\(614\) −7.89548 1.15520i −0.318635 0.0466201i
\(615\) 10.5620i 0.425901i
\(616\) 0 0
\(617\) 40.2966i 1.62228i 0.584852 + 0.811140i \(0.301153\pi\)
−0.584852 + 0.811140i \(0.698847\pi\)
\(618\) 0.668643 4.57000i 0.0268968 0.183832i
\(619\) −14.2321 14.2321i −0.572038 0.572038i 0.360660 0.932698i \(-0.382552\pi\)
−0.932698 + 0.360660i \(0.882552\pi\)
\(620\) −11.6155 + 6.26794i −0.466491 + 0.251726i
\(621\) −19.8573 + 19.8573i −0.796844 + 0.796844i
\(622\) −0.916568 + 0.682592i −0.0367510 + 0.0273695i
\(623\) 0 0
\(624\) 9.80118 14.9232i 0.392361 0.597406i
\(625\) 20.8545 0.834181
\(626\) −26.4226 + 19.6776i −1.05606 + 0.786476i
\(627\) 3.02935 3.02935i 0.120981 0.120981i
\(628\) 5.13613 + 9.51810i 0.204954 + 0.379814i
\(629\) −14.8348 14.8348i −0.591500 0.591500i
\(630\) 0 0
\(631\) 15.2886i 0.608631i 0.952571 + 0.304315i \(0.0984277\pi\)
−0.952571 + 0.304315i \(0.901572\pi\)
\(632\) 0.641472 0.233833i 0.0255164 0.00930137i
\(633\) 10.6832i 0.424618i
\(634\) −4.36953 0.639313i −0.173536 0.0253904i
\(635\) 29.8345 + 29.8345i 1.18394 + 1.18394i
\(636\) −1.89798 + 6.34725i −0.0752599 + 0.251685i
\(637\) 0 0
\(638\) −18.1138 24.3228i −0.717133 0.962948i
\(639\) −21.4458 −0.848384
\(640\) −19.4864 31.5116i −0.770267 1.24560i
\(641\) −12.3673 −0.488480 −0.244240 0.969715i \(-0.578538\pi\)
−0.244240 + 0.969715i \(0.578538\pi\)
\(642\) −0.278324 0.373727i −0.0109846 0.0147498i
\(643\) 29.2082 29.2082i 1.15186 1.15186i 0.165677 0.986180i \(-0.447019\pi\)
0.986180 0.165677i \(-0.0529809\pi\)
\(644\) 0 0
\(645\) −8.29724 8.29724i −0.326703 0.326703i
\(646\) −8.44570 1.23570i −0.332292 0.0486181i
\(647\) 14.3708i 0.564975i 0.959271 + 0.282487i \(0.0911595\pi\)
−0.959271 + 0.282487i \(0.908841\pi\)
\(648\) 7.37911 2.68987i 0.289879 0.105668i
\(649\) 11.2286i 0.440760i
\(650\) −6.02117 + 41.1531i −0.236170 + 1.61416i
\(651\) 0 0
\(652\) 10.7132 + 19.8534i 0.419563 + 0.777519i
\(653\) 10.3709 10.3709i 0.405844 0.405844i −0.474442 0.880287i \(-0.657350\pi\)
0.880287 + 0.474442i \(0.157350\pi\)
\(654\) −9.85111 + 7.33638i −0.385209 + 0.286875i
\(655\) 30.4295 1.18898
\(656\) −8.15198 + 12.4121i −0.318281 + 0.484613i
\(657\) 2.56666 0.100135
\(658\) 0 0
\(659\) −30.0445 + 30.0445i −1.17037 + 1.17037i −0.188248 + 0.982122i \(0.560281\pi\)
−0.982122 + 0.188248i \(0.939719\pi\)
\(660\) 14.8806 8.02982i 0.579226 0.312560i
\(661\) 1.95989 + 1.95989i 0.0762309 + 0.0762309i 0.744194 0.667963i \(-0.232834\pi\)
−0.667963 + 0.744194i \(0.732834\pi\)
\(662\) 3.22521 22.0434i 0.125351 0.856742i
\(663\) 16.2343i 0.630487i
\(664\) −0.775420 + 1.66502i −0.0300921 + 0.0646154i
\(665\) 0 0
\(666\) −18.1224 2.65152i −0.702230 0.102744i
\(667\) −31.4457 31.4457i −1.21758 1.21758i
\(668\) −41.7936 12.4973i −1.61704 0.483535i
\(669\) 13.4831 13.4831i 0.521286 0.521286i
\(670\) 16.8502 + 22.6260i 0.650978 + 0.874118i
\(671\) 20.1425 0.777592
\(672\) 0 0
\(673\) −4.79538 −0.184848 −0.0924242 0.995720i \(-0.529462\pi\)
−0.0924242 + 0.995720i \(0.529462\pi\)
\(674\) −4.52811 6.08024i −0.174416 0.234202i
\(675\) 18.4446 18.4446i 0.709933 0.709933i
\(676\) 25.6696 + 7.67583i 0.987292 + 0.295224i
\(677\) −35.1646 35.1646i −1.35149 1.35149i −0.884000 0.467486i \(-0.845160\pi\)
−0.467486 0.884000i \(-0.654840\pi\)
\(678\) −3.18527 0.466042i −0.122330 0.0178982i
\(679\) 0 0
\(680\) −30.5394 14.2225i −1.17113 0.545409i
\(681\) 21.4316i 0.821262i
\(682\) −1.22607 + 8.37983i −0.0469485 + 0.320880i
\(683\) −2.91144 2.91144i −0.111403 0.111403i 0.649208 0.760611i \(-0.275101\pi\)
−0.760611 + 0.649208i \(0.775101\pi\)
\(684\) −6.55785 + 3.53873i −0.250746 + 0.135307i
\(685\) −27.3298 + 27.3298i −1.04422 + 1.04422i
\(686\) 0 0
\(687\) −8.26579 −0.315360
\(688\) 3.34667 + 16.1546i 0.127591 + 0.615890i
\(689\) −19.5894 −0.746296
\(690\) 19.8863 14.8099i 0.757059 0.563802i
\(691\) −25.1130 + 25.1130i −0.955342 + 0.955342i −0.999045 0.0437029i \(-0.986085\pi\)
0.0437029 + 0.999045i \(0.486085\pi\)
\(692\) 21.5717 + 39.9759i 0.820033 + 1.51966i
\(693\) 0 0
\(694\) 3.39951 23.2347i 0.129043 0.881977i
\(695\) 37.7774i 1.43298i
\(696\) −6.07290 16.6597i −0.230193 0.631486i
\(697\) 13.5026i 0.511448i
\(698\) 44.0904 + 6.45093i 1.66885 + 0.244171i
\(699\) −13.6608 13.6608i −0.516701 0.516701i
\(700\) 0 0
\(701\) 15.7687 15.7687i 0.595575 0.595575i −0.343557 0.939132i \(-0.611632\pi\)
0.939132 + 0.343557i \(0.111632\pi\)
\(702\) −19.7761 26.5549i −0.746401 1.00225i
\(703\) 9.57195 0.361013
\(704\) −23.6848 2.04876i −0.892655 0.0772156i
\(705\) −28.8238 −1.08557
\(706\) −11.5617 15.5248i −0.435131 0.584283i
\(707\) 0 0
\(708\) −1.88092 + 6.29018i −0.0706892 + 0.236400i
\(709\) −8.16940 8.16940i −0.306808 0.306808i 0.536862 0.843670i \(-0.319610\pi\)
−0.843670 + 0.536862i \(0.819610\pi\)
\(710\) 43.7701 + 6.40407i 1.64266 + 0.240341i
\(711\) 0.541985i 0.0203260i
\(712\) 4.21491 + 11.5627i 0.157960 + 0.433331i
\(713\) 12.4190i 0.465095i
\(714\) 0 0
\(715\) 35.3539 + 35.3539i 1.32216 + 1.32216i
\(716\) −20.4459 37.8897i −0.764100 1.41600i
\(717\) −9.18884 + 9.18884i −0.343163 + 0.343163i
\(718\) −7.17099 + 5.34043i −0.267619 + 0.199303i
\(719\) −28.8526 −1.07602 −0.538011 0.842938i \(-0.680824\pi\)
−0.538011 + 0.842938i \(0.680824\pi\)
\(720\) −28.7992 + 5.96618i −1.07328 + 0.222347i
\(721\) 0 0
\(722\) −18.4271 + 13.7231i −0.685784 + 0.510722i
\(723\) −14.9585 + 14.9585i −0.556313 + 0.556313i
\(724\) −29.4924 + 15.9146i −1.09608 + 0.591461i
\(725\) 29.2086 + 29.2086i 1.08478 + 1.08478i
\(726\) −0.385842 + 2.63713i −0.0143199 + 0.0978729i
\(727\) 19.1342i 0.709648i −0.934933 0.354824i \(-0.884541\pi\)
0.934933 0.354824i \(-0.115459\pi\)
\(728\) 0 0
\(729\) 5.64199i 0.208963i
\(730\) −5.23845 0.766445i −0.193884 0.0283674i
\(731\) 10.6073 + 10.6073i 0.392325 + 0.392325i
\(732\) 11.2837 + 3.37410i 0.417058 + 0.124710i
\(733\) 8.17266 8.17266i 0.301864 0.301864i −0.539879 0.841743i \(-0.681530\pi\)
0.841743 + 0.539879i \(0.181530\pi\)
\(734\) 31.4504 + 42.2308i 1.16085 + 1.55877i
\(735\) 0 0
\(736\) −34.8004 + 2.05541i −1.28276 + 0.0757636i
\(737\) 18.1017 0.666786
\(738\) 7.04082 + 9.45423i 0.259176 + 0.348015i
\(739\) −5.86541 + 5.86541i −0.215763 + 0.215763i −0.806710 0.590947i \(-0.798754\pi\)
0.590947 + 0.806710i \(0.298754\pi\)
\(740\) 36.1954 + 10.8233i 1.33057 + 0.397873i
\(741\) 5.23749 + 5.23749i 0.192404 + 0.192404i
\(742\) 0 0
\(743\) 9.24326i 0.339102i −0.985521 0.169551i \(-0.945768\pi\)
0.985521 0.169551i \(-0.0542318\pi\)
\(744\) −2.09055 + 4.48895i −0.0766434 + 0.164573i
\(745\) 38.4757i 1.40964i
\(746\) −0.885006 + 6.04878i −0.0324024 + 0.221462i
\(747\) 1.03098 + 1.03098i 0.0377214 + 0.0377214i
\(748\) −19.0236 + 10.2654i −0.695570 + 0.375341i
\(749\) 0 0
\(750\) −2.33695 + 1.74038i −0.0853332 + 0.0635499i
\(751\) −20.6757 −0.754467 −0.377234 0.926118i \(-0.623125\pi\)
−0.377234 + 0.926118i \(0.623125\pi\)
\(752\) 33.8728 + 22.2468i 1.23522 + 0.811258i
\(753\) −4.30644 −0.156935
\(754\) 42.0520 31.3172i 1.53144 1.14051i
\(755\) −45.4034 + 45.4034i −1.65240 + 1.65240i
\(756\) 0 0
\(757\) 19.3612 + 19.3612i 0.703694 + 0.703694i 0.965201 0.261508i \(-0.0842197\pi\)
−0.261508 + 0.965201i \(0.584220\pi\)
\(758\) 3.33314 22.7811i 0.121065 0.827447i
\(759\) 15.9099i 0.577493i
\(760\) 14.4410 5.26412i 0.523831 0.190950i
\(761\) 17.6413i 0.639497i 0.947502 + 0.319748i \(0.103598\pi\)
−0.947502 + 0.319748i \(0.896402\pi\)
\(762\) 15.6628 + 2.29165i 0.567404 + 0.0830178i
\(763\) 0 0
\(764\) −4.51966 + 15.1147i −0.163516 + 0.546831i
\(765\) −18.9099 + 18.9099i −0.683687 + 0.683687i
\(766\) 16.6630 + 22.3747i 0.602060 + 0.808431i
\(767\) −19.4132 −0.700971
\(768\) −12.9249 5.11518i −0.466387 0.184578i
\(769\) 33.4127 1.20489 0.602447 0.798159i \(-0.294193\pi\)
0.602447 + 0.798159i \(0.294193\pi\)
\(770\) 0 0
\(771\) 3.99122 3.99122i 0.143740 0.143740i
\(772\) −14.2562 + 47.6757i −0.513091 + 1.71589i
\(773\) 9.47365 + 9.47365i 0.340744 + 0.340744i 0.856647 0.515903i \(-0.172544\pi\)
−0.515903 + 0.856647i \(0.672544\pi\)
\(774\) 12.9581 + 1.89592i 0.465769 + 0.0681474i
\(775\) 11.5355i 0.414367i
\(776\) 18.0748 6.58874i 0.648849 0.236522i
\(777\) 0 0
\(778\) 1.21574 8.30927i 0.0435865 0.297902i
\(779\) −4.35620 4.35620i −0.156077 0.156077i
\(780\) 13.8829 + 25.7273i 0.497086 + 0.921184i
\(781\) 20.0707 20.0707i 0.718187 0.718187i
\(782\) −25.4229 + 18.9331i −0.909123 + 0.677048i
\(783\) −32.8837 −1.17517
\(784\) 0 0
\(785\) −17.7091 −0.632066
\(786\) 9.15628 6.81892i 0.326594 0.243223i
\(787\) 6.81141 6.81141i 0.242801 0.242801i −0.575207 0.818008i \(-0.695079\pi\)
0.818008 + 0.575207i \(0.195079\pi\)
\(788\) 19.3010 10.4152i 0.687571 0.371025i
\(789\) 15.1958 + 15.1958i 0.540983 + 0.540983i
\(790\) −0.161846 + 1.10617i −0.00575821 + 0.0393558i
\(791\) 0 0
\(792\) −7.96706 + 17.1073i −0.283097 + 0.607882i
\(793\) 34.8246i 1.23666i
\(794\) 35.7834 + 5.23553i 1.26991 + 0.185802i
\(795\) −7.67044 7.67044i −0.272042 0.272042i
\(796\) −21.9347 6.55901i −0.777455 0.232478i
\(797\) −3.47475 + 3.47475i −0.123082 + 0.123082i −0.765965 0.642883i \(-0.777738\pi\)
0.642883 + 0.765965i \(0.277738\pi\)
\(798\) 0 0
\(799\) 36.8487 1.30361
\(800\) 32.3246 1.90919i 1.14285 0.0675001i
\(801\) 9.76945 0.345186
\(802\) 3.04338 + 4.08658i 0.107466 + 0.144302i
\(803\) −2.40208 + 2.40208i −0.0847677 + 0.0847677i
\(804\) 10.1405 + 3.03225i 0.357627 + 0.106939i
\(805\) 0 0
\(806\) −14.4880 2.11976i −0.510318 0.0746654i
\(807\) 1.30186i 0.0458277i
\(808\) −8.16706 3.80349i −0.287316 0.133806i
\(809\) 44.9480i 1.58029i 0.612921 + 0.790144i \(0.289994\pi\)
−0.612921 + 0.790144i \(0.710006\pi\)
\(810\) −1.86178 + 12.7247i −0.0654161 + 0.447101i
\(811\) 23.3543 + 23.3543i 0.820080 + 0.820080i 0.986119 0.166039i \(-0.0530978\pi\)
−0.166039 + 0.986119i \(0.553098\pi\)
\(812\) 0 0
\(813\) −4.52285 + 4.52285i −0.158623 + 0.158623i
\(814\) 19.4419 14.4789i 0.681439 0.507486i
\(815\) −36.9387 −1.29391
\(816\) −12.3765 + 2.56397i −0.433263 + 0.0897568i
\(817\) −6.84423 −0.239449
\(818\) −17.3900 + 12.9508i −0.608026 + 0.452813i
\(819\) 0 0
\(820\) −11.5468 21.3982i −0.403233 0.747259i
\(821\) −22.7441 22.7441i −0.793774 0.793774i 0.188332 0.982105i \(-0.439692\pi\)
−0.982105 + 0.188332i \(0.939692\pi\)
\(822\) −2.09926 + 14.3479i −0.0732202 + 0.500440i
\(823\) 6.46922i 0.225503i 0.993623 + 0.112751i \(0.0359664\pi\)
−0.993623 + 0.112751i \(0.964034\pi\)
\(824\) −3.64148 9.98964i −0.126857 0.348006i
\(825\) 14.7781i 0.514506i
\(826\) 0 0
\(827\) 0.313180 + 0.313180i 0.0108903 + 0.0108903i 0.712531 0.701641i \(-0.247549\pi\)
−0.701641 + 0.712531i \(0.747549\pi\)
\(828\) −7.92808 + 26.5132i −0.275520 + 0.921396i
\(829\) −20.1834 + 20.1834i −0.700998 + 0.700998i −0.964625 0.263627i \(-0.915081\pi\)
0.263627 + 0.964625i \(0.415081\pi\)
\(830\) −1.79632 2.41205i −0.0623510 0.0837234i
\(831\) 3.93446 0.136485
\(832\) 3.54213 40.9490i 0.122801 1.41965i
\(833\) 0 0
\(834\) 8.46552 + 11.3673i 0.293137 + 0.393617i
\(835\) 50.5061 50.5061i 1.74784 1.74784i
\(836\) 2.82554 9.44919i 0.0977232 0.326807i
\(837\) 6.49345 + 6.49345i 0.224446 + 0.224446i
\(838\) 34.2253 + 5.00756i 1.18229 + 0.172983i
\(839\) 49.1079i 1.69539i 0.530482 + 0.847696i \(0.322011\pi\)
−0.530482 + 0.847696i \(0.677989\pi\)
\(840\) 0 0
\(841\) 23.0742i 0.795662i
\(842\) −5.28210 + 36.1017i −0.182033 + 1.24415i
\(843\) −5.97649 5.97649i −0.205841 0.205841i
\(844\) −11.6793 21.6437i −0.402019 0.745008i
\(845\) −31.0208 + 31.0208i −1.06715 + 1.06715i
\(846\) 25.8007 19.2145i 0.887046 0.660606i
\(847\) 0 0
\(848\) 3.09385 + 14.9343i 0.106243 + 0.512845i
\(849\) 3.49475 0.119940
\(850\) 23.6143 17.5862i 0.809965 0.603202i
\(851\) 25.1355 25.1355i 0.861634 0.861634i
\(852\) 14.6056 7.88142i 0.500379 0.270013i
\(853\) −4.33966 4.33966i −0.148587 0.148587i 0.628899 0.777487i \(-0.283506\pi\)
−0.777487 + 0.628899i \(0.783506\pi\)
\(854\) 0 0
\(855\) 12.2014i 0.417278i
\(856\) −0.972450 0.452881i −0.0332377 0.0154791i
\(857\) 16.1733i 0.552471i 0.961090 + 0.276235i \(0.0890870\pi\)
−0.961090 + 0.276235i \(0.910913\pi\)
\(858\) 18.5605 + 2.71562i 0.633645 + 0.0927096i
\(859\) −31.4890 31.4890i −1.07439 1.07439i −0.997001 0.0773900i \(-0.975341\pi\)
−0.0773900 0.997001i \(-0.524659\pi\)
\(860\) −25.8808 7.73899i −0.882528 0.263897i
\(861\) 0 0
\(862\) 28.3983 + 38.1325i 0.967249 + 1.29880i
\(863\) 5.70353 0.194150 0.0970752 0.995277i \(-0.469051\pi\)
0.0970752 + 0.995277i \(0.469051\pi\)
\(864\) −17.1212 + 19.2706i −0.582474 + 0.655599i
\(865\) −74.3782 −2.52893
\(866\) −22.4276 30.1152i −0.762121 1.02336i
\(867\) 2.31679 2.31679i 0.0786822 0.0786822i
\(868\) 0 0
\(869\) 0.507233 + 0.507233i 0.0172067 + 0.0172067i
\(870\) 28.7285 + 4.20331i 0.973988 + 0.142506i
\(871\) 31.2963i 1.06044i
\(872\) −11.9375 + 25.6329i −0.404256 + 0.868040i
\(873\) 15.2716i 0.516865i
\(874\) 2.09374 14.3101i 0.0708217 0.484047i
\(875\) 0 0
\(876\) −1.74801 + 0.943255i −0.0590598 + 0.0318696i
\(877\) 11.1824 11.1824i 0.377602 0.377602i −0.492634 0.870236i \(-0.663966\pi\)
0.870236 + 0.492634i \(0.163966\pi\)
\(878\) −22.2430 + 16.5650i −0.750665 + 0.559040i
\(879\) 2.31143 0.0779625
\(880\) 21.3690 32.5363i 0.720349 1.09680i
\(881\) −20.6047 −0.694190 −0.347095 0.937830i \(-0.612832\pi\)
−0.347095 + 0.937830i \(0.612832\pi\)
\(882\) 0 0
\(883\) 3.92964 3.92964i 0.132243 0.132243i −0.637887 0.770130i \(-0.720191\pi\)
0.770130 + 0.637887i \(0.220191\pi\)
\(884\) −17.7480 32.8901i −0.596931 1.10621i
\(885\) −7.60147 7.60147i −0.255521 0.255521i
\(886\) −1.39669 + 9.54603i −0.0469229 + 0.320705i
\(887\) 18.5762i 0.623726i −0.950127 0.311863i \(-0.899047\pi\)
0.950127 0.311863i \(-0.100953\pi\)
\(888\) 13.3166 4.85425i 0.446877 0.162898i
\(889\) 0 0
\(890\) −19.9391 2.91732i −0.668359 0.0977887i
\(891\) 5.83491 + 5.83491i 0.195477 + 0.195477i
\(892\) 12.5759 42.0565i 0.421073 1.40816i
\(893\) −11.8881 + 11.8881i −0.397820 + 0.397820i
\(894\) 8.62201 + 11.5774i 0.288363 + 0.387207i
\(895\) 70.4965 2.35644
\(896\) 0 0
\(897\) 27.5068 0.918426
\(898\) 5.34195 + 7.17304i 0.178263 + 0.239367i
\(899\) −10.2829 + 10.2829i −0.342955 + 0.342955i
\(900\) 7.36407 24.6270i 0.245469 0.820899i
\(901\) 9.80599 + 9.80599i 0.326685 + 0.326685i
\(902\) −15.4374 2.25867i −0.514009 0.0752055i
\(903\) 0 0
\(904\) −6.96274 + 2.53810i −0.231577 + 0.0844158i
\(905\) 54.8727i 1.82403i
\(906\) −3.48753 + 23.8364i −0.115866 + 0.791910i
\(907\) 20.1706 + 20.1706i 0.669753 + 0.669753i 0.957659 0.287905i \(-0.0929589\pi\)
−0.287905 + 0.957659i \(0.592959\pi\)
\(908\) 23.4300 + 43.4197i 0.777552 + 1.44093i
\(909\) −5.05701 + 5.05701i −0.167730 + 0.167730i
\(910\) 0 0
\(911\) 40.6520 1.34686 0.673431 0.739250i \(-0.264820\pi\)
0.673431 + 0.739250i \(0.264820\pi\)
\(912\) 3.16570 4.82007i 0.104827 0.159608i
\(913\) −1.92974 −0.0638651
\(914\) 44.8005 33.3641i 1.48187 1.10359i
\(915\) −13.6360 + 13.6360i −0.450791 + 0.450791i
\(916\) −16.7462 + 9.03653i −0.553310 + 0.298575i
\(917\) 0 0
\(918\) −3.39329 + 23.1922i −0.111995 + 0.765458i
\(919\) 26.9677i 0.889581i −0.895635 0.444790i \(-0.853278\pi\)
0.895635 0.444790i \(-0.146722\pi\)
\(920\) 24.0982 51.7449i 0.794493 1.70598i
\(921\) 4.90192i 0.161524i
\(922\) 2.50875 + 0.367058i 0.0826211 + 0.0120884i
\(923\) 34.7005 + 34.7005i 1.14218 + 1.14218i
\(924\) 0 0
\(925\) −23.3473 + 23.3473i −0.767656 + 0.767656i
\(926\) −12.1997 16.3814i −0.400905 0.538326i
\(927\) −8.44033 −0.277217
\(928\) −30.5167 27.1129i −1.00176 0.890024i
\(929\) −15.6320 −0.512870 −0.256435 0.966561i \(-0.582548\pi\)
−0.256435 + 0.966561i \(0.582548\pi\)
\(930\) −4.84292 6.50295i −0.158806 0.213240i
\(931\) 0 0
\(932\) −42.6110 12.7417i −1.39577 0.417369i
\(933\) −0.496421 0.496421i −0.0162521 0.0162521i
\(934\) 24.3082 + 3.55657i 0.795388 + 0.116374i
\(935\) 35.3947i 1.15753i
\(936\) −29.5770 13.7744i −0.966756 0.450229i
\(937\) 47.9244i 1.56562i −0.622260 0.782811i \(-0.713785\pi\)
0.622260 0.782811i \(-0.286215\pi\)
\(938\) 0 0
\(939\) −14.3107 14.3107i −0.467013 0.467013i
\(940\) −58.3960 + 31.5115i −1.90467 + 1.02779i
\(941\) −7.62070 + 7.62070i −0.248428 + 0.248428i −0.820325 0.571897i \(-0.806208\pi\)
0.571897 + 0.820325i \(0.306208\pi\)
\(942\) −5.32871 + 3.96843i −0.173619 + 0.129298i
\(943\) −22.8784 −0.745022
\(944\) 3.06604 + 14.8000i 0.0997910 + 0.481698i
\(945\) 0 0
\(946\) −13.9016 + 10.3529i −0.451979 + 0.336601i
\(947\) −19.6254 + 19.6254i −0.637739 + 0.637739i −0.949997 0.312258i \(-0.898915\pi\)
0.312258 + 0.949997i \(0.398915\pi\)
\(948\) 0.199182 + 0.369117i 0.00646912 + 0.0119884i
\(949\) −4.15299 4.15299i −0.134812 0.134812i
\(950\) −1.94479 + 13.2921i −0.0630972 + 0.431252i
\(951\) 2.71283i 0.0879696i
\(952\) 0 0
\(953\) 3.58597i 0.116161i −0.998312 0.0580805i \(-0.981502\pi\)
0.998312 0.0580805i \(-0.0184980\pi\)
\(954\) 11.9792 + 1.75269i 0.387841 + 0.0567456i
\(955\) −18.2656 18.2656i −0.591061 0.591061i
\(956\) −8.57060 + 28.6619i −0.277193 + 0.926992i
\(957\) 13.1734 13.1734i 0.425836 0.425836i
\(958\) 4.04346 + 5.42945i 0.130638 + 0.175418i
\(959\) 0 0
\(960\) 17.4210 14.6471i 0.562260 0.472732i
\(961\) −26.9389 −0.868997
\(962\) 25.0328 + 33.6134i 0.807090 + 1.08374i
\(963\) −0.602137 + 0.602137i −0.0194036 + 0.0194036i
\(964\) −13.9521 + 46.6587i −0.449367 + 1.50278i
\(965\) −57.6144 57.6144i −1.85467 1.85467i
\(966\) 0 0
\(967\) 51.9947i 1.67204i −0.548703 0.836018i \(-0.684878\pi\)
0.548703 0.836018i \(-0.315122\pi\)
\(968\) 2.10132 + 5.76454i 0.0675390 + 0.185279i
\(969\) 5.24354i 0.168447i
\(970\) −4.56035 + 31.1688i −0.146424 + 1.00077i
\(971\) 35.0803 + 35.0803i 1.12578 + 1.12578i 0.990856 + 0.134925i \(0.0430795\pi\)
0.134925 + 0.990856i \(0.456921\pi\)
\(972\) 15.2754 + 28.3078i 0.489958 + 0.907973i
\(973\) 0 0
\(974\) −30.4768 + 22.6968i −0.976538 + 0.727254i
\(975\) −25.5500 −0.818254
\(976\) 26.5491 5.50004i 0.849816 0.176052i
\(977\) 5.67083 0.181426 0.0907129 0.995877i \(-0.471085\pi\)
0.0907129 + 0.995877i \(0.471085\pi\)
\(978\) −11.1149 + 8.27758i −0.355416 + 0.264688i
\(979\) −9.14303 + 9.14303i −0.292213 + 0.292213i
\(980\) 0 0
\(981\) 15.8718 + 15.8718i 0.506748 + 0.506748i
\(982\) 3.40429 23.2674i 0.108635 0.742492i
\(983\) 46.7462i 1.49097i −0.666522 0.745486i \(-0.732218\pi\)
0.666522 0.745486i \(-0.267782\pi\)
\(984\) −8.26958 3.85124i −0.263625 0.122773i
\(985\) 35.9110i 1.14422i
\(986\) −36.7269 5.37357i −1.16962 0.171129i
\(987\) 0 0
\(988\) 16.3368 + 4.88511i 0.519744 + 0.155416i
\(989\) −17.9726 + 17.9726i −0.571497 + 0.571497i
\(990\) −18.4563 24.7826i −0.586579 0.787644i
\(991\) 14.4138 0.457870 0.228935 0.973442i \(-0.426476\pi\)
0.228935 + 0.973442i \(0.426476\pi\)
\(992\) 0.672133 + 11.3799i 0.0213403 + 0.361313i
\(993\) 13.6857 0.434303
\(994\) 0 0
\(995\) 26.5073 26.5073i 0.840339 0.840339i
\(996\) −1.08103 0.323254i −0.0342537 0.0102427i
\(997\) −40.2131 40.2131i −1.27356 1.27356i −0.944205 0.329357i \(-0.893168\pi\)
−0.329357 0.944205i \(-0.606832\pi\)
\(998\) −27.5787 4.03508i −0.872988 0.127728i
\(999\) 26.2849i 0.831619i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.m.k.197.8 24
7.2 even 3 784.2.x.o.165.9 48
7.3 odd 6 112.2.w.c.37.1 48
7.4 even 3 784.2.x.o.373.1 48
7.5 odd 6 112.2.w.c.53.9 yes 48
7.6 odd 2 784.2.m.j.197.8 24
16.13 even 4 inner 784.2.m.k.589.8 24
28.3 even 6 448.2.ba.c.177.8 48
28.19 even 6 448.2.ba.c.305.5 48
56.3 even 6 896.2.ba.e.737.5 48
56.5 odd 6 896.2.ba.f.865.5 48
56.19 even 6 896.2.ba.e.865.8 48
56.45 odd 6 896.2.ba.f.737.8 48
112.3 even 12 448.2.ba.c.401.5 48
112.5 odd 12 896.2.ba.f.417.8 48
112.13 odd 4 784.2.m.j.589.8 24
112.19 even 12 448.2.ba.c.81.8 48
112.45 odd 12 112.2.w.c.93.9 yes 48
112.59 even 12 896.2.ba.e.289.8 48
112.61 odd 12 112.2.w.c.109.1 yes 48
112.75 even 12 896.2.ba.e.417.5 48
112.93 even 12 784.2.x.o.557.1 48
112.101 odd 12 896.2.ba.f.289.5 48
112.109 even 12 784.2.x.o.765.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.1 48 7.3 odd 6
112.2.w.c.53.9 yes 48 7.5 odd 6
112.2.w.c.93.9 yes 48 112.45 odd 12
112.2.w.c.109.1 yes 48 112.61 odd 12
448.2.ba.c.81.8 48 112.19 even 12
448.2.ba.c.177.8 48 28.3 even 6
448.2.ba.c.305.5 48 28.19 even 6
448.2.ba.c.401.5 48 112.3 even 12
784.2.m.j.197.8 24 7.6 odd 2
784.2.m.j.589.8 24 112.13 odd 4
784.2.m.k.197.8 24 1.1 even 1 trivial
784.2.m.k.589.8 24 16.13 even 4 inner
784.2.x.o.165.9 48 7.2 even 3
784.2.x.o.373.1 48 7.4 even 3
784.2.x.o.557.1 48 112.93 even 12
784.2.x.o.765.9 48 112.109 even 12
896.2.ba.e.289.8 48 112.59 even 12
896.2.ba.e.417.5 48 112.75 even 12
896.2.ba.e.737.5 48 56.3 even 6
896.2.ba.e.865.8 48 56.19 even 6
896.2.ba.f.289.5 48 112.101 odd 12
896.2.ba.f.417.8 48 112.5 odd 12
896.2.ba.f.737.8 48 56.45 odd 6
896.2.ba.f.865.5 48 56.5 odd 6