Properties

Label 784.2.x.p.557.1
Level $784$
Weight $2$
Character 784.557
Analytic conductor $6.260$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(165,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.1
Character \(\chi\) \(=\) 784.557
Dual form 784.2.x.p.373.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38899 - 0.265911i) q^{2} +(-0.331669 + 0.0888704i) q^{3} +(1.85858 + 0.738696i) q^{4} +(2.28822 + 0.613128i) q^{5} +(0.484316 - 0.0352455i) q^{6} +(-2.38512 - 1.52026i) q^{8} +(-2.49597 + 1.44105i) q^{9} +(-3.01528 - 1.46009i) q^{10} +(0.684421 + 2.55430i) q^{11} +(-0.682082 - 0.0798296i) q^{12} +(-2.24784 - 2.24784i) q^{13} -0.813421 q^{15} +(2.90866 + 2.74586i) q^{16} +(-2.63388 + 4.56202i) q^{17} +(3.85007 - 1.33789i) q^{18} +(-1.90217 + 7.09898i) q^{19} +(3.79994 + 2.82985i) q^{20} +(-0.271438 - 3.72988i) q^{22} +(-0.0792419 + 0.0457503i) q^{23} +(0.926177 + 0.292256i) q^{24} +(0.529913 + 0.305946i) q^{25} +(2.52450 + 3.71995i) q^{26} +(1.42816 - 1.42816i) q^{27} +(-6.55020 - 6.55020i) q^{29} +(1.12983 + 0.216298i) q^{30} +(-0.331648 + 0.574432i) q^{31} +(-3.30994 - 4.58741i) q^{32} +(-0.454002 - 0.786355i) q^{33} +(4.87153 - 5.63622i) q^{34} +(-5.70346 + 0.834544i) q^{36} +(-1.00881 - 0.270309i) q^{37} +(4.52979 - 9.35460i) q^{38} +(0.945305 + 0.545772i) q^{39} +(-4.52558 - 4.94108i) q^{40} +2.43655i q^{41} +(5.68128 - 5.68128i) q^{43} +(-0.614795 + 5.25295i) q^{44} +(-6.59488 + 1.76709i) q^{45} +(0.122232 - 0.0424754i) q^{46} +(2.65163 + 4.59276i) q^{47} +(-1.20874 - 0.652221i) q^{48} +(-0.654689 - 0.565865i) q^{50} +(0.468149 - 1.74715i) q^{51} +(-2.51732 - 5.83827i) q^{52} +(0.233471 + 0.871326i) q^{53} +(-2.36347 + 1.60394i) q^{54} +6.26444i q^{55} -2.52356i q^{57} +(7.35639 + 10.8399i) q^{58} +(2.48528 + 9.27519i) q^{59} +(-1.51181 - 0.600871i) q^{60} +(-0.560807 + 2.09296i) q^{61} +(0.613404 - 0.709691i) q^{62} +(3.37762 + 7.25201i) q^{64} +(-3.76535 - 6.52177i) q^{65} +(0.421504 + 1.21296i) q^{66} +(-9.03564 + 2.42109i) q^{67} +(-8.26524 + 6.53325i) q^{68} +(0.0222162 - 0.0222162i) q^{69} +15.1936i q^{71} +(8.14396 + 0.357444i) q^{72} +(-4.17280 - 2.40917i) q^{73} +(1.32934 + 0.643709i) q^{74} +(-0.202945 - 0.0543790i) q^{75} +(-8.77932 + 11.7889i) q^{76} +(-1.16789 - 1.00944i) q^{78} +(-5.53028 - 9.57872i) q^{79} +(4.97209 + 8.06651i) q^{80} +(3.97639 - 6.88731i) q^{81} +(0.647906 - 3.38434i) q^{82} +(10.9512 + 10.9512i) q^{83} +(-8.82402 + 8.82402i) q^{85} +(-9.40196 + 6.38052i) q^{86} +(2.75462 + 1.59038i) q^{87} +(2.25076 - 7.13281i) q^{88} +(-1.96668 + 1.13547i) q^{89} +(9.63011 - 0.700819i) q^{90} +(-0.181073 + 0.0264950i) q^{92} +(0.0589474 - 0.219995i) q^{93} +(-2.46182 - 7.08439i) q^{94} +(-8.70516 + 15.0778i) q^{95} +(1.50549 + 1.22734i) q^{96} -17.4958 q^{97} +(-5.38916 - 5.38916i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 4 q^{4} + 8 q^{11} + 64 q^{15} - 36 q^{16} - 20 q^{18} - 56 q^{22} - 32 q^{29} - 96 q^{30} - 40 q^{32} + 80 q^{36} + 16 q^{37} + 16 q^{43} - 4 q^{44} - 64 q^{46} - 56 q^{50} - 16 q^{53} + 20 q^{58}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38899 0.265911i −0.982164 0.188028i
\(3\) −0.331669 + 0.0888704i −0.191489 + 0.0513093i −0.353289 0.935514i \(-0.614937\pi\)
0.161800 + 0.986824i \(0.448270\pi\)
\(4\) 1.85858 + 0.738696i 0.929291 + 0.369348i
\(5\) 2.28822 + 0.613128i 1.02332 + 0.274199i 0.731187 0.682177i \(-0.238967\pi\)
0.292138 + 0.956376i \(0.405633\pi\)
\(6\) 0.484316 0.0352455i 0.197721 0.0143889i
\(7\) 0 0
\(8\) −2.38512 1.52026i −0.843268 0.537493i
\(9\) −2.49597 + 1.44105i −0.831990 + 0.480350i
\(10\) −3.01528 1.46009i −0.953515 0.461722i
\(11\) 0.684421 + 2.55430i 0.206361 + 0.770149i 0.989030 + 0.147712i \(0.0471908\pi\)
−0.782670 + 0.622437i \(0.786143\pi\)
\(12\) −0.682082 0.0798296i −0.196900 0.0230448i
\(13\) −2.24784 2.24784i −0.623439 0.623439i 0.322970 0.946409i \(-0.395319\pi\)
−0.946409 + 0.322970i \(0.895319\pi\)
\(14\) 0 0
\(15\) −0.813421 −0.210024
\(16\) 2.90866 + 2.74586i 0.727164 + 0.686464i
\(17\) −2.63388 + 4.56202i −0.638811 + 1.10645i 0.346883 + 0.937908i \(0.387240\pi\)
−0.985694 + 0.168544i \(0.946093\pi\)
\(18\) 3.85007 1.33789i 0.907469 0.315345i
\(19\) −1.90217 + 7.09898i −0.436387 + 1.62862i 0.301339 + 0.953517i \(0.402567\pi\)
−0.737726 + 0.675101i \(0.764100\pi\)
\(20\) 3.79994 + 2.82985i 0.849691 + 0.632774i
\(21\) 0 0
\(22\) −0.271438 3.72988i −0.0578707 0.795214i
\(23\) −0.0792419 + 0.0457503i −0.0165231 + 0.00953960i −0.508239 0.861216i \(-0.669703\pi\)
0.491716 + 0.870756i \(0.336370\pi\)
\(24\) 0.926177 + 0.292256i 0.189055 + 0.0596565i
\(25\) 0.529913 + 0.305946i 0.105983 + 0.0611891i
\(26\) 2.52450 + 3.71995i 0.495095 + 0.729543i
\(27\) 1.42816 1.42816i 0.274850 0.274850i
\(28\) 0 0
\(29\) −6.55020 6.55020i −1.21634 1.21634i −0.968903 0.247439i \(-0.920411\pi\)
−0.247439 0.968903i \(-0.579589\pi\)
\(30\) 1.12983 + 0.216298i 0.206278 + 0.0394904i
\(31\) −0.331648 + 0.574432i −0.0595658 + 0.103171i −0.894271 0.447527i \(-0.852305\pi\)
0.834705 + 0.550698i \(0.185638\pi\)
\(32\) −3.30994 4.58741i −0.585120 0.810947i
\(33\) −0.454002 0.786355i −0.0790317 0.136887i
\(34\) 4.87153 5.63622i 0.835461 0.966603i
\(35\) 0 0
\(36\) −5.70346 + 0.834544i −0.950577 + 0.139091i
\(37\) −1.00881 0.270309i −0.165847 0.0444385i 0.174940 0.984579i \(-0.444027\pi\)
−0.340787 + 0.940141i \(0.610693\pi\)
\(38\) 4.52979 9.35460i 0.734829 1.51752i
\(39\) 0.945305 + 0.545772i 0.151370 + 0.0873935i
\(40\) −4.52558 4.94108i −0.715557 0.781253i
\(41\) 2.43655i 0.380525i 0.981733 + 0.190262i \(0.0609339\pi\)
−0.981733 + 0.190262i \(0.939066\pi\)
\(42\) 0 0
\(43\) 5.68128 5.68128i 0.866388 0.866388i −0.125683 0.992070i \(-0.540112\pi\)
0.992070 + 0.125683i \(0.0401122\pi\)
\(44\) −0.614795 + 5.25295i −0.0926839 + 0.791912i
\(45\) −6.59488 + 1.76709i −0.983107 + 0.263423i
\(46\) 0.122232 0.0424754i 0.0180221 0.00626265i
\(47\) 2.65163 + 4.59276i 0.386780 + 0.669923i 0.992014 0.126125i \(-0.0402539\pi\)
−0.605234 + 0.796047i \(0.706921\pi\)
\(48\) −1.20874 0.652221i −0.174466 0.0941400i
\(49\) 0 0
\(50\) −0.654689 0.565865i −0.0925870 0.0800254i
\(51\) 0.468149 1.74715i 0.0655539 0.244651i
\(52\) −2.51732 5.83827i −0.349090 0.809622i
\(53\) 0.233471 + 0.871326i 0.0320697 + 0.119686i 0.980105 0.198479i \(-0.0636001\pi\)
−0.948035 + 0.318165i \(0.896933\pi\)
\(54\) −2.36347 + 1.60394i −0.321627 + 0.218268i
\(55\) 6.26444i 0.844696i
\(56\) 0 0
\(57\) 2.52356i 0.334253i
\(58\) 7.35639 + 10.8399i 0.965941 + 1.42335i
\(59\) 2.48528 + 9.27519i 0.323556 + 1.20753i 0.915756 + 0.401736i \(0.131593\pi\)
−0.592200 + 0.805791i \(0.701740\pi\)
\(60\) −1.51181 0.600871i −0.195174 0.0775721i
\(61\) −0.560807 + 2.09296i −0.0718040 + 0.267976i −0.992490 0.122329i \(-0.960964\pi\)
0.920686 + 0.390305i \(0.127630\pi\)
\(62\) 0.613404 0.709691i 0.0779024 0.0901308i
\(63\) 0 0
\(64\) 3.37762 + 7.25201i 0.422203 + 0.906501i
\(65\) −3.76535 6.52177i −0.467034 0.808927i
\(66\) 0.421504 + 1.21296i 0.0518835 + 0.149305i
\(67\) −9.03564 + 2.42109i −1.10388 + 0.295783i −0.764343 0.644810i \(-0.776937\pi\)
−0.339536 + 0.940593i \(0.610270\pi\)
\(68\) −8.26524 + 6.53325i −1.00231 + 0.792273i
\(69\) 0.0222162 0.0222162i 0.00267452 0.00267452i
\(70\) 0 0
\(71\) 15.1936i 1.80315i 0.432621 + 0.901576i \(0.357589\pi\)
−0.432621 + 0.901576i \(0.642411\pi\)
\(72\) 8.14396 + 0.357444i 0.959775 + 0.0421251i
\(73\) −4.17280 2.40917i −0.488390 0.281972i 0.235517 0.971870i \(-0.424322\pi\)
−0.723906 + 0.689899i \(0.757655\pi\)
\(74\) 1.32934 + 0.643709i 0.154533 + 0.0748296i
\(75\) −0.202945 0.0543790i −0.0234341 0.00627914i
\(76\) −8.77932 + 11.7889i −1.00706 + 1.35228i
\(77\) 0 0
\(78\) −1.16789 1.00944i −0.132238 0.114296i
\(79\) −5.53028 9.57872i −0.622205 1.07769i −0.989074 0.147418i \(-0.952904\pi\)
0.366869 0.930272i \(-0.380430\pi\)
\(80\) 4.97209 + 8.06651i 0.555897 + 0.901863i
\(81\) 3.97639 6.88731i 0.441821 0.765257i
\(82\) 0.647906 3.38434i 0.0715493 0.373738i
\(83\) 10.9512 + 10.9512i 1.20205 + 1.20205i 0.973541 + 0.228512i \(0.0733861\pi\)
0.228512 + 0.973541i \(0.426614\pi\)
\(84\) 0 0
\(85\) −8.82402 + 8.82402i −0.957099 + 0.957099i
\(86\) −9.40196 + 6.38052i −1.01384 + 0.688029i
\(87\) 2.75462 + 1.59038i 0.295326 + 0.170507i
\(88\) 2.25076 7.13281i 0.239932 0.760360i
\(89\) −1.96668 + 1.13547i −0.208468 + 0.120359i −0.600599 0.799550i \(-0.705071\pi\)
0.392131 + 0.919909i \(0.371738\pi\)
\(90\) 9.63011 0.700819i 1.01510 0.0738728i
\(91\) 0 0
\(92\) −0.181073 + 0.0264950i −0.0188782 + 0.00276230i
\(93\) 0.0589474 0.219995i 0.00611256 0.0228124i
\(94\) −2.46182 7.08439i −0.253917 0.730699i
\(95\) −8.70516 + 15.0778i −0.893131 + 1.54695i
\(96\) 1.50549 + 1.22734i 0.153653 + 0.125265i
\(97\) −17.4958 −1.77643 −0.888215 0.459427i \(-0.848055\pi\)
−0.888215 + 0.459427i \(0.848055\pi\)
\(98\) 0 0
\(99\) −5.38916 5.38916i −0.541631 0.541631i
\(100\) 0.758886 + 0.960070i 0.0758886 + 0.0960070i
\(101\) 4.15082 + 15.4911i 0.413022 + 1.54142i 0.788766 + 0.614694i \(0.210721\pi\)
−0.375744 + 0.926724i \(0.622613\pi\)
\(102\) −1.11484 + 2.30229i −0.110386 + 0.227961i
\(103\) 10.5828 6.10999i 1.04276 0.602035i 0.122143 0.992513i \(-0.461023\pi\)
0.920613 + 0.390477i \(0.127690\pi\)
\(104\) 1.94407 + 8.77868i 0.190632 + 0.860820i
\(105\) 0 0
\(106\) −0.0925932 1.27234i −0.00899345 0.123581i
\(107\) −7.29501 1.95469i −0.705236 0.188967i −0.111661 0.993746i \(-0.535617\pi\)
−0.593575 + 0.804779i \(0.702284\pi\)
\(108\) 3.70934 1.59938i 0.356931 0.153900i
\(109\) 4.23590 1.13501i 0.405726 0.108714i −0.0501838 0.998740i \(-0.515981\pi\)
0.455910 + 0.890026i \(0.349314\pi\)
\(110\) 1.66579 8.70124i 0.158826 0.829630i
\(111\) 0.358612 0.0340379
\(112\) 0 0
\(113\) 12.7100 1.19565 0.597826 0.801626i \(-0.296031\pi\)
0.597826 + 0.801626i \(0.296031\pi\)
\(114\) −0.671043 + 3.50519i −0.0628489 + 0.328291i
\(115\) −0.209374 + 0.0561016i −0.0195242 + 0.00523150i
\(116\) −7.33548 17.0127i −0.681082 1.57959i
\(117\) 8.84979 + 2.37129i 0.818164 + 0.219226i
\(118\) −0.985647 13.5440i −0.0907362 1.24683i
\(119\) 0 0
\(120\) 1.94011 + 1.23661i 0.177107 + 0.112887i
\(121\) 3.47029 2.00357i 0.315480 0.182143i
\(122\) 1.33550 2.75798i 0.120910 0.249695i
\(123\) −0.216537 0.808127i −0.0195245 0.0728664i
\(124\) −1.04073 + 0.822641i −0.0934600 + 0.0738754i
\(125\) −7.35050 7.35050i −0.657449 0.657449i
\(126\) 0 0
\(127\) 18.3252 1.62610 0.813051 0.582193i \(-0.197805\pi\)
0.813051 + 0.582193i \(0.197805\pi\)
\(128\) −2.76309 10.9711i −0.244225 0.969719i
\(129\) −1.37941 + 2.38920i −0.121450 + 0.210358i
\(130\) 3.49581 + 10.0599i 0.306603 + 0.882314i
\(131\) −2.55502 + 9.53546i −0.223233 + 0.833117i 0.759872 + 0.650073i \(0.225262\pi\)
−0.983105 + 0.183044i \(0.941405\pi\)
\(132\) −0.262923 1.79688i −0.0228845 0.156398i
\(133\) 0 0
\(134\) 13.1942 0.960191i 1.13981 0.0829479i
\(135\) 4.14360 2.39231i 0.356625 0.205897i
\(136\) 13.2176 6.87679i 1.13340 0.589680i
\(137\) 14.6054 + 8.43243i 1.24782 + 0.720431i 0.970675 0.240396i \(-0.0772775\pi\)
0.277148 + 0.960827i \(0.410611\pi\)
\(138\) −0.0367656 + 0.0249505i −0.00312970 + 0.00212393i
\(139\) −6.01333 + 6.01333i −0.510044 + 0.510044i −0.914540 0.404496i \(-0.867447\pi\)
0.404496 + 0.914540i \(0.367447\pi\)
\(140\) 0 0
\(141\) −1.28762 1.28762i −0.108437 0.108437i
\(142\) 4.04016 21.1038i 0.339043 1.77099i
\(143\) 4.20318 7.28012i 0.351488 0.608794i
\(144\) −11.2168 2.66206i −0.934736 0.221838i
\(145\) −10.9722 19.0044i −0.911193 1.57823i
\(146\) 5.15535 + 4.45590i 0.426660 + 0.368773i
\(147\) 0 0
\(148\) −1.67527 1.24759i −0.137707 0.102551i
\(149\) 2.88609 + 0.773325i 0.236438 + 0.0633533i 0.375092 0.926988i \(-0.377611\pi\)
−0.138655 + 0.990341i \(0.544278\pi\)
\(150\) 0.267429 + 0.129497i 0.0218355 + 0.0105734i
\(151\) −18.9197 10.9233i −1.53966 0.888925i −0.998858 0.0477779i \(-0.984786\pi\)
−0.540806 0.841147i \(-0.681881\pi\)
\(152\) 15.3292 14.0402i 1.24336 1.13881i
\(153\) 15.1822i 1.22741i
\(154\) 0 0
\(155\) −1.11109 + 1.11109i −0.0892445 + 0.0892445i
\(156\) 1.35377 + 1.71266i 0.108388 + 0.137122i
\(157\) 2.83703 0.760181i 0.226420 0.0606690i −0.143825 0.989603i \(-0.545940\pi\)
0.370245 + 0.928934i \(0.379274\pi\)
\(158\) 5.13440 + 14.7753i 0.408471 + 1.17546i
\(159\) −0.154870 0.268243i −0.0122820 0.0212730i
\(160\) −4.76121 12.5264i −0.376406 0.990301i
\(161\) 0 0
\(162\) −7.35458 + 8.50903i −0.577830 + 0.668533i
\(163\) −2.56552 + 9.57465i −0.200947 + 0.749944i 0.789700 + 0.613493i \(0.210236\pi\)
−0.990647 + 0.136451i \(0.956430\pi\)
\(164\) −1.79987 + 4.52852i −0.140546 + 0.353618i
\(165\) −0.556723 2.07772i −0.0433408 0.161750i
\(166\) −12.2991 18.1232i −0.954594 1.40663i
\(167\) 17.0258i 1.31750i −0.752363 0.658749i \(-0.771086\pi\)
0.752363 0.658749i \(-0.228914\pi\)
\(168\) 0 0
\(169\) 2.89442i 0.222648i
\(170\) 14.6029 9.91006i 1.11999 0.760067i
\(171\) −5.48223 20.4600i −0.419237 1.56461i
\(172\) 14.7559 6.36239i 1.12512 0.485128i
\(173\) −0.0633750 + 0.236519i −0.00481831 + 0.0179822i −0.968293 0.249817i \(-0.919630\pi\)
0.963475 + 0.267799i \(0.0862963\pi\)
\(174\) −3.40323 2.94150i −0.257998 0.222995i
\(175\) 0 0
\(176\) −5.02298 + 9.30889i −0.378621 + 0.701684i
\(177\) −1.64858 2.85542i −0.123915 0.214627i
\(178\) 3.03364 1.05419i 0.227381 0.0790145i
\(179\) −0.261058 + 0.0699503i −0.0195124 + 0.00522833i −0.268562 0.963262i \(-0.586548\pi\)
0.249050 + 0.968491i \(0.419882\pi\)
\(180\) −13.5625 1.58733i −1.01089 0.118312i
\(181\) 0.745744 0.745744i 0.0554307 0.0554307i −0.678848 0.734279i \(-0.737521\pi\)
0.734279 + 0.678848i \(0.237521\pi\)
\(182\) 0 0
\(183\) 0.744009i 0.0549987i
\(184\) 0.258554 + 0.0113481i 0.0190608 + 0.000836593i
\(185\) −2.14264 1.23705i −0.157530 0.0909500i
\(186\) −0.140377 + 0.289896i −0.0102929 + 0.0212562i
\(187\) −13.4554 3.60537i −0.983959 0.263651i
\(188\) 1.53562 + 10.4948i 0.111997 + 0.765410i
\(189\) 0 0
\(190\) 16.1007 18.6281i 1.16807 1.35142i
\(191\) 1.97887 + 3.42751i 0.143186 + 0.248006i 0.928695 0.370845i \(-0.120932\pi\)
−0.785509 + 0.618851i \(0.787599\pi\)
\(192\) −1.76474 2.10510i −0.127359 0.151922i
\(193\) −0.444328 + 0.769598i −0.0319834 + 0.0553969i −0.881574 0.472046i \(-0.843516\pi\)
0.849591 + 0.527443i \(0.176849\pi\)
\(194\) 24.3015 + 4.65234i 1.74475 + 0.334018i
\(195\) 1.82844 + 1.82844i 0.130937 + 0.130937i
\(196\) 0 0
\(197\) −4.83936 + 4.83936i −0.344790 + 0.344790i −0.858165 0.513374i \(-0.828395\pi\)
0.513374 + 0.858165i \(0.328395\pi\)
\(198\) 6.05245 + 8.91853i 0.430129 + 0.633812i
\(199\) 7.57734 + 4.37478i 0.537144 + 0.310120i 0.743920 0.668268i \(-0.232964\pi\)
−0.206777 + 0.978388i \(0.566297\pi\)
\(200\) −0.798791 1.53532i −0.0564831 0.108564i
\(201\) 2.78168 1.60600i 0.196204 0.113279i
\(202\) −1.64619 22.6207i −0.115825 1.59158i
\(203\) 0 0
\(204\) 2.16071 2.90141i 0.151280 0.203139i
\(205\) −1.49391 + 5.57537i −0.104340 + 0.389400i
\(206\) −16.3241 + 5.67262i −1.13736 + 0.395230i
\(207\) 0.131857 0.228383i 0.00916469 0.0158737i
\(208\) −0.365948 12.7104i −0.0253739 0.881310i
\(209\) −19.4348 −1.34433
\(210\) 0 0
\(211\) 8.52893 + 8.52893i 0.587156 + 0.587156i 0.936860 0.349704i \(-0.113718\pi\)
−0.349704 + 0.936860i \(0.613718\pi\)
\(212\) −0.209720 + 1.79189i −0.0144036 + 0.123068i
\(213\) −1.35026 5.03925i −0.0925185 0.345284i
\(214\) 9.61292 + 4.65488i 0.657126 + 0.318201i
\(215\) 16.4834 9.51669i 1.12416 0.649033i
\(216\) −5.57753 + 1.23517i −0.379503 + 0.0840424i
\(217\) 0 0
\(218\) −6.18543 + 0.450137i −0.418930 + 0.0304871i
\(219\) 1.59809 + 0.428207i 0.107989 + 0.0289356i
\(220\) −4.62752 + 11.6430i −0.311987 + 0.784969i
\(221\) 16.1752 4.33414i 1.08806 0.291546i
\(222\) −0.498108 0.0953590i −0.0334308 0.00640008i
\(223\) 25.3314 1.69631 0.848156 0.529746i \(-0.177713\pi\)
0.848156 + 0.529746i \(0.177713\pi\)
\(224\) 0 0
\(225\) −1.76353 −0.117569
\(226\) −17.6540 3.37972i −1.17433 0.224816i
\(227\) −0.717124 + 0.192153i −0.0475972 + 0.0127536i −0.282539 0.959256i \(-0.591177\pi\)
0.234942 + 0.972009i \(0.424510\pi\)
\(228\) 1.86414 4.69024i 0.123456 0.310619i
\(229\) 15.5299 + 4.16121i 1.02624 + 0.274981i 0.732401 0.680873i \(-0.238400\pi\)
0.293841 + 0.955854i \(0.405066\pi\)
\(230\) 0.305736 0.0222495i 0.0201596 0.00146709i
\(231\) 0 0
\(232\) 5.66503 + 25.5811i 0.371927 + 1.67948i
\(233\) −9.31438 + 5.37766i −0.610206 + 0.352302i −0.773046 0.634350i \(-0.781268\pi\)
0.162840 + 0.986652i \(0.447934\pi\)
\(234\) −11.6617 5.64696i −0.762350 0.369154i
\(235\) 3.25158 + 12.1350i 0.212109 + 0.791603i
\(236\) −2.23245 + 19.0746i −0.145320 + 1.24165i
\(237\) 2.68549 + 2.68549i 0.174441 + 0.174441i
\(238\) 0 0
\(239\) 3.00042 0.194081 0.0970405 0.995280i \(-0.469062\pi\)
0.0970405 + 0.995280i \(0.469062\pi\)
\(240\) −2.36596 2.23354i −0.152722 0.144174i
\(241\) 11.2985 19.5696i 0.727802 1.26059i −0.230009 0.973189i \(-0.573875\pi\)
0.957810 0.287401i \(-0.0927913\pi\)
\(242\) −5.35296 + 1.86015i −0.344101 + 0.119575i
\(243\) −2.27500 + 8.49041i −0.145941 + 0.544660i
\(244\) −2.58837 + 3.47567i −0.165703 + 0.222507i
\(245\) 0 0
\(246\) 0.0858773 + 1.18006i 0.00547534 + 0.0752378i
\(247\) 20.2331 11.6816i 1.28740 0.743283i
\(248\) 1.66431 0.865899i 0.105684 0.0549846i
\(249\) −4.60542 2.65894i −0.291857 0.168503i
\(250\) 8.25519 + 12.1644i 0.522104 + 0.769341i
\(251\) 2.43982 2.43982i 0.154000 0.154000i −0.625902 0.779902i \(-0.715269\pi\)
0.779902 + 0.625902i \(0.215269\pi\)
\(252\) 0 0
\(253\) −0.171095 0.171095i −0.0107566 0.0107566i
\(254\) −25.4536 4.87289i −1.59710 0.305752i
\(255\) 2.14246 3.71084i 0.134166 0.232382i
\(256\) 0.920552 + 15.9735i 0.0575345 + 0.998344i
\(257\) −9.23633 15.9978i −0.576147 0.997915i −0.995916 0.0902843i \(-0.971222\pi\)
0.419770 0.907631i \(-0.362111\pi\)
\(258\) 2.55130 2.95178i 0.158837 0.183770i
\(259\) 0 0
\(260\) −2.18060 14.9027i −0.135235 0.924226i
\(261\) 25.7883 + 6.90995i 1.59625 + 0.427715i
\(262\) 6.08448 12.5652i 0.375900 0.776283i
\(263\) 8.37247 + 4.83385i 0.516269 + 0.298068i 0.735407 0.677626i \(-0.236991\pi\)
−0.219138 + 0.975694i \(0.570324\pi\)
\(264\) −0.112613 + 2.56576i −0.00693083 + 0.157911i
\(265\) 2.13694i 0.131271i
\(266\) 0 0
\(267\) 0.551378 0.551378i 0.0337438 0.0337438i
\(268\) −18.5819 2.17479i −1.13507 0.132847i
\(269\) −23.3504 + 6.25673i −1.42370 + 0.381480i −0.886796 0.462162i \(-0.847074\pi\)
−0.536906 + 0.843642i \(0.680407\pi\)
\(270\) −6.39156 + 2.22106i −0.388978 + 0.135170i
\(271\) −14.3220 24.8064i −0.869999 1.50688i −0.861996 0.506915i \(-0.830786\pi\)
−0.00800296 0.999968i \(-0.502547\pi\)
\(272\) −20.1877 + 6.03708i −1.22406 + 0.366052i
\(273\) 0 0
\(274\) −18.0445 15.5963i −1.09011 0.942206i
\(275\) −0.418791 + 1.56295i −0.0252541 + 0.0942495i
\(276\) 0.0577017 0.0248796i 0.00347323 0.00149758i
\(277\) −4.26488 15.9168i −0.256252 0.956345i −0.967390 0.253293i \(-0.918486\pi\)
0.711138 0.703053i \(-0.248180\pi\)
\(278\) 9.95147 6.75344i 0.596850 0.405045i
\(279\) 1.91169i 0.114450i
\(280\) 0 0
\(281\) 19.5811i 1.16811i −0.811715 0.584054i \(-0.801466\pi\)
0.811715 0.584054i \(-0.198534\pi\)
\(282\) 1.44610 + 2.13089i 0.0861141 + 0.126893i
\(283\) 0.131830 + 0.491997i 0.00783649 + 0.0292462i 0.969733 0.244166i \(-0.0785143\pi\)
−0.961897 + 0.273412i \(0.911848\pi\)
\(284\) −11.2235 + 28.2386i −0.665991 + 1.67565i
\(285\) 1.54726 5.77446i 0.0916519 0.342050i
\(286\) −7.77404 + 8.99434i −0.459689 + 0.531846i
\(287\) 0 0
\(288\) 14.8722 + 6.68025i 0.876352 + 0.393638i
\(289\) −5.37469 9.30923i −0.316158 0.547602i
\(290\) 10.1868 + 29.3146i 0.598189 + 1.72141i
\(291\) 5.80282 1.55486i 0.340167 0.0911475i
\(292\) −5.97585 7.56007i −0.349710 0.442420i
\(293\) 13.4219 13.4219i 0.784117 0.784117i −0.196406 0.980523i \(-0.562927\pi\)
0.980523 + 0.196406i \(0.0629270\pi\)
\(294\) 0 0
\(295\) 22.7475i 1.32441i
\(296\) 1.99519 + 2.17837i 0.115968 + 0.126615i
\(297\) 4.62542 + 2.67049i 0.268394 + 0.154957i
\(298\) −3.80311 1.84158i −0.220308 0.106680i
\(299\) 0.280962 + 0.0752837i 0.0162485 + 0.00435377i
\(300\) −0.337021 0.250983i −0.0194579 0.0144905i
\(301\) 0 0
\(302\) 23.3746 + 20.2033i 1.34506 + 1.16257i
\(303\) −2.75339 4.76901i −0.158178 0.273973i
\(304\) −25.0255 + 15.4254i −1.43531 + 0.884708i
\(305\) −2.56650 + 4.44532i −0.146958 + 0.254538i
\(306\) −4.03713 + 21.0879i −0.230787 + 1.20552i
\(307\) 18.1617 + 18.1617i 1.03654 + 1.03654i 0.999307 + 0.0372355i \(0.0118552\pi\)
0.0372355 + 0.999307i \(0.488145\pi\)
\(308\) 0 0
\(309\) −2.96699 + 2.96699i −0.168786 + 0.168786i
\(310\) 1.83874 1.24784i 0.104433 0.0708723i
\(311\) 27.1628 + 15.6825i 1.54026 + 0.889271i 0.998822 + 0.0485315i \(0.0154541\pi\)
0.541440 + 0.840739i \(0.317879\pi\)
\(312\) −1.42495 2.73884i −0.0806721 0.155056i
\(313\) −11.6376 + 6.71895i −0.657794 + 0.379777i −0.791436 0.611252i \(-0.790666\pi\)
0.133642 + 0.991030i \(0.457333\pi\)
\(314\) −4.14275 + 0.301483i −0.233789 + 0.0170137i
\(315\) 0 0
\(316\) −3.20271 21.8880i −0.180166 1.23130i
\(317\) −6.10150 + 22.7711i −0.342695 + 1.27895i 0.552588 + 0.833455i \(0.313640\pi\)
−0.895282 + 0.445499i \(0.853026\pi\)
\(318\) 0.143784 + 0.413768i 0.00806301 + 0.0232030i
\(319\) 12.2481 21.2143i 0.685760 1.18777i
\(320\) 3.28234 + 18.6651i 0.183489 + 1.04341i
\(321\) 2.59324 0.144741
\(322\) 0 0
\(323\) −27.3756 27.3756i −1.52322 1.52322i
\(324\) 12.4781 9.86329i 0.693227 0.547960i
\(325\) −0.503444 1.87888i −0.0279260 0.104221i
\(326\) 6.10949 12.6169i 0.338373 0.698784i
\(327\) −1.30405 + 0.752892i −0.0721140 + 0.0416350i
\(328\) 3.70419 5.81147i 0.204529 0.320885i
\(329\) 0 0
\(330\) 0.220793 + 3.03397i 0.0121543 + 0.167014i
\(331\) −8.11450 2.17427i −0.446013 0.119509i 0.0288201 0.999585i \(-0.490825\pi\)
−0.474833 + 0.880076i \(0.657492\pi\)
\(332\) 12.2641 + 28.4434i 0.673081 + 1.56103i
\(333\) 2.90748 0.779056i 0.159329 0.0426920i
\(334\) −4.52736 + 23.6487i −0.247726 + 1.29400i
\(335\) −22.1600 −1.21073
\(336\) 0 0
\(337\) −5.77753 −0.314722 −0.157361 0.987541i \(-0.550299\pi\)
−0.157361 + 0.987541i \(0.550299\pi\)
\(338\) −0.769661 + 4.02032i −0.0418640 + 0.218677i
\(339\) −4.21549 + 1.12954i −0.228954 + 0.0613481i
\(340\) −22.9184 + 9.88189i −1.24293 + 0.535921i
\(341\) −1.69426 0.453975i −0.0917491 0.0245841i
\(342\) 2.17422 + 29.8764i 0.117568 + 1.61553i
\(343\) 0 0
\(344\) −22.1876 + 4.91353i −1.19627 + 0.264920i
\(345\) 0.0644570 0.0372143i 0.00347025 0.00200355i
\(346\) 0.150920 0.311670i 0.00811352 0.0167555i
\(347\) −3.13552 11.7019i −0.168324 0.628193i −0.997593 0.0693432i \(-0.977910\pi\)
0.829269 0.558849i \(-0.188757\pi\)
\(348\) 3.94488 + 4.99068i 0.211468 + 0.267528i
\(349\) 18.6177 + 18.6177i 0.996582 + 0.996582i 0.999994 0.00341200i \(-0.00108607\pi\)
−0.00341200 + 0.999994i \(0.501086\pi\)
\(350\) 0 0
\(351\) −6.42057 −0.342705
\(352\) 9.45221 11.5943i 0.503804 0.617977i
\(353\) 11.3938 19.7346i 0.606430 1.05037i −0.385394 0.922752i \(-0.625934\pi\)
0.991824 0.127615i \(-0.0407323\pi\)
\(354\) 1.53057 + 4.40453i 0.0813488 + 0.234098i
\(355\) −9.31563 + 34.7664i −0.494422 + 1.84521i
\(356\) −4.49401 + 0.657574i −0.238182 + 0.0348513i
\(357\) 0 0
\(358\) 0.381207 0.0277419i 0.0201474 0.00146620i
\(359\) 1.93301 1.11602i 0.102020 0.0589014i −0.448122 0.893973i \(-0.647907\pi\)
0.550142 + 0.835071i \(0.314574\pi\)
\(360\) 18.4160 + 5.81120i 0.970611 + 0.306277i
\(361\) −30.3228 17.5069i −1.59594 0.921415i
\(362\) −1.23413 + 0.837529i −0.0648646 + 0.0440195i
\(363\) −0.972927 + 0.972927i −0.0510654 + 0.0510654i
\(364\) 0 0
\(365\) −8.07117 8.07117i −0.422465 0.422465i
\(366\) −0.197841 + 1.03342i −0.0103413 + 0.0540178i
\(367\) 10.3207 17.8759i 0.538735 0.933117i −0.460237 0.887796i \(-0.652236\pi\)
0.998972 0.0453208i \(-0.0144310\pi\)
\(368\) −0.356111 0.0845148i −0.0185636 0.00440564i
\(369\) −3.51119 6.08155i −0.182785 0.316593i
\(370\) 2.64716 + 2.28801i 0.137619 + 0.118948i
\(371\) 0 0
\(372\) 0.272068 0.365334i 0.0141061 0.0189417i
\(373\) 22.6365 + 6.06542i 1.17207 + 0.314056i 0.791777 0.610810i \(-0.209156\pi\)
0.380295 + 0.924865i \(0.375823\pi\)
\(374\) 17.7307 + 8.58578i 0.916835 + 0.443960i
\(375\) 3.09117 + 1.78469i 0.159628 + 0.0921610i
\(376\) 0.657721 14.9855i 0.0339194 0.772816i
\(377\) 29.4476i 1.51663i
\(378\) 0 0
\(379\) 5.39695 5.39695i 0.277223 0.277223i −0.554777 0.831999i \(-0.687196\pi\)
0.831999 + 0.554777i \(0.187196\pi\)
\(380\) −27.3172 + 21.5928i −1.40134 + 1.10769i
\(381\) −6.07791 + 1.62857i −0.311381 + 0.0834342i
\(382\) −1.83722 5.28698i −0.0940003 0.270505i
\(383\) 9.29971 + 16.1076i 0.475193 + 0.823058i 0.999596 0.0284116i \(-0.00904490\pi\)
−0.524403 + 0.851470i \(0.675712\pi\)
\(384\) 1.89144 + 3.39322i 0.0965220 + 0.173160i
\(385\) 0 0
\(386\) 0.821811 0.950811i 0.0418291 0.0483950i
\(387\) −5.99331 + 22.3673i −0.304657 + 1.13699i
\(388\) −32.5174 12.9241i −1.65082 0.656121i
\(389\) −1.00941 3.76716i −0.0511790 0.191003i 0.935604 0.353052i \(-0.114856\pi\)
−0.986783 + 0.162050i \(0.948190\pi\)
\(390\) −2.05348 3.02589i −0.103982 0.153222i
\(391\) 0.482004i 0.0243760i
\(392\) 0 0
\(393\) 3.38968i 0.170987i
\(394\) 8.00867 5.43498i 0.403471 0.273810i
\(395\) −6.78153 25.3090i −0.341216 1.27344i
\(396\) −6.03524 13.9972i −0.303282 0.703383i
\(397\) −3.59757 + 13.4263i −0.180557 + 0.673848i 0.814981 + 0.579488i \(0.196747\pi\)
−0.995538 + 0.0943605i \(0.969919\pi\)
\(398\) −9.36154 8.09143i −0.469252 0.405587i
\(399\) 0 0
\(400\) 0.701253 + 2.34496i 0.0350626 + 0.117248i
\(401\) 5.37440 + 9.30874i 0.268385 + 0.464856i 0.968445 0.249228i \(-0.0801768\pi\)
−0.700060 + 0.714084i \(0.746843\pi\)
\(402\) −4.29077 + 1.49104i −0.214004 + 0.0743663i
\(403\) 2.03672 0.545739i 0.101456 0.0271852i
\(404\) −3.72855 + 31.8576i −0.185503 + 1.58497i
\(405\) 13.3217 13.3217i 0.661959 0.661959i
\(406\) 0 0
\(407\) 2.76179i 0.136897i
\(408\) −3.77272 + 3.45547i −0.186777 + 0.171071i
\(409\) −7.51025 4.33605i −0.371358 0.214404i 0.302694 0.953088i \(-0.402114\pi\)
−0.674052 + 0.738684i \(0.735447\pi\)
\(410\) 3.55759 7.34687i 0.175697 0.362836i
\(411\) −5.59354 1.49879i −0.275909 0.0739297i
\(412\) 24.1825 3.53843i 1.19138 0.174326i
\(413\) 0 0
\(414\) −0.243877 + 0.282159i −0.0119859 + 0.0138674i
\(415\) 18.3444 + 31.7734i 0.900489 + 1.55969i
\(416\) −2.87155 + 17.7520i −0.140790 + 0.870362i
\(417\) 1.46003 2.52884i 0.0714979 0.123838i
\(418\) 26.9947 + 5.16793i 1.32035 + 0.252772i
\(419\) 3.96286 + 3.96286i 0.193598 + 0.193598i 0.797249 0.603651i \(-0.206288\pi\)
−0.603651 + 0.797249i \(0.706288\pi\)
\(420\) 0 0
\(421\) −16.2008 + 16.2008i −0.789580 + 0.789580i −0.981425 0.191845i \(-0.938553\pi\)
0.191845 + 0.981425i \(0.438553\pi\)
\(422\) −9.57865 14.1145i −0.466282 0.687085i
\(423\) −13.2368 7.64226i −0.643594 0.371579i
\(424\) 0.767784 2.43316i 0.0372869 0.118164i
\(425\) −2.79146 + 1.61165i −0.135406 + 0.0781765i
\(426\) 0.535506 + 7.35852i 0.0259454 + 0.356521i
\(427\) 0 0
\(428\) −12.1145 9.02176i −0.585574 0.436083i
\(429\) −0.747076 + 2.78813i −0.0360692 + 0.134612i
\(430\) −25.4259 + 8.83546i −1.22614 + 0.426084i
\(431\) 0.282550 0.489392i 0.0136100 0.0235732i −0.859140 0.511740i \(-0.829001\pi\)
0.872750 + 0.488167i \(0.162334\pi\)
\(432\) 8.07557 0.232504i 0.388536 0.0111864i
\(433\) 14.8949 0.715801 0.357900 0.933760i \(-0.383493\pi\)
0.357900 + 0.933760i \(0.383493\pi\)
\(434\) 0 0
\(435\) 5.32807 + 5.32807i 0.255462 + 0.255462i
\(436\) 8.71119 + 1.01954i 0.417191 + 0.0488272i
\(437\) −0.174049 0.649561i −0.00832591 0.0310727i
\(438\) −2.10587 1.01973i −0.100622 0.0487244i
\(439\) −22.8504 + 13.1927i −1.09059 + 0.629652i −0.933733 0.357970i \(-0.883469\pi\)
−0.156855 + 0.987622i \(0.550136\pi\)
\(440\) 9.52357 14.9415i 0.454018 0.712306i
\(441\) 0 0
\(442\) −23.6197 + 1.71890i −1.12348 + 0.0817595i
\(443\) 10.6551 + 2.85503i 0.506241 + 0.135647i 0.502895 0.864348i \(-0.332268\pi\)
0.00334579 + 0.999994i \(0.498935\pi\)
\(444\) 0.666509 + 0.264905i 0.0316311 + 0.0125718i
\(445\) −5.19640 + 1.39237i −0.246333 + 0.0660047i
\(446\) −35.1850 6.73590i −1.66606 0.318954i
\(447\) −1.02595 −0.0485258
\(448\) 0 0
\(449\) 31.5853 1.49060 0.745302 0.666728i \(-0.232306\pi\)
0.745302 + 0.666728i \(0.232306\pi\)
\(450\) 2.44952 + 0.468943i 0.115472 + 0.0221062i
\(451\) −6.22366 + 1.66763i −0.293061 + 0.0785254i
\(452\) 23.6225 + 9.38880i 1.11111 + 0.441612i
\(453\) 7.24583 + 1.94152i 0.340439 + 0.0912203i
\(454\) 1.04717 0.0762066i 0.0491462 0.00357655i
\(455\) 0 0
\(456\) −3.83646 + 6.01899i −0.179659 + 0.281865i
\(457\) 6.68269 3.85825i 0.312603 0.180482i −0.335488 0.942045i \(-0.608901\pi\)
0.648091 + 0.761563i \(0.275568\pi\)
\(458\) −20.4643 9.90945i −0.956234 0.463038i
\(459\) 2.75370 + 10.2769i 0.128531 + 0.479686i
\(460\) −0.430580 0.0503944i −0.0200759 0.00234965i
\(461\) −3.17728 3.17728i −0.147980 0.147980i 0.629235 0.777215i \(-0.283368\pi\)
−0.777215 + 0.629235i \(0.783368\pi\)
\(462\) 0 0
\(463\) −7.90920 −0.367571 −0.183786 0.982966i \(-0.558835\pi\)
−0.183786 + 0.982966i \(0.558835\pi\)
\(464\) −1.06637 37.0382i −0.0495050 1.71946i
\(465\) 0.269770 0.467255i 0.0125103 0.0216684i
\(466\) 14.3676 4.99271i 0.665564 0.231283i
\(467\) 6.10734 22.7929i 0.282614 1.05473i −0.667952 0.744205i \(-0.732829\pi\)
0.950565 0.310524i \(-0.100505\pi\)
\(468\) 14.6964 + 10.9446i 0.679341 + 0.505912i
\(469\) 0 0
\(470\) −1.28956 17.7201i −0.0594828 0.817366i
\(471\) −0.873398 + 0.504256i −0.0402440 + 0.0232349i
\(472\) 8.17300 25.9007i 0.376193 1.19218i
\(473\) 18.4001 + 10.6233i 0.846036 + 0.488459i
\(474\) −3.01601 4.44421i −0.138530 0.204129i
\(475\) −3.17988 + 3.17988i −0.145903 + 0.145903i
\(476\) 0 0
\(477\) −1.83836 1.83836i −0.0841727 0.0841727i
\(478\) −4.16755 0.797846i −0.190619 0.0364926i
\(479\) −16.9156 + 29.2986i −0.772892 + 1.33869i 0.163080 + 0.986613i \(0.447857\pi\)
−0.935972 + 0.352075i \(0.885476\pi\)
\(480\) 2.69237 + 3.73150i 0.122889 + 0.170319i
\(481\) 1.66002 + 2.87525i 0.0756906 + 0.131100i
\(482\) −20.8973 + 24.1776i −0.951846 + 1.10126i
\(483\) 0 0
\(484\) 7.92984 1.16031i 0.360447 0.0527415i
\(485\) −40.0343 10.7272i −1.81787 0.487096i
\(486\) 5.41765 11.1881i 0.245750 0.507505i
\(487\) −9.02294 5.20940i −0.408868 0.236060i 0.281435 0.959580i \(-0.409190\pi\)
−0.690303 + 0.723520i \(0.742523\pi\)
\(488\) 4.51944 4.13940i 0.204585 0.187382i
\(489\) 3.40361i 0.153917i
\(490\) 0 0
\(491\) −8.28383 + 8.28383i −0.373844 + 0.373844i −0.868875 0.495031i \(-0.835157\pi\)
0.495031 + 0.868875i \(0.335157\pi\)
\(492\) 0.194509 1.66193i 0.00876913 0.0749254i
\(493\) 47.1346 12.6297i 2.12284 0.568813i
\(494\) −31.2099 + 10.8454i −1.40420 + 0.487958i
\(495\) −9.02736 15.6358i −0.405750 0.702779i
\(496\) −2.54196 + 0.760166i −0.114137 + 0.0341324i
\(497\) 0 0
\(498\) 5.68984 + 4.91787i 0.254968 + 0.220375i
\(499\) −3.13364 + 11.6949i −0.140281 + 0.523536i 0.859639 + 0.510902i \(0.170688\pi\)
−0.999920 + 0.0126342i \(0.995978\pi\)
\(500\) −8.23172 19.0913i −0.368134 0.853789i
\(501\) 1.51309 + 5.64694i 0.0676000 + 0.252287i
\(502\) −4.03765 + 2.74010i −0.180209 + 0.122297i
\(503\) 26.5226i 1.18258i −0.806458 0.591292i \(-0.798618\pi\)
0.806458 0.591292i \(-0.201382\pi\)
\(504\) 0 0
\(505\) 37.9920i 1.69062i
\(506\) 0.192153 + 0.283145i 0.00854222 + 0.0125873i
\(507\) 0.257229 + 0.959990i 0.0114239 + 0.0426347i
\(508\) 34.0590 + 13.5368i 1.51112 + 0.600598i
\(509\) −8.63990 + 32.2445i −0.382957 + 1.42921i 0.458406 + 0.888743i \(0.348421\pi\)
−0.841363 + 0.540471i \(0.818246\pi\)
\(510\) −3.96261 + 4.58462i −0.175467 + 0.203010i
\(511\) 0 0
\(512\) 2.96890 22.4318i 0.131208 0.991355i
\(513\) 7.42190 + 12.8551i 0.327685 + 0.567567i
\(514\) 8.57517 + 24.6768i 0.378234 + 1.08845i
\(515\) 27.9620 7.49241i 1.23215 0.330155i
\(516\) −4.32863 + 3.42157i −0.190558 + 0.150626i
\(517\) −9.91643 + 9.91643i −0.436124 + 0.436124i
\(518\) 0 0
\(519\) 0.0840780i 0.00369062i
\(520\) −0.933973 + 21.2795i −0.0409574 + 0.933170i
\(521\) 0.420026 + 0.242502i 0.0184017 + 0.0106242i 0.509173 0.860664i \(-0.329951\pi\)
−0.490771 + 0.871289i \(0.663285\pi\)
\(522\) −33.9822 16.4552i −1.48736 0.720226i
\(523\) −19.8439 5.31716i −0.867714 0.232503i −0.202615 0.979259i \(-0.564944\pi\)
−0.665099 + 0.746755i \(0.731611\pi\)
\(524\) −11.7925 + 15.8350i −0.515159 + 0.691757i
\(525\) 0 0
\(526\) −10.3439 8.94050i −0.451015 0.389824i
\(527\) −1.74705 3.02597i −0.0761026 0.131813i
\(528\) 0.838682 3.53386i 0.0364989 0.153792i
\(529\) −11.4958 + 19.9113i −0.499818 + 0.865710i
\(530\) 0.568236 2.96818i 0.0246826 0.128930i
\(531\) −19.5692 19.5692i −0.849230 0.849230i
\(532\) 0 0
\(533\) 5.47697 5.47697i 0.237234 0.237234i
\(534\) −0.912476 + 0.619241i −0.0394867 + 0.0267972i
\(535\) −15.4941 8.94555i −0.669870 0.386750i
\(536\) 25.2318 + 7.96192i 1.08985 + 0.343902i
\(537\) 0.0803683 0.0464007i 0.00346815 0.00200234i
\(538\) 34.0973 2.48138i 1.47004 0.106980i
\(539\) 0 0
\(540\) 9.46842 1.38544i 0.407456 0.0596199i
\(541\) 3.27745 12.2316i 0.140909 0.525878i −0.858995 0.511984i \(-0.828911\pi\)
0.999903 0.0138940i \(-0.00442275\pi\)
\(542\) 13.2968 + 38.2642i 0.571146 + 1.64359i
\(543\) −0.181066 + 0.313615i −0.00777027 + 0.0134585i
\(544\) 29.6458 3.01730i 1.27106 0.129365i
\(545\) 10.3886 0.444998
\(546\) 0 0
\(547\) −26.3448 26.3448i −1.12642 1.12642i −0.990754 0.135668i \(-0.956682\pi\)
−0.135668 0.990754i \(-0.543318\pi\)
\(548\) 20.9163 + 26.4613i 0.893501 + 1.13037i
\(549\) −1.61630 6.03212i −0.0689821 0.257445i
\(550\) 0.997303 2.05956i 0.0425252 0.0878199i
\(551\) 58.9594 34.0402i 2.51175 1.45016i
\(552\) −0.0867628 + 0.0192140i −0.00369287 + 0.000817801i
\(553\) 0 0
\(554\) 1.69143 + 23.2423i 0.0718618 + 0.987470i
\(555\) 0.820584 + 0.219875i 0.0348318 + 0.00933316i
\(556\) −15.6183 + 6.73425i −0.662364 + 0.285596i
\(557\) −16.8579 + 4.51707i −0.714293 + 0.191394i −0.597624 0.801776i \(-0.703888\pi\)
−0.116669 + 0.993171i \(0.537222\pi\)
\(558\) −0.508339 + 2.65531i −0.0215197 + 0.112408i
\(559\) −25.5412 −1.08028
\(560\) 0 0
\(561\) 4.78316 0.201945
\(562\) −5.20683 + 27.1979i −0.219637 + 1.14727i
\(563\) −13.2928 + 3.56178i −0.560223 + 0.150111i −0.527809 0.849363i \(-0.676986\pi\)
−0.0324143 + 0.999475i \(0.510320\pi\)
\(564\) −1.44199 3.34432i −0.0607188 0.140821i
\(565\) 29.0832 + 7.79282i 1.22354 + 0.327846i
\(566\) −0.0522831 0.718434i −0.00219762 0.0301980i
\(567\) 0 0
\(568\) 23.0983 36.2387i 0.969181 1.52054i
\(569\) −6.20226 + 3.58088i −0.260012 + 0.150118i −0.624340 0.781153i \(-0.714632\pi\)
0.364328 + 0.931271i \(0.381299\pi\)
\(570\) −3.68463 + 7.60923i −0.154332 + 0.318716i
\(571\) −8.75442 32.6720i −0.366361 1.36728i −0.865566 0.500795i \(-0.833041\pi\)
0.499205 0.866484i \(-0.333625\pi\)
\(572\) 13.1898 10.4258i 0.551491 0.435926i
\(573\) −0.960934 0.960934i −0.0401436 0.0401436i
\(574\) 0 0
\(575\) −0.0559884 −0.00233488
\(576\) −18.8809 13.2335i −0.786706 0.551395i
\(577\) −12.0285 + 20.8339i −0.500752 + 0.867328i 0.499247 + 0.866460i \(0.333610\pi\)
−1.00000 0.000868882i \(0.999723\pi\)
\(578\) 4.98995 + 14.3596i 0.207555 + 0.597281i
\(579\) 0.0789751 0.294739i 0.00328209 0.0122489i
\(580\) −6.35426 43.4265i −0.263846 1.80319i
\(581\) 0 0
\(582\) −8.47350 + 0.616648i −0.351238 + 0.0255609i
\(583\) −2.06583 + 1.19271i −0.0855580 + 0.0493969i
\(584\) 6.29008 + 12.0899i 0.260286 + 0.500284i
\(585\) 18.7964 + 10.8521i 0.777135 + 0.448679i
\(586\) −22.2119 + 15.0739i −0.917567 + 0.622695i
\(587\) −1.63189 + 1.63189i −0.0673551 + 0.0673551i −0.739982 0.672627i \(-0.765166\pi\)
0.672627 + 0.739982i \(0.265166\pi\)
\(588\) 0 0
\(589\) −3.44703 3.44703i −0.142032 0.142032i
\(590\) 6.04882 31.5960i 0.249026 1.30079i
\(591\) 1.17499 2.03514i 0.0483326 0.0837145i
\(592\) −2.19204 3.55627i −0.0900923 0.146162i
\(593\) −4.25167 7.36410i −0.174595 0.302408i 0.765426 0.643524i \(-0.222528\pi\)
−0.940021 + 0.341116i \(0.889195\pi\)
\(594\) −5.71454 4.93923i −0.234471 0.202659i
\(595\) 0 0
\(596\) 4.79278 + 3.56923i 0.196320 + 0.146201i
\(597\) −2.90196 0.777577i −0.118769 0.0318241i
\(598\) −0.370235 0.179279i −0.0151400 0.00733128i
\(599\) 10.0144 + 5.78179i 0.409176 + 0.236238i 0.690435 0.723394i \(-0.257419\pi\)
−0.281260 + 0.959632i \(0.590752\pi\)
\(600\) 0.401379 + 0.438230i 0.0163862 + 0.0178907i
\(601\) 4.27752i 0.174484i −0.996187 0.0872418i \(-0.972195\pi\)
0.996187 0.0872418i \(-0.0278053\pi\)
\(602\) 0 0
\(603\) 19.0638 19.0638i 0.776337 0.776337i
\(604\) −27.0948 34.2778i −1.10247 1.39474i
\(605\) 9.16923 2.45689i 0.372782 0.0998867i
\(606\) 2.55630 + 7.35627i 0.103842 + 0.298828i
\(607\) −0.381118 0.660116i −0.0154691 0.0267933i 0.858187 0.513337i \(-0.171591\pi\)
−0.873656 + 0.486544i \(0.838257\pi\)
\(608\) 38.8620 14.7712i 1.57606 0.599050i
\(609\) 0 0
\(610\) 4.74691 5.49203i 0.192197 0.222366i
\(611\) 4.36335 16.2842i 0.176522 0.658790i
\(612\) 11.2151 28.2174i 0.453342 1.14062i
\(613\) 6.60873 + 24.6641i 0.266924 + 0.996174i 0.961062 + 0.276332i \(0.0891191\pi\)
−0.694138 + 0.719842i \(0.744214\pi\)
\(614\) −20.3970 30.0558i −0.823155 1.21295i
\(615\) 1.98194i 0.0799195i
\(616\) 0 0
\(617\) 34.9141i 1.40559i −0.711392 0.702795i \(-0.751935\pi\)
0.711392 0.702795i \(-0.248065\pi\)
\(618\) 4.91008 3.33216i 0.197512 0.134039i
\(619\) 7.70066 + 28.7392i 0.309516 + 1.15513i 0.928988 + 0.370109i \(0.120680\pi\)
−0.619473 + 0.785018i \(0.712654\pi\)
\(620\) −2.88580 + 1.24429i −0.115896 + 0.0499718i
\(621\) −0.0478314 + 0.178509i −0.00191941 + 0.00716333i
\(622\) −33.5587 29.0057i −1.34558 1.16302i
\(623\) 0 0
\(624\) 1.25096 + 4.18313i 0.0500783 + 0.167459i
\(625\) −13.8425 23.9760i −0.553701 0.959038i
\(626\) 17.9511 6.23799i 0.717470 0.249320i
\(627\) 6.44591 1.72718i 0.257425 0.0689768i
\(628\) 5.83440 + 0.682848i 0.232818 + 0.0272486i
\(629\) 3.89023 3.89023i 0.155114 0.155114i
\(630\) 0 0
\(631\) 4.08175i 0.162492i −0.996694 0.0812460i \(-0.974110\pi\)
0.996694 0.0812460i \(-0.0258900\pi\)
\(632\) −1.37175 + 31.2539i −0.0545654 + 1.24321i
\(633\) −3.58675 2.07081i −0.142561 0.0823074i
\(634\) 14.5300 30.0064i 0.577061 1.19171i
\(635\) 41.9322 + 11.2357i 1.66403 + 0.445875i
\(636\) −0.0896888 0.612953i −0.00355639 0.0243052i
\(637\) 0 0
\(638\) −22.6535 + 26.2095i −0.896862 + 1.03764i
\(639\) −21.8948 37.9228i −0.866143 1.50020i
\(640\) 0.404134 26.7985i 0.0159748 1.05930i
\(641\) −1.79183 + 3.10354i −0.0707730 + 0.122582i −0.899240 0.437455i \(-0.855880\pi\)
0.828467 + 0.560037i \(0.189213\pi\)
\(642\) −3.60199 0.689573i −0.142159 0.0272153i
\(643\) −15.8733 15.8733i −0.625982 0.625982i 0.321072 0.947055i \(-0.395957\pi\)
−0.947055 + 0.321072i \(0.895957\pi\)
\(644\) 0 0
\(645\) −4.62128 + 4.62128i −0.181963 + 0.181963i
\(646\) 30.7449 + 45.3039i 1.20964 + 1.78246i
\(647\) −22.2411 12.8409i −0.874388 0.504828i −0.00558405 0.999984i \(-0.501777\pi\)
−0.868804 + 0.495156i \(0.835111\pi\)
\(648\) −19.9547 + 10.3819i −0.783894 + 0.407841i
\(649\) −21.9906 + 12.6963i −0.863206 + 0.498372i
\(650\) 0.199663 + 2.74361i 0.00783142 + 0.107613i
\(651\) 0 0
\(652\) −11.8410 + 15.9001i −0.463729 + 0.622697i
\(653\) 7.91347 29.5335i 0.309678 1.15573i −0.619165 0.785261i \(-0.712529\pi\)
0.928843 0.370473i \(-0.120805\pi\)
\(654\) 2.01151 0.698998i 0.0786563 0.0273330i
\(655\) −11.6929 + 20.2527i −0.456880 + 0.791339i
\(656\) −6.69041 + 7.08708i −0.261217 + 0.276704i
\(657\) 13.8869 0.541780
\(658\) 0 0
\(659\) 3.02967 + 3.02967i 0.118019 + 0.118019i 0.763650 0.645631i \(-0.223405\pi\)
−0.645631 + 0.763650i \(0.723405\pi\)
\(660\) 0.500088 4.27286i 0.0194659 0.166321i
\(661\) 9.98584 + 37.2677i 0.388404 + 1.44954i 0.832730 + 0.553679i \(0.186777\pi\)
−0.444326 + 0.895865i \(0.646557\pi\)
\(662\) 10.6928 + 5.17778i 0.415587 + 0.201240i
\(663\) −4.97965 + 2.87500i −0.193393 + 0.111656i
\(664\) −9.47131 42.7687i −0.367558 1.65975i
\(665\) 0 0
\(666\) −4.24561 + 0.308969i −0.164514 + 0.0119723i
\(667\) 0.818724 + 0.219376i 0.0317011 + 0.00849429i
\(668\) 12.5769 31.6439i 0.486616 1.22434i
\(669\) −8.40162 + 2.25121i −0.324825 + 0.0870367i
\(670\) 30.7800 + 5.89260i 1.18914 + 0.227651i
\(671\) −5.72987 −0.221199
\(672\) 0 0
\(673\) 19.2447 0.741828 0.370914 0.928667i \(-0.379044\pi\)
0.370914 + 0.928667i \(0.379044\pi\)
\(674\) 8.02492 + 1.53631i 0.309108 + 0.0591765i
\(675\) 1.19374 0.319863i 0.0459472 0.0123115i
\(676\) 2.13810 5.37952i 0.0822346 0.206905i
\(677\) −26.7807 7.17588i −1.02927 0.275791i −0.295608 0.955309i \(-0.595522\pi\)
−0.733659 + 0.679518i \(0.762189\pi\)
\(678\) 6.15563 0.447968i 0.236406 0.0172041i
\(679\) 0 0
\(680\) 34.4612 7.63157i 1.32152 0.292657i
\(681\) 0.220771 0.127462i 0.00845996 0.00488436i
\(682\) 2.23259 + 1.08109i 0.0854902 + 0.0413970i
\(683\) −0.564208 2.10565i −0.0215888 0.0805705i 0.954291 0.298879i \(-0.0966127\pi\)
−0.975880 + 0.218309i \(0.929946\pi\)
\(684\) 4.92452 42.0762i 0.188294 1.60882i
\(685\) 28.2502 + 28.2502i 1.07939 + 1.07939i
\(686\) 0 0
\(687\) −5.52058 −0.210623
\(688\) 32.1249 0.924911i 1.22475 0.0352619i
\(689\) 1.43380 2.48341i 0.0546233 0.0946103i
\(690\) −0.0994258 + 0.0345504i −0.00378507 + 0.00131531i
\(691\) 7.61200 28.4084i 0.289574 1.08071i −0.655858 0.754885i \(-0.727693\pi\)
0.945432 0.325820i \(-0.105641\pi\)
\(692\) −0.292503 + 0.392775i −0.0111193 + 0.0149310i
\(693\) 0 0
\(694\) 1.24353 + 17.0876i 0.0472037 + 0.648637i
\(695\) −17.4468 + 10.0729i −0.661795 + 0.382087i
\(696\) −4.15231 7.98098i −0.157393 0.302518i
\(697\) −11.1156 6.41759i −0.421033 0.243083i
\(698\) −20.9091 30.8104i −0.791422 1.16619i
\(699\) 2.61138 2.61138i 0.0987713 0.0987713i
\(700\) 0 0
\(701\) 28.3466 + 28.3466i 1.07064 + 1.07064i 0.997308 + 0.0733289i \(0.0233623\pi\)
0.0733289 + 0.997308i \(0.476638\pi\)
\(702\) 8.91810 + 1.70730i 0.336592 + 0.0644380i
\(703\) 3.83783 6.64732i 0.144747 0.250708i
\(704\) −16.2121 + 13.5909i −0.611015 + 0.512225i
\(705\) −2.15689 3.73585i −0.0812333 0.140700i
\(706\) −21.0735 + 24.3814i −0.793112 + 0.917607i
\(707\) 0 0
\(708\) −0.954729 6.52484i −0.0358809 0.245218i
\(709\) 29.2811 + 7.84584i 1.09967 + 0.294657i 0.762632 0.646833i \(-0.223907\pi\)
0.337042 + 0.941490i \(0.390574\pi\)
\(710\) 22.1841 45.8130i 0.832554 1.71933i
\(711\) 27.6068 + 15.9388i 1.03534 + 0.597752i
\(712\) 6.41698 + 0.281646i 0.240487 + 0.0105551i
\(713\) 0.0606921i 0.00227294i
\(714\) 0 0
\(715\) 14.0815 14.0815i 0.526617 0.526617i
\(716\) −0.536870 0.0628343i −0.0200638 0.00234823i
\(717\) −0.995146 + 0.266649i −0.0371644 + 0.00995817i
\(718\) −2.98169 + 1.03613i −0.111276 + 0.0386682i
\(719\) −0.695395 1.20446i −0.0259338 0.0449187i 0.852767 0.522291i \(-0.174923\pi\)
−0.878701 + 0.477372i \(0.841589\pi\)
\(720\) −24.0344 12.9687i −0.895710 0.483316i
\(721\) 0 0
\(722\) 37.4628 + 32.3801i 1.39422 + 1.20506i
\(723\) −2.00821 + 7.49473i −0.0746861 + 0.278732i
\(724\) 1.93691 0.835148i 0.0719845 0.0310380i
\(725\) −1.46703 5.47505i −0.0544843 0.203338i
\(726\) 1.61010 1.09267i 0.0597563 0.0405529i
\(727\) 19.9346i 0.739332i 0.929165 + 0.369666i \(0.120528\pi\)
−0.929165 + 0.369666i \(0.879472\pi\)
\(728\) 0 0
\(729\) 20.8402i 0.771858i
\(730\) 9.06456 + 13.3570i 0.335494 + 0.494364i
\(731\) 10.9543 + 40.8820i 0.405159 + 1.51207i
\(732\) 0.549597 1.38280i 0.0203137 0.0511098i
\(733\) 3.59639 13.4219i 0.132836 0.495750i −0.867162 0.498027i \(-0.834058\pi\)
0.999997 + 0.00227682i \(0.000724735\pi\)
\(734\) −19.0887 + 22.0851i −0.704578 + 0.815176i
\(735\) 0 0
\(736\) 0.472161 + 0.212084i 0.0174041 + 0.00781753i
\(737\) −12.3684 21.4226i −0.455595 0.789113i
\(738\) 3.25984 + 9.38087i 0.119997 + 0.345315i
\(739\) −21.6421 + 5.79897i −0.796116 + 0.213319i −0.633878 0.773433i \(-0.718538\pi\)
−0.162238 + 0.986752i \(0.551871\pi\)
\(740\) −3.06846 3.88192i −0.112799 0.142702i
\(741\) −5.67255 + 5.67255i −0.208386 + 0.208386i
\(742\) 0 0
\(743\) 40.2309i 1.47593i 0.674839 + 0.737965i \(0.264213\pi\)
−0.674839 + 0.737965i \(0.735787\pi\)
\(744\) −0.475046 + 0.435099i −0.0174160 + 0.0159515i
\(745\) 6.12987 + 3.53908i 0.224581 + 0.129662i
\(746\) −29.8289 14.4441i −1.09212 0.528836i
\(747\) −43.1152 11.5527i −1.57750 0.422690i
\(748\) −22.3448 16.6404i −0.817005 0.608432i
\(749\) 0 0
\(750\) −3.81904 3.30089i −0.139452 0.120532i
\(751\) −4.02133 6.96514i −0.146740 0.254162i 0.783281 0.621668i \(-0.213545\pi\)
−0.930021 + 0.367507i \(0.880212\pi\)
\(752\) −4.89837 + 20.6397i −0.178625 + 0.752654i
\(753\) −0.592384 + 1.02604i −0.0215877 + 0.0373909i
\(754\) 7.83046 40.9024i 0.285169 1.48958i
\(755\) −36.5951 36.5951i −1.33183 1.33183i
\(756\) 0 0
\(757\) 12.7497 12.7497i 0.463394 0.463394i −0.436372 0.899766i \(-0.643737\pi\)
0.899766 + 0.436372i \(0.143737\pi\)
\(758\) −8.93141 + 6.06119i −0.324404 + 0.220152i
\(759\) 0.0719520 + 0.0415415i 0.00261169 + 0.00150786i
\(760\) 43.6850 22.7283i 1.58462 0.824441i
\(761\) 17.9392 10.3572i 0.650297 0.375449i −0.138273 0.990394i \(-0.544155\pi\)
0.788570 + 0.614945i \(0.210822\pi\)
\(762\) 8.87520 0.645881i 0.321515 0.0233978i
\(763\) 0 0
\(764\) 1.14601 + 7.83209i 0.0414612 + 0.283355i
\(765\) 9.30864 34.7403i 0.336555 1.25604i
\(766\) −8.63401 24.8461i −0.311959 0.897728i
\(767\) 15.2626 26.4357i 0.551102 0.954536i
\(768\) −1.72489 5.21610i −0.0622416 0.188220i
\(769\) 24.5641 0.885805 0.442902 0.896570i \(-0.353949\pi\)
0.442902 + 0.896570i \(0.353949\pi\)
\(770\) 0 0
\(771\) 4.48513 + 4.48513i 0.161528 + 0.161528i
\(772\) −1.39432 + 1.10214i −0.0501826 + 0.0396668i
\(773\) −9.24937 34.5191i −0.332677 1.24157i −0.906366 0.422494i \(-0.861155\pi\)
0.573689 0.819073i \(-0.305512\pi\)
\(774\) 14.2724 29.4743i 0.513010 1.05943i
\(775\) −0.351490 + 0.202933i −0.0126259 + 0.00728956i
\(776\) 41.7297 + 26.5982i 1.49801 + 0.954819i
\(777\) 0 0
\(778\) 0.400325 + 5.50096i 0.0143524 + 0.197219i
\(779\) −17.2970 4.63472i −0.619730 0.166056i
\(780\) 2.04765 + 4.74897i 0.0733175 + 0.170040i
\(781\) −38.8090 + 10.3988i −1.38870 + 0.372100i
\(782\) −0.128170 + 0.669498i −0.00458336 + 0.0239412i
\(783\) −18.7095 −0.668624
\(784\) 0 0
\(785\) 6.95785 0.248336
\(786\) −0.901355 + 4.70823i −0.0321503 + 0.167937i
\(787\) −18.3945 + 4.92879i −0.655693 + 0.175693i −0.571302 0.820740i \(-0.693561\pi\)
−0.0843917 + 0.996433i \(0.526895\pi\)
\(788\) −12.5692 + 5.41953i −0.447758 + 0.193063i
\(789\) −3.20647 0.859172i −0.114153 0.0305873i
\(790\) 2.68952 + 36.9572i 0.0956887 + 1.31488i
\(791\) 0 0
\(792\) 4.66089 + 21.0467i 0.165617 + 0.747863i
\(793\) 5.96525 3.44404i 0.211832 0.122301i
\(794\) 8.56721 17.6924i 0.304039 0.627880i
\(795\) −0.189910 0.708755i −0.00673542 0.0251369i
\(796\) 10.8515 + 13.7282i 0.384620 + 0.486585i
\(797\) 3.26569 + 3.26569i 0.115677 + 0.115677i 0.762576 0.646899i \(-0.223934\pi\)
−0.646899 + 0.762576i \(0.723934\pi\)
\(798\) 0 0
\(799\) −27.9364 −0.988317
\(800\) −0.350482 3.44359i −0.0123914 0.121749i
\(801\) 3.27252 5.66818i 0.115629 0.200275i
\(802\) −4.98969 14.3589i −0.176192 0.507029i
\(803\) 3.29777 12.3075i 0.116376 0.434321i
\(804\) 6.35632 0.930072i 0.224170 0.0328011i
\(805\) 0 0
\(806\) −2.97411 + 0.216437i −0.104758 + 0.00762366i
\(807\) 7.18858 4.15033i 0.253050 0.146098i
\(808\) 13.6502 43.2584i 0.480213 1.52182i
\(809\) −25.2648 14.5866i −0.888263 0.512839i −0.0148891 0.999889i \(-0.504740\pi\)
−0.873374 + 0.487050i \(0.838073\pi\)
\(810\) −22.0460 + 14.9613i −0.774619 + 0.525686i
\(811\) −32.8375 + 32.8375i −1.15308 + 1.15308i −0.167148 + 0.985932i \(0.553456\pi\)
−0.985932 + 0.167148i \(0.946544\pi\)
\(812\) 0 0
\(813\) 6.95471 + 6.95471i 0.243912 + 0.243912i
\(814\) −0.734392 + 3.83610i −0.0257404 + 0.134455i
\(815\) −11.7410 + 20.3359i −0.411268 + 0.712337i
\(816\) 6.15912 3.79640i 0.215612 0.132901i
\(817\) 29.5246 + 51.1381i 1.03293 + 1.78909i
\(818\) 9.27865 + 8.01978i 0.324421 + 0.280405i
\(819\) 0 0
\(820\) −6.89507 + 9.25873i −0.240786 + 0.323329i
\(821\) −29.8798 8.00627i −1.04281 0.279421i −0.303534 0.952821i \(-0.598167\pi\)
−0.739279 + 0.673400i \(0.764833\pi\)
\(822\) 7.37083 + 3.56919i 0.257087 + 0.124490i
\(823\) 24.4402 + 14.1106i 0.851932 + 0.491863i 0.861302 0.508093i \(-0.169649\pi\)
−0.00937002 + 0.999956i \(0.502983\pi\)
\(824\) −34.5301 1.51555i −1.20291 0.0527966i
\(825\) 0.555600i 0.0193435i
\(826\) 0 0
\(827\) −21.9283 + 21.9283i −0.762522 + 0.762522i −0.976778 0.214256i \(-0.931267\pi\)
0.214256 + 0.976778i \(0.431267\pi\)
\(828\) 0.413772 0.327066i 0.0143796 0.0113663i
\(829\) 1.36524 0.365814i 0.0474166 0.0127052i −0.235033 0.971987i \(-0.575520\pi\)
0.282449 + 0.959282i \(0.408853\pi\)
\(830\) −17.0312 49.0108i −0.591162 1.70119i
\(831\) 2.82906 + 4.90007i 0.0981389 + 0.169982i
\(832\) 8.70901 23.8937i 0.301931 0.828366i
\(833\) 0 0
\(834\) −2.70041 + 3.12430i −0.0935076 + 0.108186i
\(835\) 10.4390 38.9589i 0.361257 1.34823i
\(836\) −36.1211 14.3564i −1.24928 0.496527i
\(837\) 0.346735 + 1.29403i 0.0119849 + 0.0447283i
\(838\) −4.45060 6.55814i −0.153743 0.226547i
\(839\) 4.25867i 0.147026i 0.997294 + 0.0735128i \(0.0234210\pi\)
−0.997294 + 0.0735128i \(0.976579\pi\)
\(840\) 0 0
\(841\) 56.8104i 1.95898i
\(842\) 26.8108 18.1948i 0.923960 0.627034i
\(843\) 1.74018 + 6.49443i 0.0599349 + 0.223680i
\(844\) 9.55143 + 22.1520i 0.328774 + 0.762504i
\(845\) 1.77465 6.62309i 0.0610499 0.227841i
\(846\) 16.3536 + 14.1348i 0.562248 + 0.485965i
\(847\) 0 0
\(848\) −1.71345 + 3.17546i −0.0588400 + 0.109046i
\(849\) −0.0874479 0.151464i −0.00300121 0.00519824i
\(850\) 4.30586 1.49628i 0.147690 0.0513221i
\(851\) 0.0923063 0.0247334i 0.00316422 0.000847850i
\(852\) 1.21290 10.3633i 0.0415533 0.355041i
\(853\) −16.5250 + 16.5250i −0.565806 + 0.565806i −0.930951 0.365144i \(-0.881020\pi\)
0.365144 + 0.930951i \(0.381020\pi\)
\(854\) 0 0
\(855\) 50.1783i 1.71606i
\(856\) 14.4279 + 15.7525i 0.493134 + 0.538409i
\(857\) 22.7948 + 13.1606i 0.778655 + 0.449556i 0.835953 0.548801i \(-0.184915\pi\)
−0.0572986 + 0.998357i \(0.518249\pi\)
\(858\) 1.77908 3.67402i 0.0607367 0.125429i
\(859\) 46.9949 + 12.5923i 1.60345 + 0.429642i 0.946081 0.323930i \(-0.105004\pi\)
0.657365 + 0.753572i \(0.271671\pi\)
\(860\) 37.6657 5.51133i 1.28439 0.187935i
\(861\) 0 0
\(862\) −0.522594 + 0.604627i −0.0177996 + 0.0205937i
\(863\) 4.94765 + 8.56957i 0.168420 + 0.291712i 0.937864 0.347002i \(-0.112800\pi\)
−0.769445 + 0.638714i \(0.779467\pi\)
\(864\) −11.2787 1.82444i −0.383709 0.0620687i
\(865\) −0.290032 + 0.502351i −0.00986139 + 0.0170804i
\(866\) −20.6888 3.96071i −0.703034 0.134590i
\(867\) 2.60993 + 2.60993i 0.0886379 + 0.0886379i
\(868\) 0 0
\(869\) 20.6819 20.6819i 0.701584 0.701584i
\(870\) −5.98384 8.81743i −0.202871 0.298939i
\(871\) 25.7529 + 14.8684i 0.872604 + 0.503798i
\(872\) −11.8286 3.73254i −0.400569 0.126400i
\(873\) 43.6690 25.2123i 1.47797 0.853308i
\(874\) 0.0690270 + 0.948515i 0.00233487 + 0.0320840i
\(875\) 0 0
\(876\) 2.65387 + 1.97636i 0.0896659 + 0.0667751i
\(877\) −8.79678 + 32.8300i −0.297046 + 1.10859i 0.642533 + 0.766258i \(0.277884\pi\)
−0.939579 + 0.342333i \(0.888783\pi\)
\(878\) 35.2470 12.2483i 1.18953 0.413360i
\(879\) −3.25882 + 5.64444i −0.109917 + 0.190382i
\(880\) −17.2012 + 18.2211i −0.579854 + 0.614233i
\(881\) −25.5121 −0.859526 −0.429763 0.902942i \(-0.641403\pi\)
−0.429763 + 0.902942i \(0.641403\pi\)
\(882\) 0 0
\(883\) 22.6764 + 22.6764i 0.763120 + 0.763120i 0.976885 0.213765i \(-0.0685727\pi\)
−0.213765 + 0.976885i \(0.568573\pi\)
\(884\) 33.2646 + 3.89323i 1.11881 + 0.130944i
\(885\) −2.02158 7.54463i −0.0679546 0.253610i
\(886\) −14.0407 6.79893i −0.471706 0.228415i
\(887\) −46.9094 + 27.0831i −1.57506 + 0.909362i −0.579529 + 0.814952i \(0.696763\pi\)
−0.995533 + 0.0944105i \(0.969903\pi\)
\(888\) −0.855333 0.545183i −0.0287031 0.0182951i
\(889\) 0 0
\(890\) 7.58799 0.552206i 0.254350 0.0185100i
\(891\) 20.3138 + 5.44305i 0.680536 + 0.182349i
\(892\) 47.0804 + 18.7122i 1.57637 + 0.626530i
\(893\) −37.6478 + 10.0877i −1.25983 + 0.337572i
\(894\) 1.42504 + 0.272812i 0.0476603 + 0.00912420i
\(895\) −0.640248 −0.0214011
\(896\) 0 0
\(897\) −0.0998770 −0.00333479
\(898\) −43.8717 8.39890i −1.46402 0.280275i
\(899\) 5.93501 1.59028i 0.197944 0.0530389i
\(900\) −3.27767 1.30271i −0.109256 0.0434238i
\(901\) −4.58994 1.22987i −0.152913 0.0409729i
\(902\) 9.08804 0.661371i 0.302599 0.0220212i
\(903\) 0 0
\(904\) −30.3148 19.3224i −1.00826 0.642654i
\(905\) 2.16367 1.24919i 0.0719227 0.0415246i
\(906\) −9.54811 4.62349i −0.317215 0.153605i
\(907\) 3.40663 + 12.7137i 0.113115 + 0.422152i 0.999139 0.0414881i \(-0.0132099\pi\)
−0.886024 + 0.463640i \(0.846543\pi\)
\(908\) −1.47478 0.172605i −0.0489421 0.00572810i
\(909\) −32.6837 32.6837i −1.08405 1.08405i
\(910\) 0 0
\(911\) 24.5412 0.813085 0.406543 0.913632i \(-0.366734\pi\)
0.406543 + 0.913632i \(0.366734\pi\)
\(912\) 6.92932 7.34016i 0.229453 0.243057i
\(913\) −20.4774 + 35.4679i −0.677704 + 1.17382i
\(914\) −10.3081 + 3.58207i −0.340963 + 0.118484i
\(915\) 0.456172 1.70246i 0.0150806 0.0562815i
\(916\) 25.7897 + 19.2058i 0.852114 + 0.634578i
\(917\) 0 0
\(918\) −1.09210 15.0068i −0.0360446 0.495298i
\(919\) −23.1901 + 13.3888i −0.764972 + 0.441657i −0.831078 0.556156i \(-0.812276\pi\)
0.0661060 + 0.997813i \(0.478942\pi\)
\(920\) 0.584671 + 0.184494i 0.0192760 + 0.00608257i
\(921\) −7.63770 4.40963i −0.251671 0.145302i
\(922\) 3.56833 + 5.25808i 0.117517 + 0.173166i
\(923\) 34.1528 34.1528i 1.12415 1.12415i
\(924\) 0 0
\(925\) −0.451880 0.451880i −0.0148577 0.0148577i
\(926\) 10.9858 + 2.10315i 0.361015 + 0.0691137i
\(927\) −17.6096 + 30.5007i −0.578375 + 1.00177i
\(928\) −8.36771 + 51.7292i −0.274683 + 1.69810i
\(929\) 12.9337 + 22.4019i 0.424342 + 0.734982i 0.996359 0.0852601i \(-0.0271721\pi\)
−0.572017 + 0.820242i \(0.693839\pi\)
\(930\) −0.498956 + 0.577277i −0.0163614 + 0.0189297i
\(931\) 0 0
\(932\) −21.2840 + 3.11432i −0.697181 + 0.102013i
\(933\) −10.4028 2.78741i −0.340571 0.0912558i
\(934\) −14.5439 + 30.0351i −0.475891 + 0.982777i
\(935\) −28.5785 16.4998i −0.934617 0.539601i
\(936\) −17.5029 19.1098i −0.572099 0.624624i
\(937\) 19.6850i 0.643080i 0.946896 + 0.321540i \(0.104200\pi\)
−0.946896 + 0.321540i \(0.895800\pi\)
\(938\) 0 0
\(939\) 3.26270 3.26270i 0.106474 0.106474i
\(940\) −2.92079 + 24.9559i −0.0952658 + 0.813972i
\(941\) 0.909688 0.243750i 0.0296550 0.00794603i −0.243961 0.969785i \(-0.578447\pi\)
0.273616 + 0.961839i \(0.411780\pi\)
\(942\) 1.34723 0.468160i 0.0438950 0.0152535i
\(943\) −0.111473 0.193077i −0.00363005 0.00628744i
\(944\) −18.2395 + 33.8025i −0.593645 + 1.10018i
\(945\) 0 0
\(946\) −22.7326 19.6484i −0.739102 0.638825i
\(947\) 4.69782 17.5325i 0.152659 0.569730i −0.846636 0.532173i \(-0.821376\pi\)
0.999294 0.0375571i \(-0.0119576\pi\)
\(948\) 3.00744 + 6.97495i 0.0976770 + 0.226536i
\(949\) 3.96437 + 14.7952i 0.128689 + 0.480273i
\(950\) 5.26239 3.57126i 0.170735 0.115867i
\(951\) 8.09471i 0.262489i
\(952\) 0 0
\(953\) 36.9302i 1.19629i −0.801390 0.598143i \(-0.795906\pi\)
0.801390 0.598143i \(-0.204094\pi\)
\(954\) 2.06462 + 3.04230i 0.0668446 + 0.0984982i
\(955\) 2.42660 + 9.05621i 0.0785230 + 0.293052i
\(956\) 5.57653 + 2.21640i 0.180358 + 0.0716835i
\(957\) −2.17698 + 8.12460i −0.0703717 + 0.262631i
\(958\) 31.2864 36.1974i 1.01082 1.16949i
\(959\) 0 0
\(960\) −2.74743 5.89894i −0.0886729 0.190387i
\(961\) 15.2800 + 26.4658i 0.492904 + 0.853734i
\(962\) −1.54119 4.43510i −0.0496901 0.142993i
\(963\) 21.0249 5.63362i 0.677519 0.181541i
\(964\) 35.4552 28.0256i 1.14194 0.902642i
\(965\) −1.48858 + 1.48858i −0.0479192 + 0.0479192i
\(966\) 0 0
\(967\) 15.9039i 0.511436i −0.966751 0.255718i \(-0.917688\pi\)
0.966751 0.255718i \(-0.0823119\pi\)
\(968\) −11.3230 0.496974i −0.363935 0.0159733i
\(969\) 11.5125 + 6.64675i 0.369835 + 0.213525i
\(970\) 52.7548 + 25.5455i 1.69385 + 0.820217i
\(971\) −12.1746 3.26217i −0.390701 0.104688i 0.0581203 0.998310i \(-0.481489\pi\)
−0.448821 + 0.893622i \(0.648156\pi\)
\(972\) −10.5001 + 14.0996i −0.336791 + 0.452245i
\(973\) 0 0
\(974\) 11.1475 + 9.63510i 0.357190 + 0.308728i
\(975\) 0.333953 + 0.578424i 0.0106951 + 0.0185244i
\(976\) −7.37816 + 4.54781i −0.236169 + 0.145572i
\(977\) −20.7008 + 35.8548i −0.662276 + 1.14710i 0.317740 + 0.948178i \(0.397076\pi\)
−0.980016 + 0.198918i \(0.936257\pi\)
\(978\) −0.905059 + 4.72758i −0.0289406 + 0.151171i
\(979\) −4.24636 4.24636i −0.135714 0.135714i
\(980\) 0 0
\(981\) −8.93708 + 8.93708i −0.285339 + 0.285339i
\(982\) 13.7089 9.30338i 0.437469 0.296883i
\(983\) −1.97172 1.13838i −0.0628882 0.0363085i 0.468226 0.883609i \(-0.344893\pi\)
−0.531114 + 0.847300i \(0.678227\pi\)
\(984\) −0.712096 + 2.25667i −0.0227008 + 0.0719401i
\(985\) −14.0407 + 8.10640i −0.447374 + 0.258291i
\(986\) −68.8279 + 5.00886i −2.19193 + 0.159515i
\(987\) 0 0
\(988\) 46.2341 6.76508i 1.47090 0.215226i
\(989\) −0.190275 + 0.710116i −0.00605039 + 0.0225804i
\(990\) 8.38115 + 24.1185i 0.266371 + 0.766536i
\(991\) 19.0720 33.0337i 0.605843 1.04935i −0.386075 0.922468i \(-0.626169\pi\)
0.991918 0.126883i \(-0.0404973\pi\)
\(992\) 3.73289 0.379926i 0.118519 0.0120627i
\(993\) 2.88456 0.0915386
\(994\) 0 0
\(995\) 14.6564 + 14.6564i 0.464638 + 0.464638i
\(996\) −6.59540 8.34387i −0.208983 0.264385i
\(997\) 9.28031 + 34.6346i 0.293911 + 1.09689i 0.942079 + 0.335392i \(0.108869\pi\)
−0.648168 + 0.761497i \(0.724465\pi\)
\(998\) 7.46240 15.4108i 0.236218 0.487821i
\(999\) −1.82678 + 1.05469i −0.0577969 + 0.0333691i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.p.557.1 96
7.2 even 3 inner 784.2.x.p.765.14 96
7.3 odd 6 784.2.m.l.589.19 yes 48
7.4 even 3 784.2.m.l.589.20 yes 48
7.5 odd 6 inner 784.2.x.p.765.13 96
7.6 odd 2 inner 784.2.x.p.557.2 96
16.5 even 4 inner 784.2.x.p.165.14 96
112.5 odd 12 inner 784.2.x.p.373.2 96
112.37 even 12 inner 784.2.x.p.373.1 96
112.53 even 12 784.2.m.l.197.20 yes 48
112.69 odd 4 inner 784.2.x.p.165.13 96
112.101 odd 12 784.2.m.l.197.19 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
784.2.m.l.197.19 48 112.101 odd 12
784.2.m.l.197.20 yes 48 112.53 even 12
784.2.m.l.589.19 yes 48 7.3 odd 6
784.2.m.l.589.20 yes 48 7.4 even 3
784.2.x.p.165.13 96 112.69 odd 4 inner
784.2.x.p.165.14 96 16.5 even 4 inner
784.2.x.p.373.1 96 112.37 even 12 inner
784.2.x.p.373.2 96 112.5 odd 12 inner
784.2.x.p.557.1 96 1.1 even 1 trivial
784.2.x.p.557.2 96 7.6 odd 2 inner
784.2.x.p.765.13 96 7.5 odd 6 inner
784.2.x.p.765.14 96 7.2 even 3 inner