Properties

Label 784.2.x.p.765.13
Level $784$
Weight $2$
Character 784.765
Analytic conductor $6.260$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(165,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 765.13
Character \(\chi\) \(=\) 784.765
Dual form 784.2.x.p.165.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.464209 + 1.33586i) q^{2} +(-0.0888704 + 0.331669i) q^{3} +(-1.56902 + 1.24023i) q^{4} +(0.613128 + 2.28822i) q^{5} +(-0.484316 + 0.0352455i) q^{6} +(-2.38512 - 1.52026i) q^{8} +(2.49597 + 1.44105i) q^{9} +(-2.77212 + 1.88126i) q^{10} +(-2.55430 - 0.684421i) q^{11} +(-0.271906 - 0.630615i) q^{12} +(2.24784 + 2.24784i) q^{13} -0.813421 q^{15} +(0.923653 - 3.89190i) q^{16} +(2.63388 + 4.56202i) q^{17} +(-0.766383 + 4.00320i) q^{18} +(-7.09898 + 1.90217i) q^{19} +(-3.79994 - 2.82985i) q^{20} +(-0.271438 - 3.72988i) q^{22} +(0.0792419 + 0.0457503i) q^{23} +(0.716189 - 0.655965i) q^{24} +(-0.529913 + 0.305946i) q^{25} +(-1.95932 + 4.04626i) q^{26} +(-1.42816 + 1.42816i) q^{27} +(-6.55020 - 6.55020i) q^{29} +(-0.377597 - 1.08661i) q^{30} +(0.331648 + 0.574432i) q^{31} +(5.62778 - 0.572785i) q^{32} +(0.454002 - 0.786355i) q^{33} +(-4.87153 + 5.63622i) q^{34} +(-5.70346 + 0.834544i) q^{36} +(0.270309 + 1.00881i) q^{37} +(-5.83643 - 8.60021i) q^{38} +(-0.945305 + 0.545772i) q^{39} +(2.01631 - 6.38981i) q^{40} -2.43655i q^{41} +(5.68128 - 5.68128i) q^{43} +(4.85658 - 2.09405i) q^{44} +(-1.76709 + 6.59488i) q^{45} +(-0.0243311 + 0.127093i) q^{46} +(-2.65163 + 4.59276i) q^{47} +(1.20874 + 0.652221i) q^{48} +(-0.654689 - 0.565865i) q^{50} +(-1.74715 + 0.468149i) q^{51} +(-6.31475 - 0.739067i) q^{52} +(-0.871326 - 0.233471i) q^{53} +(-2.57079 - 1.24486i) q^{54} -6.26444i q^{55} -2.52356i q^{57} +(5.70947 - 11.7908i) q^{58} +(9.27519 + 2.48528i) q^{59} +(1.27627 - 1.00883i) q^{60} +(-2.09296 + 0.560807i) q^{61} +(-0.613404 + 0.709691i) q^{62} +(3.37762 + 7.25201i) q^{64} +(-3.76535 + 6.52177i) q^{65} +(1.26121 + 0.241449i) q^{66} +(2.42109 - 9.03564i) q^{67} +(-9.79058 - 3.89128i) q^{68} +(-0.0222162 + 0.0222162i) q^{69} +15.1936i q^{71} +(-3.76243 - 7.23160i) q^{72} +(-4.17280 + 2.40917i) q^{73} +(-1.22214 + 0.829390i) q^{74} +(-0.0543790 - 0.202945i) q^{75} +(8.77932 - 11.7889i) q^{76} +(-1.16789 - 1.00944i) q^{78} +(-5.53028 + 9.57872i) q^{79} +(9.47185 - 0.272705i) q^{80} +(3.97639 + 6.88731i) q^{81} +(3.25488 - 1.13107i) q^{82} +(-10.9512 - 10.9512i) q^{83} +(-8.82402 + 8.82402i) q^{85} +(10.2267 + 4.95207i) q^{86} +(2.75462 - 1.59038i) q^{87} +(5.05181 + 5.51562i) q^{88} +(-1.96668 - 1.13547i) q^{89} +(-9.63011 + 0.700819i) q^{90} +(-0.181073 + 0.0264950i) q^{92} +(-0.219995 + 0.0589474i) q^{93} +(-7.36617 - 1.41020i) q^{94} +(-8.70516 - 15.0778i) q^{95} +(-0.310168 + 1.91746i) q^{96} +17.4958 q^{97} +(-5.38916 - 5.38916i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 4 q^{4} + 8 q^{11} + 64 q^{15} - 36 q^{16} - 20 q^{18} - 56 q^{22} - 32 q^{29} - 96 q^{30} - 40 q^{32} + 80 q^{36} + 16 q^{37} + 16 q^{43} - 4 q^{44} - 64 q^{46} - 56 q^{50} - 16 q^{53} + 20 q^{58}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.464209 + 1.33586i 0.328245 + 0.944593i
\(3\) −0.0888704 + 0.331669i −0.0513093 + 0.191489i −0.986824 0.161800i \(-0.948270\pi\)
0.935514 + 0.353289i \(0.114937\pi\)
\(4\) −1.56902 + 1.24023i −0.784510 + 0.620116i
\(5\) 0.613128 + 2.28822i 0.274199 + 1.02332i 0.956376 + 0.292138i \(0.0943666\pi\)
−0.682177 + 0.731187i \(0.738967\pi\)
\(6\) −0.484316 + 0.0352455i −0.197721 + 0.0143889i
\(7\) 0 0
\(8\) −2.38512 1.52026i −0.843268 0.537493i
\(9\) 2.49597 + 1.44105i 0.831990 + 0.480350i
\(10\) −2.77212 + 1.88126i −0.876620 + 0.594907i
\(11\) −2.55430 0.684421i −0.770149 0.206361i −0.147712 0.989030i \(-0.547191\pi\)
−0.622437 + 0.782670i \(0.713857\pi\)
\(12\) −0.271906 0.630615i −0.0784926 0.182043i
\(13\) 2.24784 + 2.24784i 0.623439 + 0.623439i 0.946409 0.322970i \(-0.104681\pi\)
−0.322970 + 0.946409i \(0.604681\pi\)
\(14\) 0 0
\(15\) −0.813421 −0.210024
\(16\) 0.923653 3.89190i 0.230913 0.972974i
\(17\) 2.63388 + 4.56202i 0.638811 + 1.10645i 0.985694 + 0.168544i \(0.0539066\pi\)
−0.346883 + 0.937908i \(0.612760\pi\)
\(18\) −0.766383 + 4.00320i −0.180638 + 0.943564i
\(19\) −7.09898 + 1.90217i −1.62862 + 0.436387i −0.953517 0.301339i \(-0.902567\pi\)
−0.675101 + 0.737726i \(0.735900\pi\)
\(20\) −3.79994 2.82985i −0.849691 0.632774i
\(21\) 0 0
\(22\) −0.271438 3.72988i −0.0578707 0.795214i
\(23\) 0.0792419 + 0.0457503i 0.0165231 + 0.00953960i 0.508239 0.861216i \(-0.330297\pi\)
−0.491716 + 0.870756i \(0.663630\pi\)
\(24\) 0.716189 0.655965i 0.146192 0.133898i
\(25\) −0.529913 + 0.305946i −0.105983 + 0.0611891i
\(26\) −1.95932 + 4.04626i −0.384255 + 0.793536i
\(27\) −1.42816 + 1.42816i −0.274850 + 0.274850i
\(28\) 0 0
\(29\) −6.55020 6.55020i −1.21634 1.21634i −0.968903 0.247439i \(-0.920411\pi\)
−0.247439 0.968903i \(-0.579589\pi\)
\(30\) −0.377597 1.08661i −0.0689395 0.198388i
\(31\) 0.331648 + 0.574432i 0.0595658 + 0.103171i 0.894271 0.447527i \(-0.147695\pi\)
−0.834705 + 0.550698i \(0.814362\pi\)
\(32\) 5.62778 0.572785i 0.994861 0.101255i
\(33\) 0.454002 0.786355i 0.0790317 0.136887i
\(34\) −4.87153 + 5.63622i −0.835461 + 0.966603i
\(35\) 0 0
\(36\) −5.70346 + 0.834544i −0.950577 + 0.139091i
\(37\) 0.270309 + 1.00881i 0.0444385 + 0.165847i 0.984579 0.174940i \(-0.0559732\pi\)
−0.940141 + 0.340787i \(0.889307\pi\)
\(38\) −5.83643 8.60021i −0.946793 1.39514i
\(39\) −0.945305 + 0.545772i −0.151370 + 0.0873935i
\(40\) 2.01631 6.38981i 0.318806 1.01032i
\(41\) 2.43655i 0.380525i −0.981733 0.190262i \(-0.939066\pi\)
0.981733 0.190262i \(-0.0609339\pi\)
\(42\) 0 0
\(43\) 5.68128 5.68128i 0.866388 0.866388i −0.125683 0.992070i \(-0.540112\pi\)
0.992070 + 0.125683i \(0.0401122\pi\)
\(44\) 4.85658 2.09405i 0.732158 0.315689i
\(45\) −1.76709 + 6.59488i −0.263423 + 0.983107i
\(46\) −0.0243311 + 0.127093i −0.00358742 + 0.0187389i
\(47\) −2.65163 + 4.59276i −0.386780 + 0.669923i −0.992014 0.126125i \(-0.959746\pi\)
0.605234 + 0.796047i \(0.293079\pi\)
\(48\) 1.20874 + 0.652221i 0.174466 + 0.0941400i
\(49\) 0 0
\(50\) −0.654689 0.565865i −0.0925870 0.0800254i
\(51\) −1.74715 + 0.468149i −0.244651 + 0.0655539i
\(52\) −6.31475 0.739067i −0.875698 0.102490i
\(53\) −0.871326 0.233471i −0.119686 0.0320697i 0.198479 0.980105i \(-0.436400\pi\)
−0.318165 + 0.948035i \(0.603067\pi\)
\(54\) −2.57079 1.24486i −0.349840 0.169403i
\(55\) 6.26444i 0.844696i
\(56\) 0 0
\(57\) 2.52356i 0.334253i
\(58\) 5.70947 11.7908i 0.749690 1.54821i
\(59\) 9.27519 + 2.48528i 1.20753 + 0.323556i 0.805791 0.592200i \(-0.201740\pi\)
0.401736 + 0.915756i \(0.368407\pi\)
\(60\) 1.27627 1.00883i 0.164766 0.130239i
\(61\) −2.09296 + 0.560807i −0.267976 + 0.0718040i −0.390305 0.920686i \(-0.627630\pi\)
0.122329 + 0.992490i \(0.460964\pi\)
\(62\) −0.613404 + 0.709691i −0.0779024 + 0.0901308i
\(63\) 0 0
\(64\) 3.37762 + 7.25201i 0.422203 + 0.906501i
\(65\) −3.76535 + 6.52177i −0.467034 + 0.808927i
\(66\) 1.26121 + 0.241449i 0.155244 + 0.0297203i
\(67\) 2.42109 9.03564i 0.295783 1.10388i −0.644810 0.764343i \(-0.723063\pi\)
0.940593 0.339536i \(-0.110270\pi\)
\(68\) −9.79058 3.89128i −1.18728 0.471887i
\(69\) −0.0222162 + 0.0222162i −0.00267452 + 0.00267452i
\(70\) 0 0
\(71\) 15.1936i 1.80315i 0.432621 + 0.901576i \(0.357589\pi\)
−0.432621 + 0.901576i \(0.642411\pi\)
\(72\) −3.76243 7.23160i −0.443406 0.852252i
\(73\) −4.17280 + 2.40917i −0.488390 + 0.281972i −0.723906 0.689899i \(-0.757655\pi\)
0.235517 + 0.971870i \(0.424322\pi\)
\(74\) −1.22214 + 0.829390i −0.142071 + 0.0964146i
\(75\) −0.0543790 0.202945i −0.00627914 0.0234341i
\(76\) 8.77932 11.7889i 1.00706 1.35228i
\(77\) 0 0
\(78\) −1.16789 1.00944i −0.132238 0.114296i
\(79\) −5.53028 + 9.57872i −0.622205 + 1.07769i 0.366869 + 0.930272i \(0.380430\pi\)
−0.989074 + 0.147418i \(0.952904\pi\)
\(80\) 9.47185 0.272705i 1.05898 0.0304893i
\(81\) 3.97639 + 6.88731i 0.441821 + 0.765257i
\(82\) 3.25488 1.13107i 0.359441 0.124905i
\(83\) −10.9512 10.9512i −1.20205 1.20205i −0.973541 0.228512i \(-0.926614\pi\)
−0.228512 0.973541i \(-0.573386\pi\)
\(84\) 0 0
\(85\) −8.82402 + 8.82402i −0.957099 + 0.957099i
\(86\) 10.2267 + 4.95207i 1.10277 + 0.533996i
\(87\) 2.75462 1.59038i 0.295326 0.170507i
\(88\) 5.05181 + 5.51562i 0.538525 + 0.587967i
\(89\) −1.96668 1.13547i −0.208468 0.120359i 0.392131 0.919909i \(-0.371738\pi\)
−0.600599 + 0.799550i \(0.705071\pi\)
\(90\) −9.63011 + 0.700819i −1.01510 + 0.0738728i
\(91\) 0 0
\(92\) −0.181073 + 0.0264950i −0.0188782 + 0.00276230i
\(93\) −0.219995 + 0.0589474i −0.0228124 + 0.00611256i
\(94\) −7.36617 1.41020i −0.759763 0.145451i
\(95\) −8.70516 15.0778i −0.893131 1.54695i
\(96\) −0.310168 + 1.91746i −0.0316564 + 0.195700i
\(97\) 17.4958 1.77643 0.888215 0.459427i \(-0.151945\pi\)
0.888215 + 0.459427i \(0.151945\pi\)
\(98\) 0 0
\(99\) −5.38916 5.38916i −0.541631 0.541631i
\(100\) 0.452002 1.13725i 0.0452002 0.113725i
\(101\) 15.4911 + 4.15082i 1.54142 + 0.413022i 0.926724 0.375744i \(-0.122613\pi\)
0.614694 + 0.788766i \(0.289279\pi\)
\(102\) −1.43642 2.11663i −0.142227 0.209577i
\(103\) 10.5828 + 6.10999i 1.04276 + 0.602035i 0.920613 0.390477i \(-0.127690\pi\)
0.122143 + 0.992513i \(0.461023\pi\)
\(104\) −1.94407 8.77868i −0.190632 0.860820i
\(105\) 0 0
\(106\) −0.0925932 1.27234i −0.00899345 0.123581i
\(107\) 1.95469 + 7.29501i 0.188967 + 0.705236i 0.993746 + 0.111661i \(0.0356171\pi\)
−0.804779 + 0.593575i \(0.797716\pi\)
\(108\) 0.469566 4.01207i 0.0451840 0.386062i
\(109\) −1.13501 + 4.23590i −0.108714 + 0.405726i −0.998740 0.0501838i \(-0.984019\pi\)
0.890026 + 0.455910i \(0.150686\pi\)
\(110\) 8.36838 2.90800i 0.797894 0.277267i
\(111\) −0.358612 −0.0340379
\(112\) 0 0
\(113\) 12.7100 1.19565 0.597826 0.801626i \(-0.296031\pi\)
0.597826 + 0.801626i \(0.296031\pi\)
\(114\) 3.37111 1.17146i 0.315733 0.109717i
\(115\) −0.0561016 + 0.209374i −0.00523150 + 0.0195242i
\(116\) 18.4012 + 2.15364i 1.70851 + 0.199960i
\(117\) 2.37129 + 8.84979i 0.219226 + 0.818164i
\(118\) 0.985647 + 13.5440i 0.0907362 + 1.24683i
\(119\) 0 0
\(120\) 1.94011 + 1.23661i 0.177107 + 0.112887i
\(121\) −3.47029 2.00357i −0.315480 0.182143i
\(122\) −1.72073 2.53556i −0.155787 0.229559i
\(123\) 0.808127 + 0.216537i 0.0728664 + 0.0195245i
\(124\) −1.23279 0.489975i −0.110708 0.0440010i
\(125\) 7.35050 + 7.35050i 0.657449 + 0.657449i
\(126\) 0 0
\(127\) 18.3252 1.62610 0.813051 0.582193i \(-0.197805\pi\)
0.813051 + 0.582193i \(0.197805\pi\)
\(128\) −8.11972 + 7.87846i −0.717689 + 0.696364i
\(129\) 1.37941 + 2.38920i 0.121450 + 0.210358i
\(130\) −10.4601 2.00250i −0.917408 0.175631i
\(131\) −9.53546 + 2.55502i −0.833117 + 0.223233i −0.650073 0.759872i \(-0.725262\pi\)
−0.183044 + 0.983105i \(0.558595\pi\)
\(132\) 0.262923 + 1.79688i 0.0228845 + 0.156398i
\(133\) 0 0
\(134\) 13.1942 0.960191i 1.13981 0.0829479i
\(135\) −4.14360 2.39231i −0.356625 0.205897i
\(136\) 0.653319 14.8852i 0.0560217 1.27639i
\(137\) −14.6054 + 8.43243i −1.24782 + 0.720431i −0.970675 0.240396i \(-0.922723\pi\)
−0.277148 + 0.960827i \(0.589389\pi\)
\(138\) −0.0399906 0.0193647i −0.00340423 0.00164843i
\(139\) 6.01333 6.01333i 0.510044 0.510044i −0.404496 0.914540i \(-0.632553\pi\)
0.914540 + 0.404496i \(0.132553\pi\)
\(140\) 0 0
\(141\) −1.28762 1.28762i −0.108437 0.108437i
\(142\) −20.2965 + 7.05301i −1.70324 + 0.591875i
\(143\) −4.20318 7.28012i −0.351488 0.608794i
\(144\) 7.91383 8.38303i 0.659485 0.698586i
\(145\) 10.9722 19.0044i 0.911193 1.57823i
\(146\) −5.15535 4.45590i −0.426660 0.368773i
\(147\) 0 0
\(148\) −1.67527 1.24759i −0.137707 0.102551i
\(149\) −0.773325 2.88609i −0.0633533 0.236438i 0.926988 0.375092i \(-0.122389\pi\)
−0.990341 + 0.138655i \(0.955722\pi\)
\(150\) 0.245862 0.166851i 0.0200746 0.0136234i
\(151\) 18.9197 10.9233i 1.53966 0.888925i 0.540806 0.841147i \(-0.318119\pi\)
0.998858 0.0477779i \(-0.0152140\pi\)
\(152\) 19.8237 + 6.25539i 1.60792 + 0.507379i
\(153\) 15.1822i 1.22741i
\(154\) 0 0
\(155\) −1.11109 + 1.11109i −0.0892445 + 0.0892445i
\(156\) 0.806320 2.02872i 0.0645572 0.162428i
\(157\) 0.760181 2.83703i 0.0606690 0.226420i −0.928934 0.370245i \(-0.879274\pi\)
0.989603 + 0.143825i \(0.0459403\pi\)
\(158\) −15.3630 2.94113i −1.22221 0.233984i
\(159\) 0.154870 0.268243i 0.0122820 0.0212730i
\(160\) 4.76121 + 12.5264i 0.376406 + 0.990301i
\(161\) 0 0
\(162\) −7.35458 + 8.50903i −0.577830 + 0.668533i
\(163\) 9.57465 2.56552i 0.749944 0.200947i 0.136451 0.990647i \(-0.456430\pi\)
0.613493 + 0.789700i \(0.289764\pi\)
\(164\) 3.02188 + 3.82299i 0.235969 + 0.298526i
\(165\) 2.07772 + 0.556723i 0.161750 + 0.0433408i
\(166\) 9.54561 19.7129i 0.740883 1.53002i
\(167\) 17.0258i 1.31750i 0.752363 + 0.658749i \(0.228914\pi\)
−0.752363 + 0.658749i \(0.771086\pi\)
\(168\) 0 0
\(169\) 2.89442i 0.222648i
\(170\) −15.8838 7.69143i −1.21823 0.589906i
\(171\) −20.4600 5.48223i −1.56461 0.419237i
\(172\) −1.86795 + 15.9602i −0.142430 + 1.21695i
\(173\) −0.236519 + 0.0633750i −0.0179822 + 0.00481831i −0.267799 0.963475i \(-0.586296\pi\)
0.249817 + 0.968293i \(0.419630\pi\)
\(174\) 3.40323 + 2.94150i 0.257998 + 0.222995i
\(175\) 0 0
\(176\) −5.02298 + 9.30889i −0.378621 + 0.701684i
\(177\) −1.64858 + 2.85542i −0.123915 + 0.214627i
\(178\) 0.603867 3.15430i 0.0452617 0.236425i
\(179\) 0.0699503 0.261058i 0.00522833 0.0195124i −0.963262 0.268562i \(-0.913452\pi\)
0.968491 + 0.249050i \(0.0801182\pi\)
\(180\) −5.40657 12.5391i −0.402982 0.934610i
\(181\) −0.745744 + 0.745744i −0.0554307 + 0.0554307i −0.734279 0.678848i \(-0.762479\pi\)
0.678848 + 0.734279i \(0.262479\pi\)
\(182\) 0 0
\(183\) 0.744009i 0.0549987i
\(184\) −0.119449 0.229588i −0.00880591 0.0169255i
\(185\) −2.14264 + 1.23705i −0.157530 + 0.0909500i
\(186\) −0.180869 0.266517i −0.0132619 0.0195420i
\(187\) −3.60537 13.4554i −0.263651 0.983959i
\(188\) −1.53562 10.4948i −0.111997 0.765410i
\(189\) 0 0
\(190\) 16.1007 18.6281i 1.16807 1.35142i
\(191\) 1.97887 3.42751i 0.143186 0.248006i −0.785509 0.618851i \(-0.787599\pi\)
0.928695 + 0.370845i \(0.120932\pi\)
\(192\) −2.70544 + 0.475762i −0.195248 + 0.0343352i
\(193\) −0.444328 0.769598i −0.0319834 0.0553969i 0.849591 0.527443i \(-0.176849\pi\)
−0.881574 + 0.472046i \(0.843516\pi\)
\(194\) 8.12171 + 23.3719i 0.583105 + 1.67800i
\(195\) −1.82844 1.82844i −0.130937 0.130937i
\(196\) 0 0
\(197\) −4.83936 + 4.83936i −0.344790 + 0.344790i −0.858165 0.513374i \(-0.828395\pi\)
0.513374 + 0.858165i \(0.328395\pi\)
\(198\) 4.69745 9.70084i 0.333833 0.689408i
\(199\) 7.57734 4.37478i 0.537144 0.310120i −0.206777 0.978388i \(-0.566297\pi\)
0.743920 + 0.668268i \(0.232964\pi\)
\(200\) 1.72902 + 0.0758880i 0.122260 + 0.00536609i
\(201\) 2.78168 + 1.60600i 0.196204 + 0.113279i
\(202\) 1.64619 + 22.6207i 0.115825 + 1.59158i
\(203\) 0 0
\(204\) 2.16071 2.90141i 0.151280 0.203139i
\(205\) 5.57537 1.49391i 0.389400 0.104340i
\(206\) −3.24943 + 16.9734i −0.226399 + 1.18259i
\(207\) 0.131857 + 0.228383i 0.00916469 + 0.0158737i
\(208\) 10.8246 6.67214i 0.750550 0.462630i
\(209\) 19.4348 1.34433
\(210\) 0 0
\(211\) 8.52893 + 8.52893i 0.587156 + 0.587156i 0.936860 0.349704i \(-0.113718\pi\)
−0.349704 + 0.936860i \(0.613718\pi\)
\(212\) 1.65669 0.714324i 0.113782 0.0490600i
\(213\) −5.03925 1.35026i −0.345284 0.0925185i
\(214\) −8.83770 + 5.99760i −0.604133 + 0.409987i
\(215\) 16.4834 + 9.51669i 1.12416 + 0.649033i
\(216\) 5.57753 1.23517i 0.379503 0.0840424i
\(217\) 0 0
\(218\) −6.18543 + 0.450137i −0.418930 + 0.0304871i
\(219\) −0.428207 1.59809i −0.0289356 0.107989i
\(220\) 7.76935 + 9.82903i 0.523809 + 0.662673i
\(221\) −4.33414 + 16.1752i −0.291546 + 1.08806i
\(222\) −0.166471 0.479054i −0.0111728 0.0321520i
\(223\) −25.3314 −1.69631 −0.848156 0.529746i \(-0.822287\pi\)
−0.848156 + 0.529746i \(0.822287\pi\)
\(224\) 0 0
\(225\) −1.76353 −0.117569
\(226\) 5.90007 + 16.9787i 0.392467 + 1.12940i
\(227\) −0.192153 + 0.717124i −0.0127536 + 0.0475972i −0.972009 0.234942i \(-0.924510\pi\)
0.959256 + 0.282539i \(0.0911767\pi\)
\(228\) 3.12979 + 3.95951i 0.207276 + 0.262225i
\(229\) 4.16121 + 15.5299i 0.274981 + 1.02624i 0.955854 + 0.293841i \(0.0949337\pi\)
−0.680873 + 0.732401i \(0.738400\pi\)
\(230\) −0.305736 + 0.0222495i −0.0201596 + 0.00146709i
\(231\) 0 0
\(232\) 5.66503 + 25.5811i 0.371927 + 1.67948i
\(233\) 9.31438 + 5.37766i 0.610206 + 0.352302i 0.773046 0.634350i \(-0.218732\pi\)
−0.162840 + 0.986652i \(0.552066\pi\)
\(234\) −10.7213 + 7.27586i −0.700871 + 0.475638i
\(235\) −12.1350 3.25158i −0.791603 0.212109i
\(236\) −17.6353 + 7.60392i −1.14796 + 0.494973i
\(237\) −2.68549 2.68549i −0.174441 0.174441i
\(238\) 0 0
\(239\) 3.00042 0.194081 0.0970405 0.995280i \(-0.469062\pi\)
0.0970405 + 0.995280i \(0.469062\pi\)
\(240\) −0.751319 + 3.16575i −0.0484974 + 0.204348i
\(241\) −11.2985 19.5696i −0.727802 1.26059i −0.957810 0.287401i \(-0.907209\pi\)
0.230009 0.973189i \(-0.426125\pi\)
\(242\) 1.06554 5.56587i 0.0684958 0.357788i
\(243\) −8.49041 + 2.27500i −0.544660 + 0.145941i
\(244\) 2.58837 3.47567i 0.165703 0.222507i
\(245\) 0 0
\(246\) 0.0858773 + 1.18006i 0.00547534 + 0.0752378i
\(247\) −20.2331 11.6816i −1.28740 0.743283i
\(248\) 0.0822634 1.87428i 0.00522373 0.119017i
\(249\) 4.60542 2.65894i 0.291857 0.168503i
\(250\) −6.40704 + 13.2314i −0.405217 + 0.836826i
\(251\) −2.43982 + 2.43982i −0.154000 + 0.154000i −0.779902 0.625902i \(-0.784731\pi\)
0.625902 + 0.779902i \(0.284731\pi\)
\(252\) 0 0
\(253\) −0.171095 0.171095i −0.0107566 0.0107566i
\(254\) 8.50673 + 24.4799i 0.533760 + 1.53600i
\(255\) −2.14246 3.71084i −0.134166 0.232382i
\(256\) −14.2937 7.18953i −0.893358 0.449345i
\(257\) 9.23633 15.9978i 0.576147 0.997915i −0.419770 0.907631i \(-0.637889\pi\)
0.995916 0.0902843i \(-0.0287776\pi\)
\(258\) −2.55130 + 2.95178i −0.158837 + 0.183770i
\(259\) 0 0
\(260\) −2.18060 14.9027i −0.135235 0.924226i
\(261\) −6.90995 25.7883i −0.427715 1.59625i
\(262\) −7.83958 11.5519i −0.484331 0.713681i
\(263\) −8.37247 + 4.83385i −0.516269 + 0.298068i −0.735407 0.677626i \(-0.763009\pi\)
0.219138 + 0.975694i \(0.429676\pi\)
\(264\) −2.27832 + 1.18535i −0.140221 + 0.0729534i
\(265\) 2.13694i 0.131271i
\(266\) 0 0
\(267\) 0.551378 0.551378i 0.0337438 0.0337438i
\(268\) 7.40754 + 17.1798i 0.452487 + 1.04942i
\(269\) −6.25673 + 23.3504i −0.381480 + 1.42370i 0.462162 + 0.886796i \(0.347074\pi\)
−0.843642 + 0.536906i \(0.819593\pi\)
\(270\) 1.27229 6.64579i 0.0774289 0.404450i
\(271\) 14.3220 24.8064i 0.869999 1.50688i 0.00800296 0.999968i \(-0.497453\pi\)
0.861996 0.506915i \(-0.169214\pi\)
\(272\) 20.1877 6.03708i 1.22406 0.366052i
\(273\) 0 0
\(274\) −18.0445 15.5963i −1.09011 0.942206i
\(275\) 1.56295 0.418791i 0.0942495 0.0252541i
\(276\) 0.00730446 0.0624109i 0.000439677 0.00375670i
\(277\) 15.9168 + 4.26488i 0.956345 + 0.256252i 0.703053 0.711138i \(-0.251820\pi\)
0.253293 + 0.967390i \(0.418486\pi\)
\(278\) 10.8244 + 5.24151i 0.649204 + 0.314365i
\(279\) 1.91169i 0.114450i
\(280\) 0 0
\(281\) 19.5811i 1.16811i −0.811715 0.584054i \(-0.801466\pi\)
0.811715 0.584054i \(-0.198534\pi\)
\(282\) 1.12235 2.31780i 0.0668352 0.138023i
\(283\) 0.491997 + 0.131830i 0.0292462 + 0.00783649i 0.273412 0.961897i \(-0.411848\pi\)
−0.244166 + 0.969733i \(0.578514\pi\)
\(284\) −18.8436 23.8391i −1.11816 1.41459i
\(285\) 5.77446 1.54726i 0.342050 0.0916519i
\(286\) 7.77404 8.99434i 0.459689 0.531846i
\(287\) 0 0
\(288\) 14.8722 + 6.68025i 0.876352 + 0.393638i
\(289\) −5.37469 + 9.30923i −0.316158 + 0.547602i
\(290\) 30.4806 + 5.83528i 1.78988 + 0.342659i
\(291\) −1.55486 + 5.80282i −0.0911475 + 0.340167i
\(292\) 3.55929 8.95527i 0.208292 0.524068i
\(293\) −13.4219 + 13.4219i −0.784117 + 0.784117i −0.980523 0.196406i \(-0.937073\pi\)
0.196406 + 0.980523i \(0.437073\pi\)
\(294\) 0 0
\(295\) 22.7475i 1.32441i
\(296\) 0.888927 2.81706i 0.0516678 0.163739i
\(297\) 4.62542 2.67049i 0.268394 0.154957i
\(298\) 3.49641 2.37280i 0.202542 0.137452i
\(299\) 0.0752837 + 0.280962i 0.00435377 + 0.0162485i
\(300\) 0.337021 + 0.250983i 0.0194579 + 0.0144905i
\(301\) 0 0
\(302\) 23.3746 + 20.2033i 1.34506 + 1.16257i
\(303\) −2.75339 + 4.76901i −0.158178 + 0.273973i
\(304\) 0.846039 + 29.3854i 0.0485237 + 1.68537i
\(305\) −2.56650 4.44532i −0.146958 0.254538i
\(306\) −20.2813 + 7.04772i −1.15940 + 0.402891i
\(307\) −18.1617 18.1617i −1.03654 1.03654i −0.999307 0.0372355i \(-0.988145\pi\)
−0.0372355 0.999307i \(-0.511855\pi\)
\(308\) 0 0
\(309\) −2.96699 + 2.96699i −0.168786 + 0.168786i
\(310\) −2.00003 0.968475i −0.113594 0.0550057i
\(311\) 27.1628 15.6825i 1.54026 0.889271i 0.541440 0.840739i \(-0.317879\pi\)
0.998822 0.0485315i \(-0.0154541\pi\)
\(312\) 3.08438 + 0.135376i 0.174619 + 0.00766413i
\(313\) −11.6376 6.71895i −0.657794 0.379777i 0.133642 0.991030i \(-0.457333\pi\)
−0.791436 + 0.611252i \(0.790666\pi\)
\(314\) 4.14275 0.301483i 0.233789 0.0170137i
\(315\) 0 0
\(316\) −3.20271 21.8880i −0.180166 1.23130i
\(317\) 22.7711 6.10150i 1.27895 0.342695i 0.445499 0.895282i \(-0.353026\pi\)
0.833455 + 0.552588i \(0.186360\pi\)
\(318\) 0.430226 + 0.0823635i 0.0241259 + 0.00461871i
\(319\) 12.2481 + 21.2143i 0.685760 + 1.18777i
\(320\) −14.5233 + 12.1752i −0.811878 + 0.680612i
\(321\) −2.59324 −0.144741
\(322\) 0 0
\(323\) −27.3756 27.3756i −1.52322 1.52322i
\(324\) −14.7809 5.87469i −0.821161 0.326372i
\(325\) −1.87888 0.503444i −0.104221 0.0279260i
\(326\) 7.87180 + 11.5994i 0.435978 + 0.642432i
\(327\) −1.30405 0.752892i −0.0721140 0.0416350i
\(328\) −3.70419 + 5.81147i −0.204529 + 0.320885i
\(329\) 0 0
\(330\) 0.220793 + 3.03397i 0.0121543 + 0.167014i
\(331\) 2.17427 + 8.11450i 0.119509 + 0.446013i 0.999585 0.0288201i \(-0.00917498\pi\)
−0.880076 + 0.474833i \(0.842508\pi\)
\(332\) 30.7648 + 3.60065i 1.68844 + 0.197611i
\(333\) −0.779056 + 2.90748i −0.0426920 + 0.159329i
\(334\) −22.7441 + 7.90354i −1.24450 + 0.432462i
\(335\) 22.1600 1.21073
\(336\) 0 0
\(337\) −5.77753 −0.314722 −0.157361 0.987541i \(-0.550299\pi\)
−0.157361 + 0.987541i \(0.550299\pi\)
\(338\) 3.86653 1.34362i 0.210312 0.0730831i
\(339\) −1.12954 + 4.21549i −0.0613481 + 0.228954i
\(340\) 2.90125 24.7889i 0.157342 1.34437i
\(341\) −0.453975 1.69426i −0.0245841 0.0917491i
\(342\) −2.17422 29.8764i −0.117568 1.61553i
\(343\) 0 0
\(344\) −22.1876 + 4.91353i −1.19627 + 0.264920i
\(345\) −0.0644570 0.0372143i −0.00347025 0.00200355i
\(346\) −0.194454 0.286536i −0.0104539 0.0154043i
\(347\) 11.7019 + 3.13552i 0.628193 + 0.168324i 0.558849 0.829269i \(-0.311243\pi\)
0.0693432 + 0.997593i \(0.477910\pi\)
\(348\) −2.34961 + 5.91170i −0.125953 + 0.316900i
\(349\) −18.6177 18.6177i −0.996582 0.996582i 0.00341200 0.999994i \(-0.498914\pi\)
−0.999994 + 0.00341200i \(0.998914\pi\)
\(350\) 0 0
\(351\) −6.42057 −0.342705
\(352\) −14.7670 2.38871i −0.787086 0.127319i
\(353\) −11.3938 19.7346i −0.606430 1.05037i −0.991824 0.127615i \(-0.959268\pi\)
0.385394 0.922752i \(-0.374066\pi\)
\(354\) −4.57972 0.876752i −0.243409 0.0465988i
\(355\) −34.7664 + 9.31563i −1.84521 + 0.494422i
\(356\) 4.49401 0.657574i 0.238182 0.0348513i
\(357\) 0 0
\(358\) 0.381207 0.0277419i 0.0201474 0.00146620i
\(359\) −1.93301 1.11602i −0.102020 0.0589014i 0.448122 0.893973i \(-0.352093\pi\)
−0.550142 + 0.835071i \(0.685426\pi\)
\(360\) 14.2407 13.0432i 0.750549 0.687435i
\(361\) 30.3228 17.5069i 1.59594 0.921415i
\(362\) −1.34239 0.650026i −0.0705543 0.0341646i
\(363\) 0.972927 0.972927i 0.0510654 0.0510654i
\(364\) 0 0
\(365\) −8.07117 8.07117i −0.422465 0.422465i
\(366\) 0.993889 0.345375i 0.0519514 0.0180531i
\(367\) −10.3207 17.8759i −0.538735 0.933117i −0.998972 0.0453208i \(-0.985569\pi\)
0.460237 0.887796i \(-0.347764\pi\)
\(368\) 0.251247 0.266144i 0.0130972 0.0138737i
\(369\) 3.51119 6.08155i 0.182785 0.316593i
\(370\) −2.64716 2.28801i −0.137619 0.118948i
\(371\) 0 0
\(372\) 0.272068 0.365334i 0.0141061 0.0189417i
\(373\) −6.06542 22.6365i −0.314056 1.17207i −0.924865 0.380295i \(-0.875823\pi\)
0.610810 0.791777i \(-0.290844\pi\)
\(374\) 16.3009 11.0624i 0.842898 0.572022i
\(375\) −3.09117 + 1.78469i −0.159628 + 0.0921610i
\(376\) 13.3067 6.92313i 0.686238 0.357033i
\(377\) 29.4476i 1.51663i
\(378\) 0 0
\(379\) 5.39695 5.39695i 0.277223 0.277223i −0.554777 0.831999i \(-0.687196\pi\)
0.831999 + 0.554777i \(0.187196\pi\)
\(380\) 32.3585 + 12.8609i 1.65996 + 0.659752i
\(381\) −1.62857 + 6.07791i −0.0834342 + 0.311381i
\(382\) 5.49727 + 1.05241i 0.281265 + 0.0538460i
\(383\) −9.29971 + 16.1076i −0.475193 + 0.823058i −0.999596 0.0284116i \(-0.990955\pi\)
0.524403 + 0.851470i \(0.324288\pi\)
\(384\) −1.89144 3.39322i −0.0965220 0.173160i
\(385\) 0 0
\(386\) 0.821811 0.950811i 0.0418291 0.0483950i
\(387\) 22.3673 5.99331i 1.13699 0.304657i
\(388\) −27.4513 + 21.6989i −1.39363 + 1.10159i
\(389\) 3.76716 + 1.00941i 0.191003 + 0.0511790i 0.353052 0.935604i \(-0.385144\pi\)
−0.162050 + 0.986783i \(0.551810\pi\)
\(390\) 1.59376 3.29131i 0.0807029 0.166662i
\(391\) 0.482004i 0.0243760i
\(392\) 0 0
\(393\) 3.38968i 0.170987i
\(394\) −8.71116 4.21822i −0.438862 0.212511i
\(395\) −25.3090 6.78153i −1.27344 0.341216i
\(396\) 15.1395 + 1.77190i 0.760789 + 0.0890414i
\(397\) −13.4263 + 3.59757i −0.673848 + 0.180557i −0.579488 0.814981i \(-0.696747\pi\)
−0.0943605 + 0.995538i \(0.530081\pi\)
\(398\) 9.36154 + 8.09143i 0.469252 + 0.405587i
\(399\) 0 0
\(400\) 0.701253 + 2.34496i 0.0350626 + 0.117248i
\(401\) 5.37440 9.30874i 0.268385 0.464856i −0.700060 0.714084i \(-0.746843\pi\)
0.968445 + 0.249228i \(0.0801768\pi\)
\(402\) −0.854108 + 4.46144i −0.0425991 + 0.222516i
\(403\) −0.545739 + 2.03672i −0.0271852 + 0.101456i
\(404\) −29.4538 + 12.6998i −1.46538 + 0.631837i
\(405\) −13.3217 + 13.3217i −0.661959 + 0.661959i
\(406\) 0 0
\(407\) 2.76179i 0.136897i
\(408\) 4.87888 + 1.53954i 0.241541 + 0.0762184i
\(409\) −7.51025 + 4.33605i −0.371358 + 0.214404i −0.674052 0.738684i \(-0.735447\pi\)
0.302694 + 0.953088i \(0.402114\pi\)
\(410\) 4.58379 + 6.75440i 0.226377 + 0.333576i
\(411\) −1.49879 5.59354i −0.0739297 0.275909i
\(412\) −24.1825 + 3.53843i −1.19138 + 0.174326i
\(413\) 0 0
\(414\) −0.243877 + 0.282159i −0.0119859 + 0.0138674i
\(415\) 18.3444 31.7734i 0.900489 1.55969i
\(416\) 13.9379 + 11.3628i 0.683361 + 0.557108i
\(417\) 1.46003 + 2.52884i 0.0714979 + 0.123838i
\(418\) 9.02179 + 25.9621i 0.441270 + 1.26985i
\(419\) −3.96286 3.96286i −0.193598 0.193598i 0.603651 0.797249i \(-0.293712\pi\)
−0.797249 + 0.603651i \(0.793712\pi\)
\(420\) 0 0
\(421\) −16.2008 + 16.2008i −0.789580 + 0.789580i −0.981425 0.191845i \(-0.938553\pi\)
0.191845 + 0.981425i \(0.438553\pi\)
\(422\) −7.43422 + 15.3526i −0.361892 + 0.747354i
\(423\) −13.2368 + 7.64226i −0.643594 + 0.371579i
\(424\) 1.72328 + 1.88150i 0.0836900 + 0.0913736i
\(425\) −2.79146 1.61165i −0.135406 0.0781765i
\(426\) −0.535506 7.35852i −0.0259454 0.356521i
\(427\) 0 0
\(428\) −12.1145 9.02176i −0.585574 0.436083i
\(429\) 2.78813 0.747076i 0.134612 0.0360692i
\(430\) −5.06120 + 26.4372i −0.244073 + 1.27491i
\(431\) 0.282550 + 0.489392i 0.0136100 + 0.0235732i 0.872750 0.488167i \(-0.162334\pi\)
−0.859140 + 0.511740i \(0.829001\pi\)
\(432\) 4.23914 + 6.87740i 0.203956 + 0.330889i
\(433\) −14.8949 −0.715801 −0.357900 0.933760i \(-0.616507\pi\)
−0.357900 + 0.933760i \(0.616507\pi\)
\(434\) 0 0
\(435\) 5.32807 + 5.32807i 0.255462 + 0.255462i
\(436\) −3.47265 8.05389i −0.166310 0.385711i
\(437\) −0.649561 0.174049i −0.0310727 0.00832591i
\(438\) 1.93604 1.31387i 0.0925077 0.0627792i
\(439\) −22.8504 13.1927i −1.09059 0.629652i −0.156855 0.987622i \(-0.550136\pi\)
−0.933733 + 0.357970i \(0.883469\pi\)
\(440\) −9.52357 + 14.9415i −0.454018 + 0.712306i
\(441\) 0 0
\(442\) −23.6197 + 1.71890i −1.12348 + 0.0817595i
\(443\) −2.85503 10.6551i −0.135647 0.506241i −0.999994 0.00334579i \(-0.998935\pi\)
0.864348 0.502895i \(-0.167732\pi\)
\(444\) 0.562669 0.444761i 0.0267031 0.0211074i
\(445\) 1.39237 5.19640i 0.0660047 0.246333i
\(446\) −11.7590 33.8390i −0.556806 1.60232i
\(447\) 1.02595 0.0485258
\(448\) 0 0
\(449\) 31.5853 1.49060 0.745302 0.666728i \(-0.232306\pi\)
0.745302 + 0.666728i \(0.232306\pi\)
\(450\) −0.818646 2.35582i −0.0385913 0.111054i
\(451\) −1.66763 + 6.22366i −0.0785254 + 0.293061i
\(452\) −19.9422 + 15.7633i −0.938001 + 0.741442i
\(453\) 1.94152 + 7.24583i 0.0912203 + 0.340439i
\(454\) −1.04717 + 0.0762066i −0.0491462 + 0.00357655i
\(455\) 0 0
\(456\) −3.83646 + 6.01899i −0.179659 + 0.281865i
\(457\) −6.68269 3.85825i −0.312603 0.180482i 0.335488 0.942045i \(-0.391099\pi\)
−0.648091 + 0.761563i \(0.724432\pi\)
\(458\) −18.8140 + 12.7679i −0.879120 + 0.596604i
\(459\) −10.2769 2.75370i −0.479686 0.128531i
\(460\) −0.171647 0.398091i −0.00800310 0.0185611i
\(461\) 3.17728 + 3.17728i 0.147980 + 0.147980i 0.777215 0.629235i \(-0.216632\pi\)
−0.629235 + 0.777215i \(0.716632\pi\)
\(462\) 0 0
\(463\) −7.90920 −0.367571 −0.183786 0.982966i \(-0.558835\pi\)
−0.183786 + 0.982966i \(0.558835\pi\)
\(464\) −31.5428 + 19.4426i −1.46434 + 0.902600i
\(465\) −0.269770 0.467255i −0.0125103 0.0216684i
\(466\) −2.85996 + 14.9390i −0.132485 + 0.692037i
\(467\) 22.7929 6.10734i 1.05473 0.282614i 0.310524 0.950565i \(-0.399495\pi\)
0.744205 + 0.667952i \(0.232829\pi\)
\(468\) −14.6964 10.9446i −0.679341 0.505912i
\(469\) 0 0
\(470\) −1.28956 17.7201i −0.0594828 0.817366i
\(471\) 0.873398 + 0.504256i 0.0402440 + 0.0232349i
\(472\) −18.3442 20.0284i −0.844360 0.921881i
\(473\) −18.4001 + 10.6233i −0.846036 + 0.488459i
\(474\) 2.34080 4.83405i 0.107516 0.222035i
\(475\) 3.17988 3.17988i 0.145903 0.145903i
\(476\) 0 0
\(477\) −1.83836 1.83836i −0.0841727 0.0841727i
\(478\) 1.39282 + 4.00813i 0.0637061 + 0.183328i
\(479\) 16.9156 + 29.2986i 0.772892 + 1.33869i 0.935972 + 0.352075i \(0.114524\pi\)
−0.163080 + 0.986613i \(0.552143\pi\)
\(480\) −4.57776 + 0.465915i −0.208945 + 0.0212660i
\(481\) −1.66002 + 2.87525i −0.0756906 + 0.131100i
\(482\) 20.8973 24.1776i 0.951846 1.10126i
\(483\) 0 0
\(484\) 7.92984 1.16031i 0.360447 0.0527415i
\(485\) 10.7272 + 40.0343i 0.487096 + 1.81787i
\(486\) −6.98039 10.2859i −0.316637 0.466578i
\(487\) 9.02294 5.20940i 0.408868 0.236060i −0.281435 0.959580i \(-0.590810\pi\)
0.690303 + 0.723520i \(0.257477\pi\)
\(488\) 5.84454 + 1.84425i 0.264570 + 0.0834853i
\(489\) 3.40361i 0.153917i
\(490\) 0 0
\(491\) −8.28383 + 8.28383i −0.373844 + 0.373844i −0.868875 0.495031i \(-0.835157\pi\)
0.495031 + 0.868875i \(0.335157\pi\)
\(492\) −1.53652 + 0.662513i −0.0692718 + 0.0298684i
\(493\) 12.6297 47.1346i 0.568813 2.12284i
\(494\) 6.21255 32.4513i 0.279516 1.46005i
\(495\) 9.02736 15.6358i 0.405750 0.702779i
\(496\) 2.54196 0.760166i 0.114137 0.0341324i
\(497\) 0 0
\(498\) 5.68984 + 4.91787i 0.254968 + 0.220375i
\(499\) 11.6949 3.13364i 0.523536 0.140281i 0.0126342 0.999920i \(-0.495978\pi\)
0.510902 + 0.859639i \(0.329312\pi\)
\(500\) −20.6494 2.41677i −0.923470 0.108081i
\(501\) −5.64694 1.51309i −0.252287 0.0676000i
\(502\) −4.39183 2.12666i −0.196017 0.0949174i
\(503\) 26.5226i 1.18258i 0.806458 + 0.591292i \(0.201382\pi\)
−0.806458 + 0.591292i \(0.798618\pi\)
\(504\) 0 0
\(505\) 37.9920i 1.69062i
\(506\) 0.149134 0.307981i 0.00662982 0.0136914i
\(507\) 0.959990 + 0.257229i 0.0426347 + 0.0114239i
\(508\) −28.7527 + 22.7275i −1.27569 + 1.00837i
\(509\) −32.2445 + 8.63990i −1.42921 + 0.382957i −0.888743 0.458406i \(-0.848421\pi\)
−0.540471 + 0.841363i \(0.681754\pi\)
\(510\) 3.96261 4.58462i 0.175467 0.203010i
\(511\) 0 0
\(512\) 2.96890 22.4318i 0.131208 0.991355i
\(513\) 7.42190 12.8551i 0.327685 0.567567i
\(514\) 25.6583 + 4.91209i 1.13174 + 0.216663i
\(515\) −7.49241 + 27.9620i −0.330155 + 1.23215i
\(516\) −5.12748 2.03792i −0.225725 0.0897146i
\(517\) 9.91643 9.91643i 0.436124 0.436124i
\(518\) 0 0
\(519\) 0.0840780i 0.00369062i
\(520\) 18.8956 9.83093i 0.828627 0.431115i
\(521\) 0.420026 0.242502i 0.0184017 0.0106242i −0.490771 0.871289i \(-0.663285\pi\)
0.509173 + 0.860664i \(0.329951\pi\)
\(522\) 31.2418 21.2018i 1.36741 0.927979i
\(523\) −5.31716 19.8439i −0.232503 0.867714i −0.979259 0.202615i \(-0.935056\pi\)
0.746755 0.665099i \(-0.231611\pi\)
\(524\) 11.7925 15.8350i 0.515159 0.691757i
\(525\) 0 0
\(526\) −10.3439 8.94050i −0.451015 0.389824i
\(527\) −1.74705 + 3.02597i −0.0761026 + 0.131813i
\(528\) −2.64107 2.49325i −0.114938 0.108505i
\(529\) −11.4958 19.9113i −0.499818 0.865710i
\(530\) 2.85464 0.991984i 0.123998 0.0430890i
\(531\) 19.5692 + 19.5692i 0.849230 + 0.849230i
\(532\) 0 0
\(533\) 5.47697 5.47697i 0.237234 0.237234i
\(534\) 0.992516 + 0.480607i 0.0429504 + 0.0207979i
\(535\) −15.4941 + 8.94555i −0.669870 + 0.386750i
\(536\) −19.5111 + 17.8704i −0.842752 + 0.771885i
\(537\) 0.0803683 + 0.0464007i 0.00346815 + 0.00200234i
\(538\) −34.0973 + 2.48138i −1.47004 + 0.106980i
\(539\) 0 0
\(540\) 9.46842 1.38544i 0.407456 0.0596199i
\(541\) −12.2316 + 3.27745i −0.525878 + 0.140909i −0.511984 0.858995i \(-0.671089\pi\)
−0.0138940 + 0.999903i \(0.504423\pi\)
\(542\) 39.7862 + 7.61676i 1.70896 + 0.327168i
\(543\) −0.181066 0.313615i −0.00777027 0.0134585i
\(544\) 17.4360 + 24.1654i 0.747561 + 1.03608i
\(545\) −10.3886 −0.444998
\(546\) 0 0
\(547\) −26.3448 26.3448i −1.12642 1.12642i −0.990754 0.135668i \(-0.956682\pi\)
−0.135668 0.990754i \(-0.543318\pi\)
\(548\) 12.4580 31.3447i 0.532180 1.33898i
\(549\) −6.03212 1.61630i −0.257445 0.0689821i
\(550\) 1.28498 + 1.89347i 0.0547917 + 0.0807378i
\(551\) 58.9594 + 34.0402i 2.51175 + 1.45016i
\(552\) 0.0867628 0.0192140i 0.00369287 0.000817801i
\(553\) 0 0
\(554\) 1.69143 + 23.2423i 0.0718618 + 0.987470i
\(555\) −0.219875 0.820584i −0.00933316 0.0348318i
\(556\) −1.97712 + 16.8930i −0.0838487 + 0.716422i
\(557\) 4.51707 16.8579i 0.191394 0.714293i −0.801776 0.597624i \(-0.796112\pi\)
0.993171 0.116669i \(-0.0372218\pi\)
\(558\) −2.55374 + 0.887421i −0.108108 + 0.0375675i
\(559\) 25.5412 1.08028
\(560\) 0 0
\(561\) 4.78316 0.201945
\(562\) 26.1575 9.08970i 1.10339 0.383426i
\(563\) −3.56178 + 13.2928i −0.150111 + 0.560223i 0.849363 + 0.527809i \(0.176986\pi\)
−0.999475 + 0.0324143i \(0.989680\pi\)
\(564\) 3.61726 + 0.423357i 0.152314 + 0.0178266i
\(565\) 7.79282 + 29.0832i 0.327846 + 1.22354i
\(566\) 0.0522831 + 0.718434i 0.00219762 + 0.0301980i
\(567\) 0 0
\(568\) 23.0983 36.2387i 0.969181 1.52054i
\(569\) 6.20226 + 3.58088i 0.260012 + 0.150118i 0.624340 0.781153i \(-0.285368\pi\)
−0.364328 + 0.931271i \(0.618701\pi\)
\(570\) 4.74747 + 6.99559i 0.198850 + 0.293013i
\(571\) 32.6720 + 8.75442i 1.36728 + 0.366361i 0.866484 0.499205i \(-0.166375\pi\)
0.500795 + 0.865566i \(0.333041\pi\)
\(572\) 15.6239 + 6.20975i 0.653268 + 0.259643i
\(573\) 0.960934 + 0.960934i 0.0401436 + 0.0401436i
\(574\) 0 0
\(575\) −0.0559884 −0.00233488
\(576\) −2.02006 + 22.9681i −0.0841693 + 0.957005i
\(577\) 12.0285 + 20.8339i 0.500752 + 0.867328i 1.00000 0.000868882i \(0.000276574\pi\)
−0.499247 + 0.866460i \(0.666390\pi\)
\(578\) −14.9308 2.85838i −0.621038 0.118893i
\(579\) 0.294739 0.0789751i 0.0122489 0.00328209i
\(580\) 6.35426 + 43.4265i 0.263846 + 1.80319i
\(581\) 0 0
\(582\) −8.47350 + 0.616648i −0.351238 + 0.0255609i
\(583\) 2.06583 + 1.19271i 0.0855580 + 0.0493969i
\(584\) 13.6152 + 0.597580i 0.563401 + 0.0247280i
\(585\) −18.7964 + 10.8521i −0.777135 + 0.448679i
\(586\) −24.1603 11.6992i −0.998054 0.483289i
\(587\) 1.63189 1.63189i 0.0673551 0.0673551i −0.672627 0.739982i \(-0.734834\pi\)
0.739982 + 0.672627i \(0.234834\pi\)
\(588\) 0 0
\(589\) −3.44703 3.44703i −0.142032 0.142032i
\(590\) −30.3874 + 10.5596i −1.25103 + 0.434731i
\(591\) −1.17499 2.03514i −0.0483326 0.0837145i
\(592\) 4.17584 0.120227i 0.171626 0.00494130i
\(593\) 4.25167 7.36410i 0.174595 0.302408i −0.765426 0.643524i \(-0.777472\pi\)
0.940021 + 0.341116i \(0.110805\pi\)
\(594\) 5.71454 + 4.93923i 0.234471 + 0.202659i
\(595\) 0 0
\(596\) 4.79278 + 3.56923i 0.196320 + 0.146201i
\(597\) 0.777577 + 2.90196i 0.0318241 + 0.118769i
\(598\) −0.340378 + 0.230993i −0.0139191 + 0.00944602i
\(599\) −10.0144 + 5.78179i −0.409176 + 0.236238i −0.690435 0.723394i \(-0.742581\pi\)
0.281260 + 0.959632i \(0.409248\pi\)
\(600\) −0.178829 + 0.566719i −0.00730065 + 0.0231362i
\(601\) 4.27752i 0.174484i 0.996187 + 0.0872418i \(0.0278053\pi\)
−0.996187 + 0.0872418i \(0.972195\pi\)
\(602\) 0 0
\(603\) 19.0638 19.0638i 0.776337 0.776337i
\(604\) −16.1380 + 40.6037i −0.656646 + 1.65214i
\(605\) 2.45689 9.16923i 0.0998867 0.372782i
\(606\) −7.64886 1.46432i −0.310714 0.0594838i
\(607\) 0.381118 0.660116i 0.0154691 0.0267933i −0.858187 0.513337i \(-0.828409\pi\)
0.873656 + 0.486544i \(0.161743\pi\)
\(608\) −38.8620 + 14.7712i −1.57606 + 0.599050i
\(609\) 0 0
\(610\) 4.74691 5.49203i 0.192197 0.222366i
\(611\) −16.2842 + 4.36335i −0.658790 + 0.176522i
\(612\) −18.8295 23.8212i −0.761136 0.962916i
\(613\) −24.6641 6.60873i −0.996174 0.266924i −0.276332 0.961062i \(-0.589119\pi\)
−0.719842 + 0.694138i \(0.755786\pi\)
\(614\) 15.8306 32.6922i 0.638870 1.31935i
\(615\) 1.98194i 0.0799195i
\(616\) 0 0
\(617\) 34.9141i 1.40559i −0.711392 0.702795i \(-0.751935\pi\)
0.711392 0.702795i \(-0.248065\pi\)
\(618\) −5.34078 2.58617i −0.214837 0.104031i
\(619\) 28.7392 + 7.70066i 1.15513 + 0.309516i 0.785018 0.619473i \(-0.212654\pi\)
0.370109 + 0.928988i \(0.379320\pi\)
\(620\) 0.365314 3.12132i 0.0146713 0.125355i
\(621\) −0.178509 + 0.0478314i −0.00716333 + 0.00191941i
\(622\) 33.5587 + 29.0057i 1.34558 + 1.16302i
\(623\) 0 0
\(624\) 1.25096 + 4.18313i 0.0500783 + 0.167459i
\(625\) −13.8425 + 23.9760i −0.553701 + 0.959038i
\(626\) 3.57329 18.6651i 0.142817 0.746007i
\(627\) −1.72718 + 6.44591i −0.0689768 + 0.257425i
\(628\) 2.32584 + 5.39416i 0.0928110 + 0.215251i
\(629\) −3.89023 + 3.89023i −0.155114 + 0.155114i
\(630\) 0 0
\(631\) 4.08175i 0.162492i −0.996694 0.0812460i \(-0.974110\pi\)
0.996694 0.0812460i \(-0.0258900\pi\)
\(632\) 27.7525 14.4390i 1.10394 0.574351i
\(633\) −3.58675 + 2.07081i −0.142561 + 0.0823074i
\(634\) 18.7213 + 27.5866i 0.743517 + 1.09560i
\(635\) 11.2357 + 41.9322i 0.445875 + 1.66403i
\(636\) 0.0896888 + 0.612953i 0.00355639 + 0.0243052i
\(637\) 0 0
\(638\) −22.6535 + 26.2095i −0.896862 + 1.03764i
\(639\) −21.8948 + 37.9228i −0.866143 + 1.50020i
\(640\) −23.0061 13.7492i −0.909396 0.543486i
\(641\) −1.79183 3.10354i −0.0707730 0.122582i 0.828467 0.560037i \(-0.189213\pi\)
−0.899240 + 0.437455i \(0.855880\pi\)
\(642\) −1.20381 3.46420i −0.0475104 0.136721i
\(643\) 15.8733 + 15.8733i 0.625982 + 0.625982i 0.947055 0.321072i \(-0.104043\pi\)
−0.321072 + 0.947055i \(0.604043\pi\)
\(644\) 0 0
\(645\) −4.62128 + 4.62128i −0.181963 + 0.181963i
\(646\) 23.8619 49.2779i 0.938833 1.93881i
\(647\) −22.2411 + 12.8409i −0.874388 + 0.504828i −0.868804 0.495156i \(-0.835111\pi\)
−0.00558405 + 0.999984i \(0.501777\pi\)
\(648\) 0.986320 22.4722i 0.0387463 0.882793i
\(649\) −21.9906 12.6963i −0.863206 0.498372i
\(650\) −0.199663 2.74361i −0.00783142 0.107613i
\(651\) 0 0
\(652\) −11.8410 + 15.9001i −0.463729 + 0.622697i
\(653\) −29.5335 + 7.91347i −1.15573 + 0.309678i −0.785261 0.619165i \(-0.787471\pi\)
−0.370473 + 0.928843i \(0.620805\pi\)
\(654\) 0.400405 2.09152i 0.0156571 0.0817848i
\(655\) −11.6929 20.2527i −0.456880 0.791339i
\(656\) −9.48280 2.25053i −0.370241 0.0878683i
\(657\) −13.8869 −0.541780
\(658\) 0 0
\(659\) 3.02967 + 3.02967i 0.118019 + 0.118019i 0.763650 0.645631i \(-0.223405\pi\)
−0.645631 + 0.763650i \(0.723405\pi\)
\(660\) −3.95045 + 1.70334i −0.153771 + 0.0663025i
\(661\) 37.2677 + 9.98584i 1.44954 + 0.388404i 0.895865 0.444326i \(-0.146557\pi\)
0.553679 + 0.832730i \(0.313223\pi\)
\(662\) −9.83049 + 6.67134i −0.382073 + 0.259289i
\(663\) −4.97965 2.87500i −0.193393 0.111656i
\(664\) 9.47131 + 42.7687i 0.367558 + 1.65975i
\(665\) 0 0
\(666\) −4.24561 + 0.308969i −0.164514 + 0.0119723i
\(667\) −0.219376 0.818724i −0.00849429 0.0317011i
\(668\) −21.1160 26.7139i −0.817001 1.03359i
\(669\) 2.25121 8.40162i 0.0870367 0.324825i
\(670\) 10.2869 + 29.6026i 0.397416 + 1.14365i
\(671\) 5.72987 0.221199
\(672\) 0 0
\(673\) 19.2447 0.741828 0.370914 0.928667i \(-0.379044\pi\)
0.370914 + 0.928667i \(0.379044\pi\)
\(674\) −2.68198 7.71794i −0.103306 0.297284i
\(675\) 0.319863 1.19374i 0.0123115 0.0459472i
\(676\) 3.58975 + 4.54141i 0.138067 + 0.174670i
\(677\) −7.17588 26.7807i −0.275791 1.02927i −0.955309 0.295608i \(-0.904478\pi\)
0.679518 0.733659i \(-0.262189\pi\)
\(678\) −6.15563 + 0.447968i −0.236406 + 0.0172041i
\(679\) 0 0
\(680\) 34.4612 7.63157i 1.32152 0.292657i
\(681\) −0.220771 0.127462i −0.00845996 0.00488436i
\(682\) 2.05254 1.39293i 0.0785959 0.0533382i
\(683\) 2.10565 + 0.564208i 0.0805705 + 0.0215888i 0.298879 0.954291i \(-0.403387\pi\)
−0.218309 + 0.975880i \(0.570054\pi\)
\(684\) 38.9013 16.7733i 1.48743 0.641345i
\(685\) −28.2502 28.2502i −1.07939 1.07939i
\(686\) 0 0
\(687\) −5.52058 −0.210623
\(688\) −16.8634 27.3585i −0.642912 1.04303i
\(689\) −1.43380 2.48341i −0.0546233 0.0946103i
\(690\) 0.0197914 0.103380i 0.000753446 0.00393563i
\(691\) 28.4084 7.61200i 1.08071 0.289574i 0.325820 0.945432i \(-0.394359\pi\)
0.754885 + 0.655858i \(0.227693\pi\)
\(692\) 0.292503 0.392775i 0.0111193 0.0149310i
\(693\) 0 0
\(694\) 1.24353 + 17.0876i 0.0472037 + 0.648637i
\(695\) 17.4468 + 10.0729i 0.661795 + 0.382087i
\(696\) −8.98789 0.394484i −0.340685 0.0149529i
\(697\) 11.1156 6.41759i 0.421033 0.243083i
\(698\) 16.2281 33.5130i 0.614241 1.26849i
\(699\) −2.61138 + 2.61138i −0.0987713 + 0.0987713i
\(700\) 0 0
\(701\) 28.3466 + 28.3466i 1.07064 + 1.07064i 0.997308 + 0.0733289i \(0.0233623\pi\)
0.0733289 + 0.997308i \(0.476638\pi\)
\(702\) −2.98048 8.57695i −0.112491 0.323716i
\(703\) −3.83783 6.64732i −0.144747 0.250708i
\(704\) −3.66401 20.8355i −0.138093 0.785267i
\(705\) 2.15689 3.73585i 0.0812333 0.140700i
\(706\) 21.0735 24.3814i 0.793112 0.917607i
\(707\) 0 0
\(708\) −0.954729 6.52484i −0.0358809 0.245218i
\(709\) −7.84584 29.2811i −0.294657 1.09967i −0.941490 0.337042i \(-0.890574\pi\)
0.646833 0.762632i \(-0.276093\pi\)
\(710\) −28.5832 42.1185i −1.07271 1.58068i
\(711\) −27.6068 + 15.9388i −1.03534 + 0.597752i
\(712\) 2.96458 + 5.69809i 0.111102 + 0.213545i
\(713\) 0.0606921i 0.00227294i
\(714\) 0 0
\(715\) 14.0815 14.0815i 0.526617 0.526617i
\(716\) 0.214019 + 0.496360i 0.00799826 + 0.0185498i
\(717\) −0.266649 + 0.995146i −0.00995817 + 0.0371644i
\(718\) 0.593526 3.10029i 0.0221502 0.115702i
\(719\) 0.695395 1.20446i 0.0259338 0.0449187i −0.852767 0.522291i \(-0.825077\pi\)
0.878701 + 0.477372i \(0.158411\pi\)
\(720\) 24.0344 + 12.9687i 0.895710 + 0.483316i
\(721\) 0 0
\(722\) 37.4628 + 32.3801i 1.39422 + 1.20506i
\(723\) 7.49473 2.00821i 0.278732 0.0746861i
\(724\) 0.245193 2.09498i 0.00911253 0.0778595i
\(725\) 5.47505 + 1.46703i 0.203338 + 0.0544843i
\(726\) 1.75133 + 0.848049i 0.0649980 + 0.0314741i
\(727\) 19.9346i 0.739332i −0.929165 0.369666i \(-0.879472\pi\)
0.929165 0.369666i \(-0.120528\pi\)
\(728\) 0 0
\(729\) 20.8402i 0.771858i
\(730\) 7.03522 14.5286i 0.260385 0.537729i
\(731\) 40.8820 + 10.9543i 1.51207 + 0.405159i
\(732\) 0.922743 + 1.16737i 0.0341056 + 0.0431471i
\(733\) 13.4219 3.59639i 0.495750 0.132836i −0.00227682 0.999997i \(-0.500725\pi\)
0.498027 + 0.867162i \(0.334058\pi\)
\(734\) 19.0887 22.0851i 0.704578 0.815176i
\(735\) 0 0
\(736\) 0.472161 + 0.212084i 0.0174041 + 0.00781753i
\(737\) −12.3684 + 21.4226i −0.455595 + 0.789113i
\(738\) 9.75400 + 1.86733i 0.359050 + 0.0687373i
\(739\) 5.79897 21.6421i 0.213319 0.796116i −0.773433 0.633878i \(-0.781462\pi\)
0.986752 0.162238i \(-0.0518712\pi\)
\(740\) 1.82761 4.59833i 0.0671844 0.169038i
\(741\) 5.67255 5.67255i 0.208386 0.208386i
\(742\) 0 0
\(743\) 40.2309i 1.47593i 0.674839 + 0.737965i \(0.264213\pi\)
−0.674839 + 0.737965i \(0.735787\pi\)
\(744\) 0.614330 + 0.193852i 0.0225224 + 0.00710697i
\(745\) 6.12987 3.53908i 0.224581 0.129662i
\(746\) 27.4234 18.6106i 1.00404 0.681382i
\(747\) −11.5527 43.1152i −0.422690 1.57750i
\(748\) 22.3448 + 16.6404i 0.817005 + 0.608432i
\(749\) 0 0
\(750\) −3.81904 3.30089i −0.139452 0.120532i
\(751\) −4.02133 + 6.96514i −0.146740 + 0.254162i −0.930021 0.367507i \(-0.880212\pi\)
0.783281 + 0.621668i \(0.213545\pi\)
\(752\) 15.4254 + 14.5620i 0.562505 + 0.531021i
\(753\) −0.592384 1.02604i −0.0215877 0.0373909i
\(754\) 39.3378 13.6698i 1.43260 0.497826i
\(755\) 36.5951 + 36.5951i 1.33183 + 1.33183i
\(756\) 0 0
\(757\) 12.7497 12.7497i 0.463394 0.463394i −0.436372 0.899766i \(-0.643737\pi\)
0.899766 + 0.436372i \(0.143737\pi\)
\(758\) 9.71485 + 4.70424i 0.352859 + 0.170866i
\(759\) 0.0719520 0.0415415i 0.00261169 0.00150786i
\(760\) −2.15926 + 49.1965i −0.0783248 + 1.78454i
\(761\) 17.9392 + 10.3572i 0.650297 + 0.375449i 0.788570 0.614945i \(-0.210822\pi\)
−0.138273 + 0.990394i \(0.544155\pi\)
\(762\) −8.87520 + 0.645881i −0.321515 + 0.0233978i
\(763\) 0 0
\(764\) 1.14601 + 7.83209i 0.0414612 + 0.283355i
\(765\) −34.7403 + 9.30864i −1.25604 + 0.336555i
\(766\) −25.8344 4.94580i −0.933435 0.178699i
\(767\) 15.2626 + 26.4357i 0.551102 + 0.954536i
\(768\) 3.65483 4.10185i 0.131882 0.148013i
\(769\) −24.5641 −0.885805 −0.442902 0.896570i \(-0.646051\pi\)
−0.442902 + 0.896570i \(0.646051\pi\)
\(770\) 0 0
\(771\) 4.48513 + 4.48513i 0.161528 + 0.161528i
\(772\) 1.65164 + 0.656446i 0.0594438 + 0.0236260i
\(773\) −34.5191 9.24937i −1.24157 0.332677i −0.422494 0.906366i \(-0.638845\pi\)
−0.819073 + 0.573689i \(0.805512\pi\)
\(774\) 18.3893 + 27.0974i 0.660989 + 0.973995i
\(775\) −0.351490 0.202933i −0.0126259 0.00728956i
\(776\) −41.7297 26.5982i −1.49801 0.954819i
\(777\) 0 0
\(778\) 0.400325 + 5.50096i 0.0143524 + 0.197219i
\(779\) 4.63472 + 17.2970i 0.166056 + 0.619730i
\(780\) 5.13655 + 0.601173i 0.183918 + 0.0215254i
\(781\) 10.3988 38.8090i 0.372100 1.38870i
\(782\) −0.643888 + 0.223750i −0.0230254 + 0.00800130i
\(783\) 18.7095 0.668624
\(784\) 0 0
\(785\) 6.95785 0.248336
\(786\) 4.52812 1.57352i 0.161513 0.0561255i
\(787\) −4.92879 + 18.3945i −0.175693 + 0.655693i 0.820740 + 0.571302i \(0.193561\pi\)
−0.996433 + 0.0843917i \(0.973105\pi\)
\(788\) 1.59113 13.5950i 0.0566818 0.484302i
\(789\) −0.859172 3.20647i −0.0305873 0.114153i
\(790\) −2.68952 36.9572i −0.0956887 1.31488i
\(791\) 0 0
\(792\) 4.66089 + 21.0467i 0.165617 + 0.747863i
\(793\) −5.96525 3.44404i −0.211832 0.122301i
\(794\) −11.0385 16.2656i −0.391740 0.577245i
\(795\) 0.708755 + 0.189910i 0.0251369 + 0.00673542i
\(796\) −6.46327 + 16.2618i −0.229085 + 0.576383i
\(797\) −3.26569 3.26569i −0.115677 0.115677i 0.646899 0.762576i \(-0.276066\pi\)
−0.762576 + 0.646899i \(0.776066\pi\)
\(798\) 0 0
\(799\) −27.9364 −0.988317
\(800\) −2.80699 + 2.02532i −0.0992422 + 0.0716059i
\(801\) −3.27252 5.66818i −0.115629 0.200275i
\(802\) 14.9300 + 2.85823i 0.527196 + 0.100928i
\(803\) 12.3075 3.29777i 0.434321 0.116376i
\(804\) −6.35632 + 0.930072i −0.224170 + 0.0328011i
\(805\) 0 0
\(806\) −2.97411 + 0.216437i −0.104758 + 0.00762366i
\(807\) −7.18858 4.15033i −0.253050 0.146098i
\(808\) −30.6378 33.4506i −1.07783 1.17679i
\(809\) 25.2648 14.5866i 0.888263 0.512839i 0.0148891 0.999889i \(-0.495260\pi\)
0.873374 + 0.487050i \(0.161927\pi\)
\(810\) −23.9799 11.6118i −0.842566 0.407997i
\(811\) 32.8375 32.8375i 1.15308 1.15308i 0.167148 0.985932i \(-0.446544\pi\)
0.985932 0.167148i \(-0.0534558\pi\)
\(812\) 0 0
\(813\) 6.95471 + 6.95471i 0.243912 + 0.243912i
\(814\) 3.68936 1.28205i 0.129312 0.0449358i
\(815\) 11.7410 + 20.3359i 0.411268 + 0.712337i
\(816\) 0.208222 + 7.23215i 0.00728921 + 0.253176i
\(817\) −29.5246 + 51.1381i −1.03293 + 1.78909i
\(818\) −9.27865 8.01978i −0.324421 0.280405i
\(819\) 0 0
\(820\) −6.89507 + 9.25873i −0.240786 + 0.323329i
\(821\) 8.00627 + 29.8798i 0.279421 + 1.04281i 0.952821 + 0.303534i \(0.0981666\pi\)
−0.673400 + 0.739279i \(0.735167\pi\)
\(822\) 6.77642 4.59873i 0.236355 0.160399i
\(823\) −24.4402 + 14.1106i −0.851932 + 0.491863i −0.861302 0.508093i \(-0.830351\pi\)
0.00937002 + 0.999956i \(0.497017\pi\)
\(824\) −15.9525 30.6617i −0.555733 1.06815i
\(825\) 0.555600i 0.0193435i
\(826\) 0 0
\(827\) −21.9283 + 21.9283i −0.762522 + 0.762522i −0.976778 0.214256i \(-0.931267\pi\)
0.214256 + 0.976778i \(0.431267\pi\)
\(828\) −0.490134 0.194804i −0.0170333 0.00676992i
\(829\) 0.365814 1.36524i 0.0127052 0.0474166i −0.959282 0.282449i \(-0.908853\pi\)
0.971987 + 0.235033i \(0.0755198\pi\)
\(830\) 50.9602 + 9.75595i 1.76885 + 0.338634i
\(831\) −2.82906 + 4.90007i −0.0981389 + 0.169982i
\(832\) −8.70901 + 23.8937i −0.301931 + 0.828366i
\(833\) 0 0
\(834\) −2.70041 + 3.12430i −0.0935076 + 0.108186i
\(835\) −38.9589 + 10.4390i −1.34823 + 0.361257i
\(836\) −30.4936 + 24.1036i −1.05464 + 0.833641i
\(837\) −1.29403 0.346735i −0.0447283 0.0119849i
\(838\) 3.45422 7.13340i 0.119324 0.246419i
\(839\) 4.25867i 0.147026i −0.997294 0.0735128i \(-0.976579\pi\)
0.997294 0.0735128i \(-0.0234210\pi\)
\(840\) 0 0
\(841\) 56.8104i 1.95898i
\(842\) −29.1625 14.1214i −1.00501 0.486656i
\(843\) 6.49443 + 1.74018i 0.223680 + 0.0599349i
\(844\) −23.9599 2.80423i −0.824735 0.0965254i
\(845\) 6.62309 1.77465i 0.227841 0.0610499i
\(846\) −16.3536 14.1348i −0.562248 0.485965i
\(847\) 0 0
\(848\) −1.71345 + 3.17546i −0.0588400 + 0.109046i
\(849\) −0.0874479 + 0.151464i −0.00300121 + 0.00519824i
\(850\) 0.857112 4.47713i 0.0293987 0.153564i
\(851\) −0.0247334 + 0.0923063i −0.000847850 + 0.00316422i
\(852\) 9.58133 4.13124i 0.328251 0.141534i
\(853\) 16.5250 16.5250i 0.565806 0.565806i −0.365144 0.930951i \(-0.618980\pi\)
0.930951 + 0.365144i \(0.118980\pi\)
\(854\) 0 0
\(855\) 50.1783i 1.71606i
\(856\) 6.42813 20.3711i 0.219709 0.696271i
\(857\) 22.7948 13.1606i 0.778655 0.449556i −0.0572986 0.998357i \(-0.518249\pi\)
0.835953 + 0.548801i \(0.184915\pi\)
\(858\) 2.29226 + 3.37774i 0.0782564 + 0.115314i
\(859\) 12.5923 + 46.9949i 0.429642 + 1.60345i 0.753572 + 0.657365i \(0.228329\pi\)
−0.323930 + 0.946081i \(0.605004\pi\)
\(860\) −37.6657 + 5.51133i −1.28439 + 0.187935i
\(861\) 0 0
\(862\) −0.522594 + 0.604627i −0.0177996 + 0.0205937i
\(863\) 4.94765 8.56957i 0.168420 0.291712i −0.769445 0.638714i \(-0.779467\pi\)
0.937864 + 0.347002i \(0.112800\pi\)
\(864\) −7.21936 + 8.85542i −0.245608 + 0.301268i
\(865\) −0.290032 0.502351i −0.00986139 0.0170804i
\(866\) −6.91432 19.8974i −0.234958 0.676140i
\(867\) −2.60993 2.60993i −0.0886379 0.0886379i
\(868\) 0 0
\(869\) 20.6819 20.6819i 0.701584 0.701584i
\(870\) −4.64420 + 9.59088i −0.157453 + 0.325161i
\(871\) 25.7529 14.8684i 0.872604 0.503798i
\(872\) 9.14680 8.37764i 0.309750 0.283703i
\(873\) 43.6690 + 25.2123i 1.47797 + 0.853308i
\(874\) −0.0690270 0.948515i −0.00233487 0.0320840i
\(875\) 0 0
\(876\) 2.65387 + 1.97636i 0.0896659 + 0.0667751i
\(877\) 32.8300 8.79678i 1.10859 0.297046i 0.342333 0.939579i \(-0.388783\pi\)
0.766258 + 0.642533i \(0.222116\pi\)
\(878\) 7.01616 36.6489i 0.236784 1.23684i
\(879\) −3.25882 5.64444i −0.109917 0.190382i
\(880\) −24.3805 5.78617i −0.821868 0.195052i
\(881\) 25.5121 0.859526 0.429763 0.902942i \(-0.358597\pi\)
0.429763 + 0.902942i \(0.358597\pi\)
\(882\) 0 0
\(883\) 22.6764 + 22.6764i 0.763120 + 0.763120i 0.976885 0.213765i \(-0.0685727\pi\)
−0.213765 + 0.976885i \(0.568573\pi\)
\(884\) −13.2607 30.7546i −0.446005 1.03439i
\(885\) −7.54463 2.02158i −0.253610 0.0679546i
\(886\) 12.9084 8.76012i 0.433666 0.294302i
\(887\) −46.9094 27.0831i −1.57506 0.909362i −0.995533 0.0944105i \(-0.969903\pi\)
−0.579529 0.814952i \(-0.696763\pi\)
\(888\) 0.855333 + 0.545183i 0.0287031 + 0.0182951i
\(889\) 0 0
\(890\) 7.58799 0.552206i 0.254350 0.0185100i
\(891\) −5.44305 20.3138i −0.182349 0.680536i
\(892\) 39.7454 31.4167i 1.33078 1.05191i
\(893\) 10.0877 37.6478i 0.337572 1.25983i
\(894\) 0.476255 + 1.37052i 0.0159284 + 0.0458371i
\(895\) 0.640248 0.0214011
\(896\) 0 0
\(897\) −0.0998770 −0.00333479
\(898\) 14.6622 + 42.1934i 0.489283 + 1.40801i
\(899\) 1.59028 5.93501i 0.0530389 0.197944i
\(900\) 2.76702 2.18718i 0.0922338 0.0729062i
\(901\) −1.22987 4.58994i −0.0409729 0.152913i
\(902\) −9.08804 + 0.661371i −0.302599 + 0.0220212i
\(903\) 0 0
\(904\) −30.3148 19.3224i −1.00826 0.642654i
\(905\) −2.16367 1.24919i −0.0719227 0.0415246i
\(906\) −8.77812 + 5.95716i −0.291633 + 0.197913i
\(907\) −12.7137 3.40663i −0.422152 0.113115i 0.0414881 0.999139i \(-0.486790\pi\)
−0.463640 + 0.886024i \(0.653457\pi\)
\(908\) −0.587907 1.36350i −0.0195104 0.0452492i
\(909\) 32.6837 + 32.6837i 1.08405 + 1.08405i
\(910\) 0 0
\(911\) 24.5412 0.813085 0.406543 0.913632i \(-0.366734\pi\)
0.406543 + 0.913632i \(0.366734\pi\)
\(912\) −9.82142 2.33089i −0.325220 0.0771835i
\(913\) 20.4774 + 35.4679i 0.677704 + 1.17382i
\(914\) 2.05191 10.7181i 0.0678711 0.354525i
\(915\) 1.70246 0.456172i 0.0562815 0.0150806i
\(916\) −25.7897 19.2058i −0.852114 0.634578i
\(917\) 0 0
\(918\) −1.09210 15.0068i −0.0360446 0.495298i
\(919\) 23.1901 + 13.3888i 0.764972 + 0.441657i 0.831078 0.556156i \(-0.187724\pi\)
−0.0661060 + 0.997813i \(0.521058\pi\)
\(920\) 0.452112 0.414093i 0.0149057 0.0136523i
\(921\) 7.63770 4.40963i 0.251671 0.145302i
\(922\) −2.76946 + 5.71930i −0.0912074 + 0.188355i
\(923\) −34.1528 + 34.1528i −1.12415 + 1.12415i
\(924\) 0 0
\(925\) −0.451880 0.451880i −0.0148577 0.0148577i
\(926\) −3.67152 10.5655i −0.120654 0.347205i
\(927\) 17.6096 + 30.5007i 0.578375 + 1.00177i
\(928\) −40.6150 33.1113i −1.33325 1.08693i
\(929\) −12.9337 + 22.4019i −0.424342 + 0.734982i −0.996359 0.0852601i \(-0.972828\pi\)
0.572017 + 0.820242i \(0.306161\pi\)
\(930\) 0.498956 0.577277i 0.0163614 0.0189297i
\(931\) 0 0
\(932\) −21.2840 + 3.11432i −0.697181 + 0.102013i
\(933\) 2.78741 + 10.4028i 0.0912558 + 0.340571i
\(934\) 18.7392 + 27.6129i 0.613165 + 0.903523i
\(935\) 28.5785 16.4998i 0.934617 0.539601i
\(936\) 7.79815 24.7128i 0.254891 0.807764i
\(937\) 19.6850i 0.643080i −0.946896 0.321540i \(-0.895800\pi\)
0.946896 0.321540i \(-0.104200\pi\)
\(938\) 0 0
\(939\) 3.26270 3.26270i 0.106474 0.106474i
\(940\) 23.0728 9.94847i 0.752553 0.324483i
\(941\) 0.243750 0.909688i 0.00794603 0.0296550i −0.961839 0.273616i \(-0.911780\pi\)
0.969785 + 0.243961i \(0.0784469\pi\)
\(942\) −0.268175 + 1.40081i −0.00873762 + 0.0456410i
\(943\) 0.111473 0.193077i 0.00363005 0.00628744i
\(944\) 18.2395 33.8025i 0.593645 1.10018i
\(945\) 0 0
\(946\) −22.7326 19.6484i −0.739102 0.638825i
\(947\) −17.5325 + 4.69782i −0.569730 + 0.152659i −0.532173 0.846636i \(-0.678624\pi\)
−0.0375571 + 0.999294i \(0.511958\pi\)
\(948\) 7.54421 + 0.882960i 0.245024 + 0.0286772i
\(949\) −14.7952 3.96437i −0.480273 0.128689i
\(950\) 5.72400 + 2.77174i 0.185711 + 0.0899270i
\(951\) 8.09471i 0.262489i
\(952\) 0 0
\(953\) 36.9302i 1.19629i −0.801390 0.598143i \(-0.795906\pi\)
0.801390 0.598143i \(-0.204094\pi\)
\(954\) 1.60240 3.30917i 0.0518796 0.107138i
\(955\) 9.05621 + 2.42660i 0.293052 + 0.0785230i
\(956\) −4.70772 + 3.72122i −0.152259 + 0.120353i
\(957\) −8.12460 + 2.17698i −0.262631 + 0.0703717i
\(958\) −31.2864 + 36.1974i −1.01082 + 1.16949i
\(959\) 0 0
\(960\) −2.74743 5.89894i −0.0886729 0.190387i
\(961\) 15.2800 26.4658i 0.492904 0.853734i
\(962\) −4.61151 0.882839i −0.148681 0.0284639i
\(963\) −5.63362 + 21.0249i −0.181541 + 0.677519i
\(964\) 41.9985 + 16.6924i 1.35268 + 0.537625i
\(965\) 1.48858 1.48858i 0.0479192 0.0479192i
\(966\) 0 0
\(967\) 15.9039i 0.511436i −0.966751 0.255718i \(-0.917688\pi\)
0.966751 0.255718i \(-0.0823119\pi\)
\(968\) 5.23111 + 10.0545i 0.168134 + 0.323164i
\(969\) 11.5125 6.64675i 0.369835 0.213525i
\(970\) −48.5004 + 32.9142i −1.55726 + 1.05681i
\(971\) −3.26217 12.1746i −0.104688 0.390701i 0.893622 0.448821i \(-0.148156\pi\)
−0.998310 + 0.0581203i \(0.981489\pi\)
\(972\) 10.5001 14.0996i 0.336791 0.452245i
\(973\) 0 0
\(974\) 11.1475 + 9.63510i 0.357190 + 0.308728i
\(975\) 0.333953 0.578424i 0.0106951 0.0185244i
\(976\) 0.249434 + 8.66358i 0.00798419 + 0.277314i
\(977\) −20.7008 35.8548i −0.662276 1.14710i −0.980016 0.198918i \(-0.936257\pi\)
0.317740 0.948178i \(-0.397076\pi\)
\(978\) −4.54673 + 1.57998i −0.145388 + 0.0505223i
\(979\) 4.24636 + 4.24636i 0.135714 + 0.135714i
\(980\) 0 0
\(981\) −8.93708 + 8.93708i −0.285339 + 0.285339i
\(982\) −14.9114 7.22057i −0.475843 0.230418i
\(983\) −1.97172 + 1.13838i −0.0628882 + 0.0363085i −0.531114 0.847300i \(-0.678227\pi\)
0.468226 + 0.883609i \(0.344893\pi\)
\(984\) −1.59829 1.74503i −0.0509516 0.0556295i
\(985\) −14.0407 8.10640i −0.447374 0.258291i
\(986\) 68.8279 5.00886i 2.19193 0.159515i
\(987\) 0 0
\(988\) 46.2341 6.76508i 1.47090 0.215226i
\(989\) 0.710116 0.190275i 0.0225804 0.00605039i
\(990\) 25.0778 + 4.80096i 0.797025 + 0.152584i
\(991\) 19.0720 + 33.0337i 0.605843 + 1.04935i 0.991918 + 0.126883i \(0.0404973\pi\)
−0.386075 + 0.922468i \(0.626169\pi\)
\(992\) 2.19547 + 3.04281i 0.0697063 + 0.0966094i
\(993\) −2.88456 −0.0915386
\(994\) 0 0
\(995\) 14.6564 + 14.6564i 0.464638 + 0.464638i
\(996\) −3.92830 + 9.88372i −0.124473 + 0.313178i
\(997\) 34.6346 + 9.28031i 1.09689 + 0.293911i 0.761497 0.648168i \(-0.224465\pi\)
0.335392 + 0.942079i \(0.391131\pi\)
\(998\) 9.61497 + 14.1680i 0.304356 + 0.448482i
\(999\) −1.82678 1.05469i −0.0577969 0.0333691i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.p.765.13 96
7.2 even 3 784.2.m.l.589.19 yes 48
7.3 odd 6 inner 784.2.x.p.557.1 96
7.4 even 3 inner 784.2.x.p.557.2 96
7.5 odd 6 784.2.m.l.589.20 yes 48
7.6 odd 2 inner 784.2.x.p.765.14 96
16.5 even 4 inner 784.2.x.p.373.2 96
112.5 odd 12 784.2.m.l.197.20 yes 48
112.37 even 12 784.2.m.l.197.19 48
112.53 even 12 inner 784.2.x.p.165.13 96
112.69 odd 4 inner 784.2.x.p.373.1 96
112.101 odd 12 inner 784.2.x.p.165.14 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
784.2.m.l.197.19 48 112.37 even 12
784.2.m.l.197.20 yes 48 112.5 odd 12
784.2.m.l.589.19 yes 48 7.2 even 3
784.2.m.l.589.20 yes 48 7.5 odd 6
784.2.x.p.165.13 96 112.53 even 12 inner
784.2.x.p.165.14 96 112.101 odd 12 inner
784.2.x.p.373.1 96 112.69 odd 4 inner
784.2.x.p.373.2 96 16.5 even 4 inner
784.2.x.p.557.1 96 7.3 odd 6 inner
784.2.x.p.557.2 96 7.4 even 3 inner
784.2.x.p.765.13 96 1.1 even 1 trivial
784.2.x.p.765.14 96 7.6 odd 2 inner