Properties

Label 800.6.d.c.401.19
Level $800$
Weight $6$
Character 800.401
Analytic conductor $128.307$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(401,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.401");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{93}\cdot 3^{4}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.19
Root \(-3.90102 + 0.884346i\) of defining polynomial
Character \(\chi\) \(=\) 800.401
Dual form 800.6.d.c.401.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+25.4343i q^{3} -56.4938 q^{7} -403.904 q^{9} +261.019i q^{11} -720.631i q^{13} +1876.44 q^{17} +1992.33i q^{19} -1436.88i q^{21} +2570.29 q^{23} -4092.49i q^{27} +1700.16i q^{29} +7734.68 q^{31} -6638.83 q^{33} -12228.1i q^{37} +18328.8 q^{39} +14979.3 q^{41} +18113.9i q^{43} +2141.03 q^{47} -13615.4 q^{49} +47726.0i q^{51} -1605.71i q^{53} -50673.5 q^{57} -2680.90i q^{59} +44521.9i q^{61} +22818.1 q^{63} -12486.0i q^{67} +65373.7i q^{69} -8189.38 q^{71} +41082.7 q^{73} -14746.0i q^{77} -46325.9 q^{79} +5940.95 q^{81} +61655.4i q^{83} -43242.3 q^{87} +53205.4 q^{89} +40711.2i q^{91} +196726. i q^{93} +39211.8 q^{97} -105427. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 196 q^{7} - 1620 q^{9} - 4676 q^{23} - 7160 q^{31} - 5672 q^{33} + 44904 q^{39} + 11608 q^{41} + 44180 q^{47} + 18756 q^{49} - 5032 q^{57} + 240620 q^{63} + 200312 q^{71} + 105136 q^{73} - 282080 q^{79}+ \cdots - 147376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 25.4343i 1.63161i 0.578326 + 0.815806i \(0.303706\pi\)
−0.578326 + 0.815806i \(0.696294\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −56.4938 −0.435769 −0.217884 0.975975i \(-0.569916\pi\)
−0.217884 + 0.975975i \(0.569916\pi\)
\(8\) 0 0
\(9\) −403.904 −1.66216
\(10\) 0 0
\(11\) 261.019i 0.650414i 0.945643 + 0.325207i \(0.105434\pi\)
−0.945643 + 0.325207i \(0.894566\pi\)
\(12\) 0 0
\(13\) − 720.631i − 1.18265i −0.806435 0.591323i \(-0.798606\pi\)
0.806435 0.591323i \(-0.201394\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1876.44 1.57476 0.787378 0.616471i \(-0.211438\pi\)
0.787378 + 0.616471i \(0.211438\pi\)
\(18\) 0 0
\(19\) 1992.33i 1.26613i 0.774100 + 0.633063i \(0.218203\pi\)
−0.774100 + 0.633063i \(0.781797\pi\)
\(20\) 0 0
\(21\) − 1436.88i − 0.711005i
\(22\) 0 0
\(23\) 2570.29 1.01313 0.506563 0.862203i \(-0.330916\pi\)
0.506563 + 0.862203i \(0.330916\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 4092.49i − 1.08038i
\(28\) 0 0
\(29\) 1700.16i 0.375400i 0.982226 + 0.187700i \(0.0601032\pi\)
−0.982226 + 0.187700i \(0.939897\pi\)
\(30\) 0 0
\(31\) 7734.68 1.44557 0.722783 0.691075i \(-0.242863\pi\)
0.722783 + 0.691075i \(0.242863\pi\)
\(32\) 0 0
\(33\) −6638.83 −1.06122
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 12228.1i − 1.46844i −0.678913 0.734218i \(-0.737549\pi\)
0.678913 0.734218i \(-0.262451\pi\)
\(38\) 0 0
\(39\) 18328.8 1.92962
\(40\) 0 0
\(41\) 14979.3 1.39166 0.695830 0.718206i \(-0.255037\pi\)
0.695830 + 0.718206i \(0.255037\pi\)
\(42\) 0 0
\(43\) 18113.9i 1.49397i 0.664842 + 0.746984i \(0.268499\pi\)
−0.664842 + 0.746984i \(0.731501\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2141.03 0.141377 0.0706885 0.997498i \(-0.477480\pi\)
0.0706885 + 0.997498i \(0.477480\pi\)
\(48\) 0 0
\(49\) −13615.4 −0.810106
\(50\) 0 0
\(51\) 47726.0i 2.56939i
\(52\) 0 0
\(53\) − 1605.71i − 0.0785192i −0.999229 0.0392596i \(-0.987500\pi\)
0.999229 0.0392596i \(-0.0124999\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −50673.5 −2.06583
\(58\) 0 0
\(59\) − 2680.90i − 0.100265i −0.998743 0.0501327i \(-0.984036\pi\)
0.998743 0.0501327i \(-0.0159644\pi\)
\(60\) 0 0
\(61\) 44521.9i 1.53197i 0.642860 + 0.765984i \(0.277748\pi\)
−0.642860 + 0.765984i \(0.722252\pi\)
\(62\) 0 0
\(63\) 22818.1 0.724316
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 12486.0i − 0.339809i −0.985461 0.169905i \(-0.945654\pi\)
0.985461 0.169905i \(-0.0543460\pi\)
\(68\) 0 0
\(69\) 65373.7i 1.65303i
\(70\) 0 0
\(71\) −8189.38 −0.192799 −0.0963996 0.995343i \(-0.530733\pi\)
−0.0963996 + 0.995343i \(0.530733\pi\)
\(72\) 0 0
\(73\) 41082.7 0.902302 0.451151 0.892448i \(-0.351014\pi\)
0.451151 + 0.892448i \(0.351014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 14746.0i − 0.283430i
\(78\) 0 0
\(79\) −46325.9 −0.835134 −0.417567 0.908646i \(-0.637117\pi\)
−0.417567 + 0.908646i \(0.637117\pi\)
\(80\) 0 0
\(81\) 5940.95 0.100611
\(82\) 0 0
\(83\) 61655.4i 0.982372i 0.871055 + 0.491186i \(0.163436\pi\)
−0.871055 + 0.491186i \(0.836564\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −43242.3 −0.612507
\(88\) 0 0
\(89\) 53205.4 0.712001 0.356000 0.934486i \(-0.384140\pi\)
0.356000 + 0.934486i \(0.384140\pi\)
\(90\) 0 0
\(91\) 40711.2i 0.515360i
\(92\) 0 0
\(93\) 196726.i 2.35860i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 39211.8 0.423143 0.211571 0.977363i \(-0.432142\pi\)
0.211571 + 0.977363i \(0.432142\pi\)
\(98\) 0 0
\(99\) − 105427.i − 1.08109i
\(100\) 0 0
\(101\) − 41893.0i − 0.408637i −0.978904 0.204319i \(-0.934502\pi\)
0.978904 0.204319i \(-0.0654979\pi\)
\(102\) 0 0
\(103\) −118358. −1.09927 −0.549635 0.835405i \(-0.685233\pi\)
−0.549635 + 0.835405i \(0.685233\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 147978.i − 1.24951i −0.780822 0.624754i \(-0.785199\pi\)
0.780822 0.624754i \(-0.214801\pi\)
\(108\) 0 0
\(109\) 126538.i 1.02013i 0.860135 + 0.510066i \(0.170379\pi\)
−0.860135 + 0.510066i \(0.829621\pi\)
\(110\) 0 0
\(111\) 311014. 2.39592
\(112\) 0 0
\(113\) 221898. 1.63478 0.817388 0.576088i \(-0.195421\pi\)
0.817388 + 0.576088i \(0.195421\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 291066.i 1.96574i
\(118\) 0 0
\(119\) −106007. −0.686229
\(120\) 0 0
\(121\) 92920.2 0.576961
\(122\) 0 0
\(123\) 380989.i 2.27065i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 237825. 1.30842 0.654212 0.756312i \(-0.273001\pi\)
0.654212 + 0.756312i \(0.273001\pi\)
\(128\) 0 0
\(129\) −460715. −2.43758
\(130\) 0 0
\(131\) − 151213.i − 0.769856i −0.922947 0.384928i \(-0.874226\pi\)
0.922947 0.384928i \(-0.125774\pi\)
\(132\) 0 0
\(133\) − 112554.i − 0.551738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −163216. −0.742954 −0.371477 0.928442i \(-0.621148\pi\)
−0.371477 + 0.928442i \(0.621148\pi\)
\(138\) 0 0
\(139\) 7490.33i 0.0328824i 0.999865 + 0.0164412i \(0.00523364\pi\)
−0.999865 + 0.0164412i \(0.994766\pi\)
\(140\) 0 0
\(141\) 54455.7i 0.230672i
\(142\) 0 0
\(143\) 188098. 0.769209
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 346300.i − 1.32178i
\(148\) 0 0
\(149\) 35543.3i 0.131157i 0.997847 + 0.0655786i \(0.0208893\pi\)
−0.997847 + 0.0655786i \(0.979111\pi\)
\(150\) 0 0
\(151\) −549802. −1.96229 −0.981147 0.193263i \(-0.938093\pi\)
−0.981147 + 0.193263i \(0.938093\pi\)
\(152\) 0 0
\(153\) −757903. −2.61749
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 252420.i 0.817287i 0.912694 + 0.408643i \(0.133998\pi\)
−0.912694 + 0.408643i \(0.866002\pi\)
\(158\) 0 0
\(159\) 40840.0 0.128113
\(160\) 0 0
\(161\) −145206. −0.441488
\(162\) 0 0
\(163\) − 383218.i − 1.12974i −0.825182 0.564868i \(-0.808927\pi\)
0.825182 0.564868i \(-0.191073\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 108418. 0.300821 0.150411 0.988624i \(-0.451940\pi\)
0.150411 + 0.988624i \(0.451940\pi\)
\(168\) 0 0
\(169\) −148016. −0.398650
\(170\) 0 0
\(171\) − 804710.i − 2.10450i
\(172\) 0 0
\(173\) − 305932.i − 0.777157i −0.921416 0.388579i \(-0.872966\pi\)
0.921416 0.388579i \(-0.127034\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 68186.9 0.163594
\(178\) 0 0
\(179\) 209868.i 0.489568i 0.969578 + 0.244784i \(0.0787170\pi\)
−0.969578 + 0.244784i \(0.921283\pi\)
\(180\) 0 0
\(181\) 212990.i 0.483239i 0.970371 + 0.241620i \(0.0776786\pi\)
−0.970371 + 0.241620i \(0.922321\pi\)
\(182\) 0 0
\(183\) −1.13239e6 −2.49958
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 489787.i 1.02424i
\(188\) 0 0
\(189\) 231201.i 0.470798i
\(190\) 0 0
\(191\) 177246. 0.351555 0.175777 0.984430i \(-0.443756\pi\)
0.175777 + 0.984430i \(0.443756\pi\)
\(192\) 0 0
\(193\) −758117. −1.46502 −0.732509 0.680758i \(-0.761651\pi\)
−0.732509 + 0.680758i \(0.761651\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 353509.i 0.648985i 0.945888 + 0.324492i \(0.105193\pi\)
−0.945888 + 0.324492i \(0.894807\pi\)
\(198\) 0 0
\(199\) −233027. −0.417132 −0.208566 0.978008i \(-0.566880\pi\)
−0.208566 + 0.978008i \(0.566880\pi\)
\(200\) 0 0
\(201\) 317572. 0.554437
\(202\) 0 0
\(203\) − 96048.4i − 0.163587i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.03815e6 −1.68397
\(208\) 0 0
\(209\) −520035. −0.823507
\(210\) 0 0
\(211\) 401222.i 0.620410i 0.950670 + 0.310205i \(0.100398\pi\)
−0.950670 + 0.310205i \(0.899602\pi\)
\(212\) 0 0
\(213\) − 208291.i − 0.314573i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −436961. −0.629932
\(218\) 0 0
\(219\) 1.04491e6i 1.47221i
\(220\) 0 0
\(221\) − 1.35222e6i − 1.86238i
\(222\) 0 0
\(223\) −475659. −0.640521 −0.320260 0.947330i \(-0.603770\pi\)
−0.320260 + 0.947330i \(0.603770\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 28559.0i − 0.0367856i −0.999831 0.0183928i \(-0.994145\pi\)
0.999831 0.0183928i \(-0.00585494\pi\)
\(228\) 0 0
\(229\) 969736.i 1.22198i 0.791638 + 0.610991i \(0.209229\pi\)
−0.791638 + 0.610991i \(0.790771\pi\)
\(230\) 0 0
\(231\) 375053. 0.462448
\(232\) 0 0
\(233\) 16005.7 0.0193146 0.00965728 0.999953i \(-0.496926\pi\)
0.00965728 + 0.999953i \(0.496926\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1.17827e6i − 1.36261i
\(238\) 0 0
\(239\) −1.26598e6 −1.43361 −0.716807 0.697272i \(-0.754397\pi\)
−0.716807 + 0.697272i \(0.754397\pi\)
\(240\) 0 0
\(241\) 414590. 0.459807 0.229904 0.973213i \(-0.426159\pi\)
0.229904 + 0.973213i \(0.426159\pi\)
\(242\) 0 0
\(243\) − 843371.i − 0.916227i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.43573e6 1.49738
\(248\) 0 0
\(249\) −1.56816e6 −1.60285
\(250\) 0 0
\(251\) − 184150.i − 0.184496i −0.995736 0.0922479i \(-0.970595\pi\)
0.995736 0.0922479i \(-0.0294052\pi\)
\(252\) 0 0
\(253\) 670895.i 0.658951i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 846268. 0.799236 0.399618 0.916682i \(-0.369143\pi\)
0.399618 + 0.916682i \(0.369143\pi\)
\(258\) 0 0
\(259\) 690813.i 0.639899i
\(260\) 0 0
\(261\) − 686701.i − 0.623974i
\(262\) 0 0
\(263\) −1.53385e6 −1.36740 −0.683698 0.729765i \(-0.739629\pi\)
−0.683698 + 0.729765i \(0.739629\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.35324e6i 1.16171i
\(268\) 0 0
\(269\) 646714.i 0.544918i 0.962167 + 0.272459i \(0.0878370\pi\)
−0.962167 + 0.272459i \(0.912163\pi\)
\(270\) 0 0
\(271\) 1.58318e6 1.30950 0.654752 0.755844i \(-0.272773\pi\)
0.654752 + 0.755844i \(0.272773\pi\)
\(272\) 0 0
\(273\) −1.03546e6 −0.840867
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1.62475e6i − 1.27229i −0.771568 0.636147i \(-0.780527\pi\)
0.771568 0.636147i \(-0.219473\pi\)
\(278\) 0 0
\(279\) −3.12407e6 −2.40276
\(280\) 0 0
\(281\) −1.48375e6 −1.12097 −0.560487 0.828163i \(-0.689386\pi\)
−0.560487 + 0.828163i \(0.689386\pi\)
\(282\) 0 0
\(283\) 1.18244e6i 0.877634i 0.898577 + 0.438817i \(0.144602\pi\)
−0.898577 + 0.438817i \(0.855398\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −846241. −0.606442
\(288\) 0 0
\(289\) 2.10118e6 1.47985
\(290\) 0 0
\(291\) 997325.i 0.690405i
\(292\) 0 0
\(293\) 887981.i 0.604275i 0.953264 + 0.302137i \(0.0977002\pi\)
−0.953264 + 0.302137i \(0.902300\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.06822e6 0.702697
\(298\) 0 0
\(299\) − 1.85223e6i − 1.19817i
\(300\) 0 0
\(301\) − 1.02332e6i − 0.651024i
\(302\) 0 0
\(303\) 1.06552e6 0.666738
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.47690e6i 0.894346i 0.894447 + 0.447173i \(0.147569\pi\)
−0.894447 + 0.447173i \(0.852431\pi\)
\(308\) 0 0
\(309\) − 3.01035e6i − 1.79358i
\(310\) 0 0
\(311\) −364521. −0.213708 −0.106854 0.994275i \(-0.534078\pi\)
−0.106854 + 0.994275i \(0.534078\pi\)
\(312\) 0 0
\(313\) −324246. −0.187074 −0.0935371 0.995616i \(-0.529817\pi\)
−0.0935371 + 0.995616i \(0.529817\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.55670e6i 0.870074i 0.900413 + 0.435037i \(0.143265\pi\)
−0.900413 + 0.435037i \(0.856735\pi\)
\(318\) 0 0
\(319\) −443773. −0.244165
\(320\) 0 0
\(321\) 3.76373e6 2.03871
\(322\) 0 0
\(323\) 3.73849e6i 1.99384i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.21842e6 −1.66446
\(328\) 0 0
\(329\) −120955. −0.0616077
\(330\) 0 0
\(331\) 558769.i 0.280325i 0.990128 + 0.140163i \(0.0447626\pi\)
−0.990128 + 0.140163i \(0.955237\pi\)
\(332\) 0 0
\(333\) 4.93899e6i 2.44077i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.18320e6 −1.04717 −0.523587 0.851972i \(-0.675407\pi\)
−0.523587 + 0.851972i \(0.675407\pi\)
\(338\) 0 0
\(339\) 5.64384e6i 2.66732i
\(340\) 0 0
\(341\) 2.01890e6i 0.940216i
\(342\) 0 0
\(343\) 1.71868e6 0.788787
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.53924e6i 1.13209i 0.824375 + 0.566043i \(0.191527\pi\)
−0.824375 + 0.566043i \(0.808473\pi\)
\(348\) 0 0
\(349\) 2.58452e6i 1.13584i 0.823085 + 0.567918i \(0.192251\pi\)
−0.823085 + 0.567918i \(0.807749\pi\)
\(350\) 0 0
\(351\) −2.94918e6 −1.27771
\(352\) 0 0
\(353\) −284338. −0.121450 −0.0607250 0.998155i \(-0.519341\pi\)
−0.0607250 + 0.998155i \(0.519341\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 2.69623e6i − 1.11966i
\(358\) 0 0
\(359\) 1.97109e6 0.807179 0.403590 0.914940i \(-0.367762\pi\)
0.403590 + 0.914940i \(0.367762\pi\)
\(360\) 0 0
\(361\) −1.49328e6 −0.603077
\(362\) 0 0
\(363\) 2.36336e6i 0.941377i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.04179e6 0.403754 0.201877 0.979411i \(-0.435296\pi\)
0.201877 + 0.979411i \(0.435296\pi\)
\(368\) 0 0
\(369\) −6.05022e6 −2.31316
\(370\) 0 0
\(371\) 90712.4i 0.0342162i
\(372\) 0 0
\(373\) 1.58767e6i 0.590866i 0.955363 + 0.295433i \(0.0954639\pi\)
−0.955363 + 0.295433i \(0.904536\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.22519e6 0.443965
\(378\) 0 0
\(379\) − 995922.i − 0.356145i −0.984017 0.178073i \(-0.943014\pi\)
0.984017 0.178073i \(-0.0569862\pi\)
\(380\) 0 0
\(381\) 6.04892e6i 2.13484i
\(382\) 0 0
\(383\) 1.53418e6 0.534415 0.267208 0.963639i \(-0.413899\pi\)
0.267208 + 0.963639i \(0.413899\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 7.31629e6i − 2.48321i
\(388\) 0 0
\(389\) − 4.70941e6i − 1.57795i −0.614428 0.788973i \(-0.710613\pi\)
0.614428 0.788973i \(-0.289387\pi\)
\(390\) 0 0
\(391\) 4.82301e6 1.59542
\(392\) 0 0
\(393\) 3.84599e6 1.25611
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 485420.i − 0.154576i −0.997009 0.0772879i \(-0.975374\pi\)
0.997009 0.0772879i \(-0.0246261\pi\)
\(398\) 0 0
\(399\) 2.86274e6 0.900223
\(400\) 0 0
\(401\) 1.73402e6 0.538508 0.269254 0.963069i \(-0.413223\pi\)
0.269254 + 0.963069i \(0.413223\pi\)
\(402\) 0 0
\(403\) − 5.57385e6i − 1.70959i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.19177e6 0.955092
\(408\) 0 0
\(409\) −853587. −0.252313 −0.126156 0.992010i \(-0.540264\pi\)
−0.126156 + 0.992010i \(0.540264\pi\)
\(410\) 0 0
\(411\) − 4.15129e6i − 1.21221i
\(412\) 0 0
\(413\) 151454.i 0.0436925i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −190511. −0.0536514
\(418\) 0 0
\(419\) 3.86903e6i 1.07663i 0.842743 + 0.538316i \(0.180939\pi\)
−0.842743 + 0.538316i \(0.819061\pi\)
\(420\) 0 0
\(421\) 1.15014e6i 0.316260i 0.987418 + 0.158130i \(0.0505464\pi\)
−0.987418 + 0.158130i \(0.949454\pi\)
\(422\) 0 0
\(423\) −864773. −0.234991
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 2.51522e6i − 0.667583i
\(428\) 0 0
\(429\) 4.78415e6i 1.25505i
\(430\) 0 0
\(431\) 3.09078e6 0.801448 0.400724 0.916199i \(-0.368759\pi\)
0.400724 + 0.916199i \(0.368759\pi\)
\(432\) 0 0
\(433\) −2.47892e6 −0.635394 −0.317697 0.948192i \(-0.602910\pi\)
−0.317697 + 0.948192i \(0.602910\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.12087e6i 1.28275i
\(438\) 0 0
\(439\) −997159. −0.246947 −0.123473 0.992348i \(-0.539403\pi\)
−0.123473 + 0.992348i \(0.539403\pi\)
\(440\) 0 0
\(441\) 5.49934e6 1.34652
\(442\) 0 0
\(443\) 2.10966e6i 0.510744i 0.966843 + 0.255372i \(0.0821980\pi\)
−0.966843 + 0.255372i \(0.917802\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −904020. −0.213998
\(448\) 0 0
\(449\) 6.24963e6 1.46298 0.731490 0.681852i \(-0.238825\pi\)
0.731490 + 0.681852i \(0.238825\pi\)
\(450\) 0 0
\(451\) 3.90989e6i 0.905156i
\(452\) 0 0
\(453\) − 1.39838e7i − 3.20170i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.87669e6 −0.420340 −0.210170 0.977665i \(-0.567402\pi\)
−0.210170 + 0.977665i \(0.567402\pi\)
\(458\) 0 0
\(459\) − 7.67933e6i − 1.70134i
\(460\) 0 0
\(461\) − 8.54777e6i − 1.87327i −0.350307 0.936635i \(-0.613923\pi\)
0.350307 0.936635i \(-0.386077\pi\)
\(462\) 0 0
\(463\) −7.55869e6 −1.63868 −0.819340 0.573308i \(-0.805660\pi\)
−0.819340 + 0.573308i \(0.805660\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.29127e6i 0.698346i 0.937058 + 0.349173i \(0.113538\pi\)
−0.937058 + 0.349173i \(0.886462\pi\)
\(468\) 0 0
\(469\) 705380.i 0.148078i
\(470\) 0 0
\(471\) −6.42013e6 −1.33349
\(472\) 0 0
\(473\) −4.72807e6 −0.971698
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 648551.i 0.130511i
\(478\) 0 0
\(479\) −4.95610e6 −0.986965 −0.493482 0.869756i \(-0.664276\pi\)
−0.493482 + 0.869756i \(0.664276\pi\)
\(480\) 0 0
\(481\) −8.81196e6 −1.73664
\(482\) 0 0
\(483\) − 3.69321e6i − 0.720338i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7.56942e6 −1.44624 −0.723120 0.690723i \(-0.757293\pi\)
−0.723120 + 0.690723i \(0.757293\pi\)
\(488\) 0 0
\(489\) 9.74688e6 1.84329
\(490\) 0 0
\(491\) − 1.25015e6i − 0.234023i −0.993131 0.117012i \(-0.962668\pi\)
0.993131 0.117012i \(-0.0373315\pi\)
\(492\) 0 0
\(493\) 3.19025e6i 0.591163i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 462649. 0.0840158
\(498\) 0 0
\(499\) − 5.59295e6i − 1.00552i −0.864427 0.502758i \(-0.832319\pi\)
0.864427 0.502758i \(-0.167681\pi\)
\(500\) 0 0
\(501\) 2.75753e6i 0.490824i
\(502\) 0 0
\(503\) 9.76813e6 1.72144 0.860719 0.509080i \(-0.170014\pi\)
0.860719 + 0.509080i \(0.170014\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 3.76469e6i − 0.650443i
\(508\) 0 0
\(509\) 9.05091e6i 1.54845i 0.632909 + 0.774226i \(0.281861\pi\)
−0.632909 + 0.774226i \(0.718139\pi\)
\(510\) 0 0
\(511\) −2.32092e6 −0.393195
\(512\) 0 0
\(513\) 8.15359e6 1.36790
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 558850.i 0.0919536i
\(518\) 0 0
\(519\) 7.78116e6 1.26802
\(520\) 0 0
\(521\) −7.68287e6 −1.24002 −0.620011 0.784593i \(-0.712872\pi\)
−0.620011 + 0.784593i \(0.712872\pi\)
\(522\) 0 0
\(523\) − 8.45353e6i − 1.35140i −0.737177 0.675700i \(-0.763841\pi\)
0.737177 0.675700i \(-0.236159\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.45137e7 2.27641
\(528\) 0 0
\(529\) 170070. 0.0264234
\(530\) 0 0
\(531\) 1.08283e6i 0.166657i
\(532\) 0 0
\(533\) − 1.07946e7i − 1.64584i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5.33784e6 −0.798785
\(538\) 0 0
\(539\) − 3.55389e6i − 0.526904i
\(540\) 0 0
\(541\) − 4.67406e6i − 0.686596i −0.939227 0.343298i \(-0.888456\pi\)
0.939227 0.343298i \(-0.111544\pi\)
\(542\) 0 0
\(543\) −5.41725e6 −0.788459
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.86478e6i − 0.266477i −0.991084 0.133238i \(-0.957462\pi\)
0.991084 0.133238i \(-0.0425376\pi\)
\(548\) 0 0
\(549\) − 1.79826e7i − 2.54637i
\(550\) 0 0
\(551\) −3.38727e6 −0.475304
\(552\) 0 0
\(553\) 2.61713e6 0.363925
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.40472e6i 1.28442i 0.766528 + 0.642211i \(0.221983\pi\)
−0.766528 + 0.642211i \(0.778017\pi\)
\(558\) 0 0
\(559\) 1.30535e7 1.76683
\(560\) 0 0
\(561\) −1.24574e7 −1.67117
\(562\) 0 0
\(563\) − 849619.i − 0.112967i −0.998404 0.0564837i \(-0.982011\pi\)
0.998404 0.0564837i \(-0.0179889\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −335627. −0.0438429
\(568\) 0 0
\(569\) −5.41948e6 −0.701741 −0.350870 0.936424i \(-0.614114\pi\)
−0.350870 + 0.936424i \(0.614114\pi\)
\(570\) 0 0
\(571\) − 331372.i − 0.0425329i −0.999774 0.0212664i \(-0.993230\pi\)
0.999774 0.0212664i \(-0.00676983\pi\)
\(572\) 0 0
\(573\) 4.50813e6i 0.573601i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.51001e7 1.88817 0.944086 0.329701i \(-0.106948\pi\)
0.944086 + 0.329701i \(0.106948\pi\)
\(578\) 0 0
\(579\) − 1.92822e7i − 2.39034i
\(580\) 0 0
\(581\) − 3.48315e6i − 0.428087i
\(582\) 0 0
\(583\) 419119. 0.0510700
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.51509e7i 1.81486i 0.420199 + 0.907432i \(0.361960\pi\)
−0.420199 + 0.907432i \(0.638040\pi\)
\(588\) 0 0
\(589\) 1.54100e7i 1.83027i
\(590\) 0 0
\(591\) −8.99125e6 −1.05889
\(592\) 0 0
\(593\) 1.46568e7 1.71160 0.855800 0.517307i \(-0.173066\pi\)
0.855800 + 0.517307i \(0.173066\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 5.92688e6i − 0.680597i
\(598\) 0 0
\(599\) 5.14552e6 0.585952 0.292976 0.956120i \(-0.405354\pi\)
0.292976 + 0.956120i \(0.405354\pi\)
\(600\) 0 0
\(601\) 9.03954e6 1.02085 0.510423 0.859923i \(-0.329489\pi\)
0.510423 + 0.859923i \(0.329489\pi\)
\(602\) 0 0
\(603\) 5.04314e6i 0.564817i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.25949e7 1.38747 0.693733 0.720232i \(-0.255965\pi\)
0.693733 + 0.720232i \(0.255965\pi\)
\(608\) 0 0
\(609\) 2.44292e6 0.266911
\(610\) 0 0
\(611\) − 1.54290e6i − 0.167199i
\(612\) 0 0
\(613\) − 8.66424e6i − 0.931278i −0.884975 0.465639i \(-0.845825\pi\)
0.884975 0.465639i \(-0.154175\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.86089e6 −0.725551 −0.362775 0.931877i \(-0.618171\pi\)
−0.362775 + 0.931877i \(0.618171\pi\)
\(618\) 0 0
\(619\) 3.44552e6i 0.361434i 0.983535 + 0.180717i \(0.0578417\pi\)
−0.983535 + 0.180717i \(0.942158\pi\)
\(620\) 0 0
\(621\) − 1.05189e7i − 1.09457i
\(622\) 0 0
\(623\) −3.00578e6 −0.310268
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1.32267e7i − 1.34364i
\(628\) 0 0
\(629\) − 2.29454e7i − 2.31243i
\(630\) 0 0
\(631\) 7.79725e6 0.779593 0.389797 0.920901i \(-0.372545\pi\)
0.389797 + 0.920901i \(0.372545\pi\)
\(632\) 0 0
\(633\) −1.02048e7 −1.01227
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9.81171e6i 0.958068i
\(638\) 0 0
\(639\) 3.30773e6 0.320463
\(640\) 0 0
\(641\) 7.82134e6 0.751859 0.375929 0.926648i \(-0.377324\pi\)
0.375929 + 0.926648i \(0.377324\pi\)
\(642\) 0 0
\(643\) − 1.35325e7i − 1.29078i −0.763854 0.645389i \(-0.776695\pi\)
0.763854 0.645389i \(-0.223305\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.34237e6 −0.126070 −0.0630352 0.998011i \(-0.520078\pi\)
−0.0630352 + 0.998011i \(0.520078\pi\)
\(648\) 0 0
\(649\) 699766. 0.0652140
\(650\) 0 0
\(651\) − 1.11138e7i − 1.02780i
\(652\) 0 0
\(653\) − 5.36490e6i − 0.492355i −0.969225 0.246178i \(-0.920825\pi\)
0.969225 0.246178i \(-0.0791747\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.65935e7 −1.49977
\(658\) 0 0
\(659\) 8.49067e6i 0.761603i 0.924657 + 0.380801i \(0.124352\pi\)
−0.924657 + 0.380801i \(0.875648\pi\)
\(660\) 0 0
\(661\) 9.80254e6i 0.872640i 0.899792 + 0.436320i \(0.143718\pi\)
−0.899792 + 0.436320i \(0.856282\pi\)
\(662\) 0 0
\(663\) 3.43929e7 3.03868
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.36990e6i 0.380327i
\(668\) 0 0
\(669\) − 1.20981e7i − 1.04508i
\(670\) 0 0
\(671\) −1.16211e7 −0.996413
\(672\) 0 0
\(673\) −7.99241e6 −0.680205 −0.340103 0.940388i \(-0.610462\pi\)
−0.340103 + 0.940388i \(0.610462\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 8.50891e6i − 0.713514i −0.934197 0.356757i \(-0.883882\pi\)
0.934197 0.356757i \(-0.116118\pi\)
\(678\) 0 0
\(679\) −2.21522e6 −0.184392
\(680\) 0 0
\(681\) 726378. 0.0600198
\(682\) 0 0
\(683\) 1.39302e7i 1.14263i 0.820732 + 0.571314i \(0.193566\pi\)
−0.820732 + 0.571314i \(0.806434\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.46646e7 −1.99380
\(688\) 0 0
\(689\) −1.15712e6 −0.0928604
\(690\) 0 0
\(691\) 1.79579e6i 0.143074i 0.997438 + 0.0715371i \(0.0227904\pi\)
−0.997438 + 0.0715371i \(0.977210\pi\)
\(692\) 0 0
\(693\) 5.95595e6i 0.471106i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.81079e7 2.19152
\(698\) 0 0
\(699\) 407094.i 0.0315139i
\(700\) 0 0
\(701\) 1.76628e7i 1.35758i 0.734334 + 0.678789i \(0.237495\pi\)
−0.734334 + 0.678789i \(0.762505\pi\)
\(702\) 0 0
\(703\) 2.43624e7 1.85923
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.36670e6i 0.178071i
\(708\) 0 0
\(709\) 1.67397e7i 1.25064i 0.780369 + 0.625319i \(0.215031\pi\)
−0.780369 + 0.625319i \(0.784969\pi\)
\(710\) 0 0
\(711\) 1.87112e7 1.38812
\(712\) 0 0
\(713\) 1.98804e7 1.46454
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 3.21993e7i − 2.33910i
\(718\) 0 0
\(719\) 1.41699e7 1.02222 0.511111 0.859515i \(-0.329234\pi\)
0.511111 + 0.859515i \(0.329234\pi\)
\(720\) 0 0
\(721\) 6.68649e6 0.479027
\(722\) 0 0
\(723\) 1.05448e7i 0.750227i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.78412e6 0.265539 0.132770 0.991147i \(-0.457613\pi\)
0.132770 + 0.991147i \(0.457613\pi\)
\(728\) 0 0
\(729\) 2.28942e7 1.59554
\(730\) 0 0
\(731\) 3.39897e7i 2.35263i
\(732\) 0 0
\(733\) 2.58722e7i 1.77858i 0.457345 + 0.889290i \(0.348801\pi\)
−0.457345 + 0.889290i \(0.651199\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.25907e6 0.221017
\(738\) 0 0
\(739\) 5.89215e6i 0.396883i 0.980113 + 0.198441i \(0.0635880\pi\)
−0.980113 + 0.198441i \(0.936412\pi\)
\(740\) 0 0
\(741\) 3.65169e7i 2.44314i
\(742\) 0 0
\(743\) −2.47551e7 −1.64510 −0.822551 0.568692i \(-0.807450\pi\)
−0.822551 + 0.568692i \(0.807450\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 2.49029e7i − 1.63286i
\(748\) 0 0
\(749\) 8.35986e6i 0.544496i
\(750\) 0 0
\(751\) −1.98371e6 −0.128345 −0.0641724 0.997939i \(-0.520441\pi\)
−0.0641724 + 0.997939i \(0.520441\pi\)
\(752\) 0 0
\(753\) 4.68372e6 0.301026
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.85647e7i 1.17746i 0.808328 + 0.588732i \(0.200373\pi\)
−0.808328 + 0.588732i \(0.799627\pi\)
\(758\) 0 0
\(759\) −1.70638e7 −1.07515
\(760\) 0 0
\(761\) −5.16348e6 −0.323207 −0.161603 0.986856i \(-0.551667\pi\)
−0.161603 + 0.986856i \(0.551667\pi\)
\(762\) 0 0
\(763\) − 7.14864e6i − 0.444542i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.93194e6 −0.118578
\(768\) 0 0
\(769\) 3.01408e7 1.83797 0.918985 0.394293i \(-0.129011\pi\)
0.918985 + 0.394293i \(0.129011\pi\)
\(770\) 0 0
\(771\) 2.15242e7i 1.30404i
\(772\) 0 0
\(773\) − 1.51718e7i − 0.913246i −0.889660 0.456623i \(-0.849059\pi\)
0.889660 0.456623i \(-0.150941\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.75704e7 −1.04407
\(778\) 0 0
\(779\) 2.98438e7i 1.76202i
\(780\) 0 0
\(781\) − 2.13758e6i − 0.125399i
\(782\) 0 0
\(783\) 6.95788e6 0.405576
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.46106e7i 0.840874i 0.907322 + 0.420437i \(0.138123\pi\)
−0.907322 + 0.420437i \(0.861877\pi\)
\(788\) 0 0
\(789\) − 3.90125e7i − 2.23106i
\(790\) 0 0
\(791\) −1.25359e7 −0.712384
\(792\) 0 0
\(793\) 3.20839e7 1.81177
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.81785e6i 0.268663i 0.990936 + 0.134331i \(0.0428887\pi\)
−0.990936 + 0.134331i \(0.957111\pi\)
\(798\) 0 0
\(799\) 4.01753e6 0.222634
\(800\) 0 0
\(801\) −2.14899e7 −1.18346
\(802\) 0 0
\(803\) 1.07234e7i 0.586870i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.64487e7 −0.889095
\(808\) 0 0
\(809\) −267715. −0.0143814 −0.00719072 0.999974i \(-0.502289\pi\)
−0.00719072 + 0.999974i \(0.502289\pi\)
\(810\) 0 0
\(811\) − 1.10232e7i − 0.588514i −0.955726 0.294257i \(-0.904928\pi\)
0.955726 0.294257i \(-0.0950722\pi\)
\(812\) 0 0
\(813\) 4.02671e7i 2.13660i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.60889e7 −1.89155
\(818\) 0 0
\(819\) − 1.64434e7i − 0.856609i
\(820\) 0 0
\(821\) − 7.52183e6i − 0.389462i −0.980857 0.194731i \(-0.937617\pi\)
0.980857 0.194731i \(-0.0623834\pi\)
\(822\) 0 0
\(823\) −2.86933e7 −1.47666 −0.738331 0.674439i \(-0.764386\pi\)
−0.738331 + 0.674439i \(0.764386\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.90830e7i − 0.970248i −0.874445 0.485124i \(-0.838774\pi\)
0.874445 0.485124i \(-0.161226\pi\)
\(828\) 0 0
\(829\) 2.31916e7i 1.17205i 0.810295 + 0.586023i \(0.199307\pi\)
−0.810295 + 0.586023i \(0.800693\pi\)
\(830\) 0 0
\(831\) 4.13245e7 2.07589
\(832\) 0 0
\(833\) −2.55486e7 −1.27572
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 3.16541e7i − 1.56177i
\(838\) 0 0
\(839\) 887580. 0.0435314 0.0217657 0.999763i \(-0.493071\pi\)
0.0217657 + 0.999763i \(0.493071\pi\)
\(840\) 0 0
\(841\) 1.76206e7 0.859075
\(842\) 0 0
\(843\) − 3.77382e7i − 1.82899i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5.24942e6 −0.251422
\(848\) 0 0
\(849\) −3.00746e7 −1.43196
\(850\) 0 0
\(851\) − 3.14299e7i − 1.48771i
\(852\) 0 0
\(853\) − 1.39449e7i − 0.656208i −0.944642 0.328104i \(-0.893590\pi\)
0.944642 0.328104i \(-0.106410\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.58423e7 1.66703 0.833516 0.552495i \(-0.186324\pi\)
0.833516 + 0.552495i \(0.186324\pi\)
\(858\) 0 0
\(859\) 767053.i 0.0354685i 0.999843 + 0.0177342i \(0.00564528\pi\)
−0.999843 + 0.0177342i \(0.994355\pi\)
\(860\) 0 0
\(861\) − 2.15236e7i − 0.989478i
\(862\) 0 0
\(863\) −2.90420e7 −1.32739 −0.663697 0.748002i \(-0.731013\pi\)
−0.663697 + 0.748002i \(0.731013\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 5.34421e7i 2.41455i
\(868\) 0 0
\(869\) − 1.20919e7i − 0.543183i
\(870\) 0 0
\(871\) −8.99778e6 −0.401874
\(872\) 0 0
\(873\) −1.58378e7 −0.703330
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 9.62715e6i − 0.422667i −0.977414 0.211334i \(-0.932219\pi\)
0.977414 0.211334i \(-0.0677807\pi\)
\(878\) 0 0
\(879\) −2.25852e7 −0.985942
\(880\) 0 0
\(881\) 3.88627e7 1.68691 0.843457 0.537196i \(-0.180517\pi\)
0.843457 + 0.537196i \(0.180517\pi\)
\(882\) 0 0
\(883\) − 4.29023e6i − 0.185173i −0.995705 0.0925867i \(-0.970486\pi\)
0.995705 0.0925867i \(-0.0295135\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.30883e7 −0.558564 −0.279282 0.960209i \(-0.590096\pi\)
−0.279282 + 0.960209i \(0.590096\pi\)
\(888\) 0 0
\(889\) −1.34356e7 −0.570170
\(890\) 0 0
\(891\) 1.55070e6i 0.0654386i
\(892\) 0 0
\(893\) 4.26564e6i 0.179001i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.71103e7 1.95495
\(898\) 0 0
\(899\) 1.31502e7i 0.542665i
\(900\) 0 0
\(901\) − 3.01301e6i − 0.123649i
\(902\) 0 0
\(903\) 2.60276e7 1.06222
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.36895e7i 0.956175i 0.878312 + 0.478087i \(0.158670\pi\)
−0.878312 + 0.478087i \(0.841330\pi\)
\(908\) 0 0
\(909\) 1.69208e7i 0.679220i
\(910\) 0 0
\(911\) −1.27323e7 −0.508289 −0.254144 0.967166i \(-0.581794\pi\)
−0.254144 + 0.967166i \(0.581794\pi\)
\(912\) 0 0
\(913\) −1.60932e7 −0.638948
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.54258e6i 0.335479i
\(918\) 0 0
\(919\) −3.36064e7 −1.31260 −0.656302 0.754499i \(-0.727880\pi\)
−0.656302 + 0.754499i \(0.727880\pi\)
\(920\) 0 0
\(921\) −3.75640e7 −1.45923
\(922\) 0 0
\(923\) 5.90152e6i 0.228013i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.78053e7 1.82716
\(928\) 0 0
\(929\) 2.44326e7 0.928816 0.464408 0.885621i \(-0.346267\pi\)
0.464408 + 0.885621i \(0.346267\pi\)
\(930\) 0 0
\(931\) − 2.71265e7i − 1.02570i
\(932\) 0 0
\(933\) − 9.27134e6i − 0.348689i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.46226e7 0.916188 0.458094 0.888904i \(-0.348532\pi\)
0.458094 + 0.888904i \(0.348532\pi\)
\(938\) 0 0
\(939\) − 8.24698e6i − 0.305233i
\(940\) 0 0
\(941\) − 3.64578e7i − 1.34220i −0.741368 0.671098i \(-0.765823\pi\)
0.741368 0.671098i \(-0.234177\pi\)
\(942\) 0 0
\(943\) 3.85013e7 1.40993
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.49302e7i − 0.540992i −0.962721 0.270496i \(-0.912812\pi\)
0.962721 0.270496i \(-0.0871876\pi\)
\(948\) 0 0
\(949\) − 2.96055e7i − 1.06710i
\(950\) 0 0
\(951\) −3.95935e7 −1.41962
\(952\) 0 0
\(953\) −2.82853e7 −1.00885 −0.504426 0.863455i \(-0.668296\pi\)
−0.504426 + 0.863455i \(0.668296\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 1.12871e7i − 0.398383i
\(958\) 0 0
\(959\) 9.22071e6 0.323756
\(960\) 0 0
\(961\) 3.11960e7 1.08966
\(962\) 0 0
\(963\) 5.97691e7i 2.07688i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 3.47503e7 1.19507 0.597533 0.801844i \(-0.296148\pi\)
0.597533 + 0.801844i \(0.296148\pi\)
\(968\) 0 0
\(969\) −9.50860e7 −3.25317
\(970\) 0 0
\(971\) 4.65499e7i 1.58442i 0.610247 + 0.792211i \(0.291070\pi\)
−0.610247 + 0.792211i \(0.708930\pi\)
\(972\) 0 0
\(973\) − 423158.i − 0.0143291i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.15712e7 −1.39334 −0.696668 0.717394i \(-0.745335\pi\)
−0.696668 + 0.717394i \(0.745335\pi\)
\(978\) 0 0
\(979\) 1.38876e7i 0.463096i
\(980\) 0 0
\(981\) − 5.11094e7i − 1.69562i
\(982\) 0 0
\(983\) −2.55186e7 −0.842313 −0.421157 0.906988i \(-0.638376\pi\)
−0.421157 + 0.906988i \(0.638376\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 3.07641e6i − 0.100520i
\(988\) 0 0
\(989\) 4.65581e7i 1.51358i
\(990\) 0 0
\(991\) 3.10296e7 1.00367 0.501836 0.864963i \(-0.332658\pi\)
0.501836 + 0.864963i \(0.332658\pi\)
\(992\) 0 0
\(993\) −1.42119e7 −0.457382
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.66036e7i 0.529011i 0.964384 + 0.264505i \(0.0852087\pi\)
−0.964384 + 0.264505i \(0.914791\pi\)
\(998\) 0 0
\(999\) −5.00435e7 −1.58648
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.d.c.401.19 20
4.3 odd 2 200.6.d.b.101.18 20
5.2 odd 4 800.6.f.b.49.19 20
5.3 odd 4 800.6.f.c.49.2 20
5.4 even 2 160.6.d.a.81.2 20
8.3 odd 2 200.6.d.b.101.17 20
8.5 even 2 inner 800.6.d.c.401.2 20
20.3 even 4 200.6.f.b.149.13 20
20.7 even 4 200.6.f.c.149.8 20
20.19 odd 2 40.6.d.a.21.3 20
40.3 even 4 200.6.f.c.149.7 20
40.13 odd 4 800.6.f.b.49.20 20
40.19 odd 2 40.6.d.a.21.4 yes 20
40.27 even 4 200.6.f.b.149.14 20
40.29 even 2 160.6.d.a.81.19 20
40.37 odd 4 800.6.f.c.49.1 20
60.59 even 2 360.6.k.b.181.18 20
120.59 even 2 360.6.k.b.181.17 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.3 20 20.19 odd 2
40.6.d.a.21.4 yes 20 40.19 odd 2
160.6.d.a.81.2 20 5.4 even 2
160.6.d.a.81.19 20 40.29 even 2
200.6.d.b.101.17 20 8.3 odd 2
200.6.d.b.101.18 20 4.3 odd 2
200.6.f.b.149.13 20 20.3 even 4
200.6.f.b.149.14 20 40.27 even 4
200.6.f.c.149.7 20 40.3 even 4
200.6.f.c.149.8 20 20.7 even 4
360.6.k.b.181.17 20 120.59 even 2
360.6.k.b.181.18 20 60.59 even 2
800.6.d.c.401.2 20 8.5 even 2 inner
800.6.d.c.401.19 20 1.1 even 1 trivial
800.6.f.b.49.19 20 5.2 odd 4
800.6.f.b.49.20 20 40.13 odd 4
800.6.f.c.49.1 20 40.37 odd 4
800.6.f.c.49.2 20 5.3 odd 4