Properties

Label 800.6.f.d.49.10
Level $800$
Weight $6$
Character 800.49
Analytic conductor $128.307$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.10
Character \(\chi\) \(=\) 800.49
Dual form 800.6.f.d.49.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-18.2848 q^{3} +2.25573i q^{7} +91.3327 q^{9} +419.261i q^{11} +106.889 q^{13} +849.098i q^{17} +335.414i q^{19} -41.2454i q^{21} +3541.78i q^{23} +2773.20 q^{27} -5208.57i q^{29} -5637.83 q^{31} -7666.09i q^{33} -61.9860 q^{37} -1954.44 q^{39} +16286.1 q^{41} -2417.19 q^{43} +22781.9i q^{47} +16801.9 q^{49} -15525.6i q^{51} -13667.5 q^{53} -6132.98i q^{57} +23407.1i q^{59} -33444.7i q^{61} +206.022i q^{63} +66162.9 q^{67} -64760.7i q^{69} +51421.4 q^{71} -21271.6i q^{73} -945.738 q^{77} +38418.7 q^{79} -72901.2 q^{81} -93166.7 q^{83} +95237.5i q^{87} +60678.0 q^{89} +241.112i q^{91} +103086. q^{93} +157428. i q^{97} +38292.2i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 3240 q^{9} - 14320 q^{31} + 44904 q^{39} - 11608 q^{41} - 125304 q^{49} + 15448 q^{71} - 15560 q^{79} + 193968 q^{81} + 6320 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −18.2848 −1.17297 −0.586484 0.809961i \(-0.699488\pi\)
−0.586484 + 0.809961i \(0.699488\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.25573i 0.0173997i 0.999962 + 0.00869984i \(0.00276928\pi\)
−0.999962 + 0.00869984i \(0.997231\pi\)
\(8\) 0 0
\(9\) 91.3327 0.375855
\(10\) 0 0
\(11\) 419.261i 1.04473i 0.852723 + 0.522363i \(0.174950\pi\)
−0.852723 + 0.522363i \(0.825050\pi\)
\(12\) 0 0
\(13\) 106.889 0.175418 0.0877090 0.996146i \(-0.472045\pi\)
0.0877090 + 0.996146i \(0.472045\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 849.098i 0.712584i 0.934375 + 0.356292i \(0.115959\pi\)
−0.934375 + 0.356292i \(0.884041\pi\)
\(18\) 0 0
\(19\) 335.414i 0.213156i 0.994304 + 0.106578i \(0.0339894\pi\)
−0.994304 + 0.106578i \(0.966011\pi\)
\(20\) 0 0
\(21\) − 41.2454i − 0.0204093i
\(22\) 0 0
\(23\) 3541.78i 1.39605i 0.716071 + 0.698027i \(0.245938\pi\)
−0.716071 + 0.698027i \(0.754062\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2773.20 0.732103
\(28\) 0 0
\(29\) − 5208.57i − 1.15007i −0.818129 0.575034i \(-0.804989\pi\)
0.818129 0.575034i \(-0.195011\pi\)
\(30\) 0 0
\(31\) −5637.83 −1.05368 −0.526839 0.849965i \(-0.676623\pi\)
−0.526839 + 0.849965i \(0.676623\pi\)
\(32\) 0 0
\(33\) − 7666.09i − 1.22543i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −61.9860 −0.00744370 −0.00372185 0.999993i \(-0.501185\pi\)
−0.00372185 + 0.999993i \(0.501185\pi\)
\(38\) 0 0
\(39\) −1954.44 −0.205760
\(40\) 0 0
\(41\) 16286.1 1.51306 0.756531 0.653958i \(-0.226893\pi\)
0.756531 + 0.653958i \(0.226893\pi\)
\(42\) 0 0
\(43\) −2417.19 −0.199361 −0.0996803 0.995020i \(-0.531782\pi\)
−0.0996803 + 0.995020i \(0.531782\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 22781.9i 1.50434i 0.658970 + 0.752170i \(0.270993\pi\)
−0.658970 + 0.752170i \(0.729007\pi\)
\(48\) 0 0
\(49\) 16801.9 0.999697
\(50\) 0 0
\(51\) − 15525.6i − 0.835838i
\(52\) 0 0
\(53\) −13667.5 −0.668344 −0.334172 0.942512i \(-0.608457\pi\)
−0.334172 + 0.942512i \(0.608457\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 6132.98i − 0.250025i
\(58\) 0 0
\(59\) 23407.1i 0.875423i 0.899116 + 0.437711i \(0.144211\pi\)
−0.899116 + 0.437711i \(0.855789\pi\)
\(60\) 0 0
\(61\) − 33444.7i − 1.15081i −0.817869 0.575405i \(-0.804845\pi\)
0.817869 0.575405i \(-0.195155\pi\)
\(62\) 0 0
\(63\) 206.022i 0.00653975i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 66162.9 1.80064 0.900321 0.435226i \(-0.143332\pi\)
0.900321 + 0.435226i \(0.143332\pi\)
\(68\) 0 0
\(69\) − 64760.7i − 1.63753i
\(70\) 0 0
\(71\) 51421.4 1.21059 0.605296 0.796001i \(-0.293055\pi\)
0.605296 + 0.796001i \(0.293055\pi\)
\(72\) 0 0
\(73\) − 21271.6i − 0.467189i −0.972334 0.233595i \(-0.924951\pi\)
0.972334 0.233595i \(-0.0750489\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −945.738 −0.0181779
\(78\) 0 0
\(79\) 38418.7 0.692589 0.346294 0.938126i \(-0.387440\pi\)
0.346294 + 0.938126i \(0.387440\pi\)
\(80\) 0 0
\(81\) −72901.2 −1.23459
\(82\) 0 0
\(83\) −93166.7 −1.48445 −0.742225 0.670151i \(-0.766229\pi\)
−0.742225 + 0.670151i \(0.766229\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 95237.5i 1.34899i
\(88\) 0 0
\(89\) 60678.0 0.812000 0.406000 0.913873i \(-0.366923\pi\)
0.406000 + 0.913873i \(0.366923\pi\)
\(90\) 0 0
\(91\) 241.112i 0.00305222i
\(92\) 0 0
\(93\) 103086. 1.23593
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 157428.i 1.69884i 0.527721 + 0.849418i \(0.323047\pi\)
−0.527721 + 0.849418i \(0.676953\pi\)
\(98\) 0 0
\(99\) 38292.2i 0.392665i
\(100\) 0 0
\(101\) − 124508.i − 1.21449i −0.794516 0.607243i \(-0.792275\pi\)
0.794516 0.607243i \(-0.207725\pi\)
\(102\) 0 0
\(103\) − 10346.4i − 0.0960938i −0.998845 0.0480469i \(-0.984700\pi\)
0.998845 0.0480469i \(-0.0152997\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 70765.9 0.597537 0.298769 0.954326i \(-0.403424\pi\)
0.298769 + 0.954326i \(0.403424\pi\)
\(108\) 0 0
\(109\) − 128453.i − 1.03557i −0.855511 0.517784i \(-0.826757\pi\)
0.855511 0.517784i \(-0.173243\pi\)
\(110\) 0 0
\(111\) 1133.40 0.00873123
\(112\) 0 0
\(113\) 115196.i 0.848672i 0.905505 + 0.424336i \(0.139492\pi\)
−0.905505 + 0.424336i \(0.860508\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9762.45 0.0659317
\(118\) 0 0
\(119\) −1915.33 −0.0123987
\(120\) 0 0
\(121\) −14728.7 −0.0914537
\(122\) 0 0
\(123\) −297787. −1.77477
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 146026.i − 0.803378i −0.915776 0.401689i \(-0.868423\pi\)
0.915776 0.401689i \(-0.131577\pi\)
\(128\) 0 0
\(129\) 44197.7 0.233844
\(130\) 0 0
\(131\) 12998.0i 0.0661757i 0.999452 + 0.0330878i \(0.0105341\pi\)
−0.999452 + 0.0330878i \(0.989466\pi\)
\(132\) 0 0
\(133\) −756.603 −0.00370885
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 189204.i 0.861249i 0.902531 + 0.430624i \(0.141707\pi\)
−0.902531 + 0.430624i \(0.858293\pi\)
\(138\) 0 0
\(139\) 44334.4i 0.194627i 0.995254 + 0.0973136i \(0.0310250\pi\)
−0.995254 + 0.0973136i \(0.968975\pi\)
\(140\) 0 0
\(141\) − 416562.i − 1.76454i
\(142\) 0 0
\(143\) 44814.3i 0.183264i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −307219. −1.17261
\(148\) 0 0
\(149\) 352240.i 1.29979i 0.760024 + 0.649895i \(0.225187\pi\)
−0.760024 + 0.649895i \(0.774813\pi\)
\(150\) 0 0
\(151\) −446273. −1.59279 −0.796395 0.604776i \(-0.793262\pi\)
−0.796395 + 0.604776i \(0.793262\pi\)
\(152\) 0 0
\(153\) 77550.5i 0.267828i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −383316. −1.24110 −0.620552 0.784165i \(-0.713091\pi\)
−0.620552 + 0.784165i \(0.713091\pi\)
\(158\) 0 0
\(159\) 249907. 0.783946
\(160\) 0 0
\(161\) −7989.29 −0.0242909
\(162\) 0 0
\(163\) −405200. −1.19454 −0.597270 0.802040i \(-0.703748\pi\)
−0.597270 + 0.802040i \(0.703748\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 193042.i 0.535625i 0.963471 + 0.267812i \(0.0863008\pi\)
−0.963471 + 0.267812i \(0.913699\pi\)
\(168\) 0 0
\(169\) −359868. −0.969229
\(170\) 0 0
\(171\) 30634.3i 0.0801157i
\(172\) 0 0
\(173\) 599397. 1.52265 0.761323 0.648372i \(-0.224550\pi\)
0.761323 + 0.648372i \(0.224550\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 427994.i − 1.02684i
\(178\) 0 0
\(179\) 421278.i 0.982736i 0.870952 + 0.491368i \(0.163503\pi\)
−0.870952 + 0.491368i \(0.836497\pi\)
\(180\) 0 0
\(181\) − 183362.i − 0.416018i −0.978127 0.208009i \(-0.933302\pi\)
0.978127 0.208009i \(-0.0666983\pi\)
\(182\) 0 0
\(183\) 611529.i 1.34986i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −355994. −0.744455
\(188\) 0 0
\(189\) 6255.58i 0.0127384i
\(190\) 0 0
\(191\) −982533. −1.94878 −0.974392 0.224856i \(-0.927809\pi\)
−0.974392 + 0.224856i \(0.927809\pi\)
\(192\) 0 0
\(193\) 164978.i 0.318810i 0.987213 + 0.159405i \(0.0509576\pi\)
−0.987213 + 0.159405i \(0.949042\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −506605. −0.930044 −0.465022 0.885299i \(-0.653954\pi\)
−0.465022 + 0.885299i \(0.653954\pi\)
\(198\) 0 0
\(199\) 475645. 0.851433 0.425716 0.904857i \(-0.360022\pi\)
0.425716 + 0.904857i \(0.360022\pi\)
\(200\) 0 0
\(201\) −1.20977e6 −2.11210
\(202\) 0 0
\(203\) 11749.1 0.0200108
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 323481.i 0.524714i
\(208\) 0 0
\(209\) −140626. −0.222690
\(210\) 0 0
\(211\) − 260466.i − 0.402759i −0.979513 0.201379i \(-0.935458\pi\)
0.979513 0.201379i \(-0.0645424\pi\)
\(212\) 0 0
\(213\) −940228. −1.41999
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 12717.4i − 0.0183337i
\(218\) 0 0
\(219\) 388946.i 0.547998i
\(220\) 0 0
\(221\) 90759.2i 0.125000i
\(222\) 0 0
\(223\) 624180.i 0.840519i 0.907404 + 0.420260i \(0.138061\pi\)
−0.907404 + 0.420260i \(0.861939\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −656014. −0.844984 −0.422492 0.906367i \(-0.638845\pi\)
−0.422492 + 0.906367i \(0.638845\pi\)
\(228\) 0 0
\(229\) 807777.i 1.01790i 0.860798 + 0.508948i \(0.169965\pi\)
−0.860798 + 0.508948i \(0.830035\pi\)
\(230\) 0 0
\(231\) 17292.6 0.0213221
\(232\) 0 0
\(233\) 1.30452e6i 1.57421i 0.616822 + 0.787103i \(0.288420\pi\)
−0.616822 + 0.787103i \(0.711580\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −702478. −0.812385
\(238\) 0 0
\(239\) −1.21861e6 −1.37997 −0.689985 0.723824i \(-0.742383\pi\)
−0.689985 + 0.723824i \(0.742383\pi\)
\(240\) 0 0
\(241\) −983578. −1.09085 −0.545426 0.838159i \(-0.683632\pi\)
−0.545426 + 0.838159i \(0.683632\pi\)
\(242\) 0 0
\(243\) 659093. 0.716030
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 35852.1i 0.0373914i
\(248\) 0 0
\(249\) 1.70353e6 1.74121
\(250\) 0 0
\(251\) − 1.60324e6i − 1.60625i −0.595809 0.803126i \(-0.703168\pi\)
0.595809 0.803126i \(-0.296832\pi\)
\(252\) 0 0
\(253\) −1.48493e6 −1.45849
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.07709e6i 1.01723i 0.860993 + 0.508617i \(0.169843\pi\)
−0.860993 + 0.508617i \(0.830157\pi\)
\(258\) 0 0
\(259\) − 139.823i 0 0.000129518i
\(260\) 0 0
\(261\) − 475713.i − 0.432259i
\(262\) 0 0
\(263\) − 812889.i − 0.724673i −0.932047 0.362336i \(-0.881979\pi\)
0.932047 0.362336i \(-0.118021\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.10948e6 −0.952451
\(268\) 0 0
\(269\) − 113957.i − 0.0960201i −0.998847 0.0480101i \(-0.984712\pi\)
0.998847 0.0480101i \(-0.0152880\pi\)
\(270\) 0 0
\(271\) −372728. −0.308297 −0.154148 0.988048i \(-0.549263\pi\)
−0.154148 + 0.988048i \(0.549263\pi\)
\(272\) 0 0
\(273\) − 4408.68i − 0.00358015i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −914263. −0.715932 −0.357966 0.933735i \(-0.616530\pi\)
−0.357966 + 0.933735i \(0.616530\pi\)
\(278\) 0 0
\(279\) −514918. −0.396030
\(280\) 0 0
\(281\) −511184. −0.386199 −0.193100 0.981179i \(-0.561854\pi\)
−0.193100 + 0.981179i \(0.561854\pi\)
\(282\) 0 0
\(283\) 533078. 0.395662 0.197831 0.980236i \(-0.436610\pi\)
0.197831 + 0.980236i \(0.436610\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 36736.9i 0.0263268i
\(288\) 0 0
\(289\) 698889. 0.492225
\(290\) 0 0
\(291\) − 2.87853e6i − 1.99268i
\(292\) 0 0
\(293\) −2.54648e6 −1.73289 −0.866445 0.499273i \(-0.833600\pi\)
−0.866445 + 0.499273i \(0.833600\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.16269e6i 0.764847i
\(298\) 0 0
\(299\) 378577.i 0.244893i
\(300\) 0 0
\(301\) − 5452.51i − 0.00346881i
\(302\) 0 0
\(303\) 2.27659e6i 1.42455i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 740673. 0.448518 0.224259 0.974530i \(-0.428004\pi\)
0.224259 + 0.974530i \(0.428004\pi\)
\(308\) 0 0
\(309\) 189181.i 0.112715i
\(310\) 0 0
\(311\) −1.08876e6 −0.638310 −0.319155 0.947702i \(-0.603399\pi\)
−0.319155 + 0.947702i \(0.603399\pi\)
\(312\) 0 0
\(313\) − 1.08277e6i − 0.624705i −0.949966 0.312353i \(-0.898883\pi\)
0.949966 0.312353i \(-0.101117\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.93243e6 1.63900 0.819501 0.573078i \(-0.194251\pi\)
0.819501 + 0.573078i \(0.194251\pi\)
\(318\) 0 0
\(319\) 2.18375e6 1.20151
\(320\) 0 0
\(321\) −1.29394e6 −0.700892
\(322\) 0 0
\(323\) −284800. −0.151892
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.34874e6i 1.21469i
\(328\) 0 0
\(329\) −51389.8 −0.0261750
\(330\) 0 0
\(331\) − 357214.i − 0.179209i −0.995977 0.0896043i \(-0.971440\pi\)
0.995977 0.0896043i \(-0.0285602\pi\)
\(332\) 0 0
\(333\) −5661.34 −0.00279775
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.45195e6i 0.696429i 0.937415 + 0.348215i \(0.113212\pi\)
−0.937415 + 0.348215i \(0.886788\pi\)
\(338\) 0 0
\(339\) − 2.10633e6i − 0.995465i
\(340\) 0 0
\(341\) − 2.36372e6i − 1.10081i
\(342\) 0 0
\(343\) 75812.5i 0.0347941i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 393735. 0.175541 0.0877707 0.996141i \(-0.472026\pi\)
0.0877707 + 0.996141i \(0.472026\pi\)
\(348\) 0 0
\(349\) 1.73875e6i 0.764140i 0.924133 + 0.382070i \(0.124789\pi\)
−0.924133 + 0.382070i \(0.875211\pi\)
\(350\) 0 0
\(351\) 296424. 0.128424
\(352\) 0 0
\(353\) 2.05124e6i 0.876154i 0.898937 + 0.438077i \(0.144340\pi\)
−0.898937 + 0.438077i \(0.855660\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 35021.4 0.0145433
\(358\) 0 0
\(359\) 3.56728e6 1.46084 0.730418 0.683000i \(-0.239325\pi\)
0.730418 + 0.683000i \(0.239325\pi\)
\(360\) 0 0
\(361\) 2.36360e6 0.954564
\(362\) 0 0
\(363\) 269311. 0.107272
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 3.72721e6i 1.44450i 0.691631 + 0.722251i \(0.256893\pi\)
−0.691631 + 0.722251i \(0.743107\pi\)
\(368\) 0 0
\(369\) 1.48745e6 0.568691
\(370\) 0 0
\(371\) − 30830.2i − 0.0116290i
\(372\) 0 0
\(373\) −1.71134e6 −0.636891 −0.318446 0.947941i \(-0.603161\pi\)
−0.318446 + 0.947941i \(0.603161\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 556738.i − 0.201743i
\(378\) 0 0
\(379\) − 3.60174e6i − 1.28799i −0.765028 0.643997i \(-0.777275\pi\)
0.765028 0.643997i \(-0.222725\pi\)
\(380\) 0 0
\(381\) 2.67005e6i 0.942337i
\(382\) 0 0
\(383\) − 3.80875e6i − 1.32674i −0.748293 0.663369i \(-0.769126\pi\)
0.748293 0.663369i \(-0.230874\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −220768. −0.0749306
\(388\) 0 0
\(389\) 431800.i 0.144680i 0.997380 + 0.0723401i \(0.0230467\pi\)
−0.997380 + 0.0723401i \(0.976953\pi\)
\(390\) 0 0
\(391\) −3.00732e6 −0.994805
\(392\) 0 0
\(393\) − 237665.i − 0.0776220i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.28465e6 0.727518 0.363759 0.931493i \(-0.381493\pi\)
0.363759 + 0.931493i \(0.381493\pi\)
\(398\) 0 0
\(399\) 13834.3 0.00435036
\(400\) 0 0
\(401\) 1.63473e6 0.507674 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(402\) 0 0
\(403\) −602621. −0.184834
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 25988.3i − 0.00777663i
\(408\) 0 0
\(409\) −5.21834e6 −1.54250 −0.771248 0.636534i \(-0.780367\pi\)
−0.771248 + 0.636534i \(0.780367\pi\)
\(410\) 0 0
\(411\) − 3.45955e6i − 1.01022i
\(412\) 0 0
\(413\) −52800.0 −0.0152321
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 810644.i − 0.228292i
\(418\) 0 0
\(419\) 666477.i 0.185460i 0.995691 + 0.0927299i \(0.0295593\pi\)
−0.995691 + 0.0927299i \(0.970441\pi\)
\(420\) 0 0
\(421\) − 6.82007e6i − 1.87536i −0.347504 0.937678i \(-0.612971\pi\)
0.347504 0.937678i \(-0.387029\pi\)
\(422\) 0 0
\(423\) 2.08073e6i 0.565413i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 75442.2 0.0200237
\(428\) 0 0
\(429\) − 819419.i − 0.214963i
\(430\) 0 0
\(431\) 1.38707e6 0.359671 0.179836 0.983697i \(-0.442443\pi\)
0.179836 + 0.983697i \(0.442443\pi\)
\(432\) 0 0
\(433\) − 1.33169e6i − 0.341336i −0.985329 0.170668i \(-0.945407\pi\)
0.985329 0.170668i \(-0.0545926\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.18797e6 −0.297577
\(438\) 0 0
\(439\) −2.78241e6 −0.689064 −0.344532 0.938775i \(-0.611962\pi\)
−0.344532 + 0.938775i \(0.611962\pi\)
\(440\) 0 0
\(441\) 1.53456e6 0.375741
\(442\) 0 0
\(443\) −4.63595e6 −1.12235 −0.561177 0.827696i \(-0.689651\pi\)
−0.561177 + 0.827696i \(0.689651\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 6.44063e6i − 1.52461i
\(448\) 0 0
\(449\) −1.18197e6 −0.276688 −0.138344 0.990384i \(-0.544178\pi\)
−0.138344 + 0.990384i \(0.544178\pi\)
\(450\) 0 0
\(451\) 6.82811e6i 1.58074i
\(452\) 0 0
\(453\) 8.16001e6 1.86829
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.55240e6i 0.347708i 0.984771 + 0.173854i \(0.0556220\pi\)
−0.984771 + 0.173854i \(0.944378\pi\)
\(458\) 0 0
\(459\) 2.35472e6i 0.521684i
\(460\) 0 0
\(461\) 7.43437e6i 1.62926i 0.579978 + 0.814632i \(0.303061\pi\)
−0.579978 + 0.814632i \(0.696939\pi\)
\(462\) 0 0
\(463\) 20179.5i 0.00437480i 0.999998 + 0.00218740i \(0.000696271\pi\)
−0.999998 + 0.00218740i \(0.999304\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.58698e6 −0.761092 −0.380546 0.924762i \(-0.624264\pi\)
−0.380546 + 0.924762i \(0.624264\pi\)
\(468\) 0 0
\(469\) 149245.i 0.0313306i
\(470\) 0 0
\(471\) 7.00885e6 1.45578
\(472\) 0 0
\(473\) − 1.01343e6i − 0.208277i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.24829e6 −0.251200
\(478\) 0 0
\(479\) 183482. 0.0365388 0.0182694 0.999833i \(-0.494184\pi\)
0.0182694 + 0.999833i \(0.494184\pi\)
\(480\) 0 0
\(481\) −6625.61 −0.00130576
\(482\) 0 0
\(483\) 146082. 0.0284925
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 6.68968e6i − 1.27815i −0.769143 0.639077i \(-0.779317\pi\)
0.769143 0.639077i \(-0.220683\pi\)
\(488\) 0 0
\(489\) 7.40899e6 1.40116
\(490\) 0 0
\(491\) 9.90038e6i 1.85331i 0.375913 + 0.926655i \(0.377329\pi\)
−0.375913 + 0.926655i \(0.622671\pi\)
\(492\) 0 0
\(493\) 4.42259e6 0.819520
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 115993.i 0.0210639i
\(498\) 0 0
\(499\) 5.95907e6i 1.07134i 0.844428 + 0.535670i \(0.179941\pi\)
−0.844428 + 0.535670i \(0.820059\pi\)
\(500\) 0 0
\(501\) − 3.52973e6i − 0.628271i
\(502\) 0 0
\(503\) − 3.69353e6i − 0.650910i −0.945557 0.325455i \(-0.894482\pi\)
0.945557 0.325455i \(-0.105518\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.58010e6 1.13687
\(508\) 0 0
\(509\) − 7.94222e6i − 1.35877i −0.733780 0.679387i \(-0.762246\pi\)
0.733780 0.679387i \(-0.237754\pi\)
\(510\) 0 0
\(511\) 47982.9 0.00812894
\(512\) 0 0
\(513\) 930172.i 0.156052i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.55157e6 −1.57162
\(518\) 0 0
\(519\) −1.09598e7 −1.78602
\(520\) 0 0
\(521\) −1.06312e7 −1.71588 −0.857940 0.513749i \(-0.828256\pi\)
−0.857940 + 0.513749i \(0.828256\pi\)
\(522\) 0 0
\(523\) 3.13913e6 0.501828 0.250914 0.968009i \(-0.419269\pi\)
0.250914 + 0.968009i \(0.419269\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.78708e6i − 0.750834i
\(528\) 0 0
\(529\) −6.10788e6 −0.948967
\(530\) 0 0
\(531\) 2.13783e6i 0.329032i
\(532\) 0 0
\(533\) 1.74080e6 0.265418
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 7.70298e6i − 1.15272i
\(538\) 0 0
\(539\) 7.04438e6i 1.04441i
\(540\) 0 0
\(541\) 1.20044e7i 1.76339i 0.471821 + 0.881694i \(0.343597\pi\)
−0.471821 + 0.881694i \(0.656403\pi\)
\(542\) 0 0
\(543\) 3.35273e6i 0.487976i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.93035e6 1.41905 0.709523 0.704682i \(-0.248910\pi\)
0.709523 + 0.704682i \(0.248910\pi\)
\(548\) 0 0
\(549\) − 3.05460e6i − 0.432537i
\(550\) 0 0
\(551\) 1.74703e6 0.245144
\(552\) 0 0
\(553\) 86662.2i 0.0120508i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.72764e6 1.19195 0.595976 0.803002i \(-0.296765\pi\)
0.595976 + 0.803002i \(0.296765\pi\)
\(558\) 0 0
\(559\) −258370. −0.0349714
\(560\) 0 0
\(561\) 6.50926e6 0.873222
\(562\) 0 0
\(563\) 2.13884e6 0.284386 0.142193 0.989839i \(-0.454585\pi\)
0.142193 + 0.989839i \(0.454585\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 164445.i − 0.0214814i
\(568\) 0 0
\(569\) −2.98366e6 −0.386339 −0.193169 0.981165i \(-0.561877\pi\)
−0.193169 + 0.981165i \(0.561877\pi\)
\(570\) 0 0
\(571\) 8.50264e6i 1.09135i 0.837997 + 0.545674i \(0.183726\pi\)
−0.837997 + 0.545674i \(0.816274\pi\)
\(572\) 0 0
\(573\) 1.79654e7 2.28586
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.55926e7i − 1.94975i −0.222756 0.974874i \(-0.571505\pi\)
0.222756 0.974874i \(-0.428495\pi\)
\(578\) 0 0
\(579\) − 3.01658e6i − 0.373954i
\(580\) 0 0
\(581\) − 210159.i − 0.0258289i
\(582\) 0 0
\(583\) − 5.73025e6i − 0.698236i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.01432e7 −1.21501 −0.607507 0.794314i \(-0.707830\pi\)
−0.607507 + 0.794314i \(0.707830\pi\)
\(588\) 0 0
\(589\) − 1.89101e6i − 0.224598i
\(590\) 0 0
\(591\) 9.26315e6 1.09091
\(592\) 0 0
\(593\) − 1.44098e7i − 1.68276i −0.540442 0.841381i \(-0.681743\pi\)
0.540442 0.841381i \(-0.318257\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8.69706e6 −0.998704
\(598\) 0 0
\(599\) −3.13415e6 −0.356905 −0.178452 0.983949i \(-0.557109\pi\)
−0.178452 + 0.983949i \(0.557109\pi\)
\(600\) 0 0
\(601\) 1.57244e7 1.77578 0.887889 0.460058i \(-0.152171\pi\)
0.887889 + 0.460058i \(0.152171\pi\)
\(602\) 0 0
\(603\) 6.04283e6 0.676780
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.03887e7i 1.14443i 0.820102 + 0.572217i \(0.193917\pi\)
−0.820102 + 0.572217i \(0.806083\pi\)
\(608\) 0 0
\(609\) −214830. −0.0234721
\(610\) 0 0
\(611\) 2.43513e6i 0.263888i
\(612\) 0 0
\(613\) −1.46355e7 −1.57310 −0.786551 0.617525i \(-0.788135\pi\)
−0.786551 + 0.617525i \(0.788135\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 6.06227e6i − 0.641095i −0.947233 0.320547i \(-0.896133\pi\)
0.947233 0.320547i \(-0.103867\pi\)
\(618\) 0 0
\(619\) 888836.i 0.0932384i 0.998913 + 0.0466192i \(0.0148447\pi\)
−0.998913 + 0.0466192i \(0.985155\pi\)
\(620\) 0 0
\(621\) 9.82207e6i 1.02205i
\(622\) 0 0
\(623\) 136873.i 0.0141285i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.57132e6 0.261208
\(628\) 0 0
\(629\) − 52632.2i − 0.00530426i
\(630\) 0 0
\(631\) −5.86047e6 −0.585948 −0.292974 0.956120i \(-0.594645\pi\)
−0.292974 + 0.956120i \(0.594645\pi\)
\(632\) 0 0
\(633\) 4.76256e6i 0.472423i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.79594e6 0.175365
\(638\) 0 0
\(639\) 4.69645e6 0.455007
\(640\) 0 0
\(641\) 6.88679e6 0.662021 0.331011 0.943627i \(-0.392610\pi\)
0.331011 + 0.943627i \(0.392610\pi\)
\(642\) 0 0
\(643\) −7.66403e6 −0.731021 −0.365510 0.930807i \(-0.619106\pi\)
−0.365510 + 0.930807i \(0.619106\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 3.93185e6i − 0.369263i −0.982808 0.184631i \(-0.940891\pi\)
0.982808 0.184631i \(-0.0591092\pi\)
\(648\) 0 0
\(649\) −9.81369e6 −0.914577
\(650\) 0 0
\(651\) 232535.i 0.0215048i
\(652\) 0 0
\(653\) 5.55582e6 0.509876 0.254938 0.966957i \(-0.417945\pi\)
0.254938 + 0.966957i \(0.417945\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 1.94279e6i − 0.175595i
\(658\) 0 0
\(659\) 2.17299e6i 0.194914i 0.995240 + 0.0974572i \(0.0310709\pi\)
−0.995240 + 0.0974572i \(0.968929\pi\)
\(660\) 0 0
\(661\) − 6.93458e6i − 0.617329i −0.951171 0.308665i \(-0.900118\pi\)
0.951171 0.308665i \(-0.0998821\pi\)
\(662\) 0 0
\(663\) − 1.65951e6i − 0.146621i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.84476e7 1.60556
\(668\) 0 0
\(669\) − 1.14130e7i − 0.985902i
\(670\) 0 0
\(671\) 1.40221e7 1.20228
\(672\) 0 0
\(673\) − 7.72402e6i − 0.657364i −0.944441 0.328682i \(-0.893396\pi\)
0.944441 0.328682i \(-0.106604\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.38586e7 1.16211 0.581054 0.813865i \(-0.302640\pi\)
0.581054 + 0.813865i \(0.302640\pi\)
\(678\) 0 0
\(679\) −355113. −0.0295592
\(680\) 0 0
\(681\) 1.19951e7 0.991139
\(682\) 0 0
\(683\) 778871. 0.0638872 0.0319436 0.999490i \(-0.489830\pi\)
0.0319436 + 0.999490i \(0.489830\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 1.47700e7i − 1.19396i
\(688\) 0 0
\(689\) −1.46090e6 −0.117239
\(690\) 0 0
\(691\) 6.98899e6i 0.556826i 0.960461 + 0.278413i \(0.0898084\pi\)
−0.960461 + 0.278413i \(0.910192\pi\)
\(692\) 0 0
\(693\) −86376.8 −0.00683225
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.38285e7i 1.07818i
\(698\) 0 0
\(699\) − 2.38529e7i − 1.84649i
\(700\) 0 0
\(701\) 4.14587e6i 0.318655i 0.987226 + 0.159328i \(0.0509326\pi\)
−0.987226 + 0.159328i \(0.949067\pi\)
\(702\) 0 0
\(703\) − 20791.0i − 0.00158667i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 280855. 0.0211317
\(708\) 0 0
\(709\) 1.52511e7i 1.13943i 0.821843 + 0.569714i \(0.192946\pi\)
−0.821843 + 0.569714i \(0.807054\pi\)
\(710\) 0 0
\(711\) 3.50889e6 0.260313
\(712\) 0 0
\(713\) − 1.99680e7i − 1.47099i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.22820e7 1.61866
\(718\) 0 0
\(719\) −1.60151e6 −0.115534 −0.0577668 0.998330i \(-0.518398\pi\)
−0.0577668 + 0.998330i \(0.518398\pi\)
\(720\) 0 0
\(721\) 23338.6 0.00167200
\(722\) 0 0
\(723\) 1.79845e7 1.27954
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.15453e6i 0.431876i 0.976407 + 0.215938i \(0.0692809\pi\)
−0.976407 + 0.215938i \(0.930719\pi\)
\(728\) 0 0
\(729\) 5.66362e6 0.394708
\(730\) 0 0
\(731\) − 2.05243e6i − 0.142061i
\(732\) 0 0
\(733\) 7.15476e6 0.491853 0.245926 0.969289i \(-0.420908\pi\)
0.245926 + 0.969289i \(0.420908\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.77395e7i 1.88118i
\(738\) 0 0
\(739\) − 2.74026e7i − 1.84578i −0.385063 0.922890i \(-0.625820\pi\)
0.385063 0.922890i \(-0.374180\pi\)
\(740\) 0 0
\(741\) − 655547.i − 0.0438589i
\(742\) 0 0
\(743\) − 1.20016e7i − 0.797569i −0.917045 0.398785i \(-0.869432\pi\)
0.917045 0.398785i \(-0.130568\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8.50916e6 −0.557937
\(748\) 0 0
\(749\) 159629.i 0.0103970i
\(750\) 0 0
\(751\) −3.38961e6 −0.219305 −0.109653 0.993970i \(-0.534974\pi\)
−0.109653 + 0.993970i \(0.534974\pi\)
\(752\) 0 0
\(753\) 2.93148e7i 1.88408i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.47336e6 0.220298 0.110149 0.993915i \(-0.464867\pi\)
0.110149 + 0.993915i \(0.464867\pi\)
\(758\) 0 0
\(759\) 2.71516e7 1.71077
\(760\) 0 0
\(761\) −1.16257e6 −0.0727710 −0.0363855 0.999338i \(-0.511584\pi\)
−0.0363855 + 0.999338i \(0.511584\pi\)
\(762\) 0 0
\(763\) 289755. 0.0180186
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.50196e6i 0.153565i
\(768\) 0 0
\(769\) 1.71387e7 1.04511 0.522556 0.852605i \(-0.324979\pi\)
0.522556 + 0.852605i \(0.324979\pi\)
\(770\) 0 0
\(771\) − 1.96944e7i − 1.19318i
\(772\) 0 0
\(773\) −3.17392e7 −1.91050 −0.955250 0.295800i \(-0.904414\pi\)
−0.955250 + 0.295800i \(0.904414\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2556.64i 0 0.000151921i
\(778\) 0 0
\(779\) 5.46258e6i 0.322518i
\(780\) 0 0
\(781\) 2.15590e7i 1.26474i
\(782\) 0 0
\(783\) − 1.44444e7i − 0.841968i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −2.67032e6 −0.153683 −0.0768416 0.997043i \(-0.524484\pi\)
−0.0768416 + 0.997043i \(0.524484\pi\)
\(788\) 0 0
\(789\) 1.48635e7i 0.850018i
\(790\) 0 0
\(791\) −259850. −0.0147666
\(792\) 0 0
\(793\) − 3.57487e6i − 0.201873i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.37393e7 1.88144 0.940719 0.339188i \(-0.110152\pi\)
0.940719 + 0.339188i \(0.110152\pi\)
\(798\) 0 0
\(799\) −1.93441e7 −1.07197
\(800\) 0 0
\(801\) 5.54189e6 0.305194
\(802\) 0 0
\(803\) 8.91835e6 0.488085
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.08369e6i 0.112629i
\(808\) 0 0
\(809\) −1.25443e6 −0.0673870 −0.0336935 0.999432i \(-0.510727\pi\)
−0.0336935 + 0.999432i \(0.510727\pi\)
\(810\) 0 0
\(811\) − 1.12827e7i − 0.602365i −0.953567 0.301182i \(-0.902619\pi\)
0.953567 0.301182i \(-0.0973813\pi\)
\(812\) 0 0
\(813\) 6.81525e6 0.361622
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 810760.i − 0.0424949i
\(818\) 0 0
\(819\) 22021.4i 0.00114719i
\(820\) 0 0
\(821\) − 1.21845e7i − 0.630886i −0.948945 0.315443i \(-0.897847\pi\)
0.948945 0.315443i \(-0.102153\pi\)
\(822\) 0 0
\(823\) − 2.12650e7i − 1.09437i −0.837010 0.547187i \(-0.815698\pi\)
0.837010 0.547187i \(-0.184302\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.06316e6 0.308273 0.154136 0.988050i \(-0.450740\pi\)
0.154136 + 0.988050i \(0.450740\pi\)
\(828\) 0 0
\(829\) − 727353.i − 0.0367586i −0.999831 0.0183793i \(-0.994149\pi\)
0.999831 0.0183793i \(-0.00585064\pi\)
\(830\) 0 0
\(831\) 1.67171e7 0.839765
\(832\) 0 0
\(833\) 1.42665e7i 0.712368i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.56348e7 −0.771401
\(838\) 0 0
\(839\) −1.36723e7 −0.670560 −0.335280 0.942118i \(-0.608831\pi\)
−0.335280 + 0.942118i \(0.608831\pi\)
\(840\) 0 0
\(841\) −6.61809e6 −0.322658
\(842\) 0 0
\(843\) 9.34688e6 0.452999
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 33223.9i − 0.00159126i
\(848\) 0 0
\(849\) −9.74720e6 −0.464099
\(850\) 0 0
\(851\) − 219541.i − 0.0103918i
\(852\) 0 0
\(853\) −3.66971e7 −1.72687 −0.863434 0.504462i \(-0.831691\pi\)
−0.863434 + 0.504462i \(0.831691\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.73498e7i − 0.806941i −0.914993 0.403470i \(-0.867804\pi\)
0.914993 0.403470i \(-0.132196\pi\)
\(858\) 0 0
\(859\) − 1.90085e7i − 0.878954i −0.898254 0.439477i \(-0.855164\pi\)
0.898254 0.439477i \(-0.144836\pi\)
\(860\) 0 0
\(861\) − 671726.i − 0.0308805i
\(862\) 0 0
\(863\) 3.46920e7i 1.58563i 0.609460 + 0.792816i \(0.291386\pi\)
−0.609460 + 0.792816i \(0.708614\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.27790e7 −0.577364
\(868\) 0 0
\(869\) 1.61075e7i 0.723566i
\(870\) 0 0
\(871\) 7.07207e6 0.315865
\(872\) 0 0
\(873\) 1.43783e7i 0.638515i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.99003e7 −1.75177 −0.875885 0.482520i \(-0.839721\pi\)
−0.875885 + 0.482520i \(0.839721\pi\)
\(878\) 0 0
\(879\) 4.65618e7 2.03262
\(880\) 0 0
\(881\) −3.50875e7 −1.52304 −0.761522 0.648139i \(-0.775548\pi\)
−0.761522 + 0.648139i \(0.775548\pi\)
\(882\) 0 0
\(883\) −1.47881e7 −0.638279 −0.319139 0.947708i \(-0.603394\pi\)
−0.319139 + 0.947708i \(0.603394\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.17291e7i 0.500560i 0.968173 + 0.250280i \(0.0805228\pi\)
−0.968173 + 0.250280i \(0.919477\pi\)
\(888\) 0 0
\(889\) 329394. 0.0139785
\(890\) 0 0
\(891\) − 3.05646e7i − 1.28981i
\(892\) 0 0
\(893\) −7.64139e6 −0.320659
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 6.92219e6i − 0.287252i
\(898\) 0 0
\(899\) 2.93651e7i 1.21180i
\(900\) 0 0
\(901\) − 1.16051e7i − 0.476251i
\(902\) 0 0
\(903\) 99697.9i 0.00406880i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.36136e7 −0.549483 −0.274742 0.961518i \(-0.588592\pi\)
−0.274742 + 0.961518i \(0.588592\pi\)
\(908\) 0 0
\(909\) − 1.13716e7i − 0.456470i
\(910\) 0 0
\(911\) −1.26888e7 −0.506551 −0.253276 0.967394i \(-0.581508\pi\)
−0.253276 + 0.967394i \(0.581508\pi\)
\(912\) 0 0
\(913\) − 3.90611e7i − 1.55084i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −29319.9 −0.00115144
\(918\) 0 0
\(919\) −4.25253e7 −1.66096 −0.830479 0.557050i \(-0.811933\pi\)
−0.830479 + 0.557050i \(0.811933\pi\)
\(920\) 0 0
\(921\) −1.35430e7 −0.526098
\(922\) 0 0
\(923\) 5.49637e6 0.212360
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 944963.i − 0.0361173i
\(928\) 0 0
\(929\) −4.25450e6 −0.161737 −0.0808686 0.996725i \(-0.525769\pi\)
−0.0808686 + 0.996725i \(0.525769\pi\)
\(930\) 0 0
\(931\) 5.63560e6i 0.213092i
\(932\) 0 0
\(933\) 1.99078e7 0.748718
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.07844e7i 0.401279i 0.979665 + 0.200640i \(0.0643020\pi\)
−0.979665 + 0.200640i \(0.935698\pi\)
\(938\) 0 0
\(939\) 1.97982e7i 0.732760i
\(940\) 0 0
\(941\) 112960.i 0.00415862i 0.999998 + 0.00207931i \(0.000661865\pi\)
−0.999998 + 0.00207931i \(0.999338\pi\)
\(942\) 0 0
\(943\) 5.76817e7i 2.11232i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.62952e7 −0.590454 −0.295227 0.955427i \(-0.595395\pi\)
−0.295227 + 0.955427i \(0.595395\pi\)
\(948\) 0 0
\(949\) − 2.27370e6i − 0.0819534i
\(950\) 0 0
\(951\) −5.36188e7 −1.92250
\(952\) 0 0
\(953\) 1.07203e7i 0.382363i 0.981555 + 0.191181i \(0.0612318\pi\)
−0.981555 + 0.191181i \(0.938768\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −3.99294e7 −1.40933
\(958\) 0 0
\(959\) −426792. −0.0149855
\(960\) 0 0
\(961\) 3.15601e6 0.110238
\(962\) 0 0
\(963\) 6.46324e6 0.224587
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 3.92793e7i 1.35082i 0.737442 + 0.675411i \(0.236034\pi\)
−0.737442 + 0.675411i \(0.763966\pi\)
\(968\) 0 0
\(969\) 5.20750e6 0.178164
\(970\) 0 0
\(971\) 2.76288e7i 0.940405i 0.882559 + 0.470202i \(0.155819\pi\)
−0.882559 + 0.470202i \(0.844181\pi\)
\(972\) 0 0
\(973\) −100006. −0.00338645
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.56548e7i − 0.859868i −0.902860 0.429934i \(-0.858537\pi\)
0.902860 0.429934i \(-0.141463\pi\)
\(978\) 0 0
\(979\) 2.54399e7i 0.848318i
\(980\) 0 0
\(981\) − 1.17320e7i − 0.389223i
\(982\) 0 0
\(983\) − 5.21860e6i − 0.172254i −0.996284 0.0861271i \(-0.972551\pi\)
0.996284 0.0861271i \(-0.0274491\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 939650. 0.0307025
\(988\) 0 0
\(989\) − 8.56115e6i − 0.278318i
\(990\) 0 0
\(991\) −4.76772e7 −1.54215 −0.771075 0.636744i \(-0.780281\pi\)
−0.771075 + 0.636744i \(0.780281\pi\)
\(992\) 0 0
\(993\) 6.53158e6i 0.210206i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −2.96368e7 −0.944263 −0.472132 0.881528i \(-0.656515\pi\)
−0.472132 + 0.881528i \(0.656515\pi\)
\(998\) 0 0
\(999\) −171900. −0.00544955
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.f.d.49.10 40
4.3 odd 2 200.6.f.d.149.11 40
5.2 odd 4 800.6.d.b.401.16 20
5.3 odd 4 800.6.d.d.401.5 20
5.4 even 2 inner 800.6.f.d.49.31 40
8.3 odd 2 200.6.f.d.149.29 40
8.5 even 2 inner 800.6.f.d.49.32 40
20.3 even 4 200.6.d.c.101.6 yes 20
20.7 even 4 200.6.d.d.101.15 yes 20
20.19 odd 2 200.6.f.d.149.30 40
40.3 even 4 200.6.d.c.101.5 20
40.13 odd 4 800.6.d.d.401.16 20
40.19 odd 2 200.6.f.d.149.12 40
40.27 even 4 200.6.d.d.101.16 yes 20
40.29 even 2 inner 800.6.f.d.49.9 40
40.37 odd 4 800.6.d.b.401.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.6.d.c.101.5 20 40.3 even 4
200.6.d.c.101.6 yes 20 20.3 even 4
200.6.d.d.101.15 yes 20 20.7 even 4
200.6.d.d.101.16 yes 20 40.27 even 4
200.6.f.d.149.11 40 4.3 odd 2
200.6.f.d.149.12 40 40.19 odd 2
200.6.f.d.149.29 40 8.3 odd 2
200.6.f.d.149.30 40 20.19 odd 2
800.6.d.b.401.5 20 40.37 odd 4
800.6.d.b.401.16 20 5.2 odd 4
800.6.d.d.401.5 20 5.3 odd 4
800.6.d.d.401.16 20 40.13 odd 4
800.6.f.d.49.9 40 40.29 even 2 inner
800.6.f.d.49.10 40 1.1 even 1 trivial
800.6.f.d.49.31 40 5.4 even 2 inner
800.6.f.d.49.32 40 8.5 even 2 inner