Properties

Label 200.6.d.d.101.16
Level $200$
Weight $6$
Character 200.101
Analytic conductor $32.077$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(101,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.101");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 200.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.0767639626\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - 130 x^{17} + 144 x^{16} + 1560 x^{15} - 12320 x^{14} - 56128 x^{13} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{49}\cdot 5^{4}\cdot 31 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.16
Root \(4.12326 - 3.87282i\) of defining polynomial
Character \(\chi\) \(=\) 200.101
Dual form 200.6.d.d.101.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.12326 + 3.87282i) q^{2} +18.2848i q^{3} +(2.00256 + 31.9373i) q^{4} +(-70.8136 + 75.3929i) q^{6} +2.25573 q^{7} +(-115.430 + 139.441i) q^{8} -91.3327 q^{9} +419.261i q^{11} +(-583.966 + 36.6163i) q^{12} +106.889i q^{13} +(9.30095 + 8.73602i) q^{14} +(-1015.98 + 127.912i) q^{16} -849.098 q^{17} +(-376.589 - 353.715i) q^{18} -335.414i q^{19} +41.2454i q^{21} +(-1623.72 + 1728.72i) q^{22} -3541.78 q^{23} +(-2549.65 - 2110.61i) q^{24} +(-413.961 + 440.731i) q^{26} +2773.20i q^{27} +(4.51722 + 72.0418i) q^{28} -5208.57i q^{29} +5637.83 q^{31} +(-4684.53 - 3407.29i) q^{32} -7666.09 q^{33} +(-3501.05 - 3288.40i) q^{34} +(-182.899 - 2916.92i) q^{36} +61.9860i q^{37} +(1299.00 - 1383.00i) q^{38} -1954.44 q^{39} +16286.1 q^{41} +(-159.736 + 170.066i) q^{42} +2417.19i q^{43} +(-13390.1 + 839.594i) q^{44} +(-14603.7 - 13716.7i) q^{46} +22781.9 q^{47} +(-2338.85 - 18576.9i) q^{48} -16801.9 q^{49} -15525.6i q^{51} +(-3413.74 + 214.051i) q^{52} -13667.5i q^{53} +(-10740.1 + 11434.6i) q^{54} +(-260.379 + 314.541i) q^{56} +6132.98 q^{57} +(20171.9 - 21476.3i) q^{58} -23407.1i q^{59} +33444.7i q^{61} +(23246.3 + 21834.3i) q^{62} -206.022 q^{63} +(-6119.73 - 32191.5i) q^{64} +(-31609.3 - 29689.4i) q^{66} +66162.9i q^{67} +(-1700.37 - 27117.9i) q^{68} -64760.7i q^{69} -51421.4 q^{71} +(10542.6 - 12735.5i) q^{72} -21271.6 q^{73} +(-240.060 + 255.584i) q^{74} +(10712.2 - 671.686i) q^{76} +945.738i q^{77} +(-8058.66 - 7569.18i) q^{78} +38418.7 q^{79} -72901.2 q^{81} +(67151.7 + 63073.0i) q^{82} +93166.7i q^{83} +(-1317.27 + 82.5963i) q^{84} +(-9361.33 + 9966.69i) q^{86} +95237.5 q^{87} +(-58462.3 - 48395.4i) q^{88} -60678.0 q^{89} +241.112i q^{91} +(-7092.62 - 113115. i) q^{92} +103086. i q^{93} +(93935.8 + 88230.2i) q^{94} +(62301.5 - 85655.5i) q^{96} -157428. q^{97} +(-69278.7 - 65070.8i) q^{98} -38292.2i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + q^{4} + 33 q^{6} + 196 q^{7} + 391 q^{8} - 1620 q^{9} + 241 q^{12} - 424 q^{14} - 55 q^{16} + 3368 q^{18} - 1197 q^{22} + 7184 q^{23} + 9459 q^{24} + 9172 q^{26} + 13492 q^{28} + 7160 q^{31}+ \cdots - 164655 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.12326 + 3.87282i 0.728896 + 0.684624i
\(3\) 18.2848i 1.17297i 0.809961 + 0.586484i \(0.199488\pi\)
−0.809961 + 0.586484i \(0.800512\pi\)
\(4\) 2.00256 + 31.9373i 0.0625799 + 0.998040i
\(5\) 0 0
\(6\) −70.8136 + 75.3929i −0.803042 + 0.854972i
\(7\) 2.25573 0.0173997 0.00869984 0.999962i \(-0.497231\pi\)
0.00869984 + 0.999962i \(0.497231\pi\)
\(8\) −115.430 + 139.441i −0.637668 + 0.770311i
\(9\) −91.3327 −0.375855
\(10\) 0 0
\(11\) 419.261i 1.04473i 0.852723 + 0.522363i \(0.174950\pi\)
−0.852723 + 0.522363i \(0.825050\pi\)
\(12\) −583.966 + 36.6163i −1.17067 + 0.0734042i
\(13\) 106.889i 0.175418i 0.996146 + 0.0877090i \(0.0279546\pi\)
−0.996146 + 0.0877090i \(0.972045\pi\)
\(14\) 9.30095 + 8.73602i 0.0126826 + 0.0119122i
\(15\) 0 0
\(16\) −1015.98 + 127.912i −0.992168 + 0.124914i
\(17\) −849.098 −0.712584 −0.356292 0.934375i \(-0.615959\pi\)
−0.356292 + 0.934375i \(0.615959\pi\)
\(18\) −376.589 353.715i −0.273959 0.257319i
\(19\) 335.414i 0.213156i −0.994304 0.106578i \(-0.966011\pi\)
0.994304 0.106578i \(-0.0339894\pi\)
\(20\) 0 0
\(21\) 41.2454i 0.0204093i
\(22\) −1623.72 + 1728.72i −0.715245 + 0.761497i
\(23\) −3541.78 −1.39605 −0.698027 0.716071i \(-0.745938\pi\)
−0.698027 + 0.716071i \(0.745938\pi\)
\(24\) −2549.65 2110.61i −0.903551 0.747964i
\(25\) 0 0
\(26\) −413.961 + 440.731i −0.120095 + 0.127862i
\(27\) 2773.20i 0.732103i
\(28\) 4.51722 + 72.0418i 0.00108887 + 0.0173656i
\(29\) 5208.57i 1.15007i −0.818129 0.575034i \(-0.804989\pi\)
0.818129 0.575034i \(-0.195011\pi\)
\(30\) 0 0
\(31\) 5637.83 1.05368 0.526839 0.849965i \(-0.323377\pi\)
0.526839 + 0.849965i \(0.323377\pi\)
\(32\) −4684.53 3407.29i −0.808707 0.588212i
\(33\) −7666.09 −1.22543
\(34\) −3501.05 3288.40i −0.519400 0.487852i
\(35\) 0 0
\(36\) −182.899 2916.92i −0.0235209 0.375118i
\(37\) 61.9860i 0.00744370i 0.999993 + 0.00372185i \(0.00118470\pi\)
−0.999993 + 0.00372185i \(0.998815\pi\)
\(38\) 1299.00 1383.00i 0.145932 0.155369i
\(39\) −1954.44 −0.205760
\(40\) 0 0
\(41\) 16286.1 1.51306 0.756531 0.653958i \(-0.226893\pi\)
0.756531 + 0.653958i \(0.226893\pi\)
\(42\) −159.736 + 170.066i −0.0139727 + 0.0148762i
\(43\) 2417.19i 0.199361i 0.995020 + 0.0996803i \(0.0317820\pi\)
−0.995020 + 0.0996803i \(0.968218\pi\)
\(44\) −13390.1 + 839.594i −1.04268 + 0.0653789i
\(45\) 0 0
\(46\) −14603.7 13716.7i −1.01758 0.955772i
\(47\) 22781.9 1.50434 0.752170 0.658970i \(-0.229007\pi\)
0.752170 + 0.658970i \(0.229007\pi\)
\(48\) −2338.85 18576.9i −0.146521 1.16378i
\(49\) −16801.9 −0.999697
\(50\) 0 0
\(51\) 15525.6i 0.835838i
\(52\) −3413.74 + 214.051i −0.175074 + 0.0109776i
\(53\) 13667.5i 0.668344i −0.942512 0.334172i \(-0.891543\pi\)
0.942512 0.334172i \(-0.108457\pi\)
\(54\) −10740.1 + 11434.6i −0.501215 + 0.533627i
\(55\) 0 0
\(56\) −260.379 + 314.541i −0.0110952 + 0.0134032i
\(57\) 6132.98 0.250025
\(58\) 20171.9 21476.3i 0.787365 0.838281i
\(59\) 23407.1i 0.875423i −0.899116 0.437711i \(-0.855789\pi\)
0.899116 0.437711i \(-0.144211\pi\)
\(60\) 0 0
\(61\) 33444.7i 1.15081i 0.817869 + 0.575405i \(0.195155\pi\)
−0.817869 + 0.575405i \(0.804845\pi\)
\(62\) 23246.3 + 21834.3i 0.768022 + 0.721373i
\(63\) −206.022 −0.00653975
\(64\) −6119.73 32191.5i −0.186759 0.982406i
\(65\) 0 0
\(66\) −31609.3 29689.4i −0.893212 0.838960i
\(67\) 66162.9i 1.80064i 0.435226 + 0.900321i \(0.356668\pi\)
−0.435226 + 0.900321i \(0.643332\pi\)
\(68\) −1700.37 27117.9i −0.0445934 0.711187i
\(69\) 64760.7i 1.63753i
\(70\) 0 0
\(71\) −51421.4 −1.21059 −0.605296 0.796001i \(-0.706945\pi\)
−0.605296 + 0.796001i \(0.706945\pi\)
\(72\) 10542.6 12735.5i 0.239670 0.289525i
\(73\) −21271.6 −0.467189 −0.233595 0.972334i \(-0.575049\pi\)
−0.233595 + 0.972334i \(0.575049\pi\)
\(74\) −240.060 + 255.584i −0.00509614 + 0.00542569i
\(75\) 0 0
\(76\) 10712.2 671.686i 0.212738 0.0133393i
\(77\) 945.738i 0.0181779i
\(78\) −8058.66 7569.18i −0.149978 0.140868i
\(79\) 38418.7 0.692589 0.346294 0.938126i \(-0.387440\pi\)
0.346294 + 0.938126i \(0.387440\pi\)
\(80\) 0 0
\(81\) −72901.2 −1.23459
\(82\) 67151.7 + 63073.0i 1.10286 + 1.03588i
\(83\) 93166.7i 1.48445i 0.670151 + 0.742225i \(0.266229\pi\)
−0.670151 + 0.742225i \(0.733771\pi\)
\(84\) −1317.27 + 82.5963i −0.0203693 + 0.00127721i
\(85\) 0 0
\(86\) −9361.33 + 9966.69i −0.136487 + 0.145313i
\(87\) 95237.5 1.34899
\(88\) −58462.3 48395.4i −0.804765 0.666189i
\(89\) −60678.0 −0.812000 −0.406000 0.913873i \(-0.633077\pi\)
−0.406000 + 0.913873i \(0.633077\pi\)
\(90\) 0 0
\(91\) 241.112i 0.00305222i
\(92\) −7092.62 113115.i −0.0873649 1.39332i
\(93\) 103086.i 1.23593i
\(94\) 93935.8 + 88230.2i 1.09651 + 1.02991i
\(95\) 0 0
\(96\) 62301.5 85655.5i 0.689954 0.948587i
\(97\) −157428. −1.69884 −0.849418 0.527721i \(-0.823047\pi\)
−0.849418 + 0.527721i \(0.823047\pi\)
\(98\) −69278.7 65070.8i −0.728676 0.684417i
\(99\) 38292.2i 0.392665i
\(100\) 0 0
\(101\) 124508.i 1.21449i 0.794516 + 0.607243i \(0.207725\pi\)
−0.794516 + 0.607243i \(0.792275\pi\)
\(102\) 60127.7 64016.0i 0.572235 0.609239i
\(103\) 10346.4 0.0960938 0.0480469 0.998845i \(-0.484700\pi\)
0.0480469 + 0.998845i \(0.484700\pi\)
\(104\) −14904.7 12338.2i −0.135126 0.111858i
\(105\) 0 0
\(106\) 52931.8 56354.7i 0.457564 0.487153i
\(107\) 70765.9i 0.597537i 0.954326 + 0.298769i \(0.0965758\pi\)
−0.954326 + 0.298769i \(0.903424\pi\)
\(108\) −88568.5 + 5553.49i −0.730668 + 0.0458149i
\(109\) 128453.i 1.03557i −0.855511 0.517784i \(-0.826757\pi\)
0.855511 0.517784i \(-0.173243\pi\)
\(110\) 0 0
\(111\) −1133.40 −0.00873123
\(112\) −2291.77 + 288.535i −0.0172634 + 0.00217347i
\(113\) 115196. 0.848672 0.424336 0.905505i \(-0.360508\pi\)
0.424336 + 0.905505i \(0.360508\pi\)
\(114\) 25287.9 + 23751.9i 0.182243 + 0.171173i
\(115\) 0 0
\(116\) 166348. 10430.5i 1.14781 0.0719712i
\(117\) 9762.45i 0.0659317i
\(118\) 90651.5 96513.6i 0.599335 0.638093i
\(119\) −1915.33 −0.0123987
\(120\) 0 0
\(121\) −14728.7 −0.0914537
\(122\) −129525. + 137901.i −0.787872 + 0.838821i
\(123\) 297787.i 1.77477i
\(124\) 11290.1 + 180057.i 0.0659391 + 1.05161i
\(125\) 0 0
\(126\) −849.481 797.884i −0.00476680 0.00447727i
\(127\) −146026. −0.803378 −0.401689 0.915776i \(-0.631577\pi\)
−0.401689 + 0.915776i \(0.631577\pi\)
\(128\) 99438.5 156434.i 0.536450 0.843932i
\(129\) −44197.7 −0.233844
\(130\) 0 0
\(131\) 12998.0i 0.0661757i 0.999452 + 0.0330878i \(0.0105341\pi\)
−0.999452 + 0.0330878i \(0.989466\pi\)
\(132\) −15351.8 244834.i −0.0766873 1.22303i
\(133\) 756.603i 0.00370885i
\(134\) −256237. + 272807.i −1.23276 + 1.31248i
\(135\) 0 0
\(136\) 98011.6 118399.i 0.454392 0.548911i
\(137\) −189204. −0.861249 −0.430624 0.902531i \(-0.641707\pi\)
−0.430624 + 0.902531i \(0.641707\pi\)
\(138\) 250806. 267025.i 1.12109 1.19359i
\(139\) 44334.4i 0.194627i −0.995254 0.0973136i \(-0.968975\pi\)
0.995254 0.0973136i \(-0.0310250\pi\)
\(140\) 0 0
\(141\) 416562.i 1.76454i
\(142\) −212024. 199146.i −0.882396 0.828800i
\(143\) −44814.3 −0.183264
\(144\) 92792.2 11682.6i 0.372911 0.0469497i
\(145\) 0 0
\(146\) −87708.3 82381.0i −0.340533 0.319849i
\(147\) 307219.i 1.17261i
\(148\) −1979.66 + 124.130i −0.00742911 + 0.000465826i
\(149\) 352240.i 1.29979i 0.760024 + 0.649895i \(0.225187\pi\)
−0.760024 + 0.649895i \(0.774813\pi\)
\(150\) 0 0
\(151\) 446273. 1.59279 0.796395 0.604776i \(-0.206738\pi\)
0.796395 + 0.604776i \(0.206738\pi\)
\(152\) 46770.6 + 38717.0i 0.164197 + 0.135923i
\(153\) 77550.5 0.267828
\(154\) −3662.67 + 3899.52i −0.0124450 + 0.0132498i
\(155\) 0 0
\(156\) −3913.87 62419.4i −0.0128764 0.205356i
\(157\) 383316.i 1.24110i 0.784165 + 0.620552i \(0.213091\pi\)
−0.784165 + 0.620552i \(0.786909\pi\)
\(158\) 158410. + 148789.i 0.504825 + 0.474163i
\(159\) 249907. 0.783946
\(160\) 0 0
\(161\) −7989.29 −0.0242909
\(162\) −300591. 282333.i −0.899887 0.845229i
\(163\) 405200.i 1.19454i 0.802040 + 0.597270i \(0.203748\pi\)
−0.802040 + 0.597270i \(0.796252\pi\)
\(164\) 32613.8 + 520133.i 0.0946872 + 1.51010i
\(165\) 0 0
\(166\) −360818. + 384150.i −1.01629 + 1.08201i
\(167\) 193042. 0.535625 0.267812 0.963471i \(-0.413699\pi\)
0.267812 + 0.963471i \(0.413699\pi\)
\(168\) −5751.31 4760.97i −0.0157215 0.0130143i
\(169\) 359868. 0.969229
\(170\) 0 0
\(171\) 30634.3i 0.0801157i
\(172\) −77198.4 + 4840.55i −0.198970 + 0.0124760i
\(173\) 599397.i 1.52265i 0.648372 + 0.761323i \(0.275450\pi\)
−0.648372 + 0.761323i \(0.724550\pi\)
\(174\) 392689. + 368838.i 0.983277 + 0.923554i
\(175\) 0 0
\(176\) −53628.7 425960.i −0.130501 1.03654i
\(177\) 427994. 1.02684
\(178\) −250191. 234995.i −0.591864 0.555915i
\(179\) 421278.i 0.982736i −0.870952 0.491368i \(-0.836497\pi\)
0.870952 0.491368i \(-0.163503\pi\)
\(180\) 0 0
\(181\) 183362.i 0.416018i 0.978127 + 0.208009i \(0.0666983\pi\)
−0.978127 + 0.208009i \(0.933302\pi\)
\(182\) −933.783 + 994.168i −0.00208962 + 0.00222475i
\(183\) −611529. −1.34986
\(184\) 408829. 493871.i 0.890219 1.07540i
\(185\) 0 0
\(186\) −399235. + 425052.i −0.846148 + 0.900866i
\(187\) 355994.i 0.744455i
\(188\) 45622.1 + 727593.i 0.0941414 + 1.50139i
\(189\) 6255.58i 0.0127384i
\(190\) 0 0
\(191\) 982533. 1.94878 0.974392 0.224856i \(-0.0721912\pi\)
0.974392 + 0.224856i \(0.0721912\pi\)
\(192\) 588614. 111898.i 1.15233 0.219063i
\(193\) 164978. 0.318810 0.159405 0.987213i \(-0.449042\pi\)
0.159405 + 0.987213i \(0.449042\pi\)
\(194\) −649115. 609688.i −1.23827 1.16306i
\(195\) 0 0
\(196\) −33646.8 536607.i −0.0625609 0.997738i
\(197\) 506605.i 0.930044i 0.885299 + 0.465022i \(0.153954\pi\)
−0.885299 + 0.465022i \(0.846046\pi\)
\(198\) 148299. 157889.i 0.268828 0.286212i
\(199\) 475645. 0.851433 0.425716 0.904857i \(-0.360022\pi\)
0.425716 + 0.904857i \(0.360022\pi\)
\(200\) 0 0
\(201\) −1.20977e6 −2.11210
\(202\) −482196. + 513378.i −0.831467 + 0.885235i
\(203\) 11749.1i 0.0200108i
\(204\) 495844. 31090.8i 0.834200 0.0523066i
\(205\) 0 0
\(206\) 42660.8 + 40069.7i 0.0700425 + 0.0657882i
\(207\) 323481. 0.524714
\(208\) −13672.4 108597.i −0.0219122 0.174044i
\(209\) 140626. 0.222690
\(210\) 0 0
\(211\) 260466.i 0.402759i −0.979513 0.201379i \(-0.935458\pi\)
0.979513 0.201379i \(-0.0645424\pi\)
\(212\) 436503. 27370.0i 0.667034 0.0418249i
\(213\) 940228.i 1.41999i
\(214\) −274064. + 291786.i −0.409088 + 0.435543i
\(215\) 0 0
\(216\) −386699. 320111.i −0.563947 0.466838i
\(217\) 12717.4 0.0183337
\(218\) 497476. 529646.i 0.708975 0.754822i
\(219\) 388946.i 0.547998i
\(220\) 0 0
\(221\) 90759.2i 0.125000i
\(222\) −4673.30 4389.45i −0.00636416 0.00597761i
\(223\) −624180. −0.840519 −0.420260 0.907404i \(-0.638061\pi\)
−0.420260 + 0.907404i \(0.638061\pi\)
\(224\) −10567.0 7685.91i −0.0140712 0.0102347i
\(225\) 0 0
\(226\) 474982. + 446132.i 0.618594 + 0.581021i
\(227\) 656014.i 0.844984i −0.906367 0.422492i \(-0.861155\pi\)
0.906367 0.422492i \(-0.138845\pi\)
\(228\) 12281.6 + 195871.i 0.0156466 + 0.249535i
\(229\) 807777.i 1.01790i 0.860798 + 0.508948i \(0.169965\pi\)
−0.860798 + 0.508948i \(0.830035\pi\)
\(230\) 0 0
\(231\) −17292.6 −0.0213221
\(232\) 726290. + 601227.i 0.885911 + 0.733362i
\(233\) 1.30452e6 1.57421 0.787103 0.616822i \(-0.211580\pi\)
0.787103 + 0.616822i \(0.211580\pi\)
\(234\) 37808.2 40253.1i 0.0451384 0.0480574i
\(235\) 0 0
\(236\) 747560. 46874.1i 0.873707 0.0547839i
\(237\) 702478.i 0.812385i
\(238\) −7897.42 7417.74i −0.00903739 0.00848847i
\(239\) −1.21861e6 −1.37997 −0.689985 0.723824i \(-0.742383\pi\)
−0.689985 + 0.723824i \(0.742383\pi\)
\(240\) 0 0
\(241\) −983578. −1.09085 −0.545426 0.838159i \(-0.683632\pi\)
−0.545426 + 0.838159i \(0.683632\pi\)
\(242\) −60730.3 57041.6i −0.0666603 0.0626114i
\(243\) 659093.i 0.716030i
\(244\) −1.06813e6 + 66975.0i −1.14855 + 0.0720175i
\(245\) 0 0
\(246\) −1.15327e6 + 1.22785e6i −1.21505 + 1.29363i
\(247\) 35852.1 0.0373914
\(248\) −650776. + 786147.i −0.671897 + 0.811660i
\(249\) −1.70353e6 −1.74121
\(250\) 0 0
\(251\) 1.60324e6i 1.60625i −0.595809 0.803126i \(-0.703168\pi\)
0.595809 0.803126i \(-0.296832\pi\)
\(252\) −412.570 6579.77i −0.000409257 0.00652693i
\(253\) 1.48493e6i 1.45849i
\(254\) −602102. 565531.i −0.585579 0.550012i
\(255\) 0 0
\(256\) 1.01585e6 259913.i 0.968793 0.247872i
\(257\) −1.07709e6 −1.01723 −0.508617 0.860993i \(-0.669843\pi\)
−0.508617 + 0.860993i \(0.669843\pi\)
\(258\) −182239. 171170.i −0.170448 0.160095i
\(259\) 139.823i 0.000129518i
\(260\) 0 0
\(261\) 475713.i 0.432259i
\(262\) −50338.9 + 53594.2i −0.0453055 + 0.0482352i
\(263\) 812889. 0.724673 0.362336 0.932047i \(-0.381979\pi\)
0.362336 + 0.932047i \(0.381979\pi\)
\(264\) 884898. 1.06897e6i 0.781418 0.943964i
\(265\) 0 0
\(266\) 2930.19 3119.67i 0.00253917 0.00270337i
\(267\) 1.10948e6i 0.952451i
\(268\) −2.11306e6 + 132495.i −1.79711 + 0.112684i
\(269\) 113957.i 0.0960201i −0.998847 0.0480101i \(-0.984712\pi\)
0.998847 0.0480101i \(-0.0152880\pi\)
\(270\) 0 0
\(271\) 372728. 0.308297 0.154148 0.988048i \(-0.450737\pi\)
0.154148 + 0.988048i \(0.450737\pi\)
\(272\) 862667. 108610.i 0.707002 0.0890120i
\(273\) −4408.68 −0.00358015
\(274\) −780137. 732752.i −0.627761 0.589632i
\(275\) 0 0
\(276\) 2.06828e6 129687.i 1.63432 0.102476i
\(277\) 914263.i 0.715932i 0.933735 + 0.357966i \(0.116530\pi\)
−0.933735 + 0.357966i \(0.883470\pi\)
\(278\) 171699. 182802.i 0.133247 0.141863i
\(279\) −514918. −0.396030
\(280\) 0 0
\(281\) −511184. −0.386199 −0.193100 0.981179i \(-0.561854\pi\)
−0.193100 + 0.981179i \(0.561854\pi\)
\(282\) −1.61327e6 + 1.71759e6i −1.20805 + 1.28617i
\(283\) 533078.i 0.395662i −0.980236 0.197831i \(-0.936610\pi\)
0.980236 0.197831i \(-0.0633897\pi\)
\(284\) −102974. 1.64226e6i −0.0757587 1.20822i
\(285\) 0 0
\(286\) −184781. 173558.i −0.133580 0.125467i
\(287\) 36736.9 0.0263268
\(288\) 427851. + 311197.i 0.303956 + 0.221082i
\(289\) −698889. −0.492225
\(290\) 0 0
\(291\) 2.87853e6i 1.99268i
\(292\) −42597.6 679357.i −0.0292366 0.466273i
\(293\) 2.54648e6i 1.73289i −0.499273 0.866445i \(-0.666400\pi\)
0.499273 0.866445i \(-0.333600\pi\)
\(294\) 1.18980e6 1.26674e6i 0.802799 0.854714i
\(295\) 0 0
\(296\) −8643.40 7155.05i −0.00573397 0.00474661i
\(297\) −1.16269e6 −0.764847
\(298\) −1.36416e6 + 1.45238e6i −0.889868 + 0.947412i
\(299\) 378577.i 0.244893i
\(300\) 0 0
\(301\) 5452.51i 0.00346881i
\(302\) 1.84010e6 + 1.72834e6i 1.16098 + 1.09046i
\(303\) −2.27659e6 −1.42455
\(304\) 42903.7 + 340774.i 0.0266263 + 0.211487i
\(305\) 0 0
\(306\) 319761. + 300339.i 0.195219 + 0.183361i
\(307\) 740673.i 0.448518i 0.974530 + 0.224259i \(0.0719962\pi\)
−0.974530 + 0.224259i \(0.928004\pi\)
\(308\) −30204.3 + 1893.89i −0.0181423 + 0.00113757i
\(309\) 189181.i 0.112715i
\(310\) 0 0
\(311\) 1.08876e6 0.638310 0.319155 0.947702i \(-0.396601\pi\)
0.319155 + 0.947702i \(0.396601\pi\)
\(312\) 225601. 272529.i 0.131206 0.158499i
\(313\) −1.08277e6 −0.624705 −0.312353 0.949966i \(-0.601117\pi\)
−0.312353 + 0.949966i \(0.601117\pi\)
\(314\) −1.48451e6 + 1.58051e6i −0.849690 + 0.904636i
\(315\) 0 0
\(316\) 76935.7 + 1.22699e6i 0.0433421 + 0.691231i
\(317\) 2.93243e6i 1.63900i −0.573078 0.819501i \(-0.694251\pi\)
0.573078 0.819501i \(-0.305749\pi\)
\(318\) 1.03043e6 + 967845.i 0.571415 + 0.536708i
\(319\) 2.18375e6 1.20151
\(320\) 0 0
\(321\) −1.29394e6 −0.700892
\(322\) −32941.9 30941.1i −0.0177055 0.0166301i
\(323\) 284800.i 0.151892i
\(324\) −145989. 2.32827e6i −0.0772604 1.23217i
\(325\) 0 0
\(326\) −1.56927e6 + 1.67075e6i −0.817811 + 0.870696i
\(327\) 2.34874e6 1.21469
\(328\) −1.87990e6 + 2.27095e6i −0.964831 + 1.16553i
\(329\) 51389.8 0.0261750
\(330\) 0 0
\(331\) 357214.i 0.179209i −0.995977 0.0896043i \(-0.971440\pi\)
0.995977 0.0896043i \(-0.0285602\pi\)
\(332\) −2.97549e6 + 186572.i −1.48154 + 0.0928967i
\(333\) 5661.34i 0.00279775i
\(334\) 795963. + 747617.i 0.390415 + 0.366702i
\(335\) 0 0
\(336\) −5275.80 41904.5i −0.00254941 0.0202494i
\(337\) −1.45195e6 −0.696429 −0.348215 0.937415i \(-0.613212\pi\)
−0.348215 + 0.937415i \(0.613212\pi\)
\(338\) 1.48383e6 + 1.39370e6i 0.706467 + 0.663557i
\(339\) 2.10633e6i 0.995465i
\(340\) 0 0
\(341\) 2.36372e6i 1.10081i
\(342\) −118641. + 126313.i −0.0548492 + 0.0583961i
\(343\) −75812.5 −0.0347941
\(344\) −337056. 279016.i −0.153570 0.127126i
\(345\) 0 0
\(346\) −2.32135e6 + 2.47147e6i −1.04244 + 1.10985i
\(347\) 393735.i 0.175541i 0.996141 + 0.0877707i \(0.0279743\pi\)
−0.996141 + 0.0877707i \(0.972026\pi\)
\(348\) 190719. + 3.04163e6i 0.0844199 + 1.34635i
\(349\) 1.73875e6i 0.764140i 0.924133 + 0.382070i \(0.124789\pi\)
−0.924133 + 0.382070i \(0.875211\pi\)
\(350\) 0 0
\(351\) −296424. −0.128424
\(352\) 1.42854e6 1.96404e6i 0.614521 0.844877i
\(353\) 2.05124e6 0.876154 0.438077 0.898937i \(-0.355660\pi\)
0.438077 + 0.898937i \(0.355660\pi\)
\(354\) 1.76473e6 + 1.65754e6i 0.748462 + 0.703002i
\(355\) 0 0
\(356\) −121511. 1.93789e6i −0.0508149 0.810409i
\(357\) 35021.4i 0.0145433i
\(358\) 1.63153e6 1.73704e6i 0.672804 0.716312i
\(359\) 3.56728e6 1.46084 0.730418 0.683000i \(-0.239325\pi\)
0.730418 + 0.683000i \(0.239325\pi\)
\(360\) 0 0
\(361\) 2.36360e6 0.954564
\(362\) −710126. + 756048.i −0.284816 + 0.303234i
\(363\) 269311.i 0.107272i
\(364\) −7700.46 + 482.840i −0.00304623 + 0.000191007i
\(365\) 0 0
\(366\) −2.52149e6 2.36834e6i −0.983910 0.924148i
\(367\) 3.72721e6 1.44450 0.722251 0.691631i \(-0.243107\pi\)
0.722251 + 0.691631i \(0.243107\pi\)
\(368\) 3.59838e6 453038.i 1.38512 0.174387i
\(369\) −1.48745e6 −0.568691
\(370\) 0 0
\(371\) 30830.2i 0.0116290i
\(372\) −3.29230e6 + 206436.i −1.23351 + 0.0773444i
\(373\) 1.71134e6i 0.636891i −0.947941 0.318446i \(-0.896839\pi\)
0.947941 0.318446i \(-0.103161\pi\)
\(374\) 1.37870e6 1.46786e6i 0.509672 0.542631i
\(375\) 0 0
\(376\) −2.62972e6 + 3.17674e6i −0.959269 + 1.15881i
\(377\) 556738. 0.201743
\(378\) −24226.7 + 25793.4i −0.00872098 + 0.00928494i
\(379\) 3.60174e6i 1.28799i 0.765028 + 0.643997i \(0.222725\pi\)
−0.765028 + 0.643997i \(0.777275\pi\)
\(380\) 0 0
\(381\) 2.67005e6i 0.942337i
\(382\) 4.05124e6 + 3.80517e6i 1.42046 + 1.33418i
\(383\) 3.80875e6 1.32674 0.663369 0.748293i \(-0.269126\pi\)
0.663369 + 0.748293i \(0.269126\pi\)
\(384\) 2.86037e6 + 1.81821e6i 0.989905 + 0.629239i
\(385\) 0 0
\(386\) 680246. + 638929.i 0.232379 + 0.218265i
\(387\) 220768.i 0.0749306i
\(388\) −315257. 5.02781e6i −0.106313 1.69551i
\(389\) 431800.i 0.144680i 0.997380 + 0.0723401i \(0.0230467\pi\)
−0.997380 + 0.0723401i \(0.976953\pi\)
\(390\) 0 0
\(391\) 3.00732e6 0.994805
\(392\) 1.93945e6 2.34288e6i 0.637475 0.770078i
\(393\) −237665. −0.0776220
\(394\) −1.96199e6 + 2.08886e6i −0.636731 + 0.677906i
\(395\) 0 0
\(396\) 1.22295e6 76682.3i 0.391896 0.0245730i
\(397\) 2.28465e6i 0.727518i −0.931493 0.363759i \(-0.881493\pi\)
0.931493 0.363759i \(-0.118507\pi\)
\(398\) 1.96121e6 + 1.84209e6i 0.620606 + 0.582911i
\(399\) 13834.3 0.00435036
\(400\) 0 0
\(401\) 1.63473e6 0.507674 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(402\) −4.98821e6 4.68523e6i −1.53950 1.44599i
\(403\) 602621.i 0.184834i
\(404\) −3.97644e6 + 249334.i −1.21211 + 0.0760024i
\(405\) 0 0
\(406\) 45502.2 48444.7i 0.0136999 0.0145858i
\(407\) −25988.3 −0.00777663
\(408\) 2.16490e6 + 1.79212e6i 0.643855 + 0.532987i
\(409\) 5.21834e6 1.54250 0.771248 0.636534i \(-0.219633\pi\)
0.771248 + 0.636534i \(0.219633\pi\)
\(410\) 0 0
\(411\) 3.45955e6i 1.01022i
\(412\) 20719.2 + 330435.i 0.00601354 + 0.0959055i
\(413\) 52800.0i 0.0152321i
\(414\) 1.33379e6 + 1.25278e6i 0.382462 + 0.359231i
\(415\) 0 0
\(416\) 364201. 500724.i 0.103183 0.141862i
\(417\) 810644. 0.228292
\(418\) 579838. + 544620.i 0.162318 + 0.152459i
\(419\) 666477.i 0.185460i −0.995691 0.0927299i \(-0.970441\pi\)
0.995691 0.0927299i \(-0.0295593\pi\)
\(420\) 0 0
\(421\) 6.82007e6i 1.87536i 0.347504 + 0.937678i \(0.387029\pi\)
−0.347504 + 0.937678i \(0.612971\pi\)
\(422\) 1.00874e6 1.07397e6i 0.275738 0.293569i
\(423\) −2.08073e6 −0.565413
\(424\) 1.90581e6 + 1.57764e6i 0.514833 + 0.426181i
\(425\) 0 0
\(426\) 3.64133e6 3.87680e6i 0.972156 1.03502i
\(427\) 75442.2i 0.0200237i
\(428\) −2.26007e6 + 141713.i −0.596366 + 0.0373938i
\(429\) 819419.i 0.214963i
\(430\) 0 0
\(431\) −1.38707e6 −0.359671 −0.179836 0.983697i \(-0.557557\pi\)
−0.179836 + 0.983697i \(0.557557\pi\)
\(432\) −354727. 2.81752e6i −0.0914502 0.726368i
\(433\) −1.33169e6 −0.341336 −0.170668 0.985329i \(-0.554593\pi\)
−0.170668 + 0.985329i \(0.554593\pi\)
\(434\) 52437.2 + 49252.2i 0.0133633 + 0.0125517i
\(435\) 0 0
\(436\) 4.10245e6 257235.i 1.03354 0.0648058i
\(437\) 1.18797e6i 0.297577i
\(438\) 1.50632e6 1.60373e6i 0.375173 0.399434i
\(439\) −2.78241e6 −0.689064 −0.344532 0.938775i \(-0.611962\pi\)
−0.344532 + 0.938775i \(0.611962\pi\)
\(440\) 0 0
\(441\) 1.53456e6 0.375741
\(442\) 351494. 374224.i 0.0855780 0.0911120i
\(443\) 4.63595e6i 1.12235i 0.827696 + 0.561177i \(0.189651\pi\)
−0.827696 + 0.561177i \(0.810349\pi\)
\(444\) −2269.69 36197.7i −0.000546399 0.00871411i
\(445\) 0 0
\(446\) −2.57366e6 2.41734e6i −0.612651 0.575440i
\(447\) −6.44063e6 −1.52461
\(448\) −13804.4 72615.1i −0.00324955 0.0170935i
\(449\) 1.18197e6 0.276688 0.138344 0.990384i \(-0.455822\pi\)
0.138344 + 0.990384i \(0.455822\pi\)
\(450\) 0 0
\(451\) 6.82811e6i 1.58074i
\(452\) 230686. + 3.67903e6i 0.0531098 + 0.847009i
\(453\) 8.16001e6i 1.86829i
\(454\) 2.54062e6 2.70492e6i 0.578496 0.615906i
\(455\) 0 0
\(456\) −707931. + 855190.i −0.159433 + 0.192597i
\(457\) −1.55240e6 −0.347708 −0.173854 0.984771i \(-0.555622\pi\)
−0.173854 + 0.984771i \(0.555622\pi\)
\(458\) −3.12838e6 + 3.33068e6i −0.696875 + 0.741940i
\(459\) 2.35472e6i 0.521684i
\(460\) 0 0
\(461\) 7.43437e6i 1.62926i −0.579978 0.814632i \(-0.696939\pi\)
0.579978 0.814632i \(-0.303061\pi\)
\(462\) −71301.9 66971.1i −0.0155416 0.0145976i
\(463\) −20179.5 −0.00437480 −0.00218740 0.999998i \(-0.500696\pi\)
−0.00218740 + 0.999998i \(0.500696\pi\)
\(464\) 666241. + 5.29180e6i 0.143660 + 1.14106i
\(465\) 0 0
\(466\) 5.37888e6 + 5.05218e6i 1.14743 + 1.07774i
\(467\) 3.58698e6i 0.761092i −0.924762 0.380546i \(-0.875736\pi\)
0.924762 0.380546i \(-0.124264\pi\)
\(468\) 311786. 19549.8i 0.0658024 0.00412600i
\(469\) 149245.i 0.0313306i
\(470\) 0 0
\(471\) −7.00885e6 −1.45578
\(472\) 3.26392e6 + 2.70189e6i 0.674348 + 0.558229i
\(473\) −1.01343e6 −0.208277
\(474\) −2.72057e6 + 2.89650e6i −0.556178 + 0.592144i
\(475\) 0 0
\(476\) −3835.56 61170.5i −0.000775911 0.0123744i
\(477\) 1.24829e6i 0.251200i
\(478\) −5.02464e6 4.71945e6i −1.00585 0.944760i
\(479\) 183482. 0.0365388 0.0182694 0.999833i \(-0.494184\pi\)
0.0182694 + 0.999833i \(0.494184\pi\)
\(480\) 0 0
\(481\) −6625.61 −0.00130576
\(482\) −4.05555e6 3.80922e6i −0.795119 0.746824i
\(483\) 146082.i 0.0284925i
\(484\) −29495.1 470395.i −0.00572316 0.0912744i
\(485\) 0 0
\(486\) 2.55255e6 2.71761e6i 0.490211 0.521912i
\(487\) −6.68968e6 −1.27815 −0.639077 0.769143i \(-0.720683\pi\)
−0.639077 + 0.769143i \(0.720683\pi\)
\(488\) −4.66358e6 3.86053e6i −0.886481 0.733834i
\(489\) −7.40899e6 −1.40116
\(490\) 0 0
\(491\) 9.90038e6i 1.85331i 0.375913 + 0.926655i \(0.377329\pi\)
−0.375913 + 0.926655i \(0.622671\pi\)
\(492\) −9.51050e6 + 596335.i −1.77129 + 0.111065i
\(493\) 4.42259e6i 0.819520i
\(494\) 147827. + 138849.i 0.0272545 + 0.0255991i
\(495\) 0 0
\(496\) −5.72792e6 + 721149.i −1.04543 + 0.131620i
\(497\) −115993. −0.0210639
\(498\) −7.02410e6 6.59747e6i −1.26916 1.19208i
\(499\) 5.95907e6i 1.07134i −0.844428 0.535670i \(-0.820059\pi\)
0.844428 0.535670i \(-0.179941\pi\)
\(500\) 0 0
\(501\) 3.52973e6i 0.628271i
\(502\) 6.20905e6 6.61057e6i 1.09968 1.17079i
\(503\) 3.69353e6 0.650910 0.325455 0.945557i \(-0.394482\pi\)
0.325455 + 0.945557i \(0.394482\pi\)
\(504\) 23781.1 28727.9i 0.00417019 0.00503765i
\(505\) 0 0
\(506\) 5.75087e6 6.12276e6i 0.998521 1.06309i
\(507\) 6.58010e6i 1.13687i
\(508\) −292425. 4.66366e6i −0.0502753 0.801803i
\(509\) 7.94222e6i 1.35877i −0.733780 0.679387i \(-0.762246\pi\)
0.733780 0.679387i \(-0.237754\pi\)
\(510\) 0 0
\(511\) −47982.9 −0.00812894
\(512\) 5.19522e6 + 2.86253e6i 0.875849 + 0.482586i
\(513\) 930172. 0.156052
\(514\) −4.44114e6 4.17139e6i −0.741458 0.696423i
\(515\) 0 0
\(516\) −88508.4 1.41155e6i −0.0146339 0.233385i
\(517\) 9.55157e6i 1.57162i
\(518\) −541.510 + 576.528i −8.86712e−5 + 9.44052e-5i
\(519\) −1.09598e7 −1.78602
\(520\) 0 0
\(521\) −1.06312e7 −1.71588 −0.857940 0.513749i \(-0.828256\pi\)
−0.857940 + 0.513749i \(0.828256\pi\)
\(522\) −1.84235e6 + 1.96149e6i −0.295935 + 0.315072i
\(523\) 3.13913e6i 0.501828i −0.968009 0.250914i \(-0.919269\pi\)
0.968009 0.250914i \(-0.0807312\pi\)
\(524\) −415121. + 26029.2i −0.0660460 + 0.00414127i
\(525\) 0 0
\(526\) 3.35175e6 + 3.14817e6i 0.528211 + 0.496128i
\(527\) −4.78708e6 −0.750834
\(528\) 7.78859e6 980588.i 1.21583 0.153074i
\(529\) 6.10788e6 0.948967
\(530\) 0 0
\(531\) 2.13783e6i 0.329032i
\(532\) 24163.8 1515.14i 0.00370158 0.000232099i
\(533\) 1.74080e6i 0.265418i
\(534\) 4.29683e6 4.57469e6i 0.652071 0.694238i
\(535\) 0 0
\(536\) −9.22584e6 7.63720e6i −1.38706 1.14821i
\(537\) 7.70298e6 1.15272
\(538\) 441337. 469876.i 0.0657377 0.0699887i
\(539\) 7.04438e6i 1.04441i
\(540\) 0 0
\(541\) 1.20044e7i 1.76339i −0.471821 0.881694i \(-0.656403\pi\)
0.471821 0.881694i \(-0.343597\pi\)
\(542\) 1.53686e6 + 1.44351e6i 0.224716 + 0.211067i
\(543\) −3.35273e6 −0.487976
\(544\) 3.97763e6 + 2.89312e6i 0.576271 + 0.419150i
\(545\) 0 0
\(546\) −18178.1 17074.0i −0.00260956 0.00245106i
\(547\) 9.93035e6i 1.41905i 0.704682 + 0.709523i \(0.251090\pi\)
−0.704682 + 0.709523i \(0.748910\pi\)
\(548\) −378891. 6.04266e6i −0.0538969 0.859561i
\(549\) 3.05460e6i 0.432537i
\(550\) 0 0
\(551\) −1.74703e6 −0.245144
\(552\) 9.03031e6 + 7.47534e6i 1.26141 + 1.04420i
\(553\) 86662.2 0.0120508
\(554\) −3.54077e6 + 3.76974e6i −0.490144 + 0.521840i
\(555\) 0 0
\(556\) 1.41592e6 88782.1i 0.194246 0.0121798i
\(557\) 8.72764e6i 1.19195i −0.803002 0.595976i \(-0.796765\pi\)
0.803002 0.595976i \(-0.203235\pi\)
\(558\) −2.12314e6 1.99419e6i −0.288665 0.271132i
\(559\) −258370. −0.0349714
\(560\) 0 0
\(561\) 6.50926e6 0.873222
\(562\) −2.10774e6 1.97972e6i −0.281499 0.264401i
\(563\) 2.13884e6i 0.284386i −0.989839 0.142193i \(-0.954585\pi\)
0.989839 0.142193i \(-0.0454154\pi\)
\(564\) −1.33039e7 + 834189.i −1.76108 + 0.110425i
\(565\) 0 0
\(566\) 2.06451e6 2.19802e6i 0.270880 0.288397i
\(567\) −164445. −0.0214814
\(568\) 5.93558e6 7.17026e6i 0.771956 0.932533i
\(569\) 2.98366e6 0.386339 0.193169 0.981165i \(-0.438123\pi\)
0.193169 + 0.981165i \(0.438123\pi\)
\(570\) 0 0
\(571\) 8.50264e6i 1.09135i 0.837997 + 0.545674i \(0.183726\pi\)
−0.837997 + 0.545674i \(0.816274\pi\)
\(572\) −89743.2 1.43125e6i −0.0114686 0.182905i
\(573\) 1.79654e7i 2.28586i
\(574\) 151476. + 142275.i 0.0191895 + 0.0180239i
\(575\) 0 0
\(576\) 558931. + 2.94013e6i 0.0701944 + 0.369242i
\(577\) 1.55926e7 1.94975 0.974874 0.222756i \(-0.0715054\pi\)
0.974874 + 0.222756i \(0.0715054\pi\)
\(578\) −2.88170e6 2.70667e6i −0.358781 0.336989i
\(579\) 3.01658e6i 0.373954i
\(580\) 0 0
\(581\) 210159.i 0.0258289i
\(582\) 1.11480e7 1.18689e7i 1.36424 1.45246i
\(583\) 5.73025e6 0.698236
\(584\) 2.45538e6 2.96614e6i 0.297912 0.359881i
\(585\) 0 0
\(586\) 9.86205e6 1.04998e7i 1.18638 1.26310i
\(587\) 1.01432e7i 1.21501i −0.794314 0.607507i \(-0.792170\pi\)
0.794314 0.607507i \(-0.207830\pi\)
\(588\) 9.81174e6 615223.i 1.17031 0.0733820i
\(589\) 1.89101e6i 0.224598i
\(590\) 0 0
\(591\) −9.26315e6 −1.09091
\(592\) −7928.77 62976.5i −0.000929826 0.00738540i
\(593\) −1.44098e7 −1.68276 −0.841381 0.540442i \(-0.818257\pi\)
−0.841381 + 0.540442i \(0.818257\pi\)
\(594\) −4.79409e6 4.50291e6i −0.557494 0.523633i
\(595\) 0 0
\(596\) −1.12496e7 + 705381.i −1.29724 + 0.0813407i
\(597\) 8.69706e6i 0.998704i
\(598\) 1.46616e6 1.56097e6i 0.167660 0.178502i
\(599\) −3.13415e6 −0.356905 −0.178452 0.983949i \(-0.557109\pi\)
−0.178452 + 0.983949i \(0.557109\pi\)
\(600\) 0 0
\(601\) 1.57244e7 1.77578 0.887889 0.460058i \(-0.152171\pi\)
0.887889 + 0.460058i \(0.152171\pi\)
\(602\) −21116.6 + 22482.1i −0.00237483 + 0.00252840i
\(603\) 6.04283e6i 0.676780i
\(604\) 893688. + 1.42528e7i 0.0996766 + 1.58967i
\(605\) 0 0
\(606\) −9.38699e6 8.81683e6i −1.03835 0.975284i
\(607\) 1.03887e7 1.14443 0.572217 0.820102i \(-0.306083\pi\)
0.572217 + 0.820102i \(0.306083\pi\)
\(608\) −1.14285e6 + 1.57126e6i −0.125381 + 0.172381i
\(609\) 214830. 0.0234721
\(610\) 0 0
\(611\) 2.43513e6i 0.263888i
\(612\) 155299. + 2.47675e6i 0.0167606 + 0.267303i
\(613\) 1.46355e7i 1.57310i −0.617525 0.786551i \(-0.711865\pi\)
0.617525 0.786551i \(-0.288135\pi\)
\(614\) −2.86849e6 + 3.05399e6i −0.307067 + 0.326923i
\(615\) 0 0
\(616\) −131875. 109167.i −0.0140027 0.0115915i
\(617\) 6.06227e6 0.641095 0.320547 0.947233i \(-0.396133\pi\)
0.320547 + 0.947233i \(0.396133\pi\)
\(618\) −732665. + 780044.i −0.0771674 + 0.0821576i
\(619\) 888836.i 0.0932384i −0.998913 0.0466192i \(-0.985155\pi\)
0.998913 0.0466192i \(-0.0148447\pi\)
\(620\) 0 0
\(621\) 9.82207e6i 1.02205i
\(622\) 4.48925e6 + 4.21658e6i 0.465262 + 0.437003i
\(623\) −136873. −0.0141285
\(624\) 1.98567e6 249997.i 0.204148 0.0257024i
\(625\) 0 0
\(626\) −4.46454e6 4.19337e6i −0.455346 0.427688i
\(627\) 2.57132e6i 0.261208i
\(628\) −1.22421e7 + 767613.i −1.23867 + 0.0776682i
\(629\) 52632.2i 0.00530426i
\(630\) 0 0
\(631\) 5.86047e6 0.585948 0.292974 0.956120i \(-0.405355\pi\)
0.292974 + 0.956120i \(0.405355\pi\)
\(632\) −4.43468e6 + 5.35716e6i −0.441642 + 0.533509i
\(633\) 4.76256e6 0.472423
\(634\) 1.13568e7 1.20912e7i 1.12210 1.19466i
\(635\) 0 0
\(636\) 500453. + 7.98136e6i 0.0490592 + 0.782409i
\(637\) 1.79594e6i 0.175365i
\(638\) 9.00418e6 + 8.45727e6i 0.875774 + 0.822581i
\(639\) 4.69645e6 0.455007
\(640\) 0 0
\(641\) 6.88679e6 0.662021 0.331011 0.943627i \(-0.392610\pi\)
0.331011 + 0.943627i \(0.392610\pi\)
\(642\) −5.33525e6 5.01119e6i −0.510878 0.479848i
\(643\) 7.66403e6i 0.731021i 0.930807 + 0.365510i \(0.119106\pi\)
−0.930807 + 0.365510i \(0.880894\pi\)
\(644\) −15999.0 255156.i −0.00152012 0.0242433i
\(645\) 0 0
\(646\) −1.10298e6 + 1.17430e6i −0.103989 + 0.110713i
\(647\) −3.93185e6 −0.369263 −0.184631 0.982808i \(-0.559109\pi\)
−0.184631 + 0.982808i \(0.559109\pi\)
\(648\) 8.41500e6 1.01654e7i 0.787257 0.951017i
\(649\) 9.81369e6 0.914577
\(650\) 0 0
\(651\) 232535.i 0.0215048i
\(652\) −1.29410e7 + 811436.i −1.19220 + 0.0747542i
\(653\) 5.55582e6i 0.509876i 0.966957 + 0.254938i \(0.0820551\pi\)
−0.966957 + 0.254938i \(0.917945\pi\)
\(654\) 9.68446e6 + 9.09623e6i 0.885382 + 0.831605i
\(655\) 0 0
\(656\) −1.65463e7 + 2.08319e6i −1.50121 + 0.189003i
\(657\) 1.94279e6 0.175595
\(658\) 211893. + 199023.i 0.0190789 + 0.0179200i
\(659\) 2.17299e6i 0.194914i −0.995240 0.0974572i \(-0.968929\pi\)
0.995240 0.0974572i \(-0.0310709\pi\)
\(660\) 0 0
\(661\) 6.93458e6i 0.617329i 0.951171 + 0.308665i \(0.0998821\pi\)
−0.951171 + 0.308665i \(0.900118\pi\)
\(662\) 1.38343e6 1.47289e6i 0.122691 0.130625i
\(663\) 1.65951e6 0.146621
\(664\) −1.29913e7 1.07542e7i −1.14349 0.946586i
\(665\) 0 0
\(666\) 21925.4 23343.2i 0.00191541 0.00203927i
\(667\) 1.84476e7i 1.60556i
\(668\) 386578. + 6.16524e6i 0.0335193 + 0.534575i
\(669\) 1.14130e7i 0.985902i
\(670\) 0 0
\(671\) −1.40221e7 −1.20228
\(672\) 140535. 193215.i 0.0120050 0.0165051i
\(673\) −7.72402e6 −0.657364 −0.328682 0.944441i \(-0.606604\pi\)
−0.328682 + 0.944441i \(0.606604\pi\)
\(674\) −5.98677e6 5.62314e6i −0.507625 0.476792i
\(675\) 0 0
\(676\) 720655. + 1.14932e7i 0.0606542 + 0.967329i
\(677\) 1.38586e7i 1.16211i −0.813865 0.581054i \(-0.802640\pi\)
0.813865 0.581054i \(-0.197360\pi\)
\(678\) −8.15742e6 + 8.68493e6i −0.681520 + 0.725591i
\(679\) −355113. −0.0295592
\(680\) 0 0
\(681\) 1.19951e7 0.991139
\(682\) −9.15427e6 + 9.74625e6i −0.753638 + 0.802373i
\(683\) 778871.i 0.0638872i −0.999490 0.0319436i \(-0.989830\pi\)
0.999490 0.0319436i \(-0.0101697\pi\)
\(684\) −978377. + 61346.9i −0.0799587 + 0.00501363i
\(685\) 0 0
\(686\) −312595. 293608.i −0.0253613 0.0238209i
\(687\) −1.47700e7 −1.19396
\(688\) −309188. 2.45581e6i −0.0249030 0.197799i
\(689\) 1.46090e6 0.117239
\(690\) 0 0
\(691\) 6.98899e6i 0.556826i 0.960461 + 0.278413i \(0.0898084\pi\)
−0.960461 + 0.278413i \(0.910192\pi\)
\(692\) −1.91431e7 + 1.20033e6i −1.51966 + 0.0952871i
\(693\) 86376.8i 0.00683225i
\(694\) −1.52486e6 + 1.62347e6i −0.120180 + 0.127952i
\(695\) 0 0
\(696\) −1.09933e7 + 1.32800e7i −0.860210 + 1.03915i
\(697\) −1.38285e7 −1.07818
\(698\) −6.73386e6 + 7.16931e6i −0.523149 + 0.556979i
\(699\) 2.38529e7i 1.84649i
\(700\) 0 0
\(701\) 4.14587e6i 0.318655i −0.987226 0.159328i \(-0.949067\pi\)
0.987226 0.159328i \(-0.0509326\pi\)
\(702\) −1.22223e6 1.14800e6i −0.0936077 0.0879221i
\(703\) 20791.0 0.00158667
\(704\) 1.34966e7 2.56576e6i 1.02635 0.195112i
\(705\) 0 0
\(706\) 8.45781e6 + 7.94410e6i 0.638626 + 0.599836i
\(707\) 280855.i 0.0211317i
\(708\) 857081. + 1.36690e7i 0.0642597 + 1.02483i
\(709\) 1.52511e7i 1.13943i 0.821843 + 0.569714i \(0.192946\pi\)
−0.821843 + 0.569714i \(0.807054\pi\)
\(710\) 0 0
\(711\) −3.50889e6 −0.260313
\(712\) 7.00407e6 8.46102e6i 0.517787 0.625493i
\(713\) −1.99680e7 −1.47099
\(714\) 135632. 144402.i 0.00995670 0.0106006i
\(715\) 0 0
\(716\) 1.34545e7 843634.i 0.980809 0.0614995i
\(717\) 2.22820e7i 1.61866i
\(718\) 1.47088e7 + 1.38154e7i 1.06480 + 1.00012i
\(719\) −1.60151e6 −0.115534 −0.0577668 0.998330i \(-0.518398\pi\)
−0.0577668 + 0.998330i \(0.518398\pi\)
\(720\) 0 0
\(721\) 23338.6 0.00167200
\(722\) 9.74572e6 + 9.15378e6i 0.695779 + 0.653518i
\(723\) 1.79845e7i 1.27954i
\(724\) −5.85607e6 + 367192.i −0.415203 + 0.0260344i
\(725\) 0 0
\(726\) 1.04299e6 1.11044e6i 0.0734412 0.0781904i
\(727\) 6.15453e6 0.431876 0.215938 0.976407i \(-0.430719\pi\)
0.215938 + 0.976407i \(0.430719\pi\)
\(728\) −33621.0 27831.6i −0.00235116 0.00194630i
\(729\) −5.66362e6 −0.394708
\(730\) 0 0
\(731\) 2.05243e6i 0.142061i
\(732\) −1.22462e6 1.95306e7i −0.0844742 1.34722i
\(733\) 7.15476e6i 0.491853i 0.969289 + 0.245926i \(0.0790921\pi\)
−0.969289 + 0.245926i \(0.920908\pi\)
\(734\) 1.53682e7 + 1.44348e7i 1.05289 + 0.988941i
\(735\) 0 0
\(736\) 1.65916e7 + 1.20679e7i 1.12900 + 0.821176i
\(737\) −2.77395e7 −1.88118
\(738\) −6.13314e6 5.76062e6i −0.414517 0.389340i
\(739\) 2.74026e7i 1.84578i 0.385063 + 0.922890i \(0.374180\pi\)
−0.385063 + 0.922890i \(0.625820\pi\)
\(740\) 0 0
\(741\) 655547.i 0.0438589i
\(742\) 119400. 127121.i 0.00796147 0.00847631i
\(743\) 1.20016e7 0.797569 0.398785 0.917045i \(-0.369432\pi\)
0.398785 + 0.917045i \(0.369432\pi\)
\(744\) −1.43745e7 1.18993e7i −0.952052 0.788114i
\(745\) 0 0
\(746\) 6.62773e6 7.05632e6i 0.436031 0.464228i
\(747\) 8.50916e6i 0.557937i
\(748\) 1.13695e7 712898.i 0.742996 0.0465879i
\(749\) 159629.i 0.0103970i
\(750\) 0 0
\(751\) 3.38961e6 0.219305 0.109653 0.993970i \(-0.465026\pi\)
0.109653 + 0.993970i \(0.465026\pi\)
\(752\) −2.31460e7 + 2.91409e6i −1.49256 + 0.187914i
\(753\) 2.93148e7 1.88408
\(754\) 2.29558e6 + 2.15615e6i 0.147050 + 0.138118i
\(755\) 0 0
\(756\) −199786. + 12527.2i −0.0127134 + 0.000797165i
\(757\) 3.47336e6i 0.220298i −0.993915 0.110149i \(-0.964867\pi\)
0.993915 0.110149i \(-0.0351328\pi\)
\(758\) −1.39489e7 + 1.48509e7i −0.881792 + 0.938814i
\(759\) 2.71516e7 1.71077
\(760\) 0 0
\(761\) −1.16257e6 −0.0727710 −0.0363855 0.999338i \(-0.511584\pi\)
−0.0363855 + 0.999338i \(0.511584\pi\)
\(762\) 1.03406e7 1.10093e7i 0.645147 0.686866i
\(763\) 289755.i 0.0180186i
\(764\) 1.96758e6 + 3.13794e7i 0.121955 + 1.94496i
\(765\) 0 0
\(766\) 1.57045e7 + 1.47506e7i 0.967054 + 0.908317i
\(767\) 2.50196e6 0.153565
\(768\) 4.75244e6 + 1.85746e7i 0.290746 + 1.13636i
\(769\) −1.71387e7 −1.04511 −0.522556 0.852605i \(-0.675021\pi\)
−0.522556 + 0.852605i \(0.675021\pi\)
\(770\) 0 0
\(771\) 1.96944e7i 1.19318i
\(772\) 330377. + 5.26894e6i 0.0199511 + 0.318185i
\(773\) 3.17392e7i 1.91050i −0.295800 0.955250i \(-0.595586\pi\)
0.295800 0.955250i \(-0.404414\pi\)
\(774\) 854995. 910285.i 0.0512993 0.0546166i
\(775\) 0 0
\(776\) 1.81719e7 2.19519e7i 1.08329 1.30863i
\(777\) −2556.64 −0.000151921
\(778\) −1.67228e6 + 1.78043e6i −0.0990515 + 0.105457i
\(779\) 5.46258e6i 0.322518i
\(780\) 0 0
\(781\) 2.15590e7i 1.26474i
\(782\) 1.24000e7 + 1.16468e7i 0.725110 + 0.681068i
\(783\) 1.44444e7 0.841968
\(784\) 1.70704e7 2.14917e6i 0.991867 0.124877i
\(785\) 0 0
\(786\) −979957. 920435.i −0.0565784 0.0531419i
\(787\) 2.67032e6i 0.153683i −0.997043 0.0768416i \(-0.975516\pi\)
0.997043 0.0768416i \(-0.0244836\pi\)
\(788\) −1.61796e7 + 1.01450e6i −0.928221 + 0.0582021i
\(789\) 1.48635e7i 0.850018i
\(790\) 0 0
\(791\) 259850. 0.0147666
\(792\) 5.33952e6 + 4.42008e6i 0.302475 + 0.250390i
\(793\) −3.57487e6 −0.201873
\(794\) 8.84804e6 9.42021e6i 0.498076 0.530285i
\(795\) 0 0
\(796\) 952506. + 1.51908e7i 0.0532826 + 0.849764i
\(797\) 3.37393e7i 1.88144i −0.339188 0.940719i \(-0.610152\pi\)
0.339188 0.940719i \(-0.389848\pi\)
\(798\) 57042.5 + 53577.8i 0.00317096 + 0.00297836i
\(799\) −1.93441e7 −1.07197
\(800\) 0 0
\(801\) 5.54189e6 0.305194
\(802\) 6.74042e6 + 6.33102e6i 0.370042 + 0.347566i
\(803\) 8.91835e6i 0.488085i
\(804\) −2.42264e6 3.86369e7i −0.132175 2.10796i
\(805\) 0 0
\(806\) −2.33384e6 + 2.48477e6i −0.126542 + 0.134725i
\(807\) 2.08369e6 0.112629
\(808\) −1.73615e7 1.43719e7i −0.935533 0.774439i
\(809\) 1.25443e6 0.0673870 0.0336935 0.999432i \(-0.489273\pi\)
0.0336935 + 0.999432i \(0.489273\pi\)
\(810\) 0 0
\(811\) 1.12827e7i 0.602365i −0.953567 0.301182i \(-0.902619\pi\)
0.953567 0.301182i \(-0.0973813\pi\)
\(812\) 375235. 23528.3i 0.0199716 0.00125228i
\(813\) 6.81525e6i 0.361622i
\(814\) −107156. 100648.i −0.00566836 0.00532407i
\(815\) 0 0
\(816\) 1.98591e6 + 1.57737e7i 0.104408 + 0.829291i
\(817\) 810760. 0.0424949
\(818\) 2.15166e7 + 2.02097e7i 1.12432 + 1.05603i
\(819\) 22021.4i 0.00114719i
\(820\) 0 0
\(821\) 1.21845e7i 0.630886i 0.948945 + 0.315443i \(0.102153\pi\)
−0.948945 + 0.315443i \(0.897847\pi\)
\(822\) 1.33982e7 1.42646e7i 0.691619 0.736344i
\(823\) 2.12650e7 1.09437 0.547187 0.837010i \(-0.315698\pi\)
0.547187 + 0.837010i \(0.315698\pi\)
\(824\) −1.19429e6 + 1.44271e6i −0.0612760 + 0.0740222i
\(825\) 0 0
\(826\) 204485. 217708.i 0.0104282 0.0111026i
\(827\) 6.06316e6i 0.308273i 0.988050 + 0.154136i \(0.0492596\pi\)
−0.988050 + 0.154136i \(0.950740\pi\)
\(828\) 647788. + 1.03311e7i 0.0328365 + 0.523685i
\(829\) 727353.i 0.0367586i −0.999831 0.0183793i \(-0.994149\pi\)
0.999831 0.0183793i \(-0.00585064\pi\)
\(830\) 0 0
\(831\) −1.67171e7 −0.839765
\(832\) 3.44091e6 654131.i 0.172332 0.0327609i
\(833\) 1.42665e7 0.712368
\(834\) 3.34250e6 + 3.13948e6i 0.166401 + 0.156294i
\(835\) 0 0
\(836\) 281612. + 4.49122e6i 0.0139359 + 0.222253i
\(837\) 1.56348e7i 0.771401i
\(838\) 2.58114e6 2.74806e6i 0.126970 0.135181i
\(839\) −1.36723e7 −0.670560 −0.335280 0.942118i \(-0.608831\pi\)
−0.335280 + 0.942118i \(0.608831\pi\)
\(840\) 0 0
\(841\) −6.61809e6 −0.322658
\(842\) −2.64129e7 + 2.81209e7i −1.28391 + 1.36694i
\(843\) 9.34688e6i 0.452999i
\(844\) 8.31858e6 521598.i 0.401969 0.0252046i
\(845\) 0 0
\(846\) −8.57941e6 8.05831e6i −0.412127 0.387095i
\(847\) −33223.9 −0.00159126
\(848\) 1.74824e6 + 1.38859e7i 0.0834858 + 0.663109i
\(849\) 9.74720e6 0.464099
\(850\) 0 0
\(851\) 219541.i 0.0103918i
\(852\) 3.00283e7 1.88286e6i 1.41720 0.0888626i
\(853\) 3.66971e7i 1.72687i −0.504462 0.863434i \(-0.668309\pi\)
0.504462 0.863434i \(-0.331691\pi\)
\(854\) −292174. + 311068.i −0.0137087 + 0.0145952i
\(855\) 0 0
\(856\) −9.86769e6 8.16853e6i −0.460290 0.381030i
\(857\) 1.73498e7 0.806941 0.403470 0.914993i \(-0.367804\pi\)
0.403470 + 0.914993i \(0.367804\pi\)
\(858\) 3.17346e6 3.37868e6i 0.147169 0.156685i
\(859\) 1.90085e7i 0.878954i 0.898254 + 0.439477i \(0.144836\pi\)
−0.898254 + 0.439477i \(0.855164\pi\)
\(860\) 0 0
\(861\) 671726.i 0.0308805i
\(862\) −5.71925e6 5.37187e6i −0.262163 0.246239i
\(863\) −3.46920e7 −1.58563 −0.792816 0.609460i \(-0.791386\pi\)
−0.792816 + 0.609460i \(0.791386\pi\)
\(864\) 9.44910e6 1.29911e7i 0.430632 0.592056i
\(865\) 0 0
\(866\) −5.49089e6 5.15738e6i −0.248799 0.233687i
\(867\) 1.27790e7i 0.577364i
\(868\) 25467.3 + 406159.i 0.00114732 + 0.0182977i
\(869\) 1.61075e7i 0.723566i
\(870\) 0 0
\(871\) −7.07207e6 −0.315865
\(872\) 1.79117e7 + 1.48274e7i 0.797710 + 0.660349i
\(873\) 1.43783e7 0.638515
\(874\) −4.60077e6 + 4.89829e6i −0.203729 + 0.216903i
\(875\) 0 0
\(876\) 1.24219e7 778886.i 0.546924 0.0342937i
\(877\) 3.99003e7i 1.75177i 0.482520 + 0.875885i \(0.339721\pi\)
−0.482520 + 0.875885i \(0.660279\pi\)
\(878\) −1.14726e7 1.07758e7i −0.502256 0.471750i
\(879\) 4.65618e7 2.03262
\(880\) 0 0
\(881\) −3.50875e7 −1.52304 −0.761522 0.648139i \(-0.775548\pi\)
−0.761522 + 0.648139i \(0.775548\pi\)
\(882\) 6.32741e6 + 5.94309e6i 0.273876 + 0.257241i
\(883\) 1.47881e7i 0.638279i 0.947708 + 0.319139i \(0.103394\pi\)
−0.947708 + 0.319139i \(0.896606\pi\)
\(884\) 2.89860e6 181750.i 0.124755 0.00782248i
\(885\) 0 0
\(886\) −1.79542e7 + 1.91152e7i −0.768390 + 0.818079i
\(887\) 1.17291e7 0.500560 0.250280 0.968173i \(-0.419477\pi\)
0.250280 + 0.968173i \(0.419477\pi\)
\(888\) 130828. 158043.i 0.00556762 0.00672576i
\(889\) −329394. −0.0139785
\(890\) 0 0
\(891\) 3.05646e7i 1.28981i
\(892\) −1.24996e6 1.99346e7i −0.0525996 0.838872i
\(893\) 7.64139e6i 0.320659i
\(894\) −2.65564e7 2.49434e7i −1.11128 1.04379i
\(895\) 0 0
\(896\) 224306. 352873.i 0.00933406 0.0146841i
\(897\) 6.92219e6 0.287252
\(898\) 4.87356e6 + 4.57755e6i 0.201677 + 0.189427i
\(899\) 2.93651e7i 1.21180i
\(900\) 0 0
\(901\) 1.16051e7i 0.476251i
\(902\) −2.64440e7 + 2.81541e7i −1.08221 + 1.15219i
\(903\) −99697.9 −0.00406880
\(904\) −1.32971e7 + 1.60630e7i −0.541171 + 0.653742i
\(905\) 0 0
\(906\) −3.16022e7 + 3.36458e7i −1.27908 + 1.36179i
\(907\) 1.36136e7i 0.549483i −0.961518 0.274742i \(-0.911408\pi\)
0.961518 0.274742i \(-0.0885923\pi\)
\(908\) 2.09513e7 1.31370e6i 0.843328 0.0528790i
\(909\) 1.13716e7i 0.456470i
\(910\) 0 0
\(911\) 1.26888e7 0.506551 0.253276 0.967394i \(-0.418492\pi\)
0.253276 + 0.967394i \(0.418492\pi\)
\(912\) −6.23098e6 + 784484.i −0.248067 + 0.0312318i
\(913\) −3.90611e7 −1.55084
\(914\) −6.40097e6 6.01218e6i −0.253443 0.238049i
\(915\) 0 0
\(916\) −2.57982e7 + 1.61762e6i −1.01590 + 0.0636998i
\(917\) 29319.9i 0.00115144i
\(918\) 9.11941e6 9.70913e6i 0.357158 0.380254i
\(919\) −4.25253e7 −1.66096 −0.830479 0.557050i \(-0.811933\pi\)
−0.830479 + 0.557050i \(0.811933\pi\)
\(920\) 0 0
\(921\) −1.35430e7 −0.526098
\(922\) 2.87919e7 3.06538e7i 1.11543 1.18757i
\(923\) 5.49637e6i 0.212360i
\(924\) −34629.4 552278.i −0.00133434 0.0212803i
\(925\) 0 0
\(926\) −83205.3 78151.5i −0.00318877 0.00299509i
\(927\) −944963. −0.0361173
\(928\) −1.77471e7 + 2.43997e7i −0.676484 + 0.930068i
\(929\) 4.25450e6 0.161737 0.0808686 0.996725i \(-0.474231\pi\)
0.0808686 + 0.996725i \(0.474231\pi\)
\(930\) 0 0
\(931\) 5.63560e6i 0.213092i
\(932\) 2.61238e6 + 4.16629e7i 0.0985136 + 1.57112i
\(933\) 1.99078e7i 0.748718i
\(934\) 1.38917e7 1.47901e7i 0.521062 0.554757i
\(935\) 0 0
\(936\) 1.36129e6 + 1.12688e6i 0.0507879 + 0.0420425i
\(937\) −1.07844e7 −0.401279 −0.200640 0.979665i \(-0.564302\pi\)
−0.200640 + 0.979665i \(0.564302\pi\)
\(938\) −578000. + 615377.i −0.0214497 + 0.0228368i
\(939\) 1.97982e7i 0.732760i
\(940\) 0 0
\(941\) 112960.i 0.00415862i −0.999998 0.00207931i \(-0.999338\pi\)
0.999998 0.00207931i \(-0.000661865\pi\)
\(942\) −2.88993e7 2.71440e7i −1.06111 0.996659i
\(943\) −5.76817e7 −2.11232
\(944\) 2.99406e6 + 2.37811e7i 0.109353 + 0.868566i
\(945\) 0 0
\(946\) −4.17864e6 3.92484e6i −0.151813 0.142592i
\(947\) 1.62952e7i 0.590454i −0.955427 0.295227i \(-0.904605\pi\)
0.955427 0.295227i \(-0.0953953\pi\)
\(948\) −2.24352e7 + 1.40675e6i −0.810792 + 0.0508389i
\(949\) 2.27370e6i 0.0819534i
\(950\) 0 0
\(951\) 5.36188e7 1.92250
\(952\) 221087. 267077.i 0.00790627 0.00955088i
\(953\) 1.07203e7 0.382363 0.191181 0.981555i \(-0.438768\pi\)
0.191181 + 0.981555i \(0.438768\pi\)
\(954\) −4.83440e6 + 5.14703e6i −0.171978 + 0.183099i
\(955\) 0 0
\(956\) −2.44033e6 3.89190e7i −0.0863583 1.37726i
\(957\) 3.99294e7i 1.40933i
\(958\) 756544. + 710592.i 0.0266330 + 0.0250154i
\(959\) −426792. −0.0149855
\(960\) 0 0
\(961\) 3.15601e6 0.110238
\(962\) −27319.1 25659.8i −0.000951763 0.000893954i
\(963\) 6.46324e6i 0.224587i
\(964\) −1.96967e6 3.14128e7i −0.0682654 1.08871i
\(965\) 0 0
\(966\) 565750. 602335.i 0.0195066 0.0207680i
\(967\) 3.92793e7 1.35082 0.675411 0.737442i \(-0.263966\pi\)
0.675411 + 0.737442i \(0.263966\pi\)
\(968\) 1.70014e6 2.05379e6i 0.0583171 0.0704478i
\(969\) −5.20750e6 −0.178164
\(970\) 0 0
\(971\) 2.76288e7i 0.940405i 0.882559 + 0.470202i \(0.155819\pi\)
−0.882559 + 0.470202i \(0.844181\pi\)
\(972\) 2.10496e7 1.31987e6i 0.714626 0.0448091i
\(973\) 100006.i 0.00338645i
\(974\) −2.75833e7 2.59079e7i −0.931642 0.875055i
\(975\) 0 0
\(976\) −4.27800e6 3.39792e7i −0.143753 1.14180i
\(977\) 2.56548e7 0.859868 0.429934 0.902860i \(-0.358537\pi\)
0.429934 + 0.902860i \(0.358537\pi\)
\(978\) −3.05492e7 2.86937e7i −1.02130 0.959266i
\(979\) 2.54399e7i 0.848318i
\(980\) 0 0
\(981\) 1.17320e7i 0.389223i
\(982\) −3.83424e7 + 4.08218e7i −1.26882 + 1.35087i
\(983\) 5.21860e6 0.172254 0.0861271 0.996284i \(-0.472551\pi\)
0.0861271 + 0.996284i \(0.472551\pi\)
\(984\) −4.15238e7 3.43736e7i −1.36713 1.13172i
\(985\) 0 0
\(986\) −1.71279e7 + 1.82355e7i −0.561063 + 0.597345i
\(987\) 939650.i 0.0307025i
\(988\) 71795.8 + 1.14502e6i 0.00233995 + 0.0373181i
\(989\) 8.56115e6i 0.278318i
\(990\) 0 0
\(991\) 4.76772e7 1.54215 0.771075 0.636744i \(-0.219719\pi\)
0.771075 + 0.636744i \(0.219719\pi\)
\(992\) −2.64106e7 1.92097e7i −0.852117 0.619786i
\(993\) 6.53158e6 0.210206
\(994\) −478267. 449218.i −0.0153534 0.0144209i
\(995\) 0 0
\(996\) −3.41142e6 5.44061e7i −0.108965 1.73780i
\(997\) 2.96368e7i 0.944263i 0.881528 + 0.472132i \(0.156515\pi\)
−0.881528 + 0.472132i \(0.843485\pi\)
\(998\) 2.30784e7 2.45708e7i 0.733465 0.780896i
\(999\) −171900. −0.00544955
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.6.d.d.101.16 yes 20
4.3 odd 2 800.6.d.b.401.5 20
5.2 odd 4 200.6.f.d.149.12 40
5.3 odd 4 200.6.f.d.149.29 40
5.4 even 2 200.6.d.c.101.5 20
8.3 odd 2 800.6.d.b.401.16 20
8.5 even 2 inner 200.6.d.d.101.15 yes 20
20.3 even 4 800.6.f.d.49.32 40
20.7 even 4 800.6.f.d.49.9 40
20.19 odd 2 800.6.d.d.401.16 20
40.3 even 4 800.6.f.d.49.10 40
40.13 odd 4 200.6.f.d.149.11 40
40.19 odd 2 800.6.d.d.401.5 20
40.27 even 4 800.6.f.d.49.31 40
40.29 even 2 200.6.d.c.101.6 yes 20
40.37 odd 4 200.6.f.d.149.30 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.6.d.c.101.5 20 5.4 even 2
200.6.d.c.101.6 yes 20 40.29 even 2
200.6.d.d.101.15 yes 20 8.5 even 2 inner
200.6.d.d.101.16 yes 20 1.1 even 1 trivial
200.6.f.d.149.11 40 40.13 odd 4
200.6.f.d.149.12 40 5.2 odd 4
200.6.f.d.149.29 40 5.3 odd 4
200.6.f.d.149.30 40 40.37 odd 4
800.6.d.b.401.5 20 4.3 odd 2
800.6.d.b.401.16 20 8.3 odd 2
800.6.d.d.401.5 20 40.19 odd 2
800.6.d.d.401.16 20 20.19 odd 2
800.6.f.d.49.9 40 20.7 even 4
800.6.f.d.49.10 40 40.3 even 4
800.6.f.d.49.31 40 40.27 even 4
800.6.f.d.49.32 40 20.3 even 4