Properties

Label 800.6.f.c.49.20
Level $800$
Weight $6$
Character 800.49
Analytic conductor $128.307$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{93}\cdot 3^{4}\cdot 5^{8} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.20
Root \(3.46430 + 1.99965i\) of defining polynomial
Character \(\chi\) \(=\) 800.49
Dual form 800.6.f.c.49.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+29.2080 q^{3} +168.173i q^{7} +610.110 q^{9} +514.493i q^{11} +491.622 q^{13} +183.094i q^{17} -1250.96i q^{19} +4912.01i q^{21} -423.498i q^{23} +10722.5 q^{27} +3463.40i q^{29} -2343.92 q^{31} +15027.3i q^{33} +7388.25 q^{37} +14359.3 q^{39} +4240.39 q^{41} -15159.4 q^{43} +15357.8i q^{47} -11475.3 q^{49} +5347.82i q^{51} +11393.9 q^{53} -36538.2i q^{57} -11978.0i q^{59} -41454.0i q^{61} +102604. i q^{63} -66524.9 q^{67} -12369.6i q^{69} +26214.5 q^{71} +86291.9i q^{73} -86524.0 q^{77} -19799.4 q^{79} +164928. q^{81} -8370.24 q^{83} +101159. i q^{87} +3824.45 q^{89} +82677.7i q^{91} -68461.3 q^{93} +35158.5i q^{97} +313897. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{3} + 1620 q^{9} + 11664 q^{27} - 7160 q^{31} + 3608 q^{37} - 44904 q^{39} + 11608 q^{41} - 51772 q^{43} - 18756 q^{49} - 928 q^{53} - 161604 q^{67} + 200312 q^{71} - 26008 q^{77} + 282080 q^{79}+ \cdots - 293472 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 29.2080 1.87370 0.936848 0.349736i \(-0.113729\pi\)
0.936848 + 0.349736i \(0.113729\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 168.173i 1.29722i 0.761123 + 0.648608i \(0.224648\pi\)
−0.761123 + 0.648608i \(0.775352\pi\)
\(8\) 0 0
\(9\) 610.110 2.51074
\(10\) 0 0
\(11\) 514.493i 1.28203i 0.767529 + 0.641014i \(0.221486\pi\)
−0.767529 + 0.641014i \(0.778514\pi\)
\(12\) 0 0
\(13\) 491.622 0.806813 0.403406 0.915021i \(-0.367826\pi\)
0.403406 + 0.915021i \(0.367826\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 183.094i 0.153657i 0.997044 + 0.0768284i \(0.0244794\pi\)
−0.997044 + 0.0768284i \(0.975521\pi\)
\(18\) 0 0
\(19\) − 1250.96i − 0.794988i −0.917605 0.397494i \(-0.869880\pi\)
0.917605 0.397494i \(-0.130120\pi\)
\(20\) 0 0
\(21\) 4912.01i 2.43059i
\(22\) 0 0
\(23\) − 423.498i − 0.166929i −0.996511 0.0834646i \(-0.973401\pi\)
0.996511 0.0834646i \(-0.0265985\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 10722.5 2.83067
\(28\) 0 0
\(29\) 3463.40i 0.764729i 0.924012 + 0.382364i \(0.124890\pi\)
−0.924012 + 0.382364i \(0.875110\pi\)
\(30\) 0 0
\(31\) −2343.92 −0.438065 −0.219032 0.975718i \(-0.570290\pi\)
−0.219032 + 0.975718i \(0.570290\pi\)
\(32\) 0 0
\(33\) 15027.3i 2.40213i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7388.25 0.887232 0.443616 0.896217i \(-0.353695\pi\)
0.443616 + 0.896217i \(0.353695\pi\)
\(38\) 0 0
\(39\) 14359.3 1.51172
\(40\) 0 0
\(41\) 4240.39 0.393954 0.196977 0.980408i \(-0.436888\pi\)
0.196977 + 0.980408i \(0.436888\pi\)
\(42\) 0 0
\(43\) −15159.4 −1.25029 −0.625143 0.780510i \(-0.714960\pi\)
−0.625143 + 0.780510i \(0.714960\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 15357.8i 1.01411i 0.861914 + 0.507055i \(0.169266\pi\)
−0.861914 + 0.507055i \(0.830734\pi\)
\(48\) 0 0
\(49\) −11475.3 −0.682768
\(50\) 0 0
\(51\) 5347.82i 0.287906i
\(52\) 0 0
\(53\) 11393.9 0.557162 0.278581 0.960413i \(-0.410136\pi\)
0.278581 + 0.960413i \(0.410136\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 36538.2i − 1.48957i
\(58\) 0 0
\(59\) − 11978.0i − 0.447974i −0.974592 0.223987i \(-0.928093\pi\)
0.974592 0.223987i \(-0.0719074\pi\)
\(60\) 0 0
\(61\) − 41454.0i − 1.42640i −0.700960 0.713200i \(-0.747245\pi\)
0.700960 0.713200i \(-0.252755\pi\)
\(62\) 0 0
\(63\) 102604.i 3.25697i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −66524.9 −1.81049 −0.905247 0.424885i \(-0.860315\pi\)
−0.905247 + 0.424885i \(0.860315\pi\)
\(68\) 0 0
\(69\) − 12369.6i − 0.312775i
\(70\) 0 0
\(71\) 26214.5 0.617157 0.308579 0.951199i \(-0.400147\pi\)
0.308579 + 0.951199i \(0.400147\pi\)
\(72\) 0 0
\(73\) 86291.9i 1.89523i 0.319409 + 0.947617i \(0.396516\pi\)
−0.319409 + 0.947617i \(0.603484\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −86524.0 −1.66307
\(78\) 0 0
\(79\) −19799.4 −0.356931 −0.178466 0.983946i \(-0.557113\pi\)
−0.178466 + 0.983946i \(0.557113\pi\)
\(80\) 0 0
\(81\) 164928. 2.79307
\(82\) 0 0
\(83\) −8370.24 −0.133365 −0.0666826 0.997774i \(-0.521241\pi\)
−0.0666826 + 0.997774i \(0.521241\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 101159.i 1.43287i
\(88\) 0 0
\(89\) 3824.45 0.0511793 0.0255896 0.999673i \(-0.491854\pi\)
0.0255896 + 0.999673i \(0.491854\pi\)
\(90\) 0 0
\(91\) 82677.7i 1.04661i
\(92\) 0 0
\(93\) −68461.3 −0.820801
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 35158.5i 0.379403i 0.981842 + 0.189702i \(0.0607520\pi\)
−0.981842 + 0.189702i \(0.939248\pi\)
\(98\) 0 0
\(99\) 313897.i 3.21884i
\(100\) 0 0
\(101\) 99536.3i 0.970908i 0.874262 + 0.485454i \(0.161346\pi\)
−0.874262 + 0.485454i \(0.838654\pi\)
\(102\) 0 0
\(103\) 46921.2i 0.435789i 0.975972 + 0.217895i \(0.0699189\pi\)
−0.975972 + 0.217895i \(0.930081\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 38381.3 0.324086 0.162043 0.986784i \(-0.448192\pi\)
0.162043 + 0.986784i \(0.448192\pi\)
\(108\) 0 0
\(109\) − 14288.7i − 0.115193i −0.998340 0.0575966i \(-0.981656\pi\)
0.998340 0.0575966i \(-0.0183437\pi\)
\(110\) 0 0
\(111\) 215796. 1.66240
\(112\) 0 0
\(113\) − 130552.i − 0.961804i −0.876774 0.480902i \(-0.840309\pi\)
0.876774 0.480902i \(-0.159691\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 299943. 2.02570
\(118\) 0 0
\(119\) −30791.5 −0.199326
\(120\) 0 0
\(121\) −103652. −0.643596
\(122\) 0 0
\(123\) 123853. 0.738151
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 327594.i 1.80230i 0.433508 + 0.901150i \(0.357276\pi\)
−0.433508 + 0.901150i \(0.642724\pi\)
\(128\) 0 0
\(129\) −442775. −2.34266
\(130\) 0 0
\(131\) 116999.i 0.595669i 0.954618 + 0.297834i \(0.0962643\pi\)
−0.954618 + 0.297834i \(0.903736\pi\)
\(132\) 0 0
\(133\) 210379. 1.03127
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 74409.1i − 0.338707i −0.985555 0.169354i \(-0.945832\pi\)
0.985555 0.169354i \(-0.0541680\pi\)
\(138\) 0 0
\(139\) − 80434.5i − 0.353106i −0.984291 0.176553i \(-0.943505\pi\)
0.984291 0.176553i \(-0.0564947\pi\)
\(140\) 0 0
\(141\) 448572.i 1.90013i
\(142\) 0 0
\(143\) 252936.i 1.03436i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −335171. −1.27930
\(148\) 0 0
\(149\) − 57917.4i − 0.213719i −0.994274 0.106860i \(-0.965920\pi\)
0.994274 0.106860i \(-0.0340795\pi\)
\(150\) 0 0
\(151\) −450813. −1.60899 −0.804497 0.593957i \(-0.797565\pi\)
−0.804497 + 0.593957i \(0.797565\pi\)
\(152\) 0 0
\(153\) 111707.i 0.385792i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 72067.3 0.233340 0.116670 0.993171i \(-0.462778\pi\)
0.116670 + 0.993171i \(0.462778\pi\)
\(158\) 0 0
\(159\) 332792. 1.04395
\(160\) 0 0
\(161\) 71221.2 0.216543
\(162\) 0 0
\(163\) 471144. 1.38895 0.694473 0.719519i \(-0.255638\pi\)
0.694473 + 0.719519i \(0.255638\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 519164.i − 1.44050i −0.693715 0.720250i \(-0.744027\pi\)
0.693715 0.720250i \(-0.255973\pi\)
\(168\) 0 0
\(169\) −129601. −0.349053
\(170\) 0 0
\(171\) − 763225.i − 1.99601i
\(172\) 0 0
\(173\) 726898. 1.84654 0.923269 0.384153i \(-0.125506\pi\)
0.923269 + 0.384153i \(0.125506\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 349853.i − 0.839368i
\(178\) 0 0
\(179\) − 327278.i − 0.763457i −0.924274 0.381729i \(-0.875329\pi\)
0.924274 0.381729i \(-0.124671\pi\)
\(180\) 0 0
\(181\) − 651584.i − 1.47834i −0.673519 0.739170i \(-0.735218\pi\)
0.673519 0.739170i \(-0.264782\pi\)
\(182\) 0 0
\(183\) − 1.21079e6i − 2.67264i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −94200.5 −0.196992
\(188\) 0 0
\(189\) 1.80325e6i 3.67198i
\(190\) 0 0
\(191\) 427987. 0.848882 0.424441 0.905456i \(-0.360471\pi\)
0.424441 + 0.905456i \(0.360471\pi\)
\(192\) 0 0
\(193\) − 560696.i − 1.08351i −0.840535 0.541757i \(-0.817759\pi\)
0.840535 0.541757i \(-0.182241\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −268824. −0.493518 −0.246759 0.969077i \(-0.579366\pi\)
−0.246759 + 0.969077i \(0.579366\pi\)
\(198\) 0 0
\(199\) 512715. 0.917789 0.458895 0.888491i \(-0.348246\pi\)
0.458895 + 0.888491i \(0.348246\pi\)
\(200\) 0 0
\(201\) −1.94306e6 −3.39232
\(202\) 0 0
\(203\) −582451. −0.992018
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 258380.i − 0.419116i
\(208\) 0 0
\(209\) 643612. 1.01920
\(210\) 0 0
\(211\) 661872.i 1.02345i 0.859148 + 0.511726i \(0.170994\pi\)
−0.859148 + 0.511726i \(0.829006\pi\)
\(212\) 0 0
\(213\) 765674. 1.15637
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 394185.i − 0.568265i
\(218\) 0 0
\(219\) 2.52042e6i 3.55109i
\(220\) 0 0
\(221\) 90013.0i 0.123972i
\(222\) 0 0
\(223\) 1.06479e6i 1.43384i 0.697153 + 0.716922i \(0.254450\pi\)
−0.697153 + 0.716922i \(0.745550\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 619730. 0.798248 0.399124 0.916897i \(-0.369314\pi\)
0.399124 + 0.916897i \(0.369314\pi\)
\(228\) 0 0
\(229\) − 434907.i − 0.548035i −0.961725 0.274017i \(-0.911647\pi\)
0.961725 0.274017i \(-0.0883525\pi\)
\(230\) 0 0
\(231\) −2.52720e6 −3.11608
\(232\) 0 0
\(233\) − 793810.i − 0.957915i −0.877838 0.478957i \(-0.841015\pi\)
0.877838 0.478957i \(-0.158985\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −578302. −0.668781
\(238\) 0 0
\(239\) −1.64777e6 −1.86596 −0.932978 0.359933i \(-0.882800\pi\)
−0.932978 + 0.359933i \(0.882800\pi\)
\(240\) 0 0
\(241\) 592599. 0.657231 0.328616 0.944464i \(-0.393418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(242\) 0 0
\(243\) 2.21164e6 2.40270
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 615001.i − 0.641406i
\(248\) 0 0
\(249\) −244478. −0.249886
\(250\) 0 0
\(251\) 1.64581e6i 1.64890i 0.565933 + 0.824451i \(0.308516\pi\)
−0.565933 + 0.824451i \(0.691484\pi\)
\(252\) 0 0
\(253\) 217887. 0.214008
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1.18756e6i − 1.12156i −0.827966 0.560779i \(-0.810502\pi\)
0.827966 0.560779i \(-0.189498\pi\)
\(258\) 0 0
\(259\) 1.24251e6i 1.15093i
\(260\) 0 0
\(261\) 2.11305e6i 1.92003i
\(262\) 0 0
\(263\) − 1.62916e6i − 1.45236i −0.687505 0.726180i \(-0.741294\pi\)
0.687505 0.726180i \(-0.258706\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 111705. 0.0958944
\(268\) 0 0
\(269\) 895226.i 0.754314i 0.926149 + 0.377157i \(0.123098\pi\)
−0.926149 + 0.377157i \(0.876902\pi\)
\(270\) 0 0
\(271\) −16721.4 −0.0138309 −0.00691545 0.999976i \(-0.502201\pi\)
−0.00691545 + 0.999976i \(0.502201\pi\)
\(272\) 0 0
\(273\) 2.41485e6i 1.96103i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 573914. 0.449415 0.224708 0.974426i \(-0.427857\pi\)
0.224708 + 0.974426i \(0.427857\pi\)
\(278\) 0 0
\(279\) −1.43005e6 −1.09987
\(280\) 0 0
\(281\) 1.95965e6 1.48052 0.740258 0.672322i \(-0.234703\pi\)
0.740258 + 0.672322i \(0.234703\pi\)
\(282\) 0 0
\(283\) 2.04454e6 1.51751 0.758753 0.651378i \(-0.225809\pi\)
0.758753 + 0.651378i \(0.225809\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 713120.i 0.511044i
\(288\) 0 0
\(289\) 1.38633e6 0.976390
\(290\) 0 0
\(291\) 1.02691e6i 0.710886i
\(292\) 0 0
\(293\) −2.25113e6 −1.53190 −0.765951 0.642899i \(-0.777731\pi\)
−0.765951 + 0.642899i \(0.777731\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.51667e6i 3.62899i
\(298\) 0 0
\(299\) − 208201.i − 0.134681i
\(300\) 0 0
\(301\) − 2.54940e6i − 1.62189i
\(302\) 0 0
\(303\) 2.90726e6i 1.81919i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 572436. 0.346642 0.173321 0.984865i \(-0.444550\pi\)
0.173321 + 0.984865i \(0.444550\pi\)
\(308\) 0 0
\(309\) 1.37048e6i 0.816537i
\(310\) 0 0
\(311\) 2.86177e6 1.67778 0.838889 0.544303i \(-0.183206\pi\)
0.838889 + 0.544303i \(0.183206\pi\)
\(312\) 0 0
\(313\) 345643.i 0.199419i 0.995017 + 0.0997095i \(0.0317913\pi\)
−0.995017 + 0.0997095i \(0.968209\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.84370e6 −1.58941 −0.794706 0.606995i \(-0.792375\pi\)
−0.794706 + 0.606995i \(0.792375\pi\)
\(318\) 0 0
\(319\) −1.78189e6 −0.980404
\(320\) 0 0
\(321\) 1.12104e6 0.607238
\(322\) 0 0
\(323\) 229044. 0.122155
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 417345.i − 0.215837i
\(328\) 0 0
\(329\) −2.58278e6 −1.31552
\(330\) 0 0
\(331\) − 2.20630e6i − 1.10686i −0.832895 0.553431i \(-0.813318\pi\)
0.832895 0.553431i \(-0.186682\pi\)
\(332\) 0 0
\(333\) 4.50764e6 2.22761
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 210820.i − 0.101120i −0.998721 0.0505599i \(-0.983899\pi\)
0.998721 0.0505599i \(-0.0161006\pi\)
\(338\) 0 0
\(339\) − 3.81316e6i − 1.80213i
\(340\) 0 0
\(341\) − 1.20593e6i − 0.561611i
\(342\) 0 0
\(343\) 896652.i 0.411518i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.39916e6 1.06963 0.534817 0.844968i \(-0.320381\pi\)
0.534817 + 0.844968i \(0.320381\pi\)
\(348\) 0 0
\(349\) 1.76207e6i 0.774392i 0.921997 + 0.387196i \(0.126556\pi\)
−0.921997 + 0.387196i \(0.873444\pi\)
\(350\) 0 0
\(351\) 5.27144e6 2.28382
\(352\) 0 0
\(353\) 2.11387e6i 0.902904i 0.892296 + 0.451452i \(0.149094\pi\)
−0.892296 + 0.451452i \(0.850906\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −899360. −0.373476
\(358\) 0 0
\(359\) −25391.5 −0.0103981 −0.00519903 0.999986i \(-0.501655\pi\)
−0.00519903 + 0.999986i \(0.501655\pi\)
\(360\) 0 0
\(361\) 911190. 0.367994
\(362\) 0 0
\(363\) −3.02747e6 −1.20590
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 1.55872e6i − 0.604091i −0.953293 0.302046i \(-0.902330\pi\)
0.953293 0.302046i \(-0.0976695\pi\)
\(368\) 0 0
\(369\) 2.58710e6 0.989116
\(370\) 0 0
\(371\) 1.91614e6i 0.722759i
\(372\) 0 0
\(373\) 741743. 0.276046 0.138023 0.990429i \(-0.455925\pi\)
0.138023 + 0.990429i \(0.455925\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.70268e6i 0.616993i
\(378\) 0 0
\(379\) 2.61039e6i 0.933487i 0.884393 + 0.466743i \(0.154573\pi\)
−0.884393 + 0.466743i \(0.845427\pi\)
\(380\) 0 0
\(381\) 9.56839e6i 3.37696i
\(382\) 0 0
\(383\) − 3.05949e6i − 1.06574i −0.846197 0.532871i \(-0.821113\pi\)
0.846197 0.532871i \(-0.178887\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.24887e6 −3.13914
\(388\) 0 0
\(389\) − 498203.i − 0.166929i −0.996511 0.0834646i \(-0.973401\pi\)
0.996511 0.0834646i \(-0.0265985\pi\)
\(390\) 0 0
\(391\) 77540.0 0.0256498
\(392\) 0 0
\(393\) 3.41732e6i 1.11610i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3.95290e6 1.25875 0.629376 0.777101i \(-0.283311\pi\)
0.629376 + 0.777101i \(0.283311\pi\)
\(398\) 0 0
\(399\) 6.14475e6 1.93229
\(400\) 0 0
\(401\) −1.15248e6 −0.357909 −0.178955 0.983857i \(-0.557272\pi\)
−0.178955 + 0.983857i \(0.557272\pi\)
\(402\) 0 0
\(403\) −1.15232e6 −0.353436
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.80120e6i 1.13746i
\(408\) 0 0
\(409\) −2.54459e6 −0.752159 −0.376079 0.926587i \(-0.622728\pi\)
−0.376079 + 0.926587i \(0.622728\pi\)
\(410\) 0 0
\(411\) − 2.17334e6i − 0.634635i
\(412\) 0 0
\(413\) 2.01438e6 0.581119
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 2.34933e6i − 0.661614i
\(418\) 0 0
\(419\) 62820.4i 0.0174810i 0.999962 + 0.00874049i \(0.00278222\pi\)
−0.999962 + 0.00874049i \(0.997218\pi\)
\(420\) 0 0
\(421\) − 1.89940e6i − 0.522289i −0.965300 0.261145i \(-0.915900\pi\)
0.965300 0.261145i \(-0.0841000\pi\)
\(422\) 0 0
\(423\) 9.36995e6i 2.54616i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.97145e6 1.85035
\(428\) 0 0
\(429\) 7.38776e6i 1.93807i
\(430\) 0 0
\(431\) −5.91659e6 −1.53419 −0.767094 0.641535i \(-0.778298\pi\)
−0.767094 + 0.641535i \(0.778298\pi\)
\(432\) 0 0
\(433\) 1.64308e6i 0.421153i 0.977577 + 0.210577i \(0.0675341\pi\)
−0.977577 + 0.210577i \(0.932466\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −529781. −0.132707
\(438\) 0 0
\(439\) −4.34976e6 −1.07722 −0.538610 0.842555i \(-0.681050\pi\)
−0.538610 + 0.842555i \(0.681050\pi\)
\(440\) 0 0
\(441\) −7.00118e6 −1.71425
\(442\) 0 0
\(443\) −2.27280e6 −0.550239 −0.275119 0.961410i \(-0.588717\pi\)
−0.275119 + 0.961410i \(0.588717\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 1.69165e6i − 0.400445i
\(448\) 0 0
\(449\) −7.36304e6 −1.72362 −0.861809 0.507233i \(-0.830669\pi\)
−0.861809 + 0.507233i \(0.830669\pi\)
\(450\) 0 0
\(451\) 2.18165e6i 0.505060i
\(452\) 0 0
\(453\) −1.31674e7 −3.01477
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 6.23984e6i − 1.39760i −0.715317 0.698800i \(-0.753718\pi\)
0.715317 0.698800i \(-0.246282\pi\)
\(458\) 0 0
\(459\) 1.96323e6i 0.434951i
\(460\) 0 0
\(461\) − 832291.i − 0.182399i −0.995833 0.0911996i \(-0.970930\pi\)
0.995833 0.0911996i \(-0.0290701\pi\)
\(462\) 0 0
\(463\) − 3.61852e6i − 0.784474i −0.919864 0.392237i \(-0.871701\pi\)
0.919864 0.392237i \(-0.128299\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −286010. −0.0606861 −0.0303431 0.999540i \(-0.509660\pi\)
−0.0303431 + 0.999540i \(0.509660\pi\)
\(468\) 0 0
\(469\) − 1.11877e7i − 2.34860i
\(470\) 0 0
\(471\) 2.10494e6 0.437208
\(472\) 0 0
\(473\) − 7.79938e6i − 1.60290i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.95150e6 1.39889
\(478\) 0 0
\(479\) −2.28996e6 −0.456026 −0.228013 0.973658i \(-0.573223\pi\)
−0.228013 + 0.973658i \(0.573223\pi\)
\(480\) 0 0
\(481\) 3.63222e6 0.715830
\(482\) 0 0
\(483\) 2.08023e6 0.405736
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 6.55915e6i − 1.25321i −0.779335 0.626607i \(-0.784443\pi\)
0.779335 0.626607i \(-0.215557\pi\)
\(488\) 0 0
\(489\) 1.37612e7 2.60246
\(490\) 0 0
\(491\) − 3.50573e6i − 0.656257i −0.944633 0.328129i \(-0.893582\pi\)
0.944633 0.328129i \(-0.106418\pi\)
\(492\) 0 0
\(493\) −634127. −0.117506
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.40858e6i 0.800586i
\(498\) 0 0
\(499\) 1.11789e6i 0.200977i 0.994938 + 0.100489i \(0.0320406\pi\)
−0.994938 + 0.100489i \(0.967959\pi\)
\(500\) 0 0
\(501\) − 1.51638e7i − 2.69906i
\(502\) 0 0
\(503\) − 3.97264e6i − 0.700098i −0.936731 0.350049i \(-0.886165\pi\)
0.936731 0.350049i \(-0.113835\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3.78539e6 −0.654020
\(508\) 0 0
\(509\) − 5.19239e6i − 0.888327i −0.895946 0.444164i \(-0.853501\pi\)
0.895946 0.444164i \(-0.146499\pi\)
\(510\) 0 0
\(511\) −1.45120e7 −2.45853
\(512\) 0 0
\(513\) − 1.34135e7i − 2.25035i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −7.90148e6 −1.30012
\(518\) 0 0
\(519\) 2.12313e7 3.45985
\(520\) 0 0
\(521\) 1.09827e6 0.177262 0.0886311 0.996065i \(-0.471751\pi\)
0.0886311 + 0.996065i \(0.471751\pi\)
\(522\) 0 0
\(523\) 8.67189e6 1.38631 0.693154 0.720790i \(-0.256221\pi\)
0.693154 + 0.720790i \(0.256221\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 429158.i − 0.0673116i
\(528\) 0 0
\(529\) 6.25699e6 0.972135
\(530\) 0 0
\(531\) − 7.30787e6i − 1.12475i
\(532\) 0 0
\(533\) 2.08467e6 0.317847
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 9.55916e6i − 1.43049i
\(538\) 0 0
\(539\) − 5.90395e6i − 0.875328i
\(540\) 0 0
\(541\) 746497.i 0.109657i 0.998496 + 0.0548283i \(0.0174612\pi\)
−0.998496 + 0.0548283i \(0.982539\pi\)
\(542\) 0 0
\(543\) − 1.90315e7i − 2.76996i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.52087e6 0.360231 0.180116 0.983645i \(-0.442353\pi\)
0.180116 + 0.983645i \(0.442353\pi\)
\(548\) 0 0
\(549\) − 2.52915e7i − 3.58132i
\(550\) 0 0
\(551\) 4.33258e6 0.607950
\(552\) 0 0
\(553\) − 3.32973e6i − 0.463017i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 186236. 0.0254347 0.0127173 0.999919i \(-0.495952\pi\)
0.0127173 + 0.999919i \(0.495952\pi\)
\(558\) 0 0
\(559\) −7.45267e6 −1.00875
\(560\) 0 0
\(561\) −2.75141e6 −0.369104
\(562\) 0 0
\(563\) 358662. 0.0476886 0.0238443 0.999716i \(-0.492409\pi\)
0.0238443 + 0.999716i \(0.492409\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.77365e7i 3.62321i
\(568\) 0 0
\(569\) −1.08964e7 −1.41093 −0.705463 0.708747i \(-0.749261\pi\)
−0.705463 + 0.708747i \(0.749261\pi\)
\(570\) 0 0
\(571\) 1.93042e6i 0.247778i 0.992296 + 0.123889i \(0.0395366\pi\)
−0.992296 + 0.123889i \(0.960463\pi\)
\(572\) 0 0
\(573\) 1.25007e7 1.59055
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.33310e7i − 1.66695i −0.552555 0.833477i \(-0.686347\pi\)
0.552555 0.833477i \(-0.313653\pi\)
\(578\) 0 0
\(579\) − 1.63768e7i − 2.03018i
\(580\) 0 0
\(581\) − 1.40765e6i − 0.173003i
\(582\) 0 0
\(583\) 5.86206e6i 0.714297i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.15350e6 −0.856887 −0.428443 0.903569i \(-0.640938\pi\)
−0.428443 + 0.903569i \(0.640938\pi\)
\(588\) 0 0
\(589\) 2.93216e6i 0.348256i
\(590\) 0 0
\(591\) −7.85183e6 −0.924703
\(592\) 0 0
\(593\) − 1.46858e7i − 1.71499i −0.514490 0.857496i \(-0.672019\pi\)
0.514490 0.857496i \(-0.327981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.49754e7 1.71966
\(598\) 0 0
\(599\) −9.83597e6 −1.12008 −0.560042 0.828465i \(-0.689215\pi\)
−0.560042 + 0.828465i \(0.689215\pi\)
\(600\) 0 0
\(601\) 2.68643e6 0.303381 0.151691 0.988428i \(-0.451528\pi\)
0.151691 + 0.988428i \(0.451528\pi\)
\(602\) 0 0
\(603\) −4.05875e7 −4.54568
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 387079.i − 0.0426411i −0.999773 0.0213205i \(-0.993213\pi\)
0.999773 0.0213205i \(-0.00678705\pi\)
\(608\) 0 0
\(609\) −1.70123e7 −1.85874
\(610\) 0 0
\(611\) 7.55024e6i 0.818196i
\(612\) 0 0
\(613\) −1.37500e7 −1.47792 −0.738962 0.673748i \(-0.764684\pi\)
−0.738962 + 0.673748i \(0.764684\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 1.13239e7i − 1.19752i −0.800930 0.598758i \(-0.795661\pi\)
0.800930 0.598758i \(-0.204339\pi\)
\(618\) 0 0
\(619\) 6.62505e6i 0.694965i 0.937687 + 0.347482i \(0.112963\pi\)
−0.937687 + 0.347482i \(0.887037\pi\)
\(620\) 0 0
\(621\) − 4.54098e6i − 0.472521i
\(622\) 0 0
\(623\) 643171.i 0.0663905i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.87986e7 1.90967
\(628\) 0 0
\(629\) 1.35274e6i 0.136329i
\(630\) 0 0
\(631\) 1.12049e7 1.12030 0.560152 0.828390i \(-0.310743\pi\)
0.560152 + 0.828390i \(0.310743\pi\)
\(632\) 0 0
\(633\) 1.93320e7i 1.91764i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.64150e6 −0.550866
\(638\) 0 0
\(639\) 1.59937e7 1.54952
\(640\) 0 0
\(641\) −5.35866e6 −0.515123 −0.257562 0.966262i \(-0.582919\pi\)
−0.257562 + 0.966262i \(0.582919\pi\)
\(642\) 0 0
\(643\) −5.64079e6 −0.538038 −0.269019 0.963135i \(-0.586699\pi\)
−0.269019 + 0.963135i \(0.586699\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 5.67405e6i − 0.532884i −0.963851 0.266442i \(-0.914152\pi\)
0.963851 0.266442i \(-0.0858480\pi\)
\(648\) 0 0
\(649\) 6.16258e6 0.574316
\(650\) 0 0
\(651\) − 1.15134e7i − 1.06476i
\(652\) 0 0
\(653\) 1.50064e7 1.37719 0.688593 0.725148i \(-0.258229\pi\)
0.688593 + 0.725148i \(0.258229\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.26475e7i 4.75844i
\(658\) 0 0
\(659\) − 7.48265e6i − 0.671184i −0.942007 0.335592i \(-0.891064\pi\)
0.942007 0.335592i \(-0.108936\pi\)
\(660\) 0 0
\(661\) 1.85142e7i 1.64817i 0.566467 + 0.824084i \(0.308310\pi\)
−0.566467 + 0.824084i \(0.691690\pi\)
\(662\) 0 0
\(663\) 2.62910e6i 0.232286i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.46674e6 0.127656
\(668\) 0 0
\(669\) 3.11004e7i 2.68659i
\(670\) 0 0
\(671\) 2.13278e7 1.82869
\(672\) 0 0
\(673\) 4.62662e6i 0.393755i 0.980428 + 0.196878i \(0.0630802\pi\)
−0.980428 + 0.196878i \(0.936920\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.21437e7 1.01831 0.509155 0.860675i \(-0.329958\pi\)
0.509155 + 0.860675i \(0.329958\pi\)
\(678\) 0 0
\(679\) −5.91272e6 −0.492168
\(680\) 0 0
\(681\) 1.81011e7 1.49567
\(682\) 0 0
\(683\) 9.19906e6 0.754557 0.377278 0.926100i \(-0.376860\pi\)
0.377278 + 0.926100i \(0.376860\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 1.27028e7i − 1.02685i
\(688\) 0 0
\(689\) 5.60147e6 0.449525
\(690\) 0 0
\(691\) 1.02344e7i 0.815394i 0.913117 + 0.407697i \(0.133668\pi\)
−0.913117 + 0.407697i \(0.866332\pi\)
\(692\) 0 0
\(693\) −5.27891e7 −4.17553
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 776389.i 0.0605338i
\(698\) 0 0
\(699\) − 2.31856e7i − 1.79484i
\(700\) 0 0
\(701\) 1.23863e6i 0.0952023i 0.998866 + 0.0476011i \(0.0151576\pi\)
−0.998866 + 0.0476011i \(0.984842\pi\)
\(702\) 0 0
\(703\) − 9.24242e6i − 0.705339i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.67394e7 −1.25948
\(708\) 0 0
\(709\) − 2.52759e7i − 1.88839i −0.329386 0.944195i \(-0.606842\pi\)
0.329386 0.944195i \(-0.393158\pi\)
\(710\) 0 0
\(711\) −1.20798e7 −0.896161
\(712\) 0 0
\(713\) 992646.i 0.0731258i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −4.81281e7 −3.49624
\(718\) 0 0
\(719\) −5.23203e6 −0.377440 −0.188720 0.982031i \(-0.560434\pi\)
−0.188720 + 0.982031i \(0.560434\pi\)
\(720\) 0 0
\(721\) −7.89090e6 −0.565313
\(722\) 0 0
\(723\) 1.73087e7 1.23145
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 1.79530e7i − 1.25980i −0.776677 0.629899i \(-0.783096\pi\)
0.776677 0.629899i \(-0.216904\pi\)
\(728\) 0 0
\(729\) 2.45203e7 1.70886
\(730\) 0 0
\(731\) − 2.77559e6i − 0.192115i
\(732\) 0 0
\(733\) −2.06019e6 −0.141627 −0.0708137 0.997490i \(-0.522560\pi\)
−0.0708137 + 0.997490i \(0.522560\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 3.42266e7i − 2.32111i
\(738\) 0 0
\(739\) 1.47746e6i 0.0995187i 0.998761 + 0.0497594i \(0.0158454\pi\)
−0.998761 + 0.0497594i \(0.984155\pi\)
\(740\) 0 0
\(741\) − 1.79630e7i − 1.20180i
\(742\) 0 0
\(743\) 2.46543e7i 1.63840i 0.573508 + 0.819200i \(0.305582\pi\)
−0.573508 + 0.819200i \(0.694418\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.10676e6 −0.334845
\(748\) 0 0
\(749\) 6.45471e6i 0.420409i
\(750\) 0 0
\(751\) 6.30342e6 0.407827 0.203914 0.978989i \(-0.434634\pi\)
0.203914 + 0.978989i \(0.434634\pi\)
\(752\) 0 0
\(753\) 4.80708e7i 3.08954i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.44827e7 0.918567 0.459284 0.888290i \(-0.348106\pi\)
0.459284 + 0.888290i \(0.348106\pi\)
\(758\) 0 0
\(759\) 6.36405e6 0.400986
\(760\) 0 0
\(761\) 9.50962e6 0.595253 0.297626 0.954682i \(-0.403805\pi\)
0.297626 + 0.954682i \(0.403805\pi\)
\(762\) 0 0
\(763\) 2.40298e6 0.149430
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 5.88863e6i − 0.361431i
\(768\) 0 0
\(769\) −2.88208e6 −0.175748 −0.0878741 0.996132i \(-0.528007\pi\)
−0.0878741 + 0.996132i \(0.528007\pi\)
\(770\) 0 0
\(771\) − 3.46862e7i − 2.10146i
\(772\) 0 0
\(773\) 1.83423e7 1.10409 0.552044 0.833815i \(-0.313848\pi\)
0.552044 + 0.833815i \(0.313848\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.62912e7i 2.15650i
\(778\) 0 0
\(779\) − 5.30457e6i − 0.313189i
\(780\) 0 0
\(781\) 1.34872e7i 0.791213i
\(782\) 0 0
\(783\) 3.71365e7i 2.16469i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.35279e7 −0.778564 −0.389282 0.921119i \(-0.627277\pi\)
−0.389282 + 0.921119i \(0.627277\pi\)
\(788\) 0 0
\(789\) − 4.75846e7i − 2.72128i
\(790\) 0 0
\(791\) 2.19553e7 1.24767
\(792\) 0 0
\(793\) − 2.03797e7i − 1.15084i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.10994e7 1.73423 0.867115 0.498109i \(-0.165972\pi\)
0.867115 + 0.498109i \(0.165972\pi\)
\(798\) 0 0
\(799\) −2.81192e6 −0.155825
\(800\) 0 0
\(801\) 2.33333e6 0.128498
\(802\) 0 0
\(803\) −4.43965e7 −2.42974
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.61478e7i 1.41336i
\(808\) 0 0
\(809\) −1.19594e6 −0.0642449 −0.0321225 0.999484i \(-0.510227\pi\)
−0.0321225 + 0.999484i \(0.510227\pi\)
\(810\) 0 0
\(811\) 5.59211e6i 0.298554i 0.988795 + 0.149277i \(0.0476947\pi\)
−0.988795 + 0.149277i \(0.952305\pi\)
\(812\) 0 0
\(813\) −488400. −0.0259149
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.89638e7i 0.993963i
\(818\) 0 0
\(819\) 5.04424e7i 2.62776i
\(820\) 0 0
\(821\) − 2.42817e7i − 1.25725i −0.777708 0.628625i \(-0.783618\pi\)
0.777708 0.628625i \(-0.216382\pi\)
\(822\) 0 0
\(823\) − 1.21094e7i − 0.623193i −0.950214 0.311597i \(-0.899136\pi\)
0.950214 0.311597i \(-0.100864\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.18004e7 1.10841 0.554205 0.832380i \(-0.313023\pi\)
0.554205 + 0.832380i \(0.313023\pi\)
\(828\) 0 0
\(829\) 2.81218e7i 1.42121i 0.703593 + 0.710603i \(0.251578\pi\)
−0.703593 + 0.710603i \(0.748422\pi\)
\(830\) 0 0
\(831\) 1.67629e7 0.842067
\(832\) 0 0
\(833\) − 2.10106e6i − 0.104912i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.51328e7 −1.24002
\(838\) 0 0
\(839\) 1.77035e6 0.0868270 0.0434135 0.999057i \(-0.486177\pi\)
0.0434135 + 0.999057i \(0.486177\pi\)
\(840\) 0 0
\(841\) 8.51602e6 0.415190
\(842\) 0 0
\(843\) 5.72376e7 2.77404
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 1.74315e7i − 0.834883i
\(848\) 0 0
\(849\) 5.97171e7 2.84335
\(850\) 0 0
\(851\) − 3.12891e6i − 0.148105i
\(852\) 0 0
\(853\) −2.98606e7 −1.40516 −0.702581 0.711604i \(-0.747969\pi\)
−0.702581 + 0.711604i \(0.747969\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.59538e7i − 0.742012i −0.928630 0.371006i \(-0.879013\pi\)
0.928630 0.371006i \(-0.120987\pi\)
\(858\) 0 0
\(859\) − 2.68382e7i − 1.24099i −0.784209 0.620497i \(-0.786931\pi\)
0.784209 0.620497i \(-0.213069\pi\)
\(860\) 0 0
\(861\) 2.08288e7i 0.957541i
\(862\) 0 0
\(863\) 1.99512e7i 0.911891i 0.890008 + 0.455946i \(0.150699\pi\)
−0.890008 + 0.455946i \(0.849301\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.04921e7 1.82946
\(868\) 0 0
\(869\) − 1.01867e7i − 0.457596i
\(870\) 0 0
\(871\) −3.27051e7 −1.46073
\(872\) 0 0
\(873\) 2.14505e7i 0.952582i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.73500e7 1.20077 0.600384 0.799712i \(-0.295014\pi\)
0.600384 + 0.799712i \(0.295014\pi\)
\(878\) 0 0
\(879\) −6.57510e7 −2.87032
\(880\) 0 0
\(881\) −3.29524e7 −1.43037 −0.715184 0.698937i \(-0.753657\pi\)
−0.715184 + 0.698937i \(0.753657\pi\)
\(882\) 0 0
\(883\) −1.45135e7 −0.626429 −0.313214 0.949682i \(-0.601406\pi\)
−0.313214 + 0.949682i \(0.601406\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 2.89058e7i − 1.23360i −0.787118 0.616802i \(-0.788428\pi\)
0.787118 0.616802i \(-0.211572\pi\)
\(888\) 0 0
\(889\) −5.50926e7 −2.33797
\(890\) 0 0
\(891\) 8.48543e7i 3.58079i
\(892\) 0 0
\(893\) 1.92121e7 0.806205
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 6.08114e6i − 0.252351i
\(898\) 0 0
\(899\) − 8.11793e6i − 0.335001i
\(900\) 0 0
\(901\) 2.08615e6i 0.0856117i
\(902\) 0 0
\(903\) − 7.44630e7i − 3.03893i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.75219e7 0.707233 0.353617 0.935390i \(-0.384952\pi\)
0.353617 + 0.935390i \(0.384952\pi\)
\(908\) 0 0
\(909\) 6.07280e7i 2.43770i
\(910\) 0 0
\(911\) 5.49598e6 0.219406 0.109703 0.993964i \(-0.465010\pi\)
0.109703 + 0.993964i \(0.465010\pi\)
\(912\) 0 0
\(913\) − 4.30643e6i − 0.170978i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.96762e7 −0.772711
\(918\) 0 0
\(919\) 1.89582e6 0.0740472 0.0370236 0.999314i \(-0.488212\pi\)
0.0370236 + 0.999314i \(0.488212\pi\)
\(920\) 0 0
\(921\) 1.67197e7 0.649502
\(922\) 0 0
\(923\) 1.28876e7 0.497930
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.86271e7i 1.09415i
\(928\) 0 0
\(929\) −3.44700e7 −1.31040 −0.655198 0.755457i \(-0.727415\pi\)
−0.655198 + 0.755457i \(0.727415\pi\)
\(930\) 0 0
\(931\) 1.43552e7i 0.542793i
\(932\) 0 0
\(933\) 8.35868e7 3.14365
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.96544e7i 1.47551i 0.675068 + 0.737756i \(0.264114\pi\)
−0.675068 + 0.737756i \(0.735886\pi\)
\(938\) 0 0
\(939\) 1.00955e7i 0.373651i
\(940\) 0 0
\(941\) 1.88367e7i 0.693474i 0.937962 + 0.346737i \(0.112710\pi\)
−0.937962 + 0.346737i \(0.887290\pi\)
\(942\) 0 0
\(943\) − 1.79580e6i − 0.0657625i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.04648e6 −0.146623 −0.0733115 0.997309i \(-0.523357\pi\)
−0.0733115 + 0.997309i \(0.523357\pi\)
\(948\) 0 0
\(949\) 4.24230e7i 1.52910i
\(950\) 0 0
\(951\) −8.30590e7 −2.97807
\(952\) 0 0
\(953\) − 4.74092e7i − 1.69095i −0.534016 0.845474i \(-0.679318\pi\)
0.534016 0.845474i \(-0.320682\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −5.20456e7 −1.83698
\(958\) 0 0
\(959\) 1.25136e7 0.439376
\(960\) 0 0
\(961\) −2.31352e7 −0.808099
\(962\) 0 0
\(963\) 2.34168e7 0.813695
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.05815e7i 0.363898i 0.983308 + 0.181949i \(0.0582406\pi\)
−0.983308 + 0.181949i \(0.941759\pi\)
\(968\) 0 0
\(969\) 6.68992e6 0.228882
\(970\) 0 0
\(971\) − 3.45206e7i − 1.17498i −0.809232 0.587489i \(-0.800116\pi\)
0.809232 0.587489i \(-0.199884\pi\)
\(972\) 0 0
\(973\) 1.35269e7 0.458055
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.80039e7i − 0.603433i −0.953398 0.301717i \(-0.902440\pi\)
0.953398 0.301717i \(-0.0975596\pi\)
\(978\) 0 0
\(979\) 1.96765e6i 0.0656133i
\(980\) 0 0
\(981\) − 8.71768e6i − 0.289220i
\(982\) 0 0
\(983\) − 2.71815e7i − 0.897200i −0.893733 0.448600i \(-0.851923\pi\)
0.893733 0.448600i \(-0.148077\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −7.54378e7 −2.46488
\(988\) 0 0
\(989\) 6.41996e6i 0.208709i
\(990\) 0 0
\(991\) 2.26954e7 0.734097 0.367048 0.930202i \(-0.380368\pi\)
0.367048 + 0.930202i \(0.380368\pi\)
\(992\) 0 0
\(993\) − 6.44416e7i − 2.07393i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2.28102e7 0.726762 0.363381 0.931641i \(-0.381622\pi\)
0.363381 + 0.931641i \(0.381622\pi\)
\(998\) 0 0
\(999\) 7.92208e7 2.51146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.f.c.49.20 20
4.3 odd 2 200.6.f.b.149.4 20
5.2 odd 4 800.6.d.c.401.1 20
5.3 odd 4 160.6.d.a.81.20 20
5.4 even 2 800.6.f.b.49.1 20
8.3 odd 2 200.6.f.c.149.18 20
8.5 even 2 800.6.f.b.49.2 20
20.3 even 4 40.6.d.a.21.14 yes 20
20.7 even 4 200.6.d.b.101.7 20
20.19 odd 2 200.6.f.c.149.17 20
40.3 even 4 40.6.d.a.21.13 20
40.13 odd 4 160.6.d.a.81.1 20
40.19 odd 2 200.6.f.b.149.3 20
40.27 even 4 200.6.d.b.101.8 20
40.29 even 2 inner 800.6.f.c.49.19 20
40.37 odd 4 800.6.d.c.401.20 20
60.23 odd 4 360.6.k.b.181.7 20
120.83 odd 4 360.6.k.b.181.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.13 20 40.3 even 4
40.6.d.a.21.14 yes 20 20.3 even 4
160.6.d.a.81.1 20 40.13 odd 4
160.6.d.a.81.20 20 5.3 odd 4
200.6.d.b.101.7 20 20.7 even 4
200.6.d.b.101.8 20 40.27 even 4
200.6.f.b.149.3 20 40.19 odd 2
200.6.f.b.149.4 20 4.3 odd 2
200.6.f.c.149.17 20 20.19 odd 2
200.6.f.c.149.18 20 8.3 odd 2
360.6.k.b.181.7 20 60.23 odd 4
360.6.k.b.181.8 20 120.83 odd 4
800.6.d.c.401.1 20 5.2 odd 4
800.6.d.c.401.20 20 40.37 odd 4
800.6.f.b.49.1 20 5.4 even 2
800.6.f.b.49.2 20 8.5 even 2
800.6.f.c.49.19 20 40.29 even 2 inner
800.6.f.c.49.20 20 1.1 even 1 trivial