Properties

Label 784.2.x.o.373.1
Level $784$
Weight $2$
Character 784.373
Analytic conductor $6.260$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(165,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 373.1
Character \(\chi\) \(=\) 784.373
Dual form 784.2.x.o.557.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40462 + 0.164410i) q^{2} +(0.839165 + 0.224854i) q^{3} +(1.94594 - 0.461868i) q^{4} +(3.16320 - 0.847576i) q^{5} +(-1.21568 - 0.177868i) q^{6} +(-2.65738 + 0.968682i) q^{8} +(-1.94444 - 1.12262i) q^{9} +(-4.30375 + 1.71059i) q^{10} +(-0.769121 + 2.87040i) q^{11} +(1.73682 + 0.0499683i) q^{12} +(3.63293 - 3.63293i) q^{13} +2.84503 q^{15} +(3.57336 - 1.79753i) q^{16} +(1.81856 + 3.14984i) q^{17} +(2.91577 + 1.25718i) q^{18} +(0.429496 + 1.60290i) q^{19} +(5.76392 - 3.11031i) q^{20} +(0.608405 - 4.15828i) q^{22} +(5.33698 + 3.08131i) q^{23} +(-2.44779 + 0.215363i) q^{24} +(4.95730 - 2.86210i) q^{25} +(-4.50561 + 5.70019i) q^{26} +(-3.22221 - 3.22221i) q^{27} +(5.10266 - 5.10266i) q^{29} +(-3.99619 + 0.467750i) q^{30} +(1.00761 + 1.74523i) q^{31} +(-4.72369 + 3.11235i) q^{32} +(-1.29084 + 2.23580i) q^{33} +(-3.07226 - 4.12535i) q^{34} +(-4.30226 - 1.28648i) q^{36} +(-5.57162 + 1.49291i) q^{37} +(-0.866812 - 2.18086i) q^{38} +(3.86550 - 2.23175i) q^{39} +(-7.58478 + 5.31646i) q^{40} -3.71244i q^{41} +(-2.91640 - 2.91640i) q^{43} +(-0.170919 + 5.94085i) q^{44} +(-7.10214 - 1.90301i) q^{45} +(-8.00305 - 3.45063i) q^{46} +(5.06565 - 8.77396i) q^{47} +(3.40282 - 0.704944i) q^{48} +(-6.49259 + 4.83520i) q^{50} +(0.817820 + 3.05215i) q^{51} +(5.39152 - 8.74739i) q^{52} +(-0.986836 + 3.68292i) q^{53} +(5.05576 + 3.99624i) q^{54} +9.73153i q^{55} +1.44167i q^{57} +(-6.32839 + 8.00624i) q^{58} +(-0.977963 + 3.64981i) q^{59} +(5.53625 - 1.31403i) q^{60} +(-1.75433 - 6.54724i) q^{61} +(-1.70224 - 2.28573i) q^{62} +(6.12331 - 5.14831i) q^{64} +(8.41248 - 14.5708i) q^{65} +(1.44556 - 3.35269i) q^{66} +(5.88390 + 1.57659i) q^{67} +(4.99362 + 5.28946i) q^{68} +(3.78577 + 3.78577i) q^{69} +9.55168i q^{71} +(6.25456 + 1.09969i) q^{72} +(-0.990000 + 0.571577i) q^{73} +(7.58058 - 3.01301i) q^{74} +(4.80355 - 1.28711i) q^{75} +(1.57610 + 2.92078i) q^{76} +(-5.06266 + 3.77030i) q^{78} +(0.120696 - 0.209052i) q^{79} +(9.77969 - 8.71464i) q^{80} +(1.38842 + 2.40481i) q^{81} +(0.610362 + 5.21459i) q^{82} +(0.459183 - 0.459183i) q^{83} +(8.42219 + 8.42219i) q^{85} +(4.57593 + 3.61696i) q^{86} +(5.42932 - 3.13462i) q^{87} +(-0.736657 - 8.37277i) q^{88} +(3.76823 + 2.17559i) q^{89} +(10.2887 + 1.50536i) q^{90} +(11.8086 + 3.53106i) q^{92} +(0.453128 + 1.69110i) q^{93} +(-5.67281 + 13.1570i) q^{94} +(2.71716 + 4.70626i) q^{95} +(-4.66378 + 1.54964i) q^{96} -6.80176 q^{97} +(4.71788 - 4.71788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{2} - 4 q^{4} - 4 q^{5} + 4 q^{6} - 4 q^{8} + 2 q^{10} - 4 q^{11} - 2 q^{12} + 24 q^{13} - 40 q^{15} + 16 q^{16} - 8 q^{17} + 18 q^{18} + 4 q^{19} + 16 q^{20} - 18 q^{24} + 10 q^{26} + 24 q^{27}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40462 + 0.164410i −0.993219 + 0.116255i
\(3\) 0.839165 + 0.224854i 0.484492 + 0.129819i 0.492794 0.870146i \(-0.335976\pi\)
−0.00830125 + 0.999966i \(0.502642\pi\)
\(4\) 1.94594 0.461868i 0.972969 0.230934i
\(5\) 3.16320 0.847576i 1.41462 0.379048i 0.531051 0.847340i \(-0.321797\pi\)
0.883574 + 0.468292i \(0.155131\pi\)
\(6\) −1.21568 0.177868i −0.496299 0.0726143i
\(7\) 0 0
\(8\) −2.65738 + 0.968682i −0.939525 + 0.342481i
\(9\) −1.94444 1.12262i −0.648146 0.374207i
\(10\) −4.30375 + 1.71059i −1.36097 + 0.540935i
\(11\) −0.769121 + 2.87040i −0.231899 + 0.865458i 0.747624 + 0.664123i \(0.231195\pi\)
−0.979522 + 0.201335i \(0.935472\pi\)
\(12\) 1.73682 + 0.0499683i 0.501376 + 0.0144246i
\(13\) 3.63293 3.63293i 1.00759 1.00759i 0.00762179 0.999971i \(-0.497574\pi\)
0.999971 0.00762179i \(-0.00242611\pi\)
\(14\) 0 0
\(15\) 2.84503 0.734583
\(16\) 3.57336 1.79753i 0.893339 0.449383i
\(17\) 1.81856 + 3.14984i 0.441066 + 0.763948i 0.997769 0.0667634i \(-0.0212673\pi\)
−0.556703 + 0.830711i \(0.687934\pi\)
\(18\) 2.91577 + 1.25718i 0.687254 + 0.296319i
\(19\) 0.429496 + 1.60290i 0.0985331 + 0.367730i 0.997531 0.0702216i \(-0.0223706\pi\)
−0.898998 + 0.437952i \(0.855704\pi\)
\(20\) 5.76392 3.11031i 1.28885 0.695486i
\(21\) 0 0
\(22\) 0.608405 4.15828i 0.129712 0.886549i
\(23\) 5.33698 + 3.08131i 1.11284 + 0.642497i 0.939563 0.342377i \(-0.111232\pi\)
0.173275 + 0.984874i \(0.444565\pi\)
\(24\) −2.44779 + 0.215363i −0.499653 + 0.0439608i
\(25\) 4.95730 2.86210i 0.991461 0.572420i
\(26\) −4.50561 + 5.70019i −0.883623 + 1.11790i
\(27\) −3.22221 3.22221i −0.620115 0.620115i
\(28\) 0 0
\(29\) 5.10266 5.10266i 0.947539 0.947539i −0.0511514 0.998691i \(-0.516289\pi\)
0.998691 + 0.0511514i \(0.0162891\pi\)
\(30\) −3.99619 + 0.467750i −0.729602 + 0.0853990i
\(31\) 1.00761 + 1.74523i 0.180972 + 0.313452i 0.942212 0.335018i \(-0.108742\pi\)
−0.761240 + 0.648470i \(0.775409\pi\)
\(32\) −4.72369 + 3.11235i −0.835039 + 0.550191i
\(33\) −1.29084 + 2.23580i −0.224706 + 0.389203i
\(34\) −3.07226 4.12535i −0.526888 0.707492i
\(35\) 0 0
\(36\) −4.30226 1.28648i −0.717043 0.214413i
\(37\) −5.57162 + 1.49291i −0.915969 + 0.245433i −0.685861 0.727732i \(-0.740574\pi\)
−0.230107 + 0.973165i \(0.573908\pi\)
\(38\) −0.866812 2.18086i −0.140616 0.353782i
\(39\) 3.86550 2.23175i 0.618976 0.357366i
\(40\) −7.58478 + 5.31646i −1.19926 + 0.840606i
\(41\) 3.71244i 0.579786i −0.957059 0.289893i \(-0.906380\pi\)
0.957059 0.289893i \(-0.0936198\pi\)
\(42\) 0 0
\(43\) −2.91640 2.91640i −0.444747 0.444747i 0.448857 0.893604i \(-0.351831\pi\)
−0.893604 + 0.448857i \(0.851831\pi\)
\(44\) −0.170919 + 5.94085i −0.0257669 + 0.895617i
\(45\) −7.10214 1.90301i −1.05872 0.283685i
\(46\) −8.00305 3.45063i −1.17999 0.508767i
\(47\) 5.06565 8.77396i 0.738900 1.27981i −0.214090 0.976814i \(-0.568679\pi\)
0.952991 0.302999i \(-0.0979880\pi\)
\(48\) 3.40282 0.704944i 0.491155 0.101750i
\(49\) 0 0
\(50\) −6.49259 + 4.83520i −0.918191 + 0.683801i
\(51\) 0.817820 + 3.05215i 0.114518 + 0.427386i
\(52\) 5.39152 8.74739i 0.747670 1.21304i
\(53\) −0.986836 + 3.68292i −0.135552 + 0.505888i 0.864443 + 0.502731i \(0.167672\pi\)
−0.999995 + 0.00315690i \(0.998995\pi\)
\(54\) 5.05576 + 3.99624i 0.688002 + 0.543819i
\(55\) 9.73153i 1.31220i
\(56\) 0 0
\(57\) 1.44167i 0.190954i
\(58\) −6.32839 + 8.00624i −0.830958 + 1.05127i
\(59\) −0.977963 + 3.64981i −0.127320 + 0.475164i −0.999912 0.0132857i \(-0.995771\pi\)
0.872592 + 0.488450i \(0.162438\pi\)
\(60\) 5.53625 1.31403i 0.714727 0.169640i
\(61\) −1.75433 6.54724i −0.224619 0.838288i −0.982557 0.185962i \(-0.940460\pi\)
0.757938 0.652326i \(-0.226207\pi\)
\(62\) −1.70224 2.28573i −0.216185 0.290288i
\(63\) 0 0
\(64\) 6.12331 5.14831i 0.765414 0.643538i
\(65\) 8.41248 14.5708i 1.04344 1.80729i
\(66\) 1.44556 3.35269i 0.177936 0.412687i
\(67\) 5.88390 + 1.57659i 0.718833 + 0.192611i 0.599651 0.800262i \(-0.295306\pi\)
0.119182 + 0.992872i \(0.461973\pi\)
\(68\) 4.99362 + 5.28946i 0.605565 + 0.641441i
\(69\) 3.78577 + 3.78577i 0.455753 + 0.455753i
\(70\) 0 0
\(71\) 9.55168i 1.13358i 0.823864 + 0.566788i \(0.191814\pi\)
−0.823864 + 0.566788i \(0.808186\pi\)
\(72\) 6.25456 + 1.09969i 0.737108 + 0.129599i
\(73\) −0.990000 + 0.571577i −0.115871 + 0.0668980i −0.556815 0.830636i \(-0.687977\pi\)
0.440945 + 0.897534i \(0.354644\pi\)
\(74\) 7.58058 3.01301i 0.881225 0.350255i
\(75\) 4.80355 1.28711i 0.554666 0.148622i
\(76\) 1.57610 + 2.92078i 0.180791 + 0.335036i
\(77\) 0 0
\(78\) −5.06266 + 3.77030i −0.573233 + 0.426902i
\(79\) 0.120696 0.209052i 0.0135794 0.0235202i −0.859156 0.511714i \(-0.829011\pi\)
0.872735 + 0.488194i \(0.162344\pi\)
\(80\) 9.77969 8.71464i 1.09340 0.974326i
\(81\) 1.38842 + 2.40481i 0.154269 + 0.267201i
\(82\) 0.610362 + 5.21459i 0.0674032 + 0.575855i
\(83\) 0.459183 0.459183i 0.0504018 0.0504018i −0.681457 0.731858i \(-0.738653\pi\)
0.731858 + 0.681457i \(0.238653\pi\)
\(84\) 0 0
\(85\) 8.42219 + 8.42219i 0.913515 + 0.913515i
\(86\) 4.57593 + 3.61696i 0.493435 + 0.390027i
\(87\) 5.42932 3.13462i 0.582085 0.336067i
\(88\) −0.736657 8.37277i −0.0785279 0.892540i
\(89\) 3.76823 + 2.17559i 0.399432 + 0.230612i 0.686239 0.727376i \(-0.259261\pi\)
−0.286807 + 0.957988i \(0.592594\pi\)
\(90\) 10.2887 + 1.50536i 1.08453 + 0.158679i
\(91\) 0 0
\(92\) 11.8086 + 3.53106i 1.23113 + 0.368138i
\(93\) 0.453128 + 1.69110i 0.0469872 + 0.175359i
\(94\) −5.67281 + 13.1570i −0.585105 + 1.35704i
\(95\) 2.71716 + 4.70626i 0.278775 + 0.482852i
\(96\) −4.66378 + 1.54964i −0.475995 + 0.158159i
\(97\) −6.80176 −0.690614 −0.345307 0.938490i \(-0.612225\pi\)
−0.345307 + 0.938490i \(0.612225\pi\)
\(98\) 0 0
\(99\) 4.71788 4.71788i 0.474165 0.474165i
\(100\) 8.32470 7.85909i 0.832470 0.785909i
\(101\) 0.824407 3.07673i 0.0820316 0.306146i −0.912704 0.408621i \(-0.866010\pi\)
0.994736 + 0.102475i \(0.0326763\pi\)
\(102\) −1.65053 4.15266i −0.163427 0.411175i
\(103\) −3.25557 1.87960i −0.320781 0.185203i 0.330960 0.943645i \(-0.392628\pi\)
−0.651741 + 0.758442i \(0.725961\pi\)
\(104\) −6.13491 + 13.1732i −0.601577 + 1.29174i
\(105\) 0 0
\(106\) 0.780626 5.33537i 0.0758211 0.518217i
\(107\) −0.366346 + 0.0981620i −0.0354160 + 0.00948968i −0.276484 0.961019i \(-0.589169\pi\)
0.241068 + 0.970508i \(0.422502\pi\)
\(108\) −7.75847 4.78200i −0.746559 0.460148i
\(109\) −9.65655 2.58746i −0.924929 0.247834i −0.235238 0.971938i \(-0.575587\pi\)
−0.689691 + 0.724104i \(0.742254\pi\)
\(110\) −1.59996 13.6691i −0.152550 1.30330i
\(111\) −5.01120 −0.475642
\(112\) 0 0
\(113\) 2.62015 0.246483 0.123242 0.992377i \(-0.460671\pi\)
0.123242 + 0.992377i \(0.460671\pi\)
\(114\) −0.237025 2.02501i −0.0221994 0.189659i
\(115\) 19.4936 + 5.22328i 1.81778 + 0.487074i
\(116\) 7.57271 12.2862i 0.703108 1.14075i
\(117\) −11.1424 + 2.98560i −1.03012 + 0.276018i
\(118\) 0.773607 5.28739i 0.0712163 0.486744i
\(119\) 0 0
\(120\) −7.56031 + 2.75592i −0.690159 + 0.251580i
\(121\) 1.87863 + 1.08463i 0.170785 + 0.0986027i
\(122\) 3.54060 + 8.90799i 0.320551 + 0.806491i
\(123\) 0.834757 3.11535i 0.0752675 0.280902i
\(124\) 2.76680 + 2.93072i 0.248466 + 0.263187i
\(125\) 1.67697 1.67697i 0.149993 0.149993i
\(126\) 0 0
\(127\) −12.8840 −1.14327 −0.571635 0.820508i \(-0.693691\pi\)
−0.571635 + 0.820508i \(0.693691\pi\)
\(128\) −7.75452 + 8.23817i −0.685409 + 0.728158i
\(129\) −1.79158 3.10311i −0.157740 0.273213i
\(130\) −9.42079 + 21.8497i −0.826258 + 1.91634i
\(131\) −2.40496 8.97544i −0.210122 0.784188i −0.987827 0.155557i \(-0.950283\pi\)
0.777704 0.628630i \(-0.216384\pi\)
\(132\) −1.47925 + 4.94693i −0.128752 + 0.430575i
\(133\) 0 0
\(134\) −8.52388 1.24714i −0.736351 0.107737i
\(135\) −12.9236 7.46143i −1.11228 0.642177i
\(136\) −7.88379 6.60871i −0.676030 0.566692i
\(137\) −10.2211 + 5.90118i −0.873251 + 0.504172i −0.868427 0.495817i \(-0.834869\pi\)
−0.00482362 + 0.999988i \(0.501535\pi\)
\(138\) −5.94000 4.69516i −0.505646 0.399679i
\(139\) −8.15708 8.15708i −0.691874 0.691874i 0.270770 0.962644i \(-0.412722\pi\)
−0.962644 + 0.270770i \(0.912722\pi\)
\(140\) 0 0
\(141\) 6.22377 6.22377i 0.524136 0.524136i
\(142\) −1.57039 13.4165i −0.131784 1.12589i
\(143\) 7.63379 + 13.2221i 0.638370 + 1.10569i
\(144\) −8.96611 0.516338i −0.747176 0.0430282i
\(145\) 11.8158 20.4656i 0.981250 1.69958i
\(146\) 1.29660 0.965616i 0.107308 0.0799149i
\(147\) 0 0
\(148\) −10.1525 + 5.47846i −0.834531 + 0.450327i
\(149\) 11.3488 3.04089i 0.929727 0.249119i 0.237989 0.971268i \(-0.423512\pi\)
0.691738 + 0.722148i \(0.256845\pi\)
\(150\) −6.53557 + 2.59765i −0.533627 + 0.212097i
\(151\) −16.9805 + 9.80371i −1.38186 + 0.797815i −0.992379 0.123222i \(-0.960677\pi\)
−0.389476 + 0.921036i \(0.627344\pi\)
\(152\) −2.69403 3.84347i −0.218515 0.311746i
\(153\) 8.16622i 0.660199i
\(154\) 0 0
\(155\) 4.66647 + 4.66647i 0.374820 + 0.374820i
\(156\) 6.49126 6.12820i 0.519717 0.490649i
\(157\) −5.22347 1.39962i −0.416878 0.111702i 0.0442821 0.999019i \(-0.485900\pi\)
−0.461160 + 0.887317i \(0.652567\pi\)
\(158\) −0.135163 + 0.313484i −0.0107530 + 0.0249394i
\(159\) −1.65624 + 2.86869i −0.131348 + 0.227502i
\(160\) −12.3040 + 13.8487i −0.972718 + 1.09483i
\(161\) 0 0
\(162\) −2.34558 3.14959i −0.184286 0.247455i
\(163\) 2.91941 + 10.8954i 0.228666 + 0.853394i 0.980902 + 0.194500i \(0.0623085\pi\)
−0.752236 + 0.658893i \(0.771025\pi\)
\(164\) −1.71466 7.22419i −0.133892 0.564114i
\(165\) −2.18817 + 8.16636i −0.170349 + 0.635750i
\(166\) −0.569485 + 0.720473i −0.0442006 + 0.0559195i
\(167\) 21.8111i 1.68779i 0.536508 + 0.843895i \(0.319743\pi\)
−0.536508 + 0.843895i \(0.680257\pi\)
\(168\) 0 0
\(169\) 13.3963i 1.03049i
\(170\) −13.2147 10.4453i −1.01352 0.801120i
\(171\) 0.964322 3.59890i 0.0737435 0.275215i
\(172\) −7.02213 4.32815i −0.535432 0.330018i
\(173\) 5.87840 + 21.9385i 0.446927 + 1.66795i 0.710799 + 0.703396i \(0.248334\pi\)
−0.263872 + 0.964558i \(0.585000\pi\)
\(174\) −7.11080 + 5.29560i −0.539068 + 0.401458i
\(175\) 0 0
\(176\) 2.41129 + 11.6395i 0.181758 + 0.877359i
\(177\) −1.64135 + 2.84289i −0.123371 + 0.213685i
\(178\) −5.65064 2.43635i −0.423533 0.182612i
\(179\) 20.7936 + 5.57162i 1.55418 + 0.416443i 0.930817 0.365486i \(-0.119097\pi\)
0.623368 + 0.781929i \(0.285764\pi\)
\(180\) −14.6993 0.422899i −1.09562 0.0315210i
\(181\) 11.8484 + 11.8484i 0.880684 + 0.880684i 0.993604 0.112920i \(-0.0360205\pi\)
−0.112920 + 0.993604i \(0.536020\pi\)
\(182\) 0 0
\(183\) 5.88869i 0.435304i
\(184\) −17.1672 3.01836i −1.26558 0.222517i
\(185\) −16.3588 + 9.44474i −1.20272 + 0.694391i
\(186\) −0.914508 2.30086i −0.0670550 0.168707i
\(187\) −10.4400 + 2.79739i −0.763448 + 0.204565i
\(188\) 5.80503 19.4132i 0.423375 1.41586i
\(189\) 0 0
\(190\) −4.59034 6.16380i −0.333018 0.447169i
\(191\) −3.94400 + 6.83120i −0.285377 + 0.494288i −0.972701 0.232063i \(-0.925452\pi\)
0.687323 + 0.726352i \(0.258786\pi\)
\(192\) 6.29609 2.94343i 0.454381 0.212424i
\(193\) −12.4404 21.5474i −0.895478 1.55101i −0.833212 0.552954i \(-0.813500\pi\)
−0.0622664 0.998060i \(-0.519833\pi\)
\(194\) 9.55392 1.11828i 0.685931 0.0802875i
\(195\) 10.3358 10.3358i 0.740160 0.740160i
\(196\) 0 0
\(197\) −7.75408 7.75408i −0.552455 0.552455i 0.374694 0.927149i \(-0.377748\pi\)
−0.927149 + 0.374694i \(0.877748\pi\)
\(198\) −5.85118 + 7.40251i −0.415825 + 0.526074i
\(199\) 9.91354 5.72359i 0.702753 0.405734i −0.105619 0.994407i \(-0.533682\pi\)
0.808372 + 0.588672i \(0.200349\pi\)
\(200\) −10.4010 + 12.4077i −0.735459 + 0.877359i
\(201\) 4.58307 + 2.64603i 0.323264 + 0.186637i
\(202\) −0.652139 + 4.45719i −0.0458843 + 0.313607i
\(203\) 0 0
\(204\) 3.00112 + 5.56157i 0.210120 + 0.389387i
\(205\) −3.14658 11.7432i −0.219767 0.820180i
\(206\) 4.88188 + 2.10489i 0.340137 + 0.146655i
\(207\) −6.91828 11.9828i −0.480854 0.832863i
\(208\) 6.45144 19.5120i 0.447327 1.35292i
\(209\) −4.93130 −0.341105
\(210\) 0 0
\(211\) −8.69524 + 8.69524i −0.598605 + 0.598605i −0.939941 0.341336i \(-0.889120\pi\)
0.341336 + 0.939941i \(0.389120\pi\)
\(212\) −0.219300 + 7.62253i −0.0150616 + 0.523518i
\(213\) −2.14773 + 8.01544i −0.147160 + 0.549209i
\(214\) 0.498439 0.198112i 0.0340726 0.0135426i
\(215\) −11.6970 6.75328i −0.797730 0.460570i
\(216\) 11.6839 + 5.44134i 0.794991 + 0.370236i
\(217\) 0 0
\(218\) 13.9892 + 2.04679i 0.947470 + 0.138626i
\(219\) −0.959295 + 0.257042i −0.0648231 + 0.0173693i
\(220\) 4.49468 + 18.9370i 0.303031 + 1.27673i
\(221\) 18.0498 + 4.83644i 1.21416 + 0.325334i
\(222\) 7.03885 0.823889i 0.472417 0.0552958i
\(223\) −21.9483 −1.46976 −0.734882 0.678195i \(-0.762762\pi\)
−0.734882 + 0.678195i \(0.762762\pi\)
\(224\) 0 0
\(225\) −12.8522 −0.856814
\(226\) −3.68033 + 0.430779i −0.244812 + 0.0286550i
\(227\) −23.8284 6.38481i −1.58155 0.423774i −0.642143 0.766585i \(-0.721955\pi\)
−0.939405 + 0.342810i \(0.888621\pi\)
\(228\) 0.665862 + 2.80541i 0.0440978 + 0.185793i
\(229\) −9.19018 + 2.46250i −0.607304 + 0.162727i −0.549350 0.835592i \(-0.685125\pi\)
−0.0579547 + 0.998319i \(0.518458\pi\)
\(230\) −28.2399 4.13182i −1.86208 0.272444i
\(231\) 0 0
\(232\) −8.61684 + 18.5025i −0.565723 + 1.21475i
\(233\) −19.2584 11.1188i −1.26166 0.728418i −0.288262 0.957552i \(-0.593077\pi\)
−0.973395 + 0.229133i \(0.926411\pi\)
\(234\) 15.1600 6.02556i 0.991042 0.393903i
\(235\) 8.58704 32.0473i 0.560157 2.09053i
\(236\) −0.217329 + 7.55399i −0.0141469 + 0.491723i
\(237\) 0.148290 0.148290i 0.00963250 0.00963250i
\(238\) 0 0
\(239\) 14.9579 0.967548 0.483774 0.875193i \(-0.339266\pi\)
0.483774 + 0.875193i \(0.339266\pi\)
\(240\) 10.1663 5.11403i 0.656231 0.330109i
\(241\) −12.1750 21.0877i −0.784262 1.35838i −0.929439 0.368975i \(-0.879709\pi\)
0.145178 0.989406i \(-0.453625\pi\)
\(242\) −2.81710 1.21463i −0.181090 0.0780795i
\(243\) 4.16262 + 15.5351i 0.267032 + 0.996577i
\(244\) −6.43777 11.9303i −0.412136 0.763757i
\(245\) 0 0
\(246\) −0.660325 + 4.51315i −0.0421008 + 0.287748i
\(247\) 7.38355 + 4.26289i 0.469804 + 0.271241i
\(248\) −4.36816 3.66168i −0.277378 0.232517i
\(249\) 0.488579 0.282081i 0.0309624 0.0178762i
\(250\) −2.07981 + 2.63123i −0.131539 + 0.166414i
\(251\) 3.50509 + 3.50509i 0.221239 + 0.221239i 0.809020 0.587781i \(-0.199998\pi\)
−0.587781 + 0.809020i \(0.699998\pi\)
\(252\) 0 0
\(253\) −12.9494 + 12.9494i −0.814120 + 0.814120i
\(254\) 18.0972 2.11825i 1.13552 0.132911i
\(255\) 5.17385 + 8.96137i 0.323999 + 0.561183i
\(256\) 9.53776 12.8464i 0.596110 0.802903i
\(257\) 3.24853 5.62661i 0.202638 0.350978i −0.746740 0.665116i \(-0.768382\pi\)
0.949377 + 0.314138i \(0.101715\pi\)
\(258\) 3.02668 + 4.06415i 0.188433 + 0.253023i
\(259\) 0 0
\(260\) 9.64038 32.2394i 0.597871 1.99940i
\(261\) −15.6501 + 4.19344i −0.968719 + 0.259568i
\(262\) 4.85372 + 12.2117i 0.299864 + 0.754442i
\(263\) −21.4222 + 12.3681i −1.32095 + 0.762650i −0.983880 0.178829i \(-0.942769\pi\)
−0.337069 + 0.941480i \(0.609436\pi\)
\(264\) 1.26447 7.19178i 0.0778228 0.442623i
\(265\) 12.4862i 0.767023i
\(266\) 0 0
\(267\) 2.67298 + 2.67298i 0.163584 + 0.163584i
\(268\) 12.1779 + 0.350358i 0.743883 + 0.0214015i
\(269\) −1.44745 0.387844i −0.0882528 0.0236473i 0.214422 0.976741i \(-0.431213\pi\)
−0.302675 + 0.953094i \(0.597880\pi\)
\(270\) 19.3795 + 8.35574i 1.17940 + 0.508514i
\(271\) −3.68123 + 6.37608i −0.223619 + 0.387320i −0.955904 0.293679i \(-0.905120\pi\)
0.732285 + 0.680998i \(0.238454\pi\)
\(272\) 12.1603 + 7.98658i 0.737327 + 0.484257i
\(273\) 0 0
\(274\) 13.3866 9.96939i 0.808717 0.602273i
\(275\) 4.40260 + 16.4307i 0.265487 + 0.990811i
\(276\) 9.11539 + 5.61835i 0.548682 + 0.338185i
\(277\) −1.17214 + 4.37447i −0.0704268 + 0.262836i −0.992157 0.124994i \(-0.960109\pi\)
0.921731 + 0.387831i \(0.126775\pi\)
\(278\) 12.7987 + 10.1165i 0.767617 + 0.606749i
\(279\) 4.52464i 0.270883i
\(280\) 0 0
\(281\) 9.72875i 0.580369i 0.956971 + 0.290184i \(0.0937166\pi\)
−0.956971 + 0.290184i \(0.906283\pi\)
\(282\) −7.71881 + 9.76531i −0.459649 + 0.581516i
\(283\) −1.04114 + 3.88559i −0.0618893 + 0.230974i −0.989942 0.141475i \(-0.954815\pi\)
0.928052 + 0.372450i \(0.121482\pi\)
\(284\) 4.41161 + 18.5870i 0.261781 + 1.10293i
\(285\) 1.22193 + 4.56029i 0.0723807 + 0.270128i
\(286\) −12.8965 17.3170i −0.762583 1.02398i
\(287\) 0 0
\(288\) 12.6789 0.748855i 0.747112 0.0441267i
\(289\) 1.88568 3.26609i 0.110922 0.192123i
\(290\) −13.2320 + 30.6891i −0.777012 + 1.80213i
\(291\) −5.70780 1.52940i −0.334597 0.0896551i
\(292\) −1.66249 + 1.56950i −0.0972896 + 0.0918481i
\(293\) −1.88131 1.88131i −0.109908 0.109908i 0.650014 0.759922i \(-0.274763\pi\)
−0.759922 + 0.650014i \(0.774763\pi\)
\(294\) 0 0
\(295\) 12.3740i 0.720440i
\(296\) 13.3597 9.36435i 0.776519 0.544292i
\(297\) 11.7273 6.77077i 0.680488 0.392880i
\(298\) −15.4408 + 6.13715i −0.894461 + 0.355516i
\(299\) 30.5830 8.19470i 1.76866 0.473912i
\(300\) 8.75295 4.72324i 0.505352 0.272696i
\(301\) 0 0
\(302\) 22.2394 16.5623i 1.27974 0.953053i
\(303\) 1.38363 2.39651i 0.0794874 0.137676i
\(304\) 4.41601 + 4.95570i 0.253275 + 0.284229i
\(305\) −11.0986 19.2233i −0.635502 1.10072i
\(306\) 1.34260 + 11.4705i 0.0767516 + 0.655723i
\(307\) −3.98977 + 3.98977i −0.227708 + 0.227708i −0.811735 0.584026i \(-0.801476\pi\)
0.584026 + 0.811735i \(0.301476\pi\)
\(308\) 0 0
\(309\) −2.30933 2.30933i −0.131373 0.131373i
\(310\) −7.32185 5.78743i −0.415853 0.328704i
\(311\) 0.699829 0.404047i 0.0396837 0.0229114i −0.480027 0.877254i \(-0.659373\pi\)
0.519711 + 0.854342i \(0.326040\pi\)
\(312\) −8.11025 + 9.67505i −0.459152 + 0.547742i
\(313\) −20.1745 11.6478i −1.14033 0.658371i −0.193819 0.981037i \(-0.562087\pi\)
−0.946513 + 0.322666i \(0.895421\pi\)
\(314\) 7.56712 + 1.10716i 0.427037 + 0.0624805i
\(315\) 0 0
\(316\) 0.138313 0.462549i 0.00778073 0.0260204i
\(317\) −0.808194 3.01622i −0.0453927 0.169408i 0.939508 0.342526i \(-0.111282\pi\)
−0.984901 + 0.173118i \(0.944616\pi\)
\(318\) 1.85475 4.30173i 0.104009 0.241229i
\(319\) 10.7221 + 18.5712i 0.600322 + 1.03979i
\(320\) 15.0057 21.4751i 0.838842 1.20049i
\(321\) −0.329497 −0.0183907
\(322\) 0 0
\(323\) −4.26781 + 4.26781i −0.237467 + 0.237467i
\(324\) 3.81248 + 4.03835i 0.211805 + 0.224353i
\(325\) 7.61172 28.4073i 0.422222 1.57575i
\(326\) −5.89199 14.8240i −0.326327 0.821023i
\(327\) −7.52164 4.34262i −0.415948 0.240147i
\(328\) 3.59618 + 9.86537i 0.198566 + 0.544724i
\(329\) 0 0
\(330\) 1.73093 11.8304i 0.0952845 0.651244i
\(331\) 15.2162 4.07718i 0.836360 0.224102i 0.184874 0.982762i \(-0.440812\pi\)
0.651486 + 0.758660i \(0.274146\pi\)
\(332\) 0.681460 1.10562i 0.0374000 0.0606789i
\(333\) 12.5096 + 3.35195i 0.685524 + 0.183686i
\(334\) −3.58595 30.6363i −0.196214 1.67635i
\(335\) 19.9482 1.08989
\(336\) 0 0
\(337\) −5.36065 −0.292013 −0.146007 0.989284i \(-0.546642\pi\)
−0.146007 + 0.989284i \(0.546642\pi\)
\(338\) 2.20248 + 18.8168i 0.119799 + 1.02350i
\(339\) 2.19874 + 0.589151i 0.119419 + 0.0319983i
\(340\) 20.2790 + 12.4991i 1.09978 + 0.677861i
\(341\) −5.78447 + 1.54994i −0.313247 + 0.0839341i
\(342\) −0.762816 + 5.21364i −0.0412484 + 0.281922i
\(343\) 0 0
\(344\) 10.5750 + 4.92491i 0.570168 + 0.265534i
\(345\) 15.1838 + 8.76640i 0.817471 + 0.471967i
\(346\) −11.8639 29.8489i −0.637805 1.60469i
\(347\) −4.29752 + 16.0386i −0.230703 + 0.860995i 0.749336 + 0.662190i \(0.230373\pi\)
−0.980039 + 0.198805i \(0.936294\pi\)
\(348\) 9.11735 8.60741i 0.488741 0.461406i
\(349\) 22.2799 22.2799i 1.19262 1.19262i 0.216286 0.976330i \(-0.430606\pi\)
0.976330 0.216286i \(-0.0693943\pi\)
\(350\) 0 0
\(351\) −23.4121 −1.24965
\(352\) −5.30060 15.9527i −0.282523 0.850280i
\(353\) 6.84373 + 11.8537i 0.364255 + 0.630908i 0.988656 0.150196i \(-0.0479904\pi\)
−0.624401 + 0.781104i \(0.714657\pi\)
\(354\) 1.83807 4.26305i 0.0976926 0.226579i
\(355\) 8.09577 + 30.2138i 0.429679 + 1.60358i
\(356\) 8.33758 + 2.49314i 0.441891 + 0.132136i
\(357\) 0 0
\(358\) −30.1232 4.40737i −1.59206 0.232937i
\(359\) −5.47529 3.16116i −0.288974 0.166840i 0.348505 0.937307i \(-0.386690\pi\)
−0.637479 + 0.770467i \(0.720023\pi\)
\(360\) 20.7165 1.82269i 1.09185 0.0960642i
\(361\) 14.0697 8.12312i 0.740508 0.427533i
\(362\) −18.5905 14.6945i −0.977096 0.772328i
\(363\) 1.33260 + 1.33260i 0.0699434 + 0.0699434i
\(364\) 0 0
\(365\) −2.64711 + 2.64711i −0.138556 + 0.138556i
\(366\) 0.968157 + 8.27139i 0.0506064 + 0.432353i
\(367\) −18.6164 32.2445i −0.971768 1.68315i −0.690213 0.723606i \(-0.742483\pi\)
−0.281555 0.959545i \(-0.590850\pi\)
\(368\) 24.6097 + 1.41722i 1.28287 + 0.0738775i
\(369\) −4.16767 + 7.21861i −0.216960 + 0.375786i
\(370\) 21.4251 15.9559i 1.11384 0.829505i
\(371\) 0 0
\(372\) 1.66282 + 3.08149i 0.0862134 + 0.159768i
\(373\) −4.17538 + 1.11879i −0.216193 + 0.0579287i −0.365290 0.930894i \(-0.619030\pi\)
0.149097 + 0.988823i \(0.452363\pi\)
\(374\) 14.2043 5.64571i 0.734489 0.291933i
\(375\) 1.78433 1.03019i 0.0921426 0.0531985i
\(376\) −4.96217 + 28.2227i −0.255904 + 1.45548i
\(377\) 37.0752i 1.90947i
\(378\) 0 0
\(379\) −11.5118 11.5118i −0.591323 0.591323i 0.346666 0.937989i \(-0.387314\pi\)
−0.937989 + 0.346666i \(0.887314\pi\)
\(380\) 7.46109 + 7.90312i 0.382746 + 0.405422i
\(381\) −10.8118 2.89701i −0.553906 0.148419i
\(382\) 4.41672 10.2437i 0.225979 0.524113i
\(383\) −9.86334 + 17.0838i −0.503993 + 0.872942i 0.495996 + 0.868325i \(0.334803\pi\)
−0.999989 + 0.00461719i \(0.998530\pi\)
\(384\) −8.35971 + 5.16955i −0.426605 + 0.263808i
\(385\) 0 0
\(386\) 21.0167 + 28.2206i 1.06972 + 1.43639i
\(387\) 2.39674 + 8.94477i 0.121833 + 0.454688i
\(388\) −13.2358 + 3.14151i −0.671947 + 0.159486i
\(389\) −1.53689 + 5.73576i −0.0779236 + 0.290815i −0.993880 0.110462i \(-0.964767\pi\)
0.915957 + 0.401277i \(0.131434\pi\)
\(390\) −12.8186 + 16.2172i −0.649094 + 0.821189i
\(391\) 22.4142i 1.13353i
\(392\) 0 0
\(393\) 8.07264i 0.407211i
\(394\) 12.1664 + 9.61672i 0.612935 + 0.484483i
\(395\) 0.204599 0.763573i 0.0102945 0.0384195i
\(396\) 7.00167 11.3597i 0.351847 0.570848i
\(397\) 6.61855 + 24.7008i 0.332175 + 1.23970i 0.906899 + 0.421348i \(0.138443\pi\)
−0.574724 + 0.818348i \(0.694890\pi\)
\(398\) −12.9838 + 9.66937i −0.650819 + 0.484682i
\(399\) 0 0
\(400\) 12.5695 19.1382i 0.628475 0.956911i
\(401\) −1.80147 + 3.12023i −0.0899610 + 0.155817i −0.907494 0.420064i \(-0.862008\pi\)
0.817533 + 0.575881i \(0.195341\pi\)
\(402\) −6.87252 2.96318i −0.342770 0.147790i
\(403\) 10.0008 + 2.67972i 0.498177 + 0.133486i
\(404\) 0.183205 6.36790i 0.00911476 0.316815i
\(405\) 6.43010 + 6.43010i 0.319514 + 0.319514i
\(406\) 0 0
\(407\) 17.1410i 0.849648i
\(408\) −5.12981 7.31850i −0.253964 0.362320i
\(409\) 13.2778 7.66595i 0.656546 0.379057i −0.134414 0.990925i \(-0.542915\pi\)
0.790959 + 0.611869i \(0.209582\pi\)
\(410\) 6.35046 + 15.9774i 0.313627 + 0.789070i
\(411\) −9.90413 + 2.65380i −0.488535 + 0.130902i
\(412\) −7.20327 2.15395i −0.354880 0.106118i
\(413\) 0 0
\(414\) 11.6877 + 15.6939i 0.574418 + 0.771314i
\(415\) 1.06329 1.84168i 0.0521950 0.0904044i
\(416\) −5.85388 + 28.4678i −0.287010 + 1.39575i
\(417\) −5.01099 8.67929i −0.245389 0.425027i
\(418\) 6.92662 0.810753i 0.338792 0.0396552i
\(419\) 17.2949 17.2949i 0.844910 0.844910i −0.144583 0.989493i \(-0.546184\pi\)
0.989493 + 0.144583i \(0.0461841\pi\)
\(420\) 0 0
\(421\) 18.2430 + 18.2430i 0.889111 + 0.889111i 0.994438 0.105327i \(-0.0335888\pi\)
−0.105327 + 0.994438i \(0.533589\pi\)
\(422\) 10.7840 13.6431i 0.524955 0.664137i
\(423\) −19.6997 + 11.3736i −0.957830 + 0.553003i
\(424\) −0.945183 10.7428i −0.0459021 0.521719i
\(425\) 18.0303 + 10.4098i 0.874598 + 0.504950i
\(426\) 1.69894 11.6118i 0.0823138 0.562593i
\(427\) 0 0
\(428\) −0.667549 + 0.360221i −0.0322672 + 0.0174119i
\(429\) 3.43297 + 12.8120i 0.165745 + 0.618571i
\(430\) 17.5402 + 7.56271i 0.845865 + 0.364707i
\(431\) −16.8098 29.1154i −0.809698 1.40244i −0.913073 0.407796i \(-0.866297\pi\)
0.103375 0.994642i \(-0.467036\pi\)
\(432\) −17.3062 5.72209i −0.832643 0.275304i
\(433\) −26.5511 −1.27596 −0.637982 0.770051i \(-0.720231\pi\)
−0.637982 + 0.770051i \(0.720231\pi\)
\(434\) 0 0
\(435\) 14.5172 14.5172i 0.696046 0.696046i
\(436\) −19.9861 0.575001i −0.957161 0.0275375i
\(437\) −2.64682 + 9.87805i −0.126614 + 0.472531i
\(438\) 1.30519 0.518765i 0.0623643 0.0247876i
\(439\) −16.9833 9.80529i −0.810567 0.467981i 0.0365859 0.999331i \(-0.488352\pi\)
−0.847153 + 0.531350i \(0.821685\pi\)
\(440\) −9.42675 25.8603i −0.449403 1.23284i
\(441\) 0 0
\(442\) −26.1484 3.82581i −1.24375 0.181975i
\(443\) −6.58948 + 1.76565i −0.313076 + 0.0838883i −0.411935 0.911213i \(-0.635147\pi\)
0.0988599 + 0.995101i \(0.468480\pi\)
\(444\) −9.75148 + 2.31451i −0.462785 + 0.109842i
\(445\) 13.7636 + 3.68795i 0.652459 + 0.174826i
\(446\) 30.8291 3.60850i 1.45980 0.170868i
\(447\) 10.2072 0.482786
\(448\) 0 0
\(449\) 6.32412 0.298454 0.149227 0.988803i \(-0.452322\pi\)
0.149227 + 0.988803i \(0.452322\pi\)
\(450\) 18.0525 2.11303i 0.851005 0.0996091i
\(451\) 10.6562 + 2.85532i 0.501781 + 0.134452i
\(452\) 5.09866 1.21016i 0.239821 0.0569213i
\(453\) −16.4539 + 4.40880i −0.773070 + 0.207144i
\(454\) 34.5197 + 5.05063i 1.62009 + 0.237038i
\(455\) 0 0
\(456\) −1.39652 3.83107i −0.0653981 0.179406i
\(457\) 34.2066 + 19.7492i 1.60012 + 0.923829i 0.991462 + 0.130396i \(0.0416248\pi\)
0.608657 + 0.793433i \(0.291709\pi\)
\(458\) 12.5039 4.96985i 0.584269 0.232226i
\(459\) 4.28966 16.0092i 0.200224 0.747248i
\(460\) 40.3457 + 1.16075i 1.88113 + 0.0541202i
\(461\) 1.26773 1.26773i 0.0590440 0.0590440i −0.676968 0.736012i \(-0.736707\pi\)
0.736012 + 0.676968i \(0.236707\pi\)
\(462\) 0 0
\(463\) −14.4427 −0.671208 −0.335604 0.942003i \(-0.608940\pi\)
−0.335604 + 0.942003i \(0.608940\pi\)
\(464\) 9.06142 27.4058i 0.420666 1.27228i
\(465\) 2.86667 + 4.96521i 0.132939 + 0.230256i
\(466\) 28.8788 + 12.4515i 1.33778 + 0.576805i
\(467\) 4.49607 + 16.7796i 0.208053 + 0.776465i 0.988497 + 0.151240i \(0.0483265\pi\)
−0.780444 + 0.625226i \(0.785007\pi\)
\(468\) −20.3035 + 10.9561i −0.938528 + 0.506446i
\(469\) 0 0
\(470\) −6.79269 + 46.4262i −0.313323 + 2.14148i
\(471\) −4.06864 2.34903i −0.187473 0.108238i
\(472\) −0.936684 10.6463i −0.0431144 0.490033i
\(473\) 10.6143 6.12817i 0.488046 0.281773i
\(474\) −0.183912 + 0.232673i −0.00844736 + 0.0106870i
\(475\) 6.71680 + 6.71680i 0.308188 + 0.308188i
\(476\) 0 0
\(477\) 6.05337 6.05337i 0.277165 0.277165i
\(478\) −21.0103 + 2.45923i −0.960988 + 0.112483i
\(479\) −2.39344 4.14556i −0.109359 0.189416i 0.806152 0.591709i \(-0.201547\pi\)
−0.915511 + 0.402293i \(0.868213\pi\)
\(480\) −13.4390 + 8.85472i −0.613405 + 0.404161i
\(481\) −14.8177 + 25.6649i −0.675627 + 1.17022i
\(482\) 20.5684 + 27.6187i 0.936863 + 1.25800i
\(483\) 0 0
\(484\) 4.15666 + 1.24294i 0.188939 + 0.0564974i
\(485\) −21.5153 + 5.76501i −0.976960 + 0.261776i
\(486\) −8.40104 21.1366i −0.381079 0.958776i
\(487\) 23.2700 13.4349i 1.05446 0.608795i 0.130568 0.991439i \(-0.458320\pi\)
0.923896 + 0.382644i \(0.124987\pi\)
\(488\) 11.0041 + 15.6991i 0.498132 + 0.710665i
\(489\) 9.79948i 0.443148i
\(490\) 0 0
\(491\) −11.7576 11.7576i −0.530611 0.530611i 0.390143 0.920754i \(-0.372426\pi\)
−0.920754 + 0.390143i \(0.872426\pi\)
\(492\) 0.185504 6.44784i 0.00836319 0.290691i
\(493\) 25.3520 + 6.79306i 1.14180 + 0.305944i
\(494\) −11.0720 4.77384i −0.498151 0.214785i
\(495\) 10.9248 18.9223i 0.491034 0.850496i
\(496\) 6.73764 + 4.42511i 0.302529 + 0.198693i
\(497\) 0 0
\(498\) −0.639893 + 0.476545i −0.0286743 + 0.0213545i
\(499\) −5.10099 19.0371i −0.228352 0.852220i −0.981034 0.193836i \(-0.937907\pi\)
0.752682 0.658384i \(-0.228760\pi\)
\(500\) 2.48875 4.03783i 0.111300 0.180577i
\(501\) −4.90430 + 18.3031i −0.219108 + 0.817721i
\(502\) −5.49961 4.34707i −0.245460 0.194019i
\(503\) 23.6387i 1.05400i −0.849866 0.526999i \(-0.823317\pi\)
0.849866 0.526999i \(-0.176683\pi\)
\(504\) 0 0
\(505\) 10.4311i 0.464176i
\(506\) 16.0600 20.3180i 0.713954 0.903245i
\(507\) 3.01221 11.2417i 0.133777 0.499263i
\(508\) −25.0715 + 5.95070i −1.11237 + 0.264020i
\(509\) −8.81005 32.8795i −0.390498 1.45736i −0.829314 0.558783i \(-0.811269\pi\)
0.438816 0.898577i \(-0.355398\pi\)
\(510\) −8.74065 11.7367i −0.387043 0.519711i
\(511\) 0 0
\(512\) −11.2849 + 19.6125i −0.498726 + 0.866760i
\(513\) 3.78096 6.54881i 0.166933 0.289137i
\(514\) −3.63789 + 8.43737i −0.160460 + 0.372156i
\(515\) −11.8911 3.18622i −0.523985 0.140401i
\(516\) −4.91953 5.21098i −0.216570 0.229401i
\(517\) 21.2887 + 21.2887i 0.936274 + 0.936274i
\(518\) 0 0
\(519\) 19.7318i 0.866131i
\(520\) −8.24063 + 46.8693i −0.361376 + 2.05535i
\(521\) −15.2768 + 8.82007i −0.669289 + 0.386414i −0.795807 0.605550i \(-0.792953\pi\)
0.126518 + 0.991964i \(0.459620\pi\)
\(522\) 21.2931 8.46325i 0.931975 0.370426i
\(523\) 13.8896 3.72172i 0.607352 0.162739i 0.0579803 0.998318i \(-0.481534\pi\)
0.549371 + 0.835578i \(0.314867\pi\)
\(524\) −8.82537 16.3549i −0.385538 0.714466i
\(525\) 0 0
\(526\) 28.0567 20.8946i 1.22333 0.911046i
\(527\) −3.66479 + 6.34760i −0.159641 + 0.276506i
\(528\) −0.593708 + 10.3096i −0.0258378 + 0.448669i
\(529\) 7.48891 + 12.9712i 0.325605 + 0.563964i
\(530\) −2.05286 17.5385i −0.0891704 0.761822i
\(531\) 5.99894 5.99894i 0.260332 0.260332i
\(532\) 0 0
\(533\) −13.4870 13.4870i −0.584189 0.584189i
\(534\) −4.19400 3.31507i −0.181492 0.143457i
\(535\) −1.07562 + 0.621012i −0.0465033 + 0.0268487i
\(536\) −17.1630 + 1.51004i −0.741327 + 0.0652238i
\(537\) 16.1964 + 9.35102i 0.698928 + 0.403526i
\(538\) 2.09689 + 0.306800i 0.0904035 + 0.0132271i
\(539\) 0 0
\(540\) −28.5947 8.55050i −1.23052 0.367955i
\(541\) 7.69386 + 28.7139i 0.330785 + 1.23451i 0.908367 + 0.418173i \(0.137330\pi\)
−0.577582 + 0.816332i \(0.696004\pi\)
\(542\) 4.12246 9.56123i 0.177075 0.410690i
\(543\) 7.27860 + 12.6069i 0.312355 + 0.541014i
\(544\) −18.3937 9.21887i −0.788624 0.395256i
\(545\) −32.7386 −1.40237
\(546\) 0 0
\(547\) 27.6503 27.6503i 1.18224 1.18224i 0.203076 0.979163i \(-0.434906\pi\)
0.979163 0.203076i \(-0.0650940\pi\)
\(548\) −17.1641 + 16.2041i −0.733216 + 0.692207i
\(549\) −3.93889 + 14.7001i −0.168108 + 0.627387i
\(550\) −8.88538 22.3552i −0.378874 0.953229i
\(551\) 10.3706 + 5.98748i 0.441803 + 0.255075i
\(552\) −13.7274 6.39301i −0.584277 0.272105i
\(553\) 0 0
\(554\) 0.927205 6.33720i 0.0393932 0.269242i
\(555\) −15.8514 + 4.24737i −0.672855 + 0.180291i
\(556\) −19.6407 12.1057i −0.832950 0.513396i
\(557\) −6.35511 1.70285i −0.269275 0.0721519i 0.121655 0.992572i \(-0.461180\pi\)
−0.390930 + 0.920421i \(0.627846\pi\)
\(558\) 0.743895 + 6.35542i 0.0314916 + 0.269047i
\(559\) −21.1901 −0.896247
\(560\) 0 0
\(561\) −9.38988 −0.396441
\(562\) −1.59950 13.6652i −0.0674709 0.576433i
\(563\) −25.7157 6.89049i −1.08379 0.290399i −0.327640 0.944803i \(-0.606253\pi\)
−0.756146 + 0.654403i \(0.772920\pi\)
\(564\) 9.23652 14.9856i 0.388928 0.631009i
\(565\) 8.28807 2.22078i 0.348682 0.0934289i
\(566\) 0.823582 5.62896i 0.0346178 0.236603i
\(567\) 0 0
\(568\) −9.25253 25.3824i −0.388228 1.06502i
\(569\) −2.20198 1.27132i −0.0923119 0.0532963i 0.453133 0.891443i \(-0.350306\pi\)
−0.545445 + 0.838146i \(0.683639\pi\)
\(570\) −2.46610 6.20460i −0.103294 0.259882i
\(571\) −10.3843 + 38.7549i −0.434571 + 1.62184i 0.307521 + 0.951541i \(0.400501\pi\)
−0.742091 + 0.670299i \(0.766166\pi\)
\(572\) 20.9618 + 22.2036i 0.876455 + 0.928380i
\(573\) −4.84569 + 4.84569i −0.202431 + 0.202431i
\(574\) 0 0
\(575\) 35.2760 1.47111
\(576\) −17.6860 + 3.13639i −0.736916 + 0.130683i
\(577\) 17.3756 + 30.0953i 0.723354 + 1.25289i 0.959648 + 0.281204i \(0.0907337\pi\)
−0.236294 + 0.971682i \(0.575933\pi\)
\(578\) −2.11169 + 4.89765i −0.0878348 + 0.203715i
\(579\) −5.59453 20.8791i −0.232501 0.867705i
\(580\) 13.5405 45.2821i 0.562237 1.88024i
\(581\) 0 0
\(582\) 8.26877 + 1.20982i 0.342751 + 0.0501485i
\(583\) −9.81246 5.66523i −0.406391 0.234630i
\(584\) 2.07713 2.47789i 0.0859521 0.102536i
\(585\) −32.7151 + 18.8881i −1.35260 + 0.780925i
\(586\) 2.95185 + 2.33323i 0.121940 + 0.0963850i
\(587\) −20.1643 20.1643i −0.832268 0.832268i 0.155559 0.987827i \(-0.450282\pi\)
−0.987827 + 0.155559i \(0.950282\pi\)
\(588\) 0 0
\(589\) −2.36466 + 2.36466i −0.0974341 + 0.0974341i
\(590\) −2.03440 17.3808i −0.0837548 0.715555i
\(591\) −4.76342 8.25049i −0.195941 0.339380i
\(592\) −17.2258 + 15.3499i −0.707977 + 0.630876i
\(593\) 4.20461 7.28261i 0.172663 0.299061i −0.766687 0.642021i \(-0.778096\pi\)
0.939350 + 0.342960i \(0.111430\pi\)
\(594\) −15.3593 + 11.4385i −0.630199 + 0.469326i
\(595\) 0 0
\(596\) 20.6795 11.1590i 0.847065 0.457091i
\(597\) 9.60607 2.57394i 0.393150 0.105344i
\(598\) −41.6104 + 16.5386i −1.70157 + 0.676314i
\(599\) −3.08368 + 1.78037i −0.125996 + 0.0727438i −0.561673 0.827359i \(-0.689842\pi\)
0.435677 + 0.900103i \(0.356509\pi\)
\(600\) −11.5181 + 8.07344i −0.470223 + 0.329597i
\(601\) 45.3712i 1.85073i 0.379076 + 0.925365i \(0.376242\pi\)
−0.379076 + 0.925365i \(0.623758\pi\)
\(602\) 0 0
\(603\) −9.67096 9.67096i −0.393832 0.393832i
\(604\) −28.5150 + 26.9202i −1.16026 + 1.09537i
\(605\) 6.86180 + 1.83861i 0.278972 + 0.0747502i
\(606\) −1.54947 + 3.59368i −0.0629428 + 0.145983i
\(607\) −2.45090 + 4.24508i −0.0994789 + 0.172302i −0.911469 0.411369i \(-0.865051\pi\)
0.811990 + 0.583671i \(0.198384\pi\)
\(608\) −7.01759 6.23486i −0.284601 0.252857i
\(609\) 0 0
\(610\) 18.7498 + 25.1768i 0.759158 + 1.01938i
\(611\) −13.4720 50.2783i −0.545020 2.03404i
\(612\) −3.77171 15.8910i −0.152462 0.642354i
\(613\) −2.06747 + 7.71591i −0.0835045 + 0.311643i −0.995027 0.0996077i \(-0.968241\pi\)
0.911522 + 0.411251i \(0.134908\pi\)
\(614\) 4.94817 6.26008i 0.199692 0.252636i
\(615\) 10.5620i 0.425901i
\(616\) 0 0
\(617\) 40.2966i 1.62228i 0.584852 + 0.811140i \(0.301153\pi\)
−0.584852 + 0.811140i \(0.698847\pi\)
\(618\) 3.62341 + 2.86406i 0.145755 + 0.115209i
\(619\) −5.20932 + 19.4415i −0.209380 + 0.781418i 0.778689 + 0.627410i \(0.215885\pi\)
−0.988070 + 0.154008i \(0.950782\pi\)
\(620\) 11.2360 + 6.92538i 0.451247 + 0.278130i
\(621\) −7.26826 27.1255i −0.291665 1.08851i
\(622\) −0.916568 + 0.682592i −0.0367510 + 0.0273695i
\(623\) 0 0
\(624\) 9.80118 14.9232i 0.392361 0.597406i
\(625\) −10.4273 + 18.0606i −0.417091 + 0.722422i
\(626\) 30.2526 + 13.0439i 1.20914 + 0.521337i
\(627\) −4.13817 1.10882i −0.165263 0.0442820i
\(628\) −10.8110 0.311032i −0.431405 0.0124115i
\(629\) −14.8348 14.8348i −0.591500 0.591500i
\(630\) 0 0
\(631\) 15.2886i 0.608631i 0.952571 + 0.304315i \(0.0984277\pi\)
−0.952571 + 0.304315i \(0.901572\pi\)
\(632\) −0.118231 + 0.672447i −0.00470297 + 0.0267485i
\(633\) −9.25190 + 5.34159i −0.367730 + 0.212309i
\(634\) 1.63110 + 4.10378i 0.0647794 + 0.162982i
\(635\) −40.7546 + 10.9202i −1.61730 + 0.433354i
\(636\) −1.89798 + 6.34725i −0.0752599 + 0.251685i
\(637\) 0 0
\(638\) −18.1138 24.3228i −0.717133 0.962948i
\(639\) 10.7229 18.5726i 0.424192 0.734722i
\(640\) −17.5466 + 32.6315i −0.693591 + 1.28987i
\(641\) 6.18366 + 10.7104i 0.244240 + 0.423036i 0.961918 0.273340i \(-0.0881283\pi\)
−0.717678 + 0.696375i \(0.754795\pi\)
\(642\) 0.462819 0.0541725i 0.0182660 0.00213802i
\(643\) 29.2082 29.2082i 1.15186 1.15186i 0.165677 0.986180i \(-0.447019\pi\)
0.986180 0.165677i \(-0.0529809\pi\)
\(644\) 0 0
\(645\) −8.29724 8.29724i −0.326703 0.326703i
\(646\) 5.29300 6.69634i 0.208250 0.263464i
\(647\) 12.4455 7.18540i 0.489282 0.282487i −0.234994 0.971997i \(-0.575507\pi\)
0.724277 + 0.689509i \(0.242174\pi\)
\(648\) −6.01905 5.04556i −0.236451 0.198208i
\(649\) −9.72423 5.61429i −0.381710 0.220380i
\(650\) −6.02117 + 41.1531i −0.236170 + 1.61416i
\(651\) 0 0
\(652\) 10.7132 + 19.8534i 0.419563 + 0.777519i
\(653\) 3.79601 + 14.1669i 0.148549 + 0.554393i 0.999572 + 0.0292641i \(0.00931639\pi\)
−0.851022 + 0.525129i \(0.824017\pi\)
\(654\) 11.2790 + 4.86312i 0.441046 + 0.190163i
\(655\) −15.2147 26.3527i −0.594489 1.02968i
\(656\) −6.67324 13.2659i −0.260546 0.517946i
\(657\) 2.56666 0.100135
\(658\) 0 0
\(659\) −30.0445 + 30.0445i −1.17037 + 1.17037i −0.188248 + 0.982122i \(0.560281\pi\)
−0.982122 + 0.188248i \(0.939719\pi\)
\(660\) −0.486268 + 16.9019i −0.0189279 + 0.657905i
\(661\) 0.717370 2.67726i 0.0279025 0.104133i −0.950570 0.310509i \(-0.899500\pi\)
0.978473 + 0.206376i \(0.0661670\pi\)
\(662\) −20.7028 + 8.22860i −0.804636 + 0.319814i
\(663\) 14.0593 + 8.11714i 0.546018 + 0.315244i
\(664\) −0.775420 + 1.66502i −0.0300921 + 0.0646154i
\(665\) 0 0
\(666\) −18.1224 2.65152i −0.702230 0.102744i
\(667\) 42.9556 11.5099i 1.66325 0.445666i
\(668\) 10.0738 + 42.4430i 0.389768 + 1.64217i
\(669\) −18.4182 4.93515i −0.712089 0.190804i
\(670\) −28.0197 + 3.27968i −1.08250 + 0.126705i
\(671\) 20.1425 0.777592
\(672\) 0 0
\(673\) −4.79538 −0.184848 −0.0924242 0.995720i \(-0.529462\pi\)
−0.0924242 + 0.995720i \(0.529462\pi\)
\(674\) 7.52969 0.881342i 0.290033 0.0339480i
\(675\) −25.1958 6.75119i −0.969786 0.259854i
\(676\) −6.18733 26.0684i −0.237974 1.00263i
\(677\) 48.0358 12.8711i 1.84616 0.494678i 0.846855 0.531824i \(-0.178493\pi\)
0.999310 + 0.0371454i \(0.0118265\pi\)
\(678\) −3.18527 0.466042i −0.122330 0.0178982i
\(679\) 0 0
\(680\) −30.5394 14.2225i −1.17113 0.545409i
\(681\) −18.5603 10.7158i −0.711234 0.410631i
\(682\) 7.87018 3.12811i 0.301365 0.119782i
\(683\) −1.06566 + 3.97711i −0.0407764 + 0.152180i −0.983312 0.181925i \(-0.941767\pi\)
0.942536 + 0.334105i \(0.108434\pi\)
\(684\) 0.214297 7.44863i 0.00819386 0.284805i
\(685\) −27.3298 + 27.3298i −1.04422 + 1.04422i
\(686\) 0 0
\(687\) −8.26579 −0.315360
\(688\) −15.6637 5.17902i −0.597172 0.197448i
\(689\) 9.79469 + 16.9649i 0.373148 + 0.646311i
\(690\) −22.7689 9.81713i −0.866797 0.373732i
\(691\) −9.19198 34.3049i −0.349679 1.30502i −0.887049 0.461674i \(-0.847249\pi\)
0.537370 0.843347i \(-0.319418\pi\)
\(692\) 21.5717 + 39.9759i 0.820033 + 1.51966i
\(693\) 0 0
\(694\) 3.39951 23.2347i 0.129043 0.881977i
\(695\) −32.7162 18.8887i −1.24100 0.716489i
\(696\) −11.3913 + 13.5892i −0.431787 + 0.515096i
\(697\) 11.6936 6.75130i 0.442927 0.255724i
\(698\) −27.6319 + 34.9579i −1.04588 + 1.32318i
\(699\) −13.6608 13.6608i −0.516701 0.516701i
\(700\) 0 0
\(701\) 15.7687 15.7687i 0.595575 0.595575i −0.343557 0.939132i \(-0.611632\pi\)
0.939132 + 0.343557i \(0.111632\pi\)
\(702\) 32.8853 3.84918i 1.24117 0.145278i
\(703\) −4.78597 8.28955i −0.180506 0.312646i
\(704\) 10.0681 + 21.5360i 0.379457 + 0.811669i
\(705\) 14.4119 24.9621i 0.542783 0.940129i
\(706\) −11.5617 15.5248i −0.435131 0.584283i
\(707\) 0 0
\(708\) −1.88092 + 6.29018i −0.0706892 + 0.236400i
\(709\) 11.1596 2.99021i 0.419108 0.112300i −0.0431009 0.999071i \(-0.513724\pi\)
0.462209 + 0.886771i \(0.347057\pi\)
\(710\) −16.3390 41.1081i −0.613190 1.54276i
\(711\) −0.469373 + 0.270993i −0.0176029 + 0.0101630i
\(712\) −12.1211 2.13115i −0.454256 0.0798681i
\(713\) 12.4190i 0.465095i
\(714\) 0 0
\(715\) 35.3539 + 35.3539i 1.32216 + 1.32216i
\(716\) 43.0364 + 1.23816i 1.60834 + 0.0462721i
\(717\) 12.5522 + 3.36335i 0.468770 + 0.125607i
\(718\) 8.21044 + 3.54005i 0.306411 + 0.132113i
\(719\) 14.4263 24.9871i 0.538011 0.931863i −0.461000 0.887400i \(-0.652509\pi\)
0.999011 0.0444624i \(-0.0141575\pi\)
\(720\) −28.7992 + 5.96618i −1.07328 + 0.222347i
\(721\) 0 0
\(722\) −18.4271 + 13.7231i −0.685784 + 0.510722i
\(723\) −5.47519 20.4337i −0.203625 0.759938i
\(724\) 28.5286 + 17.5839i 1.06026 + 0.653499i
\(725\) 10.6911 39.8997i 0.397057 1.48184i
\(726\) −2.09090 1.65271i −0.0776005 0.0613379i
\(727\) 19.1342i 0.709648i −0.934933 0.354824i \(-0.884541\pi\)
0.934933 0.354824i \(-0.115459\pi\)
\(728\) 0 0
\(729\) 5.64199i 0.208963i
\(730\) 3.28298 4.15340i 0.121509 0.153724i
\(731\) 3.88254 14.4898i 0.143601 0.535926i
\(732\) −2.71979 11.4590i −0.100526 0.423538i
\(733\) 2.99140 + 11.1641i 0.110490 + 0.412354i 0.998910 0.0466772i \(-0.0148632\pi\)
−0.888420 + 0.459031i \(0.848197\pi\)
\(734\) 31.4504 + 42.2308i 1.16085 + 1.55877i
\(735\) 0 0
\(736\) −34.8004 + 2.05541i −1.28276 + 0.0757636i
\(737\) −9.05087 + 15.6766i −0.333393 + 0.577453i
\(738\) 4.66720 10.8246i 0.171802 0.398461i
\(739\) 8.01230 + 2.14689i 0.294737 + 0.0789746i 0.403158 0.915130i \(-0.367913\pi\)
−0.108420 + 0.994105i \(0.534579\pi\)
\(740\) −27.4710 + 25.9345i −1.00985 + 0.953371i
\(741\) 5.23749 + 5.23749i 0.192404 + 0.192404i
\(742\) 0 0
\(743\) 9.24326i 0.339102i −0.985521 0.169551i \(-0.945768\pi\)
0.985521 0.169551i \(-0.0542318\pi\)
\(744\) −2.84227 4.05495i −0.104203 0.148662i
\(745\) 33.3210 19.2379i 1.22079 0.704821i
\(746\) 5.68090 2.25795i 0.207993 0.0826695i
\(747\) −1.40834 + 0.377363i −0.0515284 + 0.0138070i
\(748\) −19.0236 + 10.2654i −0.695570 + 0.375341i
\(749\) 0 0
\(750\) −2.33695 + 1.74038i −0.0853332 + 0.0635499i
\(751\) 10.3379 17.9057i 0.377234 0.653388i −0.613425 0.789753i \(-0.710209\pi\)
0.990659 + 0.136365i \(0.0435421\pi\)
\(752\) 2.32989 40.4581i 0.0849624 1.47536i
\(753\) 2.15322 + 3.72949i 0.0784677 + 0.135910i
\(754\) 6.09551 + 52.0767i 0.221986 + 1.89652i
\(755\) −45.4034 + 45.4034i −1.65240 + 1.65240i
\(756\) 0 0
\(757\) 19.3612 + 19.3612i 0.703694 + 0.703694i 0.965201 0.261508i \(-0.0842197\pi\)
−0.261508 + 0.965201i \(0.584220\pi\)
\(758\) 18.0624 + 14.2771i 0.656057 + 0.518569i
\(759\) −13.7784 + 7.95495i −0.500123 + 0.288746i
\(760\) −11.7794 9.87424i −0.427283 0.358176i
\(761\) −15.2778 8.82065i −0.553821 0.319748i 0.196841 0.980435i \(-0.436932\pi\)
−0.750662 + 0.660687i \(0.770265\pi\)
\(762\) 15.6628 + 2.29165i 0.567404 + 0.0830178i
\(763\) 0 0
\(764\) −4.51966 + 15.1147i −0.163516 + 0.546831i
\(765\) −6.92149 25.8313i −0.250247 0.933934i
\(766\) 11.0455 25.6180i 0.399092 0.925615i
\(767\) 9.70662 + 16.8124i 0.350486 + 0.607059i
\(768\) 10.8923 8.63570i 0.393043 0.311614i
\(769\) 33.4127 1.20489 0.602447 0.798159i \(-0.294193\pi\)
0.602447 + 0.798159i \(0.294193\pi\)
\(770\) 0 0
\(771\) 3.99122 3.99122i 0.143740 0.143740i
\(772\) −34.1603 36.1841i −1.22945 1.30229i
\(773\) 3.46760 12.9412i 0.124721 0.465464i −0.875109 0.483926i \(-0.839210\pi\)
0.999830 + 0.0184619i \(0.00587695\pi\)
\(774\) −4.83713 12.1700i −0.173867 0.437441i
\(775\) 9.99003 + 5.76774i 0.358852 + 0.207183i
\(776\) 18.0748 6.58874i 0.648849 0.236522i
\(777\) 0 0
\(778\) 1.21574 8.30927i 0.0435865 0.297902i
\(779\) 5.95068 1.59448i 0.213205 0.0571281i
\(780\) 15.3390 24.8865i 0.549225 0.891081i
\(781\) −27.4171 7.34640i −0.981062 0.262875i
\(782\) −3.68511 31.4835i −0.131779 1.12585i
\(783\) −32.8837 −1.17517
\(784\) 0 0
\(785\) −17.7091 −0.632066
\(786\) 1.32722 + 11.3390i 0.0473404 + 0.404450i
\(787\) −9.30456 2.49315i −0.331672 0.0888712i 0.0891401 0.996019i \(-0.471588\pi\)
−0.420812 + 0.907148i \(0.638255\pi\)
\(788\) −18.6703 11.5076i −0.665102 0.409941i
\(789\) −20.7578 + 5.56203i −0.738997 + 0.198014i
\(790\) −0.161846 + 1.10617i −0.00575821 + 0.0393558i
\(791\) 0 0
\(792\) −7.96706 + 17.1073i −0.283097 + 0.607882i
\(793\) −30.1590 17.4123i −1.07098 0.618329i
\(794\) −13.3576 33.6071i −0.474044 1.19267i
\(795\) −2.80758 + 10.4780i −0.0995744 + 0.371617i
\(796\) 16.6476 15.7165i 0.590059 0.557056i
\(797\) −3.47475 + 3.47475i −0.123082 + 0.123082i −0.765965 0.642883i \(-0.777738\pi\)
0.642883 + 0.765965i \(0.277738\pi\)
\(798\) 0 0
\(799\) 36.8487 1.30361
\(800\) −14.5089 + 28.9486i −0.512967 + 1.02349i
\(801\) −4.88472 8.46059i −0.172593 0.298940i
\(802\) 2.01739 4.67893i 0.0712365 0.165219i
\(803\) −0.879223 3.28131i −0.0310271 0.115795i
\(804\) 10.1405 + 3.03225i 0.357627 + 0.106939i
\(805\) 0 0
\(806\) −14.4880 2.11976i −0.510318 0.0746654i
\(807\) −1.12744 0.650930i −0.0396879 0.0229138i
\(808\) 0.789610 + 8.97462i 0.0277784 + 0.315726i
\(809\) 38.9261 22.4740i 1.36857 0.790144i 0.377824 0.925877i \(-0.376672\pi\)
0.990745 + 0.135734i \(0.0433391\pi\)
\(810\) −10.0891 7.97471i −0.354493 0.280203i
\(811\) 23.3543 + 23.3543i 0.820080 + 0.820080i 0.986119 0.166039i \(-0.0530978\pi\)
−0.166039 + 0.986119i \(0.553098\pi\)
\(812\) 0 0
\(813\) −4.52285 + 4.52285i −0.158623 + 0.158623i
\(814\) 2.81815 + 24.0767i 0.0987760 + 0.843887i
\(815\) 18.4694 + 31.9899i 0.646953 + 1.12056i
\(816\) 8.40869 + 9.43635i 0.294363 + 0.330338i
\(817\) 3.42212 5.92728i 0.119725 0.207369i
\(818\) −17.3900 + 12.9508i −0.608026 + 0.452813i
\(819\) 0 0
\(820\) −11.5468 21.3982i −0.403233 0.747259i
\(821\) 31.0690 8.32491i 1.08432 0.290541i 0.327953 0.944694i \(-0.393641\pi\)
0.756362 + 0.654153i \(0.226975\pi\)
\(822\) 13.4753 5.35593i 0.470004 0.186810i
\(823\) 5.60251 3.23461i 0.195291 0.112751i −0.399166 0.916879i \(-0.630700\pi\)
0.594457 + 0.804127i \(0.297367\pi\)
\(824\) 10.4720 + 1.84121i 0.364810 + 0.0641415i
\(825\) 14.7781i 0.514506i
\(826\) 0 0
\(827\) 0.313180 + 0.313180i 0.0108903 + 0.0108903i 0.712531 0.701641i \(-0.247549\pi\)
−0.701641 + 0.712531i \(0.747549\pi\)
\(828\) −18.9970 20.1225i −0.660192 0.699305i
\(829\) 27.5710 + 7.38763i 0.957581 + 0.256583i 0.703576 0.710620i \(-0.251585\pi\)
0.254005 + 0.967203i \(0.418252\pi\)
\(830\) −1.19074 + 2.76168i −0.0413311 + 0.0958593i
\(831\) −1.96723 + 3.40735i −0.0682425 + 0.118200i
\(832\) 3.54213 40.9490i 0.122801 1.41965i
\(833\) 0 0
\(834\) 8.46552 + 11.3673i 0.293137 + 0.393617i
\(835\) 18.4865 + 68.9927i 0.639753 + 2.38759i
\(836\) −9.59600 + 2.27761i −0.331885 + 0.0787727i
\(837\) 2.37677 8.87022i 0.0821531 0.306600i
\(838\) −21.4493 + 27.1362i −0.740955 + 0.937406i
\(839\) 49.1079i 1.69539i 0.530482 + 0.847696i \(0.322011\pi\)
−0.530482 + 0.847696i \(0.677989\pi\)
\(840\) 0 0
\(841\) 23.0742i 0.795662i
\(842\) −28.6239 22.6253i −0.986446 0.779718i
\(843\) −2.18755 + 8.16403i −0.0753431 + 0.281184i
\(844\) −12.9044 + 20.9365i −0.444186 + 0.720662i
\(845\) −11.3544 42.3752i −0.390603 1.45775i
\(846\) 25.8007 19.2145i 0.887046 0.660606i
\(847\) 0 0
\(848\) 3.09385 + 14.9343i 0.106243 + 0.512845i
\(849\) −1.74738 + 3.02655i −0.0599698 + 0.103871i
\(850\) −27.0373 11.6575i −0.927371 0.399849i
\(851\) −34.3357 9.20023i −1.17701 0.315380i
\(852\) −0.477281 + 16.5895i −0.0163514 + 0.568348i
\(853\) −4.33966 4.33966i −0.148587 0.148587i 0.628899 0.777487i \(-0.283506\pi\)
−0.777487 + 0.628899i \(0.783506\pi\)
\(854\) 0 0
\(855\) 12.2014i 0.417278i
\(856\) 0.878431 0.615726i 0.0300242 0.0210451i
\(857\) 14.0065 8.08667i 0.478454 0.276235i −0.241318 0.970446i \(-0.577580\pi\)
0.719772 + 0.694211i \(0.244246\pi\)
\(858\) −6.92846 17.4317i −0.236534 0.595107i
\(859\) 43.0148 11.5258i 1.46765 0.393254i 0.565522 0.824733i \(-0.308675\pi\)
0.902123 + 0.431479i \(0.142008\pi\)
\(860\) −25.8808 7.73899i −0.882528 0.263897i
\(861\) 0 0
\(862\) 28.3983 + 38.1325i 0.967249 + 1.29880i
\(863\) −2.85176 + 4.93940i −0.0970752 + 0.168139i −0.910473 0.413569i \(-0.864282\pi\)
0.813398 + 0.581708i \(0.197615\pi\)
\(864\) 25.2494 + 5.19208i 0.859002 + 0.176638i
\(865\) 37.1891 + 64.4134i 1.26447 + 2.19012i
\(866\) 37.2943 4.36526i 1.26731 0.148338i
\(867\) 2.31679 2.31679i 0.0786822 0.0786822i
\(868\) 0 0
\(869\) 0.507233 + 0.507233i 0.0172067 + 0.0172067i
\(870\) −18.0044 + 22.7780i −0.610407 + 0.772245i
\(871\) 27.1034 15.6482i 0.918364 0.530218i
\(872\) 28.1675 2.47825i 0.953872 0.0839241i
\(873\) 13.2256 + 7.63580i 0.447619 + 0.258433i
\(874\) 2.09374 14.3101i 0.0708217 0.484047i
\(875\) 0 0
\(876\) −1.74801 + 0.943255i −0.0590598 + 0.0318696i
\(877\) 4.09303 + 15.2754i 0.138212 + 0.515814i 0.999964 + 0.00848425i \(0.00270065\pi\)
−0.861752 + 0.507330i \(0.830633\pi\)
\(878\) 25.4672 + 10.9805i 0.859476 + 0.370575i
\(879\) −1.15571 2.00176i −0.0389813 0.0675175i
\(880\) 17.4927 + 34.7742i 0.589680 + 1.17224i
\(881\) −20.6047 −0.694190 −0.347095 0.937830i \(-0.612832\pi\)
−0.347095 + 0.937830i \(0.612832\pi\)
\(882\) 0 0
\(883\) 3.92964 3.92964i 0.132243 0.132243i −0.637887 0.770130i \(-0.720191\pi\)
0.770130 + 0.637887i \(0.220191\pi\)
\(884\) 37.3577 + 1.07478i 1.25647 + 0.0361488i
\(885\) −2.78233 + 10.3838i −0.0935270 + 0.349048i
\(886\) 8.96545 3.56344i 0.301200 0.119716i
\(887\) 16.0874 + 9.28808i 0.540163 + 0.311863i 0.745145 0.666903i \(-0.232380\pi\)
−0.204982 + 0.978766i \(0.565714\pi\)
\(888\) 13.3166 4.85425i 0.446877 0.162898i
\(889\) 0 0
\(890\) −19.9391 2.91732i −0.668359 0.0977887i
\(891\) −7.97063 + 2.13573i −0.267026 + 0.0715495i
\(892\) −42.7100 + 10.1372i −1.43004 + 0.339418i
\(893\) 16.2394 + 4.35135i 0.543432 + 0.145612i
\(894\) −14.3373 + 1.67817i −0.479512 + 0.0561264i
\(895\) 70.4965 2.35644
\(896\) 0 0
\(897\) 27.5068 0.918426
\(898\) −8.88301 + 1.03975i −0.296430 + 0.0346968i
\(899\) 14.0468 + 3.76382i 0.468486 + 0.125530i
\(900\) −25.0096 + 5.93602i −0.833654 + 0.197867i
\(901\) −13.3952 + 3.58924i −0.446260 + 0.119575i
\(902\) −15.4374 2.25867i −0.514009 0.0752055i
\(903\) 0 0
\(904\) −6.96274 + 2.53810i −0.231577 + 0.0844158i
\(905\) 47.5212 + 27.4364i 1.57966 + 0.912016i
\(906\) 22.3867 8.89788i 0.743747 0.295612i
\(907\) 7.38295 27.5535i 0.245147 0.914900i −0.728163 0.685404i \(-0.759626\pi\)
0.973310 0.229496i \(-0.0737078\pi\)
\(908\) −49.3176 1.41887i −1.63666 0.0470868i
\(909\) −5.05701 + 5.05701i −0.167730 + 0.167730i
\(910\) 0 0
\(911\) 40.6520 1.34686 0.673431 0.739250i \(-0.264820\pi\)
0.673431 + 0.739250i \(0.264820\pi\)
\(912\) 2.59145 + 5.15161i 0.0858116 + 0.170587i
\(913\) 0.964870 + 1.67120i 0.0319325 + 0.0553088i
\(914\) −51.2944 22.1163i −1.69667 0.731543i
\(915\) −4.99111 18.6271i −0.165001 0.615792i
\(916\) −16.7462 + 9.03653i −0.553310 + 0.298575i
\(917\) 0 0
\(918\) −3.39329 + 23.1922i −0.111995 + 0.765458i
\(919\) 23.3547 + 13.4838i 0.770400 + 0.444790i 0.833017 0.553247i \(-0.186611\pi\)
−0.0626175 + 0.998038i \(0.519945\pi\)
\(920\) −56.8615 + 5.00282i −1.87467 + 0.164938i
\(921\) −4.24519 + 2.45096i −0.139884 + 0.0807619i
\(922\) −1.57225 + 1.98911i −0.0517794 + 0.0655078i
\(923\) 34.7005 + 34.7005i 1.14218 + 1.14218i
\(924\) 0 0
\(925\) −23.3473 + 23.3473i −0.767656 + 0.767656i
\(926\) 20.2865 2.37451i 0.666657 0.0780314i
\(927\) 4.22017 + 7.30954i 0.138608 + 0.240077i
\(928\) −8.22212 + 39.9846i −0.269904 + 1.31256i
\(929\) 7.81601 13.5377i 0.256435 0.444159i −0.708849 0.705360i \(-0.750785\pi\)
0.965284 + 0.261201i \(0.0841187\pi\)
\(930\) −4.84292 6.50295i −0.158806 0.213240i
\(931\) 0 0
\(932\) −42.6110 12.7417i −1.39577 0.417369i
\(933\) 0.678124 0.181703i 0.0222008 0.00594868i
\(934\) −9.07401 22.8298i −0.296911 0.747013i
\(935\) −30.6527 + 17.6974i −1.00245 + 0.578766i
\(936\) 26.7175 18.7273i 0.873288 0.612121i
\(937\) 47.9244i 1.56562i −0.622260 0.782811i \(-0.713785\pi\)
0.622260 0.782811i \(-0.286215\pi\)
\(938\) 0 0
\(939\) −14.3107 14.3107i −0.467013 0.467013i
\(940\) 1.90826 66.3281i 0.0622406 2.16338i
\(941\) 10.4101 + 2.78937i 0.339359 + 0.0909309i 0.424474 0.905440i \(-0.360459\pi\)
−0.0851151 + 0.996371i \(0.527126\pi\)
\(942\) 6.10112 + 2.63058i 0.198785 + 0.0857090i
\(943\) 11.4392 19.8132i 0.372511 0.645208i
\(944\) 3.06604 + 14.8000i 0.0997910 + 0.481698i
\(945\) 0 0
\(946\) −13.9016 + 10.3529i −0.451979 + 0.336601i
\(947\) −7.18339 26.8088i −0.233429 0.871168i −0.978851 0.204575i \(-0.934419\pi\)
0.745422 0.666593i \(-0.232248\pi\)
\(948\) 0.220074 0.357055i 0.00714766 0.0115966i
\(949\) −1.52010 + 5.67309i −0.0493446 + 0.184156i
\(950\) −10.5389 8.33028i −0.341927 0.270270i
\(951\) 2.71283i 0.0879696i
\(952\) 0 0
\(953\) 3.58597i 0.116161i −0.998312 0.0580805i \(-0.981502\pi\)
0.998312 0.0580805i \(-0.0184980\pi\)
\(954\) −7.50747 + 9.49794i −0.243063 + 0.307507i
\(955\) −6.68567 + 24.9513i −0.216343 + 0.807404i
\(956\) 29.1072 6.90859i 0.941395 0.223440i
\(957\) 4.82181 + 17.9952i 0.155867 + 0.581703i
\(958\) 4.04346 + 5.42945i 0.130638 + 0.175418i
\(959\) 0 0
\(960\) 17.4210 14.6471i 0.562260 0.472732i
\(961\) 13.4695 23.3298i 0.434499 0.752574i
\(962\) 16.5937 38.4857i 0.535001 1.24083i
\(963\) 0.822535 + 0.220398i 0.0265058 + 0.00710221i
\(964\) −33.4316 35.4122i −1.07676 1.14055i
\(965\) −57.6144 57.6144i −1.85467 1.85467i
\(966\) 0 0
\(967\) 51.9947i 1.67204i −0.548703 0.836018i \(-0.684878\pi\)
0.548703 0.836018i \(-0.315122\pi\)
\(968\) −6.04290 1.06247i −0.194226 0.0341492i
\(969\) −4.54103 + 2.62177i −0.145879 + 0.0842233i
\(970\) 29.2731 11.6350i 0.939903 0.373577i
\(971\) −47.9206 + 12.8403i −1.53785 + 0.412064i −0.925569 0.378579i \(-0.876413\pi\)
−0.612277 + 0.790644i \(0.709746\pi\)
\(972\) 15.2754 + 28.3078i 0.489958 + 0.907973i
\(973\) 0 0
\(974\) −30.4768 + 22.6968i −0.976538 + 0.727254i
\(975\) 12.7750 22.1269i 0.409127 0.708629i
\(976\) −18.0377 20.2422i −0.577373 0.647936i
\(977\) −2.83541 4.91108i −0.0907129 0.157119i 0.817098 0.576498i \(-0.195581\pi\)
−0.907811 + 0.419379i \(0.862248\pi\)
\(978\) −1.61113 13.7646i −0.0515182 0.440143i
\(979\) −9.14303 + 9.14303i −0.292213 + 0.292213i
\(980\) 0 0
\(981\) 15.8718 + 15.8718i 0.506748 + 0.506748i
\(982\) 18.4480 + 14.5819i 0.588699 + 0.465327i
\(983\) −40.4834 + 23.3731i −1.29122 + 0.745486i −0.978870 0.204482i \(-0.934449\pi\)
−0.312349 + 0.949968i \(0.601116\pi\)
\(984\) 0.799523 + 9.08729i 0.0254879 + 0.289692i
\(985\) −31.0998 17.9555i −0.990923 0.572110i
\(986\) −36.7269 5.37357i −1.16962 0.171129i
\(987\) 0 0
\(988\) 16.3368 + 4.88511i 0.519744 + 0.155416i
\(989\) −6.57845 24.5511i −0.209182 0.780679i
\(990\) −12.2342 + 28.3749i −0.388830 + 0.901814i
\(991\) −7.20690 12.4827i −0.228935 0.396527i 0.728558 0.684984i \(-0.240191\pi\)
−0.957493 + 0.288457i \(0.906858\pi\)
\(992\) −10.1914 5.10788i −0.323577 0.162175i
\(993\) 13.6857 0.434303
\(994\) 0 0
\(995\) 26.5073 26.5073i 0.840339 0.840339i
\(996\) 0.820461 0.774572i 0.0259973 0.0245432i
\(997\) −14.7190 + 54.9322i −0.466156 + 1.73972i 0.186871 + 0.982384i \(0.440165\pi\)
−0.653027 + 0.757334i \(0.726501\pi\)
\(998\) 10.2949 + 25.9014i 0.325878 + 0.819894i
\(999\) 22.7634 + 13.1425i 0.720203 + 0.415809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.o.373.1 48
7.2 even 3 784.2.m.k.197.8 24
7.3 odd 6 112.2.w.c.53.9 yes 48
7.4 even 3 inner 784.2.x.o.165.9 48
7.5 odd 6 784.2.m.j.197.8 24
7.6 odd 2 112.2.w.c.37.1 48
16.13 even 4 inner 784.2.x.o.765.9 48
28.3 even 6 448.2.ba.c.305.5 48
28.27 even 2 448.2.ba.c.177.8 48
56.3 even 6 896.2.ba.e.865.8 48
56.13 odd 2 896.2.ba.f.737.8 48
56.27 even 2 896.2.ba.e.737.5 48
56.45 odd 6 896.2.ba.f.865.5 48
112.3 even 12 448.2.ba.c.81.8 48
112.13 odd 4 112.2.w.c.93.9 yes 48
112.27 even 4 896.2.ba.e.289.8 48
112.45 odd 12 112.2.w.c.109.1 yes 48
112.59 even 12 896.2.ba.e.417.5 48
112.61 odd 12 784.2.m.j.589.8 24
112.69 odd 4 896.2.ba.f.289.5 48
112.83 even 4 448.2.ba.c.401.5 48
112.93 even 12 784.2.m.k.589.8 24
112.101 odd 12 896.2.ba.f.417.8 48
112.109 even 12 inner 784.2.x.o.557.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.1 48 7.6 odd 2
112.2.w.c.53.9 yes 48 7.3 odd 6
112.2.w.c.93.9 yes 48 112.13 odd 4
112.2.w.c.109.1 yes 48 112.45 odd 12
448.2.ba.c.81.8 48 112.3 even 12
448.2.ba.c.177.8 48 28.27 even 2
448.2.ba.c.305.5 48 28.3 even 6
448.2.ba.c.401.5 48 112.83 even 4
784.2.m.j.197.8 24 7.5 odd 6
784.2.m.j.589.8 24 112.61 odd 12
784.2.m.k.197.8 24 7.2 even 3
784.2.m.k.589.8 24 112.93 even 12
784.2.x.o.165.9 48 7.4 even 3 inner
784.2.x.o.373.1 48 1.1 even 1 trivial
784.2.x.o.557.1 48 112.109 even 12 inner
784.2.x.o.765.9 48 16.13 even 4 inner
896.2.ba.e.289.8 48 112.27 even 4
896.2.ba.e.417.5 48 112.59 even 12
896.2.ba.e.737.5 48 56.27 even 2
896.2.ba.e.865.8 48 56.3 even 6
896.2.ba.f.289.5 48 112.69 odd 4
896.2.ba.f.417.8 48 112.101 odd 12
896.2.ba.f.737.8 48 56.13 odd 2
896.2.ba.f.865.5 48 56.45 odd 6