Properties

Label 800.6.d.d.401.16
Level $800$
Weight $6$
Character 800.401
Analytic conductor $128.307$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(401,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.401");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - 130 x^{17} + 144 x^{16} + 1560 x^{15} - 12320 x^{14} - 56128 x^{13} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{99}\cdot 5^{4}\cdot 31 \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.16
Root \(4.12326 - 3.87282i\) of defining polynomial
Character \(\chi\) \(=\) 800.401
Dual form 800.6.d.d.401.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+18.2848i q^{3} +2.25573 q^{7} -91.3327 q^{9} -419.261i q^{11} -106.889i q^{13} +849.098 q^{17} +335.414i q^{19} +41.2454i q^{21} -3541.78 q^{23} +2773.20i q^{27} -5208.57i q^{29} -5637.83 q^{31} +7666.09 q^{33} -61.9860i q^{37} +1954.44 q^{39} +16286.1 q^{41} +2417.19i q^{43} +22781.9 q^{47} -16801.9 q^{49} +15525.6i q^{51} +13667.5i q^{53} -6132.98 q^{57} +23407.1i q^{59} +33444.7i q^{61} -206.022 q^{63} +66162.9i q^{67} -64760.7i q^{69} +51421.4 q^{71} +21271.6 q^{73} -945.738i q^{77} -38418.7 q^{79} -72901.2 q^{81} +93166.7i q^{83} +95237.5 q^{87} -60678.0 q^{89} -241.112i q^{91} -103086. i q^{93} +157428. q^{97} +38292.2i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 196 q^{7} - 1620 q^{9} + 7184 q^{23} - 7160 q^{31} - 2836 q^{33} - 22452 q^{39} - 5804 q^{41} - 44180 q^{47} + 62652 q^{49} + 43696 q^{57} + 1240 q^{63} + 7724 q^{71} - 105136 q^{73} + 7780 q^{79}+ \cdots - 73688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 18.2848i 1.17297i 0.809961 + 0.586484i \(0.199488\pi\)
−0.809961 + 0.586484i \(0.800512\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.25573 0.0173997 0.00869984 0.999962i \(-0.497231\pi\)
0.00869984 + 0.999962i \(0.497231\pi\)
\(8\) 0 0
\(9\) −91.3327 −0.375855
\(10\) 0 0
\(11\) − 419.261i − 1.04473i −0.852723 0.522363i \(-0.825050\pi\)
0.852723 0.522363i \(-0.174950\pi\)
\(12\) 0 0
\(13\) − 106.889i − 0.175418i −0.996146 0.0877090i \(-0.972045\pi\)
0.996146 0.0877090i \(-0.0279546\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 849.098 0.712584 0.356292 0.934375i \(-0.384041\pi\)
0.356292 + 0.934375i \(0.384041\pi\)
\(18\) 0 0
\(19\) 335.414i 0.213156i 0.994304 + 0.106578i \(0.0339894\pi\)
−0.994304 + 0.106578i \(0.966011\pi\)
\(20\) 0 0
\(21\) 41.2454i 0.0204093i
\(22\) 0 0
\(23\) −3541.78 −1.39605 −0.698027 0.716071i \(-0.745938\pi\)
−0.698027 + 0.716071i \(0.745938\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2773.20i 0.732103i
\(28\) 0 0
\(29\) − 5208.57i − 1.15007i −0.818129 0.575034i \(-0.804989\pi\)
0.818129 0.575034i \(-0.195011\pi\)
\(30\) 0 0
\(31\) −5637.83 −1.05368 −0.526839 0.849965i \(-0.676623\pi\)
−0.526839 + 0.849965i \(0.676623\pi\)
\(32\) 0 0
\(33\) 7666.09 1.22543
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 61.9860i − 0.00744370i −0.999993 0.00372185i \(-0.998815\pi\)
0.999993 0.00372185i \(-0.00118470\pi\)
\(38\) 0 0
\(39\) 1954.44 0.205760
\(40\) 0 0
\(41\) 16286.1 1.51306 0.756531 0.653958i \(-0.226893\pi\)
0.756531 + 0.653958i \(0.226893\pi\)
\(42\) 0 0
\(43\) 2417.19i 0.199361i 0.995020 + 0.0996803i \(0.0317820\pi\)
−0.995020 + 0.0996803i \(0.968218\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 22781.9 1.50434 0.752170 0.658970i \(-0.229007\pi\)
0.752170 + 0.658970i \(0.229007\pi\)
\(48\) 0 0
\(49\) −16801.9 −0.999697
\(50\) 0 0
\(51\) 15525.6i 0.835838i
\(52\) 0 0
\(53\) 13667.5i 0.668344i 0.942512 + 0.334172i \(0.108457\pi\)
−0.942512 + 0.334172i \(0.891543\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6132.98 −0.250025
\(58\) 0 0
\(59\) 23407.1i 0.875423i 0.899116 + 0.437711i \(0.144211\pi\)
−0.899116 + 0.437711i \(0.855789\pi\)
\(60\) 0 0
\(61\) 33444.7i 1.15081i 0.817869 + 0.575405i \(0.195155\pi\)
−0.817869 + 0.575405i \(0.804845\pi\)
\(62\) 0 0
\(63\) −206.022 −0.00653975
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 66162.9i 1.80064i 0.435226 + 0.900321i \(0.356668\pi\)
−0.435226 + 0.900321i \(0.643332\pi\)
\(68\) 0 0
\(69\) − 64760.7i − 1.63753i
\(70\) 0 0
\(71\) 51421.4 1.21059 0.605296 0.796001i \(-0.293055\pi\)
0.605296 + 0.796001i \(0.293055\pi\)
\(72\) 0 0
\(73\) 21271.6 0.467189 0.233595 0.972334i \(-0.424951\pi\)
0.233595 + 0.972334i \(0.424951\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 945.738i − 0.0181779i
\(78\) 0 0
\(79\) −38418.7 −0.692589 −0.346294 0.938126i \(-0.612560\pi\)
−0.346294 + 0.938126i \(0.612560\pi\)
\(80\) 0 0
\(81\) −72901.2 −1.23459
\(82\) 0 0
\(83\) 93166.7i 1.48445i 0.670151 + 0.742225i \(0.266229\pi\)
−0.670151 + 0.742225i \(0.733771\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 95237.5 1.34899
\(88\) 0 0
\(89\) −60678.0 −0.812000 −0.406000 0.913873i \(-0.633077\pi\)
−0.406000 + 0.913873i \(0.633077\pi\)
\(90\) 0 0
\(91\) − 241.112i − 0.00305222i
\(92\) 0 0
\(93\) − 103086.i − 1.23593i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 157428. 1.69884 0.849418 0.527721i \(-0.176953\pi\)
0.849418 + 0.527721i \(0.176953\pi\)
\(98\) 0 0
\(99\) 38292.2i 0.392665i
\(100\) 0 0
\(101\) 124508.i 1.21449i 0.794516 + 0.607243i \(0.207725\pi\)
−0.794516 + 0.607243i \(0.792275\pi\)
\(102\) 0 0
\(103\) 10346.4 0.0960938 0.0480469 0.998845i \(-0.484700\pi\)
0.0480469 + 0.998845i \(0.484700\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 70765.9i 0.597537i 0.954326 + 0.298769i \(0.0965758\pi\)
−0.954326 + 0.298769i \(0.903424\pi\)
\(108\) 0 0
\(109\) − 128453.i − 1.03557i −0.855511 0.517784i \(-0.826757\pi\)
0.855511 0.517784i \(-0.173243\pi\)
\(110\) 0 0
\(111\) 1133.40 0.00873123
\(112\) 0 0
\(113\) −115196. −0.848672 −0.424336 0.905505i \(-0.639492\pi\)
−0.424336 + 0.905505i \(0.639492\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9762.45i 0.0659317i
\(118\) 0 0
\(119\) 1915.33 0.0123987
\(120\) 0 0
\(121\) −14728.7 −0.0914537
\(122\) 0 0
\(123\) 297787.i 1.77477i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −146026. −0.803378 −0.401689 0.915776i \(-0.631577\pi\)
−0.401689 + 0.915776i \(0.631577\pi\)
\(128\) 0 0
\(129\) −44197.7 −0.233844
\(130\) 0 0
\(131\) − 12998.0i − 0.0661757i −0.999452 0.0330878i \(-0.989466\pi\)
0.999452 0.0330878i \(-0.0105341\pi\)
\(132\) 0 0
\(133\) 756.603i 0.00370885i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 189204. 0.861249 0.430624 0.902531i \(-0.358293\pi\)
0.430624 + 0.902531i \(0.358293\pi\)
\(138\) 0 0
\(139\) 44334.4i 0.194627i 0.995254 + 0.0973136i \(0.0310250\pi\)
−0.995254 + 0.0973136i \(0.968975\pi\)
\(140\) 0 0
\(141\) 416562.i 1.76454i
\(142\) 0 0
\(143\) −44814.3 −0.183264
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 307219.i − 1.17261i
\(148\) 0 0
\(149\) 352240.i 1.29979i 0.760024 + 0.649895i \(0.225187\pi\)
−0.760024 + 0.649895i \(0.774813\pi\)
\(150\) 0 0
\(151\) −446273. −1.59279 −0.796395 0.604776i \(-0.793262\pi\)
−0.796395 + 0.604776i \(0.793262\pi\)
\(152\) 0 0
\(153\) −77550.5 −0.267828
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 383316.i − 1.24110i −0.784165 0.620552i \(-0.786909\pi\)
0.784165 0.620552i \(-0.213091\pi\)
\(158\) 0 0
\(159\) −249907. −0.783946
\(160\) 0 0
\(161\) −7989.29 −0.0242909
\(162\) 0 0
\(163\) 405200.i 1.19454i 0.802040 + 0.597270i \(0.203748\pi\)
−0.802040 + 0.597270i \(0.796252\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 193042. 0.535625 0.267812 0.963471i \(-0.413699\pi\)
0.267812 + 0.963471i \(0.413699\pi\)
\(168\) 0 0
\(169\) 359868. 0.969229
\(170\) 0 0
\(171\) − 30634.3i − 0.0801157i
\(172\) 0 0
\(173\) − 599397.i − 1.52265i −0.648372 0.761323i \(-0.724550\pi\)
0.648372 0.761323i \(-0.275450\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −427994. −1.02684
\(178\) 0 0
\(179\) 421278.i 0.982736i 0.870952 + 0.491368i \(0.163503\pi\)
−0.870952 + 0.491368i \(0.836497\pi\)
\(180\) 0 0
\(181\) 183362.i 0.416018i 0.978127 + 0.208009i \(0.0666983\pi\)
−0.978127 + 0.208009i \(0.933302\pi\)
\(182\) 0 0
\(183\) −611529. −1.34986
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 355994.i − 0.744455i
\(188\) 0 0
\(189\) 6255.58i 0.0127384i
\(190\) 0 0
\(191\) −982533. −1.94878 −0.974392 0.224856i \(-0.927809\pi\)
−0.974392 + 0.224856i \(0.927809\pi\)
\(192\) 0 0
\(193\) −164978. −0.318810 −0.159405 0.987213i \(-0.550958\pi\)
−0.159405 + 0.987213i \(0.550958\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 506605.i − 0.930044i −0.885299 0.465022i \(-0.846046\pi\)
0.885299 0.465022i \(-0.153954\pi\)
\(198\) 0 0
\(199\) −475645. −0.851433 −0.425716 0.904857i \(-0.639978\pi\)
−0.425716 + 0.904857i \(0.639978\pi\)
\(200\) 0 0
\(201\) −1.20977e6 −2.11210
\(202\) 0 0
\(203\) − 11749.1i − 0.0200108i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 323481. 0.524714
\(208\) 0 0
\(209\) 140626. 0.222690
\(210\) 0 0
\(211\) 260466.i 0.402759i 0.979513 + 0.201379i \(0.0645424\pi\)
−0.979513 + 0.201379i \(0.935458\pi\)
\(212\) 0 0
\(213\) 940228.i 1.41999i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −12717.4 −0.0183337
\(218\) 0 0
\(219\) 388946.i 0.547998i
\(220\) 0 0
\(221\) − 90759.2i − 0.125000i
\(222\) 0 0
\(223\) −624180. −0.840519 −0.420260 0.907404i \(-0.638061\pi\)
−0.420260 + 0.907404i \(0.638061\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 656014.i − 0.844984i −0.906367 0.422492i \(-0.861155\pi\)
0.906367 0.422492i \(-0.138845\pi\)
\(228\) 0 0
\(229\) 807777.i 1.01790i 0.860798 + 0.508948i \(0.169965\pi\)
−0.860798 + 0.508948i \(0.830035\pi\)
\(230\) 0 0
\(231\) 17292.6 0.0213221
\(232\) 0 0
\(233\) −1.30452e6 −1.57421 −0.787103 0.616822i \(-0.788420\pi\)
−0.787103 + 0.616822i \(0.788420\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 702478.i − 0.812385i
\(238\) 0 0
\(239\) 1.21861e6 1.37997 0.689985 0.723824i \(-0.257617\pi\)
0.689985 + 0.723824i \(0.257617\pi\)
\(240\) 0 0
\(241\) −983578. −1.09085 −0.545426 0.838159i \(-0.683632\pi\)
−0.545426 + 0.838159i \(0.683632\pi\)
\(242\) 0 0
\(243\) − 659093.i − 0.716030i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 35852.1 0.0373914
\(248\) 0 0
\(249\) −1.70353e6 −1.74121
\(250\) 0 0
\(251\) 1.60324e6i 1.60625i 0.595809 + 0.803126i \(0.296832\pi\)
−0.595809 + 0.803126i \(0.703168\pi\)
\(252\) 0 0
\(253\) 1.48493e6i 1.45849i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.07709e6 1.01723 0.508617 0.860993i \(-0.330157\pi\)
0.508617 + 0.860993i \(0.330157\pi\)
\(258\) 0 0
\(259\) − 139.823i 0 0.000129518i
\(260\) 0 0
\(261\) 475713.i 0.432259i
\(262\) 0 0
\(263\) 812889. 0.724673 0.362336 0.932047i \(-0.381979\pi\)
0.362336 + 0.932047i \(0.381979\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 1.10948e6i − 0.952451i
\(268\) 0 0
\(269\) − 113957.i − 0.0960201i −0.998847 0.0480101i \(-0.984712\pi\)
0.998847 0.0480101i \(-0.0152880\pi\)
\(270\) 0 0
\(271\) −372728. −0.308297 −0.154148 0.988048i \(-0.549263\pi\)
−0.154148 + 0.988048i \(0.549263\pi\)
\(272\) 0 0
\(273\) 4408.68 0.00358015
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 914263.i − 0.715932i −0.933735 0.357966i \(-0.883470\pi\)
0.933735 0.357966i \(-0.116530\pi\)
\(278\) 0 0
\(279\) 514918. 0.396030
\(280\) 0 0
\(281\) −511184. −0.386199 −0.193100 0.981179i \(-0.561854\pi\)
−0.193100 + 0.981179i \(0.561854\pi\)
\(282\) 0 0
\(283\) − 533078.i − 0.395662i −0.980236 0.197831i \(-0.936610\pi\)
0.980236 0.197831i \(-0.0633897\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 36736.9 0.0263268
\(288\) 0 0
\(289\) −698889. −0.492225
\(290\) 0 0
\(291\) 2.87853e6i 1.99268i
\(292\) 0 0
\(293\) 2.54648e6i 1.73289i 0.499273 + 0.866445i \(0.333600\pi\)
−0.499273 + 0.866445i \(0.666400\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.16269e6 0.764847
\(298\) 0 0
\(299\) 378577.i 0.244893i
\(300\) 0 0
\(301\) 5452.51i 0.00346881i
\(302\) 0 0
\(303\) −2.27659e6 −1.42455
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 740673.i 0.448518i 0.974530 + 0.224259i \(0.0719962\pi\)
−0.974530 + 0.224259i \(0.928004\pi\)
\(308\) 0 0
\(309\) 189181.i 0.112715i
\(310\) 0 0
\(311\) −1.08876e6 −0.638310 −0.319155 0.947702i \(-0.603399\pi\)
−0.319155 + 0.947702i \(0.603399\pi\)
\(312\) 0 0
\(313\) 1.08277e6 0.624705 0.312353 0.949966i \(-0.398883\pi\)
0.312353 + 0.949966i \(0.398883\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.93243e6i 1.63900i 0.573078 + 0.819501i \(0.305749\pi\)
−0.573078 + 0.819501i \(0.694251\pi\)
\(318\) 0 0
\(319\) −2.18375e6 −1.20151
\(320\) 0 0
\(321\) −1.29394e6 −0.700892
\(322\) 0 0
\(323\) 284800.i 0.151892i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.34874e6 1.21469
\(328\) 0 0
\(329\) 51389.8 0.0261750
\(330\) 0 0
\(331\) 357214.i 0.179209i 0.995977 + 0.0896043i \(0.0285602\pi\)
−0.995977 + 0.0896043i \(0.971440\pi\)
\(332\) 0 0
\(333\) 5661.34i 0.00279775i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.45195e6 0.696429 0.348215 0.937415i \(-0.386788\pi\)
0.348215 + 0.937415i \(0.386788\pi\)
\(338\) 0 0
\(339\) − 2.10633e6i − 0.995465i
\(340\) 0 0
\(341\) 2.36372e6i 1.10081i
\(342\) 0 0
\(343\) −75812.5 −0.0347941
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 393735.i 0.175541i 0.996141 + 0.0877707i \(0.0279743\pi\)
−0.996141 + 0.0877707i \(0.972026\pi\)
\(348\) 0 0
\(349\) 1.73875e6i 0.764140i 0.924133 + 0.382070i \(0.124789\pi\)
−0.924133 + 0.382070i \(0.875211\pi\)
\(350\) 0 0
\(351\) 296424. 0.128424
\(352\) 0 0
\(353\) −2.05124e6 −0.876154 −0.438077 0.898937i \(-0.644340\pi\)
−0.438077 + 0.898937i \(0.644340\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 35021.4i 0.0145433i
\(358\) 0 0
\(359\) −3.56728e6 −1.46084 −0.730418 0.683000i \(-0.760675\pi\)
−0.730418 + 0.683000i \(0.760675\pi\)
\(360\) 0 0
\(361\) 2.36360e6 0.954564
\(362\) 0 0
\(363\) − 269311.i − 0.107272i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 3.72721e6 1.44450 0.722251 0.691631i \(-0.243107\pi\)
0.722251 + 0.691631i \(0.243107\pi\)
\(368\) 0 0
\(369\) −1.48745e6 −0.568691
\(370\) 0 0
\(371\) 30830.2i 0.0116290i
\(372\) 0 0
\(373\) 1.71134e6i 0.636891i 0.947941 + 0.318446i \(0.103161\pi\)
−0.947941 + 0.318446i \(0.896839\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −556738. −0.201743
\(378\) 0 0
\(379\) − 3.60174e6i − 1.28799i −0.765028 0.643997i \(-0.777275\pi\)
0.765028 0.643997i \(-0.222725\pi\)
\(380\) 0 0
\(381\) − 2.67005e6i − 0.942337i
\(382\) 0 0
\(383\) 3.80875e6 1.32674 0.663369 0.748293i \(-0.269126\pi\)
0.663369 + 0.748293i \(0.269126\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 220768.i − 0.0749306i
\(388\) 0 0
\(389\) 431800.i 0.144680i 0.997380 + 0.0723401i \(0.0230467\pi\)
−0.997380 + 0.0723401i \(0.976953\pi\)
\(390\) 0 0
\(391\) −3.00732e6 −0.994805
\(392\) 0 0
\(393\) 237665. 0.0776220
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.28465e6i 0.727518i 0.931493 + 0.363759i \(0.118507\pi\)
−0.931493 + 0.363759i \(0.881493\pi\)
\(398\) 0 0
\(399\) −13834.3 −0.00435036
\(400\) 0 0
\(401\) 1.63473e6 0.507674 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(402\) 0 0
\(403\) 602621.i 0.184834i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −25988.3 −0.00777663
\(408\) 0 0
\(409\) 5.21834e6 1.54250 0.771248 0.636534i \(-0.219633\pi\)
0.771248 + 0.636534i \(0.219633\pi\)
\(410\) 0 0
\(411\) 3.45955e6i 1.01022i
\(412\) 0 0
\(413\) 52800.0i 0.0152321i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −810644. −0.228292
\(418\) 0 0
\(419\) 666477.i 0.185460i 0.995691 + 0.0927299i \(0.0295593\pi\)
−0.995691 + 0.0927299i \(0.970441\pi\)
\(420\) 0 0
\(421\) 6.82007e6i 1.87536i 0.347504 + 0.937678i \(0.387029\pi\)
−0.347504 + 0.937678i \(0.612971\pi\)
\(422\) 0 0
\(423\) −2.08073e6 −0.565413
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 75442.2i 0.0200237i
\(428\) 0 0
\(429\) − 819419.i − 0.214963i
\(430\) 0 0
\(431\) 1.38707e6 0.359671 0.179836 0.983697i \(-0.442443\pi\)
0.179836 + 0.983697i \(0.442443\pi\)
\(432\) 0 0
\(433\) 1.33169e6 0.341336 0.170668 0.985329i \(-0.445407\pi\)
0.170668 + 0.985329i \(0.445407\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.18797e6i − 0.297577i
\(438\) 0 0
\(439\) 2.78241e6 0.689064 0.344532 0.938775i \(-0.388038\pi\)
0.344532 + 0.938775i \(0.388038\pi\)
\(440\) 0 0
\(441\) 1.53456e6 0.375741
\(442\) 0 0
\(443\) 4.63595e6i 1.12235i 0.827696 + 0.561177i \(0.189651\pi\)
−0.827696 + 0.561177i \(0.810349\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.44063e6 −1.52461
\(448\) 0 0
\(449\) 1.18197e6 0.276688 0.138344 0.990384i \(-0.455822\pi\)
0.138344 + 0.990384i \(0.455822\pi\)
\(450\) 0 0
\(451\) − 6.82811e6i − 1.58074i
\(452\) 0 0
\(453\) − 8.16001e6i − 1.86829i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.55240e6 0.347708 0.173854 0.984771i \(-0.444378\pi\)
0.173854 + 0.984771i \(0.444378\pi\)
\(458\) 0 0
\(459\) 2.35472e6i 0.521684i
\(460\) 0 0
\(461\) − 7.43437e6i − 1.62926i −0.579978 0.814632i \(-0.696939\pi\)
0.579978 0.814632i \(-0.303061\pi\)
\(462\) 0 0
\(463\) −20179.5 −0.00437480 −0.00218740 0.999998i \(-0.500696\pi\)
−0.00218740 + 0.999998i \(0.500696\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.58698e6i − 0.761092i −0.924762 0.380546i \(-0.875736\pi\)
0.924762 0.380546i \(-0.124264\pi\)
\(468\) 0 0
\(469\) 149245.i 0.0313306i
\(470\) 0 0
\(471\) 7.00885e6 1.45578
\(472\) 0 0
\(473\) 1.01343e6 0.208277
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 1.24829e6i − 0.251200i
\(478\) 0 0
\(479\) −183482. −0.0365388 −0.0182694 0.999833i \(-0.505816\pi\)
−0.0182694 + 0.999833i \(0.505816\pi\)
\(480\) 0 0
\(481\) −6625.61 −0.00130576
\(482\) 0 0
\(483\) − 146082.i − 0.0284925i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −6.68968e6 −1.27815 −0.639077 0.769143i \(-0.720683\pi\)
−0.639077 + 0.769143i \(0.720683\pi\)
\(488\) 0 0
\(489\) −7.40899e6 −1.40116
\(490\) 0 0
\(491\) − 9.90038e6i − 1.85331i −0.375913 0.926655i \(-0.622671\pi\)
0.375913 0.926655i \(-0.377329\pi\)
\(492\) 0 0
\(493\) − 4.42259e6i − 0.819520i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 115993. 0.0210639
\(498\) 0 0
\(499\) 5.95907e6i 1.07134i 0.844428 + 0.535670i \(0.179941\pi\)
−0.844428 + 0.535670i \(0.820059\pi\)
\(500\) 0 0
\(501\) 3.52973e6i 0.628271i
\(502\) 0 0
\(503\) 3.69353e6 0.650910 0.325455 0.945557i \(-0.394482\pi\)
0.325455 + 0.945557i \(0.394482\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.58010e6i 1.13687i
\(508\) 0 0
\(509\) − 7.94222e6i − 1.35877i −0.733780 0.679387i \(-0.762246\pi\)
0.733780 0.679387i \(-0.237754\pi\)
\(510\) 0 0
\(511\) 47982.9 0.00812894
\(512\) 0 0
\(513\) −930172. −0.156052
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 9.55157e6i − 1.57162i
\(518\) 0 0
\(519\) 1.09598e7 1.78602
\(520\) 0 0
\(521\) −1.06312e7 −1.71588 −0.857940 0.513749i \(-0.828256\pi\)
−0.857940 + 0.513749i \(0.828256\pi\)
\(522\) 0 0
\(523\) − 3.13913e6i − 0.501828i −0.968009 0.250914i \(-0.919269\pi\)
0.968009 0.250914i \(-0.0807312\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.78708e6 −0.750834
\(528\) 0 0
\(529\) 6.10788e6 0.948967
\(530\) 0 0
\(531\) − 2.13783e6i − 0.329032i
\(532\) 0 0
\(533\) − 1.74080e6i − 0.265418i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −7.70298e6 −1.15272
\(538\) 0 0
\(539\) 7.04438e6i 1.04441i
\(540\) 0 0
\(541\) − 1.20044e7i − 1.76339i −0.471821 0.881694i \(-0.656403\pi\)
0.471821 0.881694i \(-0.343597\pi\)
\(542\) 0 0
\(543\) −3.35273e6 −0.487976
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.93035e6i 1.41905i 0.704682 + 0.709523i \(0.251090\pi\)
−0.704682 + 0.709523i \(0.748910\pi\)
\(548\) 0 0
\(549\) − 3.05460e6i − 0.432537i
\(550\) 0 0
\(551\) 1.74703e6 0.245144
\(552\) 0 0
\(553\) −86662.2 −0.0120508
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.72764e6i 1.19195i 0.803002 + 0.595976i \(0.203235\pi\)
−0.803002 + 0.595976i \(0.796765\pi\)
\(558\) 0 0
\(559\) 258370. 0.0349714
\(560\) 0 0
\(561\) 6.50926e6 0.873222
\(562\) 0 0
\(563\) − 2.13884e6i − 0.284386i −0.989839 0.142193i \(-0.954585\pi\)
0.989839 0.142193i \(-0.0454154\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −164445. −0.0214814
\(568\) 0 0
\(569\) 2.98366e6 0.386339 0.193169 0.981165i \(-0.438123\pi\)
0.193169 + 0.981165i \(0.438123\pi\)
\(570\) 0 0
\(571\) − 8.50264e6i − 1.09135i −0.837997 0.545674i \(-0.816274\pi\)
0.837997 0.545674i \(-0.183726\pi\)
\(572\) 0 0
\(573\) − 1.79654e7i − 2.28586i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.55926e7 −1.94975 −0.974874 0.222756i \(-0.928495\pi\)
−0.974874 + 0.222756i \(0.928495\pi\)
\(578\) 0 0
\(579\) − 3.01658e6i − 0.373954i
\(580\) 0 0
\(581\) 210159.i 0.0258289i
\(582\) 0 0
\(583\) 5.73025e6 0.698236
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.01432e7i − 1.21501i −0.794314 0.607507i \(-0.792170\pi\)
0.794314 0.607507i \(-0.207830\pi\)
\(588\) 0 0
\(589\) − 1.89101e6i − 0.224598i
\(590\) 0 0
\(591\) 9.26315e6 1.09091
\(592\) 0 0
\(593\) 1.44098e7 1.68276 0.841381 0.540442i \(-0.181743\pi\)
0.841381 + 0.540442i \(0.181743\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 8.69706e6i − 0.998704i
\(598\) 0 0
\(599\) 3.13415e6 0.356905 0.178452 0.983949i \(-0.442891\pi\)
0.178452 + 0.983949i \(0.442891\pi\)
\(600\) 0 0
\(601\) 1.57244e7 1.77578 0.887889 0.460058i \(-0.152171\pi\)
0.887889 + 0.460058i \(0.152171\pi\)
\(602\) 0 0
\(603\) − 6.04283e6i − 0.676780i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.03887e7 1.14443 0.572217 0.820102i \(-0.306083\pi\)
0.572217 + 0.820102i \(0.306083\pi\)
\(608\) 0 0
\(609\) 214830. 0.0234721
\(610\) 0 0
\(611\) − 2.43513e6i − 0.263888i
\(612\) 0 0
\(613\) 1.46355e7i 1.57310i 0.617525 + 0.786551i \(0.288135\pi\)
−0.617525 + 0.786551i \(0.711865\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.06227e6 −0.641095 −0.320547 0.947233i \(-0.603867\pi\)
−0.320547 + 0.947233i \(0.603867\pi\)
\(618\) 0 0
\(619\) 888836.i 0.0932384i 0.998913 + 0.0466192i \(0.0148447\pi\)
−0.998913 + 0.0466192i \(0.985155\pi\)
\(620\) 0 0
\(621\) − 9.82207e6i − 1.02205i
\(622\) 0 0
\(623\) −136873. −0.0141285
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.57132e6i 0.261208i
\(628\) 0 0
\(629\) − 52632.2i − 0.00530426i
\(630\) 0 0
\(631\) −5.86047e6 −0.585948 −0.292974 0.956120i \(-0.594645\pi\)
−0.292974 + 0.956120i \(0.594645\pi\)
\(632\) 0 0
\(633\) −4.76256e6 −0.472423
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.79594e6i 0.175365i
\(638\) 0 0
\(639\) −4.69645e6 −0.455007
\(640\) 0 0
\(641\) 6.88679e6 0.662021 0.331011 0.943627i \(-0.392610\pi\)
0.331011 + 0.943627i \(0.392610\pi\)
\(642\) 0 0
\(643\) 7.66403e6i 0.731021i 0.930807 + 0.365510i \(0.119106\pi\)
−0.930807 + 0.365510i \(0.880894\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.93185e6 −0.369263 −0.184631 0.982808i \(-0.559109\pi\)
−0.184631 + 0.982808i \(0.559109\pi\)
\(648\) 0 0
\(649\) 9.81369e6 0.914577
\(650\) 0 0
\(651\) − 232535.i − 0.0215048i
\(652\) 0 0
\(653\) − 5.55582e6i − 0.509876i −0.966957 0.254938i \(-0.917945\pi\)
0.966957 0.254938i \(-0.0820551\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.94279e6 −0.175595
\(658\) 0 0
\(659\) 2.17299e6i 0.194914i 0.995240 + 0.0974572i \(0.0310709\pi\)
−0.995240 + 0.0974572i \(0.968929\pi\)
\(660\) 0 0
\(661\) 6.93458e6i 0.617329i 0.951171 + 0.308665i \(0.0998821\pi\)
−0.951171 + 0.308665i \(0.900118\pi\)
\(662\) 0 0
\(663\) 1.65951e6 0.146621
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.84476e7i 1.60556i
\(668\) 0 0
\(669\) − 1.14130e7i − 0.985902i
\(670\) 0 0
\(671\) 1.40221e7 1.20228
\(672\) 0 0
\(673\) 7.72402e6 0.657364 0.328682 0.944441i \(-0.393396\pi\)
0.328682 + 0.944441i \(0.393396\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.38586e7i 1.16211i 0.813865 + 0.581054i \(0.197360\pi\)
−0.813865 + 0.581054i \(0.802640\pi\)
\(678\) 0 0
\(679\) 355113. 0.0295592
\(680\) 0 0
\(681\) 1.19951e7 0.991139
\(682\) 0 0
\(683\) − 778871.i − 0.0638872i −0.999490 0.0319436i \(-0.989830\pi\)
0.999490 0.0319436i \(-0.0101697\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1.47700e7 −1.19396
\(688\) 0 0
\(689\) 1.46090e6 0.117239
\(690\) 0 0
\(691\) − 6.98899e6i − 0.556826i −0.960461 0.278413i \(-0.910192\pi\)
0.960461 0.278413i \(-0.0898084\pi\)
\(692\) 0 0
\(693\) 86376.8i 0.00683225i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.38285e7 1.07818
\(698\) 0 0
\(699\) − 2.38529e7i − 1.84649i
\(700\) 0 0
\(701\) − 4.14587e6i − 0.318655i −0.987226 0.159328i \(-0.949067\pi\)
0.987226 0.159328i \(-0.0509326\pi\)
\(702\) 0 0
\(703\) 20791.0 0.00158667
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 280855.i 0.0211317i
\(708\) 0 0
\(709\) 1.52511e7i 1.13943i 0.821843 + 0.569714i \(0.192946\pi\)
−0.821843 + 0.569714i \(0.807054\pi\)
\(710\) 0 0
\(711\) 3.50889e6 0.260313
\(712\) 0 0
\(713\) 1.99680e7 1.47099
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.22820e7i 1.61866i
\(718\) 0 0
\(719\) 1.60151e6 0.115534 0.0577668 0.998330i \(-0.481602\pi\)
0.0577668 + 0.998330i \(0.481602\pi\)
\(720\) 0 0
\(721\) 23338.6 0.00167200
\(722\) 0 0
\(723\) − 1.79845e7i − 1.27954i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.15453e6 0.431876 0.215938 0.976407i \(-0.430719\pi\)
0.215938 + 0.976407i \(0.430719\pi\)
\(728\) 0 0
\(729\) −5.66362e6 −0.394708
\(730\) 0 0
\(731\) 2.05243e6i 0.142061i
\(732\) 0 0
\(733\) − 7.15476e6i − 0.491853i −0.969289 0.245926i \(-0.920908\pi\)
0.969289 0.245926i \(-0.0790921\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.77395e7 1.88118
\(738\) 0 0
\(739\) − 2.74026e7i − 1.84578i −0.385063 0.922890i \(-0.625820\pi\)
0.385063 0.922890i \(-0.374180\pi\)
\(740\) 0 0
\(741\) 655547.i 0.0438589i
\(742\) 0 0
\(743\) 1.20016e7 0.797569 0.398785 0.917045i \(-0.369432\pi\)
0.398785 + 0.917045i \(0.369432\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 8.50916e6i − 0.557937i
\(748\) 0 0
\(749\) 159629.i 0.0103970i
\(750\) 0 0
\(751\) −3.38961e6 −0.219305 −0.109653 0.993970i \(-0.534974\pi\)
−0.109653 + 0.993970i \(0.534974\pi\)
\(752\) 0 0
\(753\) −2.93148e7 −1.88408
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.47336e6i 0.220298i 0.993915 + 0.110149i \(0.0351328\pi\)
−0.993915 + 0.110149i \(0.964867\pi\)
\(758\) 0 0
\(759\) −2.71516e7 −1.71077
\(760\) 0 0
\(761\) −1.16257e6 −0.0727710 −0.0363855 0.999338i \(-0.511584\pi\)
−0.0363855 + 0.999338i \(0.511584\pi\)
\(762\) 0 0
\(763\) − 289755.i − 0.0180186i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.50196e6 0.153565
\(768\) 0 0
\(769\) −1.71387e7 −1.04511 −0.522556 0.852605i \(-0.675021\pi\)
−0.522556 + 0.852605i \(0.675021\pi\)
\(770\) 0 0
\(771\) 1.96944e7i 1.19318i
\(772\) 0 0
\(773\) 3.17392e7i 1.91050i 0.295800 + 0.955250i \(0.404414\pi\)
−0.295800 + 0.955250i \(0.595586\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2556.64 0.000151921 0
\(778\) 0 0
\(779\) 5.46258e6i 0.322518i
\(780\) 0 0
\(781\) − 2.15590e7i − 1.26474i
\(782\) 0 0
\(783\) 1.44444e7 0.841968
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 2.67032e6i − 0.153683i −0.997043 0.0768416i \(-0.975516\pi\)
0.997043 0.0768416i \(-0.0244836\pi\)
\(788\) 0 0
\(789\) 1.48635e7i 0.850018i
\(790\) 0 0
\(791\) −259850. −0.0147666
\(792\) 0 0
\(793\) 3.57487e6 0.201873
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.37393e7i 1.88144i 0.339188 + 0.940719i \(0.389848\pi\)
−0.339188 + 0.940719i \(0.610152\pi\)
\(798\) 0 0
\(799\) 1.93441e7 1.07197
\(800\) 0 0
\(801\) 5.54189e6 0.305194
\(802\) 0 0
\(803\) − 8.91835e6i − 0.488085i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.08369e6 0.112629
\(808\) 0 0
\(809\) 1.25443e6 0.0673870 0.0336935 0.999432i \(-0.489273\pi\)
0.0336935 + 0.999432i \(0.489273\pi\)
\(810\) 0 0
\(811\) 1.12827e7i 0.602365i 0.953567 + 0.301182i \(0.0973813\pi\)
−0.953567 + 0.301182i \(0.902619\pi\)
\(812\) 0 0
\(813\) − 6.81525e6i − 0.361622i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −810760. −0.0424949
\(818\) 0 0
\(819\) 22021.4i 0.00114719i
\(820\) 0 0
\(821\) 1.21845e7i 0.630886i 0.948945 + 0.315443i \(0.102153\pi\)
−0.948945 + 0.315443i \(0.897847\pi\)
\(822\) 0 0
\(823\) 2.12650e7 1.09437 0.547187 0.837010i \(-0.315698\pi\)
0.547187 + 0.837010i \(0.315698\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.06316e6i 0.308273i 0.988050 + 0.154136i \(0.0492596\pi\)
−0.988050 + 0.154136i \(0.950740\pi\)
\(828\) 0 0
\(829\) − 727353.i − 0.0367586i −0.999831 0.0183793i \(-0.994149\pi\)
0.999831 0.0183793i \(-0.00585064\pi\)
\(830\) 0 0
\(831\) 1.67171e7 0.839765
\(832\) 0 0
\(833\) −1.42665e7 −0.712368
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 1.56348e7i − 0.771401i
\(838\) 0 0
\(839\) 1.36723e7 0.670560 0.335280 0.942118i \(-0.391169\pi\)
0.335280 + 0.942118i \(0.391169\pi\)
\(840\) 0 0
\(841\) −6.61809e6 −0.322658
\(842\) 0 0
\(843\) − 9.34688e6i − 0.452999i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −33223.9 −0.00159126
\(848\) 0 0
\(849\) 9.74720e6 0.464099
\(850\) 0 0
\(851\) 219541.i 0.0103918i
\(852\) 0 0
\(853\) 3.66971e7i 1.72687i 0.504462 + 0.863434i \(0.331691\pi\)
−0.504462 + 0.863434i \(0.668309\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.73498e7 −0.806941 −0.403470 0.914993i \(-0.632196\pi\)
−0.403470 + 0.914993i \(0.632196\pi\)
\(858\) 0 0
\(859\) − 1.90085e7i − 0.878954i −0.898254 0.439477i \(-0.855164\pi\)
0.898254 0.439477i \(-0.144836\pi\)
\(860\) 0 0
\(861\) 671726.i 0.0308805i
\(862\) 0 0
\(863\) −3.46920e7 −1.58563 −0.792816 0.609460i \(-0.791386\pi\)
−0.792816 + 0.609460i \(0.791386\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.27790e7i − 0.577364i
\(868\) 0 0
\(869\) 1.61075e7i 0.723566i
\(870\) 0 0
\(871\) 7.07207e6 0.315865
\(872\) 0 0
\(873\) −1.43783e7 −0.638515
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 3.99003e7i − 1.75177i −0.482520 0.875885i \(-0.660279\pi\)
0.482520 0.875885i \(-0.339721\pi\)
\(878\) 0 0
\(879\) −4.65618e7 −2.03262
\(880\) 0 0
\(881\) −3.50875e7 −1.52304 −0.761522 0.648139i \(-0.775548\pi\)
−0.761522 + 0.648139i \(0.775548\pi\)
\(882\) 0 0
\(883\) 1.47881e7i 0.638279i 0.947708 + 0.319139i \(0.103394\pi\)
−0.947708 + 0.319139i \(0.896606\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.17291e7 0.500560 0.250280 0.968173i \(-0.419477\pi\)
0.250280 + 0.968173i \(0.419477\pi\)
\(888\) 0 0
\(889\) −329394. −0.0139785
\(890\) 0 0
\(891\) 3.05646e7i 1.28981i
\(892\) 0 0
\(893\) 7.64139e6i 0.320659i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.92219e6 −0.287252
\(898\) 0 0
\(899\) 2.93651e7i 1.21180i
\(900\) 0 0
\(901\) 1.16051e7i 0.476251i
\(902\) 0 0
\(903\) −99697.9 −0.00406880
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.36136e7i − 0.549483i −0.961518 0.274742i \(-0.911408\pi\)
0.961518 0.274742i \(-0.0885923\pi\)
\(908\) 0 0
\(909\) − 1.13716e7i − 0.456470i
\(910\) 0 0
\(911\) −1.26888e7 −0.506551 −0.253276 0.967394i \(-0.581508\pi\)
−0.253276 + 0.967394i \(0.581508\pi\)
\(912\) 0 0
\(913\) 3.90611e7 1.55084
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 29319.9i − 0.00115144i
\(918\) 0 0
\(919\) 4.25253e7 1.66096 0.830479 0.557050i \(-0.188067\pi\)
0.830479 + 0.557050i \(0.188067\pi\)
\(920\) 0 0
\(921\) −1.35430e7 −0.526098
\(922\) 0 0
\(923\) − 5.49637e6i − 0.212360i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −944963. −0.0361173
\(928\) 0 0
\(929\) 4.25450e6 0.161737 0.0808686 0.996725i \(-0.474231\pi\)
0.0808686 + 0.996725i \(0.474231\pi\)
\(930\) 0 0
\(931\) − 5.63560e6i − 0.213092i
\(932\) 0 0
\(933\) − 1.99078e7i − 0.748718i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.07844e7 0.401279 0.200640 0.979665i \(-0.435698\pi\)
0.200640 + 0.979665i \(0.435698\pi\)
\(938\) 0 0
\(939\) 1.97982e7i 0.732760i
\(940\) 0 0
\(941\) − 112960.i − 0.00415862i −0.999998 0.00207931i \(-0.999338\pi\)
0.999998 0.00207931i \(-0.000661865\pi\)
\(942\) 0 0
\(943\) −5.76817e7 −2.11232
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.62952e7i − 0.590454i −0.955427 0.295227i \(-0.904605\pi\)
0.955427 0.295227i \(-0.0953953\pi\)
\(948\) 0 0
\(949\) − 2.27370e6i − 0.0819534i
\(950\) 0 0
\(951\) −5.36188e7 −1.92250
\(952\) 0 0
\(953\) −1.07203e7 −0.382363 −0.191181 0.981555i \(-0.561232\pi\)
−0.191181 + 0.981555i \(0.561232\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 3.99294e7i − 1.40933i
\(958\) 0 0
\(959\) 426792. 0.0149855
\(960\) 0 0
\(961\) 3.15601e6 0.110238
\(962\) 0 0
\(963\) − 6.46324e6i − 0.224587i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 3.92793e7 1.35082 0.675411 0.737442i \(-0.263966\pi\)
0.675411 + 0.737442i \(0.263966\pi\)
\(968\) 0 0
\(969\) −5.20750e6 −0.178164
\(970\) 0 0
\(971\) − 2.76288e7i − 0.940405i −0.882559 0.470202i \(-0.844181\pi\)
0.882559 0.470202i \(-0.155819\pi\)
\(972\) 0 0
\(973\) 100006.i 0.00338645i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.56548e7 −0.859868 −0.429934 0.902860i \(-0.641463\pi\)
−0.429934 + 0.902860i \(0.641463\pi\)
\(978\) 0 0
\(979\) 2.54399e7i 0.848318i
\(980\) 0 0
\(981\) 1.17320e7i 0.389223i
\(982\) 0 0
\(983\) 5.21860e6 0.172254 0.0861271 0.996284i \(-0.472551\pi\)
0.0861271 + 0.996284i \(0.472551\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 939650.i 0.0307025i
\(988\) 0 0
\(989\) − 8.56115e6i − 0.278318i
\(990\) 0 0
\(991\) −4.76772e7 −1.54215 −0.771075 0.636744i \(-0.780281\pi\)
−0.771075 + 0.636744i \(0.780281\pi\)
\(992\) 0 0
\(993\) −6.53158e6 −0.210206
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 2.96368e7i − 0.944263i −0.881528 0.472132i \(-0.843485\pi\)
0.881528 0.472132i \(-0.156515\pi\)
\(998\) 0 0
\(999\) 171900. 0.00544955
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.d.d.401.16 20
4.3 odd 2 200.6.d.c.101.5 20
5.2 odd 4 800.6.f.d.49.32 40
5.3 odd 4 800.6.f.d.49.9 40
5.4 even 2 800.6.d.b.401.5 20
8.3 odd 2 200.6.d.c.101.6 yes 20
8.5 even 2 inner 800.6.d.d.401.5 20
20.3 even 4 200.6.f.d.149.12 40
20.7 even 4 200.6.f.d.149.29 40
20.19 odd 2 200.6.d.d.101.16 yes 20
40.3 even 4 200.6.f.d.149.30 40
40.13 odd 4 800.6.f.d.49.31 40
40.19 odd 2 200.6.d.d.101.15 yes 20
40.27 even 4 200.6.f.d.149.11 40
40.29 even 2 800.6.d.b.401.16 20
40.37 odd 4 800.6.f.d.49.10 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.6.d.c.101.5 20 4.3 odd 2
200.6.d.c.101.6 yes 20 8.3 odd 2
200.6.d.d.101.15 yes 20 40.19 odd 2
200.6.d.d.101.16 yes 20 20.19 odd 2
200.6.f.d.149.11 40 40.27 even 4
200.6.f.d.149.12 40 20.3 even 4
200.6.f.d.149.29 40 20.7 even 4
200.6.f.d.149.30 40 40.3 even 4
800.6.d.b.401.5 20 5.4 even 2
800.6.d.b.401.16 20 40.29 even 2
800.6.d.d.401.5 20 8.5 even 2 inner
800.6.d.d.401.16 20 1.1 even 1 trivial
800.6.f.d.49.9 40 5.3 odd 4
800.6.f.d.49.10 40 40.37 odd 4
800.6.f.d.49.31 40 40.13 odd 4
800.6.f.d.49.32 40 5.2 odd 4