Properties

Label 784.2.x.a
Level $784$
Weight $2$
Character orbit 784.x
Analytic conductor $6.260$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(165,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} - \zeta_{12}^{2} + \zeta_{12}) q^{2} + (\zeta_{12} + 1) q^{3} - 2 \zeta_{12} q^{4} + ( - \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{5} + ( - 2 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 1) q^{6} + \cdots + ( - 3 \zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots + 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{3} + 6 q^{5} + 2 q^{6} - 8 q^{8} + 6 q^{9} + 8 q^{11} - 4 q^{12} - 8 q^{13} + 12 q^{15} + 8 q^{16} + 6 q^{17} - 4 q^{18} + 8 q^{19} - 12 q^{20} - 18 q^{22} - 12 q^{23} - 12 q^{24} + 18 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(\zeta_{12}^{3}\) \(1\) \(-1 + \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
165.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
−1.36603 + 0.366025i 0.133975 + 0.500000i 1.73205 1.00000i −0.232051 + 0.866025i −0.366025 0.633975i 0 −2.00000 + 2.00000i 2.36603 1.36603i 1.26795i
373.1 0.366025 1.36603i 1.86603 + 0.500000i −1.73205 1.00000i 3.23205 0.866025i 1.36603 2.36603i 0 −2.00000 + 2.00000i 0.633975 + 0.366025i 4.73205i
557.1 0.366025 + 1.36603i 1.86603 0.500000i −1.73205 + 1.00000i 3.23205 + 0.866025i 1.36603 + 2.36603i 0 −2.00000 2.00000i 0.633975 0.366025i 4.73205i
765.1 −1.36603 0.366025i 0.133975 0.500000i 1.73205 + 1.00000i −0.232051 0.866025i −0.366025 + 0.633975i 0 −2.00000 2.00000i 2.36603 + 1.36603i 1.26795i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
112.w even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 784.2.x.a 4
7.b odd 2 1 112.2.w.a 4
7.c even 3 1 784.2.m.d 4
7.c even 3 1 784.2.x.h 4
7.d odd 6 1 112.2.w.b yes 4
7.d odd 6 1 784.2.m.e 4
16.e even 4 1 784.2.x.h 4
28.d even 2 1 448.2.ba.b 4
28.f even 6 1 448.2.ba.a 4
56.e even 2 1 896.2.ba.a 4
56.h odd 2 1 896.2.ba.d 4
56.j odd 6 1 896.2.ba.b 4
56.m even 6 1 896.2.ba.c 4
112.j even 4 1 448.2.ba.a 4
112.j even 4 1 896.2.ba.c 4
112.l odd 4 1 112.2.w.b yes 4
112.l odd 4 1 896.2.ba.b 4
112.v even 12 1 448.2.ba.b 4
112.v even 12 1 896.2.ba.a 4
112.w even 12 1 784.2.m.d 4
112.w even 12 1 inner 784.2.x.a 4
112.x odd 12 1 112.2.w.a 4
112.x odd 12 1 784.2.m.e 4
112.x odd 12 1 896.2.ba.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.2.w.a 4 7.b odd 2 1
112.2.w.a 4 112.x odd 12 1
112.2.w.b yes 4 7.d odd 6 1
112.2.w.b yes 4 112.l odd 4 1
448.2.ba.a 4 28.f even 6 1
448.2.ba.a 4 112.j even 4 1
448.2.ba.b 4 28.d even 2 1
448.2.ba.b 4 112.v even 12 1
784.2.m.d 4 7.c even 3 1
784.2.m.d 4 112.w even 12 1
784.2.m.e 4 7.d odd 6 1
784.2.m.e 4 112.x odd 12 1
784.2.x.a 4 1.a even 1 1 trivial
784.2.x.a 4 112.w even 12 1 inner
784.2.x.h 4 7.c even 3 1
784.2.x.h 4 16.e even 4 1
896.2.ba.a 4 56.e even 2 1
896.2.ba.a 4 112.v even 12 1
896.2.ba.b 4 56.j odd 6 1
896.2.ba.b 4 112.l odd 4 1
896.2.ba.c 4 56.m even 6 1
896.2.ba.c 4 112.j even 4 1
896.2.ba.d 4 56.h odd 2 1
896.2.ba.d 4 112.x odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(784, [\chi])\):

\( T_{3}^{4} - 4T_{3}^{3} + 5T_{3}^{2} - 2T_{3} + 1 \) Copy content Toggle raw display
\( T_{5}^{4} - 6T_{5}^{3} + 9T_{5}^{2} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$13$ \( T^{4} + 8 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} - 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$23$ \( T^{4} + 12 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$31$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{4} - 22 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$41$ \( T^{4} + 104T^{2} + 1936 \) Copy content Toggle raw display
$43$ \( T^{4} - 12 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$53$ \( T^{4} - 2 T^{3} + \cdots + 2209 \) Copy content Toggle raw display
$59$ \( T^{4} + 28 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
$61$ \( T^{4} - 14 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} + 12 T^{3} + \cdots + 1521 \) Copy content Toggle raw display
$71$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$73$ \( T^{4} - 18 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$79$ \( T^{4} - 16 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$83$ \( T^{4} + 20 T^{3} + \cdots + 676 \) Copy content Toggle raw display
$89$ \( (T^{2} + 9 T + 27)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 8 T - 32)^{2} \) Copy content Toggle raw display
show more
show less