Properties

Label 200.6.d.b.101.8
Level $200$
Weight $6$
Character 200.101
Analytic conductor $32.077$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(101,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.101");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 200.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.0767639626\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{45}\cdot 3^{4}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.8
Root \(3.46430 + 1.99965i\) of defining polynomial
Character \(\chi\) \(=\) 200.101
Dual form 200.6.d.b.101.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.46465 + 5.46395i) q^{2} -29.2080i q^{3} +(-27.7096 - 16.0056i) q^{4} +(159.591 + 42.7797i) q^{6} +168.173 q^{7} +(128.039 - 127.961i) q^{8} -610.110 q^{9} +514.493i q^{11} +(-467.493 + 809.342i) q^{12} +491.622i q^{13} +(-246.316 + 918.892i) q^{14} +(511.641 + 887.017i) q^{16} -183.094 q^{17} +(893.600 - 3333.61i) q^{18} +1250.96i q^{19} -4912.01i q^{21} +(-2811.16 - 753.554i) q^{22} +423.498 q^{23} +(-3737.49 - 3739.76i) q^{24} +(-2686.20 - 720.056i) q^{26} +10722.5i q^{27} +(-4660.01 - 2691.72i) q^{28} +3463.40i q^{29} +2343.92 q^{31} +(-5596.00 + 1496.41i) q^{32} +15027.3 q^{33} +(268.170 - 1000.42i) q^{34} +(16905.9 + 9765.18i) q^{36} -7388.25i q^{37} +(-6835.20 - 1832.23i) q^{38} +14359.3 q^{39} +4240.39 q^{41} +(26839.0 + 7194.41i) q^{42} +15159.4i q^{43} +(8234.77 - 14256.4i) q^{44} +(-620.279 + 2313.98i) q^{46} +15357.8 q^{47} +(25908.0 - 14944.0i) q^{48} +11475.3 q^{49} +5347.82i q^{51} +(7868.71 - 13622.6i) q^{52} +11393.9i q^{53} +(-58587.5 - 15704.8i) q^{54} +(21532.7 - 21519.7i) q^{56} +36538.2 q^{57} +(-18923.8 - 5072.68i) q^{58} +11978.0i q^{59} +41454.0i q^{61} +(-3433.03 + 12807.1i) q^{62} -102604. q^{63} +(19.9046 - 32768.0i) q^{64} +(-22009.8 + 82108.6i) q^{66} -66524.9i q^{67} +(5073.46 + 2930.53i) q^{68} -12369.6i q^{69} -26214.5 q^{71} +(-78117.7 + 78070.3i) q^{72} +86291.9 q^{73} +(40369.0 + 10821.2i) q^{74} +(20022.4 - 34663.7i) q^{76} +86524.0i q^{77} +(-21031.4 + 78458.6i) q^{78} -19799.4 q^{79} +164928. q^{81} +(-6210.70 + 23169.3i) q^{82} +8370.24i q^{83} +(-78619.8 + 136110. i) q^{84} +(-82830.0 - 22203.2i) q^{86} +101159. q^{87} +(65835.1 + 65875.1i) q^{88} -3824.45 q^{89} +82677.7i q^{91} +(-11735.0 - 6778.35i) q^{92} -68461.3i q^{93} +(-22493.9 + 83914.4i) q^{94} +(43707.1 + 163448. i) q^{96} -35158.5 q^{97} +(-16807.3 + 62700.4i) q^{98} -313897. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 32 q^{4} + 204 q^{6} + 196 q^{7} - 248 q^{8} - 1620 q^{9} + 1876 q^{12} + 2708 q^{14} + 3080 q^{16} + 5294 q^{18} - 13836 q^{22} + 4676 q^{23} + 1032 q^{24} - 8084 q^{26} - 2108 q^{28}+ \cdots - 216942 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46465 + 5.46395i −0.258917 + 0.965900i
\(3\) 29.2080i 1.87370i −0.349736 0.936848i \(-0.613729\pi\)
0.349736 0.936848i \(-0.386271\pi\)
\(4\) −27.7096 16.0056i −0.865924 0.500175i
\(5\) 0 0
\(6\) 159.591 + 42.7797i 1.80980 + 0.485132i
\(7\) 168.173 1.29722 0.648608 0.761123i \(-0.275352\pi\)
0.648608 + 0.761123i \(0.275352\pi\)
\(8\) 128.039 127.961i 0.707322 0.706892i
\(9\) −610.110 −2.51074
\(10\) 0 0
\(11\) 514.493i 1.28203i 0.767529 + 0.641014i \(0.221486\pi\)
−0.767529 + 0.641014i \(0.778514\pi\)
\(12\) −467.493 + 809.342i −0.937177 + 1.62248i
\(13\) 491.622i 0.806813i 0.915021 + 0.403406i \(0.132174\pi\)
−0.915021 + 0.403406i \(0.867826\pi\)
\(14\) −246.316 + 918.892i −0.335871 + 1.25298i
\(15\) 0 0
\(16\) 511.641 + 887.017i 0.499649 + 0.866228i
\(17\) −183.094 −0.153657 −0.0768284 0.997044i \(-0.524479\pi\)
−0.0768284 + 0.997044i \(0.524479\pi\)
\(18\) 893.600 3333.61i 0.650073 2.42512i
\(19\) 1250.96i 0.794988i 0.917605 + 0.397494i \(0.130120\pi\)
−0.917605 + 0.397494i \(0.869880\pi\)
\(20\) 0 0
\(21\) 4912.01i 2.43059i
\(22\) −2811.16 753.554i −1.23831 0.331939i
\(23\) 423.498 0.166929 0.0834646 0.996511i \(-0.473401\pi\)
0.0834646 + 0.996511i \(0.473401\pi\)
\(24\) −3737.49 3739.76i −1.32450 1.32531i
\(25\) 0 0
\(26\) −2686.20 720.056i −0.779300 0.208897i
\(27\) 10722.5i 2.83067i
\(28\) −4660.01 2691.72i −1.12329 0.648835i
\(29\) 3463.40i 0.764729i 0.924012 + 0.382364i \(0.124890\pi\)
−0.924012 + 0.382364i \(0.875110\pi\)
\(30\) 0 0
\(31\) 2343.92 0.438065 0.219032 0.975718i \(-0.429710\pi\)
0.219032 + 0.975718i \(0.429710\pi\)
\(32\) −5596.00 + 1496.41i −0.966057 + 0.258330i
\(33\) 15027.3 2.40213
\(34\) 268.170 1000.42i 0.0397843 0.148417i
\(35\) 0 0
\(36\) 16905.9 + 9765.18i 2.17411 + 1.25581i
\(37\) 7388.25i 0.887232i −0.896217 0.443616i \(-0.853695\pi\)
0.896217 0.443616i \(-0.146305\pi\)
\(38\) −6835.20 1832.23i −0.767879 0.205836i
\(39\) 14359.3 1.51172
\(40\) 0 0
\(41\) 4240.39 0.393954 0.196977 0.980408i \(-0.436888\pi\)
0.196977 + 0.980408i \(0.436888\pi\)
\(42\) 26839.0 + 7194.41i 2.34770 + 0.629320i
\(43\) 15159.4i 1.25029i 0.780510 + 0.625143i \(0.214960\pi\)
−0.780510 + 0.625143i \(0.785040\pi\)
\(44\) 8234.77 14256.4i 0.641239 1.11014i
\(45\) 0 0
\(46\) −620.279 + 2313.98i −0.0432208 + 0.161237i
\(47\) 15357.8 1.01411 0.507055 0.861914i \(-0.330734\pi\)
0.507055 + 0.861914i \(0.330734\pi\)
\(48\) 25908.0 14944.0i 1.62305 0.936191i
\(49\) 11475.3 0.682768
\(50\) 0 0
\(51\) 5347.82i 0.287906i
\(52\) 7868.71 13622.6i 0.403548 0.698639i
\(53\) 11393.9i 0.557162i 0.960413 + 0.278581i \(0.0898640\pi\)
−0.960413 + 0.278581i \(0.910136\pi\)
\(54\) −58587.5 15704.8i −2.73414 0.732907i
\(55\) 0 0
\(56\) 21532.7 21519.7i 0.917548 0.916991i
\(57\) 36538.2 1.48957
\(58\) −18923.8 5072.68i −0.738651 0.198001i
\(59\) 11978.0i 0.447974i 0.974592 + 0.223987i \(0.0719074\pi\)
−0.974592 + 0.223987i \(0.928093\pi\)
\(60\) 0 0
\(61\) 41454.0i 1.42640i 0.700960 + 0.713200i \(0.252755\pi\)
−0.700960 + 0.713200i \(0.747245\pi\)
\(62\) −3433.03 + 12807.1i −0.113422 + 0.423127i
\(63\) −102604. −3.25697
\(64\) 19.9046 32768.0i 0.000607441 1.00000i
\(65\) 0 0
\(66\) −22009.8 + 82108.6i −0.621952 + 2.32022i
\(67\) 66524.9i 1.81049i −0.424885 0.905247i \(-0.639685\pi\)
0.424885 0.905247i \(-0.360315\pi\)
\(68\) 5073.46 + 2930.53i 0.133055 + 0.0768553i
\(69\) 12369.6i 0.312775i
\(70\) 0 0
\(71\) −26214.5 −0.617157 −0.308579 0.951199i \(-0.599853\pi\)
−0.308579 + 0.951199i \(0.599853\pi\)
\(72\) −78117.7 + 78070.3i −1.77590 + 1.77482i
\(73\) 86291.9 1.89523 0.947617 0.319409i \(-0.103484\pi\)
0.947617 + 0.319409i \(0.103484\pi\)
\(74\) 40369.0 + 10821.2i 0.856977 + 0.229719i
\(75\) 0 0
\(76\) 20022.4 34663.7i 0.397633 0.688399i
\(77\) 86524.0i 1.66307i
\(78\) −21031.4 + 78458.6i −0.391410 + 1.46017i
\(79\) −19799.4 −0.356931 −0.178466 0.983946i \(-0.557113\pi\)
−0.178466 + 0.983946i \(0.557113\pi\)
\(80\) 0 0
\(81\) 164928. 2.79307
\(82\) −6210.70 + 23169.3i −0.102001 + 0.380520i
\(83\) 8370.24i 0.133365i 0.997774 + 0.0666826i \(0.0212415\pi\)
−0.997774 + 0.0666826i \(0.978759\pi\)
\(84\) −78619.8 + 136110.i −1.21572 + 2.10471i
\(85\) 0 0
\(86\) −82830.0 22203.2i −1.20765 0.323720i
\(87\) 101159. 1.43287
\(88\) 65835.1 + 65875.1i 0.906255 + 0.906806i
\(89\) −3824.45 −0.0511793 −0.0255896 0.999673i \(-0.508146\pi\)
−0.0255896 + 0.999673i \(0.508146\pi\)
\(90\) 0 0
\(91\) 82677.7i 1.04661i
\(92\) −11735.0 6778.35i −0.144548 0.0834939i
\(93\) 68461.3i 0.820801i
\(94\) −22493.9 + 83914.4i −0.262570 + 0.979528i
\(95\) 0 0
\(96\) 43707.1 + 163448.i 0.484032 + 1.81010i
\(97\) −35158.5 −0.379403 −0.189702 0.981842i \(-0.560752\pi\)
−0.189702 + 0.981842i \(0.560752\pi\)
\(98\) −16807.3 + 62700.4i −0.176780 + 0.659486i
\(99\) 313897.i 3.21884i
\(100\) 0 0
\(101\) 99536.3i 0.970908i −0.874262 0.485454i \(-0.838654\pi\)
0.874262 0.485454i \(-0.161346\pi\)
\(102\) −29220.2 7832.71i −0.278089 0.0745438i
\(103\) −46921.2 −0.435789 −0.217895 0.975972i \(-0.569919\pi\)
−0.217895 + 0.975972i \(0.569919\pi\)
\(104\) 62908.5 + 62946.7i 0.570329 + 0.570676i
\(105\) 0 0
\(106\) −62255.5 16688.1i −0.538162 0.144259i
\(107\) 38381.3i 0.324086i 0.986784 + 0.162043i \(0.0518083\pi\)
−0.986784 + 0.162043i \(0.948192\pi\)
\(108\) 171621. 297117.i 1.41583 2.45114i
\(109\) 14288.7i 0.115193i −0.998340 0.0575966i \(-0.981656\pi\)
0.998340 0.0575966i \(-0.0183437\pi\)
\(110\) 0 0
\(111\) −215796. −1.66240
\(112\) 86044.4 + 149173.i 0.648153 + 1.12368i
\(113\) −130552. −0.961804 −0.480902 0.876774i \(-0.659691\pi\)
−0.480902 + 0.876774i \(0.659691\pi\)
\(114\) −53515.8 + 199643.i −0.385674 + 1.43877i
\(115\) 0 0
\(116\) 55433.8 95969.3i 0.382498 0.662197i
\(117\) 299943.i 2.02570i
\(118\) −65447.1 17543.6i −0.432698 0.115988i
\(119\) −30791.5 −0.199326
\(120\) 0 0
\(121\) −103652. −0.643596
\(122\) −226503. 60715.7i −1.37776 0.369319i
\(123\) 123853.i 0.738151i
\(124\) −64949.0 37515.9i −0.379331 0.219109i
\(125\) 0 0
\(126\) 150280. 560624.i 0.843284 3.14591i
\(127\) 327594. 1.80230 0.901150 0.433508i \(-0.142724\pi\)
0.901150 + 0.433508i \(0.142724\pi\)
\(128\) 179014. + 48102.6i 0.965742 + 0.259504i
\(129\) 442775. 2.34266
\(130\) 0 0
\(131\) 116999.i 0.595669i 0.954618 + 0.297834i \(0.0962643\pi\)
−0.954618 + 0.297834i \(0.903736\pi\)
\(132\) −416401. 240522.i −2.08006 1.20149i
\(133\) 210379.i 1.03127i
\(134\) 363489. + 97436.0i 1.74876 + 0.468768i
\(135\) 0 0
\(136\) −23443.1 + 23428.9i −0.108685 + 0.108619i
\(137\) 74409.1 0.338707 0.169354 0.985555i \(-0.445832\pi\)
0.169354 + 0.985555i \(0.445832\pi\)
\(138\) 67586.7 + 18117.1i 0.302109 + 0.0809826i
\(139\) 80434.5i 0.353106i 0.984291 + 0.176553i \(0.0564947\pi\)
−0.984291 + 0.176553i \(0.943505\pi\)
\(140\) 0 0
\(141\) 448572.i 1.90013i
\(142\) 38395.2 143235.i 0.159792 0.596112i
\(143\) −252936. −1.03436
\(144\) −312157. 541178.i −1.25449 2.17487i
\(145\) 0 0
\(146\) −126388. + 471495.i −0.490708 + 1.83061i
\(147\) 335171.i 1.27930i
\(148\) −118253. + 204725.i −0.443771 + 0.768275i
\(149\) 57917.4i 0.213719i −0.994274 0.106860i \(-0.965920\pi\)
0.994274 0.106860i \(-0.0340795\pi\)
\(150\) 0 0
\(151\) 450813. 1.60899 0.804497 0.593957i \(-0.202435\pi\)
0.804497 + 0.593957i \(0.202435\pi\)
\(152\) 160075. + 160172.i 0.561971 + 0.562312i
\(153\) 111707. 0.385792
\(154\) −472763. 126728.i −1.60636 0.430596i
\(155\) 0 0
\(156\) −397890. 229829.i −1.30904 0.756126i
\(157\) 72067.3i 0.233340i −0.993171 0.116670i \(-0.962778\pi\)
0.993171 0.116670i \(-0.0372220\pi\)
\(158\) 28999.3 108183.i 0.0924155 0.344760i
\(159\) 332792. 1.04395
\(160\) 0 0
\(161\) 71221.2 0.216543
\(162\) −241563. + 901159.i −0.723173 + 2.69783i
\(163\) 471144.i 1.38895i −0.719519 0.694473i \(-0.755638\pi\)
0.719519 0.694473i \(-0.244362\pi\)
\(164\) −117499. 67870.0i −0.341134 0.197046i
\(165\) 0 0
\(166\) −45734.6 12259.5i −0.128817 0.0345305i
\(167\) −519164. −1.44050 −0.720250 0.693715i \(-0.755973\pi\)
−0.720250 + 0.693715i \(0.755973\pi\)
\(168\) −628547. 628929.i −1.71816 1.71921i
\(169\) 129601. 0.349053
\(170\) 0 0
\(171\) 763225.i 1.99601i
\(172\) 242635. 420059.i 0.625363 1.08265i
\(173\) 726898.i 1.84654i 0.384153 + 0.923269i \(0.374494\pi\)
−0.384153 + 0.923269i \(0.625506\pi\)
\(174\) −148163. + 552728.i −0.370994 + 1.38401i
\(175\) 0 0
\(176\) −456364. + 263236.i −1.11053 + 0.640564i
\(177\) 349853. 0.839368
\(178\) 5601.50 20896.6i 0.0132512 0.0494340i
\(179\) 327278.i 0.763457i 0.924274 + 0.381729i \(0.124671\pi\)
−0.924274 + 0.381729i \(0.875329\pi\)
\(180\) 0 0
\(181\) 651584.i 1.47834i 0.673519 + 0.739170i \(0.264782\pi\)
−0.673519 + 0.739170i \(0.735218\pi\)
\(182\) −451747. 121094.i −1.01092 0.270985i
\(183\) 1.21079e6 2.67264
\(184\) 54224.3 54191.3i 0.118073 0.118001i
\(185\) 0 0
\(186\) 374069. + 100272.i 0.792811 + 0.212519i
\(187\) 94200.5i 0.196992i
\(188\) −425558. 245811.i −0.878142 0.507232i
\(189\) 1.80325e6i 3.67198i
\(190\) 0 0
\(191\) −427987. −0.848882 −0.424441 0.905456i \(-0.639529\pi\)
−0.424441 + 0.905456i \(0.639529\pi\)
\(192\) −957089. 581.375i −1.87370 0.00113816i
\(193\) −560696. −1.08351 −0.541757 0.840535i \(-0.682241\pi\)
−0.541757 + 0.840535i \(0.682241\pi\)
\(194\) 51495.1 192104.i 0.0982339 0.366465i
\(195\) 0 0
\(196\) −317975. 183669.i −0.591226 0.341504i
\(197\) 268824.i 0.493518i 0.969077 + 0.246759i \(0.0793656\pi\)
−0.969077 + 0.246759i \(0.920634\pi\)
\(198\) 1.71512e6 + 459751.i 3.10907 + 0.833411i
\(199\) 512715. 0.917789 0.458895 0.888491i \(-0.348246\pi\)
0.458895 + 0.888491i \(0.348246\pi\)
\(200\) 0 0
\(201\) −1.94306e6 −3.39232
\(202\) 543862. + 145786.i 0.937799 + 0.251384i
\(203\) 582451.i 0.992018i
\(204\) 85595.1 148186.i 0.144004 0.249305i
\(205\) 0 0
\(206\) 68723.4 256376.i 0.112833 0.420929i
\(207\) −258380. −0.419116
\(208\) −436077. + 251534.i −0.698884 + 0.403123i
\(209\) −643612. −1.01920
\(210\) 0 0
\(211\) 661872.i 1.02345i 0.859148 + 0.511726i \(0.170994\pi\)
−0.859148 + 0.511726i \(0.829006\pi\)
\(212\) 182366. 315719.i 0.278679 0.482460i
\(213\) 765674.i 1.15637i
\(214\) −209713. 56215.3i −0.313034 0.0839112i
\(215\) 0 0
\(216\) 1.37207e6 + 1.37290e6i 2.00098 + 2.00219i
\(217\) 394185. 0.568265
\(218\) 78072.9 + 20928.0i 0.111265 + 0.0298255i
\(219\) 2.52042e6i 3.55109i
\(220\) 0 0
\(221\) 90013.0i 0.123972i
\(222\) 316067. 1.17910e6i 0.430424 1.60571i
\(223\) −1.06479e6 −1.43384 −0.716922 0.697153i \(-0.754450\pi\)
−0.716922 + 0.697153i \(0.754450\pi\)
\(224\) −941098. + 251656.i −1.25318 + 0.335110i
\(225\) 0 0
\(226\) 191213. 713329.i 0.249027 0.929006i
\(227\) 619730.i 0.798248i 0.916897 + 0.399124i \(0.130686\pi\)
−0.916897 + 0.399124i \(0.869314\pi\)
\(228\) −1.01246e6 584816.i −1.28985 0.745044i
\(229\) 434907.i 0.548035i −0.961725 0.274017i \(-0.911647\pi\)
0.961725 0.274017i \(-0.0883525\pi\)
\(230\) 0 0
\(231\) 2.52720e6 3.11608
\(232\) 443180. + 443450.i 0.540581 + 0.540909i
\(233\) −793810. −0.957915 −0.478957 0.877838i \(-0.658985\pi\)
−0.478957 + 0.877838i \(0.658985\pi\)
\(234\) 1.63888e6 + 439313.i 1.95662 + 0.524487i
\(235\) 0 0
\(236\) 191715. 331904.i 0.224066 0.387912i
\(237\) 578302.i 0.668781i
\(238\) 45099.0 168244.i 0.0516089 0.192529i
\(239\) −1.64777e6 −1.86596 −0.932978 0.359933i \(-0.882800\pi\)
−0.932978 + 0.359933i \(0.882800\pi\)
\(240\) 0 0
\(241\) 592599. 0.657231 0.328616 0.944464i \(-0.393418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(242\) 151814. 566349.i 0.166638 0.621649i
\(243\) 2.21164e6i 2.40270i
\(244\) 663496. 1.14867e6i 0.713450 1.23515i
\(245\) 0 0
\(246\) 676729. + 181402.i 0.712979 + 0.191120i
\(247\) −615001. −0.641406
\(248\) 300113. 299930.i 0.309853 0.309665i
\(249\) 244478. 0.249886
\(250\) 0 0
\(251\) 1.64581e6i 1.64890i 0.565933 + 0.824451i \(0.308516\pi\)
−0.565933 + 0.824451i \(0.691484\pi\)
\(252\) 2.84312e6 + 1.64224e6i 2.82029 + 1.62906i
\(253\) 217887.i 0.214008i
\(254\) −479813. + 1.78996e6i −0.466646 + 1.74084i
\(255\) 0 0
\(256\) −525023. + 907669.i −0.500701 + 0.865620i
\(257\) 1.18756e6 1.12156 0.560779 0.827966i \(-0.310502\pi\)
0.560779 + 0.827966i \(0.310502\pi\)
\(258\) −648513. + 2.41930e6i −0.606554 + 2.26277i
\(259\) 1.24251e6i 1.15093i
\(260\) 0 0
\(261\) 2.11305e6i 1.92003i
\(262\) −639279. 171364.i −0.575356 0.154229i
\(263\) 1.62916e6 1.45236 0.726180 0.687505i \(-0.241294\pi\)
0.726180 + 0.687505i \(0.241294\pi\)
\(264\) 1.92408e6 1.92291e6i 1.69908 1.69805i
\(265\) 0 0
\(266\) −1.14950e6 308132.i −0.996104 0.267013i
\(267\) 111705.i 0.0958944i
\(268\) −1.06477e6 + 1.84338e6i −0.905565 + 1.56775i
\(269\) 895226.i 0.754314i 0.926149 + 0.377157i \(0.123098\pi\)
−0.926149 + 0.377157i \(0.876902\pi\)
\(270\) 0 0
\(271\) 16721.4 0.0138309 0.00691545 0.999976i \(-0.497799\pi\)
0.00691545 + 0.999976i \(0.497799\pi\)
\(272\) −93678.4 162408.i −0.0767745 0.133102i
\(273\) 2.41485e6 1.96103
\(274\) −108984. + 406568.i −0.0876970 + 0.327157i
\(275\) 0 0
\(276\) −197982. + 342755.i −0.156442 + 0.270839i
\(277\) 573914.i 0.449415i −0.974426 0.224708i \(-0.927857\pi\)
0.974426 0.224708i \(-0.0721427\pi\)
\(278\) −439490. 117809.i −0.341065 0.0914251i
\(279\) −1.43005e6 −1.09987
\(280\) 0 0
\(281\) 1.95965e6 1.48052 0.740258 0.672322i \(-0.234703\pi\)
0.740258 + 0.672322i \(0.234703\pi\)
\(282\) 2.45097e6 + 657003.i 1.83534 + 0.491976i
\(283\) 2.04454e6i 1.51751i −0.651378 0.758753i \(-0.725809\pi\)
0.651378 0.758753i \(-0.274191\pi\)
\(284\) 726393. + 419579.i 0.534411 + 0.308687i
\(285\) 0 0
\(286\) 370464. 1.38203e6i 0.267812 0.999085i
\(287\) 713120. 0.511044
\(288\) 3.41417e6 912972.i 2.42552 0.648599i
\(289\) −1.38633e6 −0.976390
\(290\) 0 0
\(291\) 1.02691e6i 0.710886i
\(292\) −2.39111e6 1.38115e6i −1.64113 0.947949i
\(293\) 2.25113e6i 1.53190i −0.642899 0.765951i \(-0.722269\pi\)
0.642899 0.765951i \(-0.277731\pi\)
\(294\) 1.83136e6 + 490909.i 1.23568 + 0.331232i
\(295\) 0 0
\(296\) −945408. 945983.i −0.627177 0.627558i
\(297\) −5.51667e6 −3.62899
\(298\) 316458. + 84829.1i 0.206431 + 0.0553355i
\(299\) 208201.i 0.134681i
\(300\) 0 0
\(301\) 2.54940e6i 1.62189i
\(302\) −660286. + 2.46322e6i −0.416596 + 1.55413i
\(303\) −2.90726e6 −1.81919
\(304\) −1.10963e6 + 640044.i −0.688641 + 0.397215i
\(305\) 0 0
\(306\) −163613. + 610364.i −0.0998881 + 0.372636i
\(307\) 572436.i 0.346642i 0.984865 + 0.173321i \(0.0554498\pi\)
−0.984865 + 0.173321i \(0.944550\pi\)
\(308\) 1.38487e6 2.39754e6i 0.831825 1.44009i
\(309\) 1.37048e6i 0.816537i
\(310\) 0 0
\(311\) −2.86177e6 −1.67778 −0.838889 0.544303i \(-0.816794\pi\)
−0.838889 + 0.544303i \(0.816794\pi\)
\(312\) 1.83855e6 1.83743e6i 1.06927 1.06862i
\(313\) 345643. 0.199419 0.0997095 0.995017i \(-0.468209\pi\)
0.0997095 + 0.995017i \(0.468209\pi\)
\(314\) 393772. + 105554.i 0.225383 + 0.0604156i
\(315\) 0 0
\(316\) 548633. + 316902.i 0.309075 + 0.178528i
\(317\) 2.84370e6i 1.58941i 0.606995 + 0.794706i \(0.292375\pi\)
−0.606995 + 0.794706i \(0.707625\pi\)
\(318\) −487426. + 1.81836e6i −0.270297 + 1.00835i
\(319\) −1.78189e6 −0.980404
\(320\) 0 0
\(321\) 1.12104e6 0.607238
\(322\) −104314. + 389149.i −0.0560667 + 0.209159i
\(323\) 229044.i 0.122155i
\(324\) −4.57008e6 2.63977e6i −2.41859 1.39702i
\(325\) 0 0
\(326\) 2.57431e6 + 690064.i 1.34158 + 0.359621i
\(327\) −417345. −0.215837
\(328\) 542934. 542605.i 0.278652 0.278483i
\(329\) 2.58278e6 1.31552
\(330\) 0 0
\(331\) 2.20630e6i 1.10686i −0.832895 0.553431i \(-0.813318\pi\)
0.832895 0.553431i \(-0.186682\pi\)
\(332\) 133971. 231936.i 0.0667060 0.115484i
\(333\) 4.50764e6i 2.22761i
\(334\) 760396. 2.83669e6i 0.372970 1.39138i
\(335\) 0 0
\(336\) 4.35704e6 2.51319e6i 2.10544 1.21444i
\(337\) 210820. 0.101120 0.0505599 0.998721i \(-0.483899\pi\)
0.0505599 + 0.998721i \(0.483899\pi\)
\(338\) −189821. + 708134.i −0.0903758 + 0.337150i
\(339\) 3.81316e6i 1.80213i
\(340\) 0 0
\(341\) 1.20593e6i 0.561611i
\(342\) 4.17022e6 + 1.11786e6i 1.92794 + 0.516800i
\(343\) −896652. −0.411518
\(344\) 1.93981e6 + 1.94099e6i 0.883818 + 0.884355i
\(345\) 0 0
\(346\) −3.97174e6 1.06466e6i −1.78357 0.478100i
\(347\) 2.39916e6i 1.06963i 0.844968 + 0.534817i \(0.179619\pi\)
−0.844968 + 0.534817i \(0.820381\pi\)
\(348\) −2.80307e6 1.61911e6i −1.24076 0.716686i
\(349\) 1.76207e6i 0.774392i 0.921997 + 0.387196i \(0.126556\pi\)
−0.921997 + 0.387196i \(0.873444\pi\)
\(350\) 0 0
\(351\) −5.27144e6 −2.28382
\(352\) −769891. 2.87910e6i −0.331186 1.23851i
\(353\) 2.11387e6 0.902904 0.451452 0.892296i \(-0.350906\pi\)
0.451452 + 0.892296i \(0.350906\pi\)
\(354\) −512414. + 1.91158e6i −0.217327 + 0.810745i
\(355\) 0 0
\(356\) 105974. + 61212.7i 0.0443174 + 0.0255986i
\(357\) 899360.i 0.373476i
\(358\) −1.78823e6 479350.i −0.737423 0.197672i
\(359\) −25391.5 −0.0103981 −0.00519903 0.999986i \(-0.501655\pi\)
−0.00519903 + 0.999986i \(0.501655\pi\)
\(360\) 0 0
\(361\) 911190. 0.367994
\(362\) −3.56023e6 954346.i −1.42793 0.382767i
\(363\) 3.02747e6i 1.20590i
\(364\) 1.32331e6 2.29096e6i 0.523489 0.906285i
\(365\) 0 0
\(366\) −1.77339e6 + 6.61569e6i −0.691992 + 2.58150i
\(367\) −1.55872e6 −0.604091 −0.302046 0.953293i \(-0.597670\pi\)
−0.302046 + 0.953293i \(0.597670\pi\)
\(368\) 216679. + 375650.i 0.0834060 + 0.144599i
\(369\) −2.58710e6 −0.989116
\(370\) 0 0
\(371\) 1.91614e6i 0.722759i
\(372\) −1.09576e6 + 1.89703e6i −0.410544 + 0.710751i
\(373\) 741743.i 0.276046i 0.990429 + 0.138023i \(0.0440748\pi\)
−0.990429 + 0.138023i \(0.955925\pi\)
\(374\) 514707. + 137971.i 0.190275 + 0.0510046i
\(375\) 0 0
\(376\) 1.96640e6 1.96520e6i 0.717301 0.716866i
\(377\) −1.70268e6 −0.616993
\(378\) −9.85286e6 2.64113e6i −3.54677 0.950738i
\(379\) 2.61039e6i 0.933487i −0.884393 0.466743i \(-0.845427\pi\)
0.884393 0.466743i \(-0.154573\pi\)
\(380\) 0 0
\(381\) 9.56839e6i 3.37696i
\(382\) 626853. 2.33850e6i 0.219790 0.819935i
\(383\) 3.05949e6 1.06574 0.532871 0.846197i \(-0.321113\pi\)
0.532871 + 0.846197i \(0.321113\pi\)
\(384\) 1.40498e6 5.22864e6i 0.486231 1.80951i
\(385\) 0 0
\(386\) 821227. 3.06362e6i 0.280540 1.04657i
\(387\) 9.24887e6i 3.13914i
\(388\) 974227. + 562733.i 0.328534 + 0.189768i
\(389\) 498203.i 0.166929i −0.996511 0.0834646i \(-0.973401\pi\)
0.996511 0.0834646i \(-0.0265985\pi\)
\(390\) 0 0
\(391\) −77540.0 −0.0256498
\(392\) 1.46928e6 1.46839e6i 0.482937 0.482643i
\(393\) 3.41732e6 1.11610
\(394\) −1.46884e6 393735.i −0.476689 0.127780i
\(395\) 0 0
\(396\) −5.02411e6 + 8.69795e6i −1.60998 + 2.78727i
\(397\) 3.95290e6i 1.25875i −0.777101 0.629376i \(-0.783311\pi\)
0.777101 0.629376i \(-0.216689\pi\)
\(398\) −750950. + 2.80145e6i −0.237631 + 0.886492i
\(399\) 6.14475e6 1.93229
\(400\) 0 0
\(401\) −1.15248e6 −0.357909 −0.178955 0.983857i \(-0.557272\pi\)
−0.178955 + 0.983857i \(0.557272\pi\)
\(402\) 2.84591e6 1.06168e7i 0.878328 3.27664i
\(403\) 1.15232e6i 0.353436i
\(404\) −1.59314e6 + 2.75811e6i −0.485624 + 0.840732i
\(405\) 0 0
\(406\) −3.18249e6 853090.i −0.958190 0.256850i
\(407\) 3.80120e6 1.13746
\(408\) 684313. + 684728.i 0.203519 + 0.203642i
\(409\) 2.54459e6 0.752159 0.376079 0.926587i \(-0.377272\pi\)
0.376079 + 0.926587i \(0.377272\pi\)
\(410\) 0 0
\(411\) 2.17334e6i 0.634635i
\(412\) 1.30017e6 + 751003.i 0.377360 + 0.217971i
\(413\) 2.01438e6i 0.581119i
\(414\) 378438. 1.41178e6i 0.108516 0.404824i
\(415\) 0 0
\(416\) −735667. 2.75111e6i −0.208424 0.779427i
\(417\) 2.34933e6 0.661614
\(418\) 942669. 3.51666e6i 0.263887 0.984442i
\(419\) 62820.4i 0.0174810i −0.999962 0.00874049i \(-0.997218\pi\)
0.999962 0.00874049i \(-0.00278222\pi\)
\(420\) 0 0
\(421\) 1.89940e6i 0.522289i 0.965300 + 0.261145i \(0.0841000\pi\)
−0.965300 + 0.261145i \(0.915900\pi\)
\(422\) −3.61644e6 969414.i −0.988553 0.264989i
\(423\) −9.36995e6 −2.54616
\(424\) 1.45797e6 + 1.45886e6i 0.393853 + 0.394092i
\(425\) 0 0
\(426\) −4.18361e6 1.12145e6i −1.11693 0.299402i
\(427\) 6.97145e6i 1.85035i
\(428\) 614316. 1.06353e6i 0.162100 0.280634i
\(429\) 7.38776e6i 1.93807i
\(430\) 0 0
\(431\) 5.91659e6 1.53419 0.767094 0.641535i \(-0.221702\pi\)
0.767094 + 0.641535i \(0.221702\pi\)
\(432\) −9.51109e6 + 5.48609e6i −2.45200 + 1.41434i
\(433\) 1.64308e6 0.421153 0.210577 0.977577i \(-0.432466\pi\)
0.210577 + 0.977577i \(0.432466\pi\)
\(434\) −577345. + 2.15381e6i −0.147133 + 0.548886i
\(435\) 0 0
\(436\) −228700. + 395934.i −0.0576168 + 0.0997486i
\(437\) 529781.i 0.132707i
\(438\) 1.37714e7 + 3.69154e6i 3.43000 + 0.919438i
\(439\) −4.34976e6 −1.07722 −0.538610 0.842555i \(-0.681050\pi\)
−0.538610 + 0.842555i \(0.681050\pi\)
\(440\) 0 0
\(441\) −7.00118e6 −1.71425
\(442\) 491827. + 131838.i 0.119745 + 0.0320985i
\(443\) 2.27280e6i 0.550239i 0.961410 + 0.275119i \(0.0887174\pi\)
−0.961410 + 0.275119i \(0.911283\pi\)
\(444\) 5.97962e6 + 3.45395e6i 1.43951 + 0.831493i
\(445\) 0 0
\(446\) 1.55955e6 5.81796e6i 0.371246 1.38495i
\(447\) −1.69165e6 −0.400445
\(448\) 3347.43 5.51070e6i 0.000787982 1.29722i
\(449\) 7.36304e6 1.72362 0.861809 0.507233i \(-0.169331\pi\)
0.861809 + 0.507233i \(0.169331\pi\)
\(450\) 0 0
\(451\) 2.18165e6i 0.505060i
\(452\) 3.61753e6 + 2.08956e6i 0.832849 + 0.481071i
\(453\) 1.31674e7i 3.01477i
\(454\) −3.38618e6 907690.i −0.771027 0.206680i
\(455\) 0 0
\(456\) 4.67831e6 4.67547e6i 1.05360 1.05296i
\(457\) 6.23984e6 1.39760 0.698800 0.715317i \(-0.253718\pi\)
0.698800 + 0.715317i \(0.253718\pi\)
\(458\) 2.37631e6 + 636989.i 0.529346 + 0.141895i
\(459\) 1.96323e6i 0.434951i
\(460\) 0 0
\(461\) 832291.i 0.182399i 0.995833 + 0.0911996i \(0.0290701\pi\)
−0.995833 + 0.0911996i \(0.970930\pi\)
\(462\) −3.70147e6 + 1.38085e7i −0.806806 + 3.00982i
\(463\) 3.61852e6 0.784474 0.392237 0.919864i \(-0.371701\pi\)
0.392237 + 0.919864i \(0.371701\pi\)
\(464\) −3.07209e6 + 1.77202e6i −0.662429 + 0.382096i
\(465\) 0 0
\(466\) 1.16266e6 4.33734e6i 0.248020 0.925249i
\(467\) 286010.i 0.0606861i −0.999540 0.0303431i \(-0.990340\pi\)
0.999540 0.0303431i \(-0.00965998\pi\)
\(468\) −4.80077e6 + 8.31130e6i −1.01320 + 1.75410i
\(469\) 1.11877e7i 2.34860i
\(470\) 0 0
\(471\) −2.10494e6 −0.437208
\(472\) 1.53271e6 + 1.53365e6i 0.316670 + 0.316862i
\(473\) −7.79938e6 −1.60290
\(474\) −3.15981e6 847013.i −0.645975 0.173159i
\(475\) 0 0
\(476\) 853220. + 492837.i 0.172601 + 0.0996980i
\(477\) 6.95150e6i 1.39889i
\(478\) 2.41341e6 9.00333e6i 0.483128 1.80233i
\(479\) −2.28996e6 −0.456026 −0.228013 0.973658i \(-0.573223\pi\)
−0.228013 + 0.973658i \(0.573223\pi\)
\(480\) 0 0
\(481\) 3.63222e6 0.715830
\(482\) −867953. + 3.23793e6i −0.170168 + 0.634820i
\(483\) 2.08023e6i 0.405736i
\(484\) 2.87215e6 + 1.65901e6i 0.557306 + 0.321911i
\(485\) 0 0
\(486\) 1.20843e7 + 3.23930e6i 2.32077 + 0.622100i
\(487\) −6.55915e6 −1.25321 −0.626607 0.779335i \(-0.715557\pi\)
−0.626607 + 0.779335i \(0.715557\pi\)
\(488\) 5.30450e6 + 5.30772e6i 1.00831 + 1.00892i
\(489\) −1.37612e7 −2.60246
\(490\) 0 0
\(491\) 3.50573e6i 0.656257i −0.944633 0.328129i \(-0.893582\pi\)
0.944633 0.328129i \(-0.106418\pi\)
\(492\) −1.98235e6 + 3.43192e6i −0.369205 + 0.639183i
\(493\) 634127.i 0.117506i
\(494\) 900764. 3.36034e6i 0.166071 0.619534i
\(495\) 0 0
\(496\) 1.19924e6 + 2.07910e6i 0.218879 + 0.379464i
\(497\) −4.40858e6 −0.800586
\(498\) −358076. + 1.33582e6i −0.0646997 + 0.241365i
\(499\) 1.11789e6i 0.200977i −0.994938 0.100489i \(-0.967959\pi\)
0.994938 0.100489i \(-0.0320406\pi\)
\(500\) 0 0
\(501\) 1.51638e7i 2.69906i
\(502\) −8.99262e6 2.41054e6i −1.59267 0.426929i
\(503\) 3.97264e6 0.700098 0.350049 0.936731i \(-0.386165\pi\)
0.350049 + 0.936731i \(0.386165\pi\)
\(504\) −1.31373e7 + 1.31293e7i −2.30372 + 2.30233i
\(505\) 0 0
\(506\) −1.19052e6 319129.i −0.206710 0.0554102i
\(507\) 3.78539e6i 0.654020i
\(508\) −9.07750e6 5.24335e6i −1.56065 0.901466i
\(509\) 5.19239e6i 0.888327i −0.895946 0.444164i \(-0.853501\pi\)
0.895946 0.444164i \(-0.146499\pi\)
\(510\) 0 0
\(511\) 1.45120e7 2.45853
\(512\) −4.19048e6 4.19812e6i −0.706462 0.707751i
\(513\) −1.34135e7 −2.25035
\(514\) −1.73936e6 + 6.48875e6i −0.290390 + 1.08331i
\(515\) 0 0
\(516\) −1.22691e7 7.08689e6i −2.02856 1.17174i
\(517\) 7.90148e6i 1.30012i
\(518\) 6.78900e6 + 1.81984e6i 1.11168 + 0.297995i
\(519\) 2.12313e7 3.45985
\(520\) 0 0
\(521\) 1.09827e6 0.177262 0.0886311 0.996065i \(-0.471751\pi\)
0.0886311 + 0.996065i \(0.471751\pi\)
\(522\) 1.15456e7 + 3.09489e6i 1.85456 + 0.497129i
\(523\) 8.67189e6i 1.38631i −0.720790 0.693154i \(-0.756221\pi\)
0.720790 0.693154i \(-0.243779\pi\)
\(524\) 1.87264e6 3.24200e6i 0.297939 0.515804i
\(525\) 0 0
\(526\) −2.38616e6 + 8.90165e6i −0.376040 + 1.40283i
\(527\) −429158. −0.0673116
\(528\) 7.68859e6 + 1.33295e7i 1.20022 + 2.08079i
\(529\) −6.25699e6 −0.972135
\(530\) 0 0
\(531\) 7.30787e6i 1.12475i
\(532\) 3.36724e6 5.82950e6i 0.515816 0.893002i
\(533\) 2.08467e6i 0.317847i
\(534\) −610349. 163609.i −0.0926244 0.0248287i
\(535\) 0 0
\(536\) −8.51260e6 8.51777e6i −1.27982 1.28060i
\(537\) 9.55916e6 1.43049
\(538\) −4.89148e6 1.31120e6i −0.728592 0.195305i
\(539\) 5.90395e6i 0.875328i
\(540\) 0 0
\(541\) 746497.i 0.109657i −0.998496 0.0548283i \(-0.982539\pi\)
0.998496 0.0548283i \(-0.0174612\pi\)
\(542\) −24491.1 + 91365.2i −0.00358105 + 0.0133593i
\(543\) 1.90315e7 2.76996
\(544\) 1.02459e6 273983.i 0.148441 0.0396942i
\(545\) 0 0
\(546\) −3.53693e6 + 1.31946e7i −0.507744 + 1.89416i
\(547\) 2.52087e6i 0.360231i 0.983645 + 0.180116i \(0.0576472\pi\)
−0.983645 + 0.180116i \(0.942353\pi\)
\(548\) −2.06184e6 1.19096e6i −0.293295 0.169413i
\(549\) 2.52915e7i 3.58132i
\(550\) 0 0
\(551\) −4.33258e6 −0.607950
\(552\) −1.58282e6 1.58378e6i −0.221098 0.221232i
\(553\) −3.32973e6 −0.463017
\(554\) 3.13584e6 + 840586.i 0.434090 + 0.116361i
\(555\) 0 0
\(556\) 1.28740e6 2.22880e6i 0.176615 0.305763i
\(557\) 186236.i 0.0254347i −0.999919 0.0127173i \(-0.995952\pi\)
0.999919 0.0127173i \(-0.00404816\pi\)
\(558\) 2.09453e6 7.81371e6i 0.284774 1.06236i
\(559\) −7.45267e6 −1.00875
\(560\) 0 0
\(561\) −2.75141e6 −0.369104
\(562\) −2.87021e6 + 1.07075e7i −0.383331 + 1.43003i
\(563\) 358662.i 0.0476886i −0.999716 0.0238443i \(-0.992409\pi\)
0.999716 0.0238443i \(-0.00759059\pi\)
\(564\) −7.17966e6 + 1.24297e7i −0.950400 + 1.64537i
\(565\) 0 0
\(566\) 1.11713e7 + 2.99455e6i 1.46576 + 0.392908i
\(567\) 2.77365e7 3.62321
\(568\) −3.35648e6 + 3.35444e6i −0.436529 + 0.436263i
\(569\) 1.08964e7 1.41093 0.705463 0.708747i \(-0.250739\pi\)
0.705463 + 0.708747i \(0.250739\pi\)
\(570\) 0 0
\(571\) 1.93042e6i 0.247778i 0.992296 + 0.123889i \(0.0395366\pi\)
−0.992296 + 0.123889i \(0.960463\pi\)
\(572\) 7.00874e6 + 4.04839e6i 0.895674 + 0.517360i
\(573\) 1.25007e7i 1.59055i
\(574\) −1.04447e6 + 3.89645e6i −0.132318 + 0.493617i
\(575\) 0 0
\(576\) −12144.0 + 1.99921e7i −0.00152513 + 2.51074i
\(577\) 1.33310e7 1.66695 0.833477 0.552555i \(-0.186347\pi\)
0.833477 + 0.552555i \(0.186347\pi\)
\(578\) 2.03050e6 7.57486e6i 0.252804 0.943094i
\(579\) 1.63768e7i 2.03018i
\(580\) 0 0
\(581\) 1.40765e6i 0.173003i
\(582\) −5.61099e6 1.50407e6i −0.686645 0.184060i
\(583\) −5.86206e6 −0.714297
\(584\) 1.10487e7 1.10420e7i 1.34054 1.33973i
\(585\) 0 0
\(586\) 1.23001e7 + 3.29712e6i 1.47966 + 0.396635i
\(587\) 7.15350e6i 0.856887i −0.903569 0.428443i \(-0.859062\pi\)
0.903569 0.428443i \(-0.140938\pi\)
\(588\) −5.36461e6 + 9.28743e6i −0.639875 + 1.10778i
\(589\) 2.93216e6i 0.348256i
\(590\) 0 0
\(591\) 7.85183e6 0.924703
\(592\) 6.55350e6 3.78013e6i 0.768545 0.443305i
\(593\) −1.46858e7 −1.71499 −0.857496 0.514490i \(-0.827981\pi\)
−0.857496 + 0.514490i \(0.827981\pi\)
\(594\) 8.08002e6 3.01428e7i 0.939608 3.50524i
\(595\) 0 0
\(596\) −927004. + 1.60487e6i −0.106897 + 0.185065i
\(597\) 1.49754e7i 1.71966i
\(598\) −1.13760e6 304943.i −0.130088 0.0348711i
\(599\) −9.83597e6 −1.12008 −0.560042 0.828465i \(-0.689215\pi\)
−0.560042 + 0.828465i \(0.689215\pi\)
\(600\) 0 0
\(601\) 2.68643e6 0.303381 0.151691 0.988428i \(-0.451528\pi\)
0.151691 + 0.988428i \(0.451528\pi\)
\(602\) −1.39298e7 3.73399e6i −1.56658 0.419935i
\(603\) 4.05875e7i 4.54568i
\(604\) −1.24918e7 7.21554e6i −1.39327 0.804779i
\(605\) 0 0
\(606\) 4.25813e6 1.58851e7i 0.471018 1.75715i
\(607\) −387079. −0.0426411 −0.0213205 0.999773i \(-0.506787\pi\)
−0.0213205 + 0.999773i \(0.506787\pi\)
\(608\) −1.87195e6 7.00039e6i −0.205369 0.768003i
\(609\) 1.70123e7 1.85874
\(610\) 0 0
\(611\) 7.55024e6i 0.818196i
\(612\) −3.09536e6 1.78795e6i −0.334067 0.192964i
\(613\) 1.37500e7i 1.47792i −0.673748 0.738962i \(-0.735316\pi\)
0.673748 0.738962i \(-0.264684\pi\)
\(614\) −3.12777e6 838422.i −0.334821 0.0897515i
\(615\) 0 0
\(616\) 1.10717e7 + 1.10784e7i 1.17561 + 1.17632i
\(617\) 1.13239e7 1.19752 0.598758 0.800930i \(-0.295661\pi\)
0.598758 + 0.800930i \(0.295661\pi\)
\(618\) −7.48823e6 2.00728e6i −0.788693 0.211415i
\(619\) 6.62505e6i 0.694965i −0.937687 0.347482i \(-0.887037\pi\)
0.937687 0.347482i \(-0.112963\pi\)
\(620\) 0 0
\(621\) 4.54098e6i 0.472521i
\(622\) 4.19151e6 1.56366e7i 0.434405 1.62057i
\(623\) −643171. −0.0663905
\(624\) 7.34681e6 + 1.27370e7i 0.755331 + 1.30950i
\(625\) 0 0
\(626\) −506247. + 1.88857e6i −0.0516329 + 0.192619i
\(627\) 1.87986e7i 1.90967i
\(628\) −1.15348e6 + 1.99695e6i −0.116711 + 0.202055i
\(629\) 1.35274e6i 0.136329i
\(630\) 0 0
\(631\) −1.12049e7 −1.12030 −0.560152 0.828390i \(-0.689257\pi\)
−0.560152 + 0.828390i \(0.689257\pi\)
\(632\) −2.53509e6 + 2.53355e6i −0.252465 + 0.252312i
\(633\) 1.93320e7 1.91764
\(634\) −1.55379e7 4.16505e6i −1.53521 0.411525i
\(635\) 0 0
\(636\) −9.22153e6 5.32654e6i −0.903983 0.522159i
\(637\) 5.64150e6i 0.550866i
\(638\) 2.60986e6 9.73618e6i 0.253843 0.946972i
\(639\) 1.59937e7 1.54952
\(640\) 0 0
\(641\) −5.35866e6 −0.515123 −0.257562 0.966262i \(-0.582919\pi\)
−0.257562 + 0.966262i \(0.582919\pi\)
\(642\) −1.64194e6 + 6.12532e6i −0.157224 + 0.586531i
\(643\) 5.64079e6i 0.538038i 0.963135 + 0.269019i \(0.0866994\pi\)
−0.963135 + 0.269019i \(0.913301\pi\)
\(644\) −1.97351e6 1.13994e6i −0.187510 0.108310i
\(645\) 0 0
\(646\) 1.25148e6 + 335470.i 0.117990 + 0.0316281i
\(647\) −5.67405e6 −0.532884 −0.266442 0.963851i \(-0.585848\pi\)
−0.266442 + 0.963851i \(0.585848\pi\)
\(648\) 2.11172e7 2.11044e7i 1.97560 1.97440i
\(649\) −6.16258e6 −0.574316
\(650\) 0 0
\(651\) 1.15134e7i 1.06476i
\(652\) −7.54096e6 + 1.30552e7i −0.694716 + 1.20272i
\(653\) 1.50064e7i 1.37719i 0.725148 + 0.688593i \(0.241771\pi\)
−0.725148 + 0.688593i \(0.758229\pi\)
\(654\) 611267. 2.28036e6i 0.0558839 0.208477i
\(655\) 0 0
\(656\) 2.16955e6 + 3.76130e6i 0.196839 + 0.341254i
\(657\) −5.26475e7 −4.75844
\(658\) −3.78287e6 + 1.41122e7i −0.340610 + 1.27066i
\(659\) 7.48265e6i 0.671184i 0.942007 + 0.335592i \(0.108936\pi\)
−0.942007 + 0.335592i \(0.891064\pi\)
\(660\) 0 0
\(661\) 1.85142e7i 1.64817i −0.566467 0.824084i \(-0.691690\pi\)
0.566467 0.824084i \(-0.308310\pi\)
\(662\) 1.20551e7 + 3.23146e6i 1.06912 + 0.286585i
\(663\) −2.62910e6 −0.232286
\(664\) 1.07107e6 + 1.07172e6i 0.0942748 + 0.0943321i
\(665\) 0 0
\(666\) −2.46295e7 6.60214e6i −2.15164 0.576765i
\(667\) 1.46674e6i 0.127656i
\(668\) 1.43858e7 + 8.30953e6i 1.24736 + 0.720502i
\(669\) 3.11004e7i 2.68659i
\(670\) 0 0
\(671\) −2.13278e7 −1.82869
\(672\) 7.35038e6 + 2.74876e7i 0.627894 + 2.34809i
\(673\) 4.62662e6 0.393755 0.196878 0.980428i \(-0.436920\pi\)
0.196878 + 0.980428i \(0.436920\pi\)
\(674\) −308778. + 1.15191e6i −0.0261816 + 0.0976716i
\(675\) 0 0
\(676\) −3.59119e6 2.07434e6i −0.302254 0.174588i
\(677\) 1.21437e7i 1.01831i −0.860675 0.509155i \(-0.829958\pi\)
0.860675 0.509155i \(-0.170042\pi\)
\(678\) −2.08349e7 5.58496e6i −1.74068 0.466601i
\(679\) −5.91272e6 −0.492168
\(680\) 0 0
\(681\) 1.81011e7 1.49567
\(682\) −6.58914e6 1.76627e6i −0.542460 0.145411i
\(683\) 9.19906e6i 0.754557i −0.926100 0.377278i \(-0.876860\pi\)
0.926100 0.377278i \(-0.123140\pi\)
\(684\) −1.22159e7 + 2.11486e7i −0.998354 + 1.72839i
\(685\) 0 0
\(686\) 1.31329e6 4.89927e6i 0.106549 0.397485i
\(687\) −1.27028e7 −1.02685
\(688\) −1.34466e7 + 7.75615e6i −1.08303 + 0.624705i
\(689\) −5.60147e6 −0.449525
\(690\) 0 0
\(691\) 1.02344e7i 0.815394i 0.913117 + 0.407697i \(0.133668\pi\)
−0.913117 + 0.407697i \(0.866332\pi\)
\(692\) 1.16345e7 2.01420e7i 0.923593 1.59896i
\(693\) 5.27891e7i 4.17553i
\(694\) −1.31089e7 3.51394e6i −1.03316 0.276946i
\(695\) 0 0
\(696\) 1.29523e7 1.29444e7i 1.01350 1.01288i
\(697\) −776389. −0.0605338
\(698\) −9.62789e6 2.58083e6i −0.747985 0.200503i
\(699\) 2.31856e7i 1.79484i
\(700\) 0 0
\(701\) 1.23863e6i 0.0952023i −0.998866 0.0476011i \(-0.984842\pi\)
0.998866 0.0476011i \(-0.0151576\pi\)
\(702\) 7.72084e6 2.88029e7i 0.591319 2.20594i
\(703\) 9.24242e6 0.705339
\(704\) 1.68589e7 + 10240.8i 1.28203 + 0.000778757i
\(705\) 0 0
\(706\) −3.09609e6 + 1.15501e7i −0.233777 + 0.872114i
\(707\) 1.67394e7i 1.25948i
\(708\) −9.69428e6 5.59961e6i −0.726829 0.419831i
\(709\) 2.52759e7i 1.88839i −0.329386 0.944195i \(-0.606842\pi\)
0.329386 0.944195i \(-0.393158\pi\)
\(710\) 0 0
\(711\) 1.20798e7 0.896161
\(712\) −489678. + 489381.i −0.0362002 + 0.0361782i
\(713\) 992646. 0.0731258
\(714\) −4.91406e6 1.31725e6i −0.360741 0.0966993i
\(715\) 0 0
\(716\) 5.23829e6 9.06874e6i 0.381863 0.661096i
\(717\) 4.81281e7i 3.49624i
\(718\) 37189.8 138738.i 0.00269223 0.0100435i
\(719\) −5.23203e6 −0.377440 −0.188720 0.982031i \(-0.560434\pi\)
−0.188720 + 0.982031i \(0.560434\pi\)
\(720\) 0 0
\(721\) −7.89090e6 −0.565313
\(722\) −1.33458e6 + 4.97870e6i −0.0952799 + 0.355445i
\(723\) 1.73087e7i 1.23145i
\(724\) 1.04290e7 1.80551e7i 0.739429 1.28013i
\(725\) 0 0
\(726\) −1.65419e7 4.43419e6i −1.16478 0.312229i
\(727\) −1.79530e7 −1.25980 −0.629899 0.776677i \(-0.716904\pi\)
−0.629899 + 0.776677i \(0.716904\pi\)
\(728\) 1.05795e7 + 1.05860e7i 0.739840 + 0.740290i
\(729\) −2.45203e7 −1.70886
\(730\) 0 0
\(731\) 2.77559e6i 0.192115i
\(732\) −3.35504e7 1.93794e7i −2.31430 1.33679i
\(733\) 2.06019e6i 0.141627i −0.997490 0.0708137i \(-0.977440\pi\)
0.997490 0.0708137i \(-0.0225596\pi\)
\(734\) 2.28299e6 8.51677e6i 0.156409 0.583492i
\(735\) 0 0
\(736\) −2.36990e6 + 633726.i −0.161263 + 0.0431228i
\(737\) 3.42266e7 2.32111
\(738\) 3.78921e6 1.41358e7i 0.256099 0.955387i
\(739\) 1.47746e6i 0.0995187i −0.998761 0.0497594i \(-0.984155\pi\)
0.998761 0.0497594i \(-0.0158454\pi\)
\(740\) 0 0
\(741\) 1.79630e7i 1.20180i
\(742\) −1.04697e7 2.80649e6i −0.698112 0.187134i
\(743\) −2.46543e7 −1.63840 −0.819200 0.573508i \(-0.805582\pi\)
−0.819200 + 0.573508i \(0.805582\pi\)
\(744\) −8.76038e6 8.76570e6i −0.580217 0.580570i
\(745\) 0 0
\(746\) −4.05285e6 1.08640e6i −0.266633 0.0714729i
\(747\) 5.10676e6i 0.334845i
\(748\) −1.50774e6 + 2.61026e6i −0.0985307 + 0.170580i
\(749\) 6.45471e6i 0.420409i
\(750\) 0 0
\(751\) −6.30342e6 −0.407827 −0.203914 0.978989i \(-0.565366\pi\)
−0.203914 + 0.978989i \(0.565366\pi\)
\(752\) 7.85768e6 + 1.36226e7i 0.506699 + 0.878450i
\(753\) 4.80708e7 3.08954
\(754\) 2.49384e6 9.30338e6i 0.159750 0.595953i
\(755\) 0 0
\(756\) 2.88621e7 4.99672e7i 1.83664 3.17966i
\(757\) 1.44827e7i 0.918567i −0.888290 0.459284i \(-0.848106\pi\)
0.888290 0.459284i \(-0.151894\pi\)
\(758\) 1.42631e7 + 3.82333e6i 0.901655 + 0.241695i
\(759\) 6.36405e6 0.400986
\(760\) 0 0
\(761\) 9.50962e6 0.595253 0.297626 0.954682i \(-0.403805\pi\)
0.297626 + 0.954682i \(0.403805\pi\)
\(762\) 5.22812e7 + 1.40144e7i 3.26181 + 0.874353i
\(763\) 2.40298e6i 0.149430i
\(764\) 1.18593e7 + 6.85020e6i 0.735067 + 0.424590i
\(765\) 0 0
\(766\) −4.48109e6 + 1.67169e7i −0.275938 + 1.02940i
\(767\) −5.88863e6 −0.361431
\(768\) 2.65112e7 + 1.53349e7i 1.62191 + 0.938162i
\(769\) 2.88208e6 0.175748 0.0878741 0.996132i \(-0.471993\pi\)
0.0878741 + 0.996132i \(0.471993\pi\)
\(770\) 0 0
\(771\) 3.46862e7i 2.10146i
\(772\) 1.55367e7 + 8.97429e6i 0.938241 + 0.541947i
\(773\) 1.83423e7i 1.10409i 0.833815 + 0.552044i \(0.186152\pi\)
−0.833815 + 0.552044i \(0.813848\pi\)
\(774\) 5.05354e7 + 1.35464e7i 3.03210 + 0.812777i
\(775\) 0 0
\(776\) −4.50165e6 + 4.49892e6i −0.268360 + 0.268197i
\(777\) −3.62912e7 −2.15650
\(778\) 2.72216e6 + 729695.i 0.161237 + 0.0432208i
\(779\) 5.30457e6i 0.313189i
\(780\) 0 0
\(781\) 1.34872e7i 0.791213i
\(782\) 113569. 423675.i 0.00664117 0.0247751i
\(783\) −3.71365e7 −2.16469
\(784\) 5.87123e6 + 1.01788e7i 0.341145 + 0.591433i
\(785\) 0 0
\(786\) −5.00519e6 + 1.86721e7i −0.288978 + 1.07804i
\(787\) 1.35279e7i 0.778564i −0.921119 0.389282i \(-0.872723\pi\)
0.921119 0.389282i \(-0.127277\pi\)
\(788\) 4.30270e6 7.44901e6i 0.246846 0.427349i
\(789\) 4.75846e7i 2.72128i
\(790\) 0 0
\(791\) −2.19553e7 −1.24767
\(792\) −4.01666e7 4.01910e7i −2.27537 2.27675i
\(793\) −2.03797e7 −1.15084
\(794\) 2.15985e7 + 5.78964e6i 1.21583 + 0.325912i
\(795\) 0 0
\(796\) −1.42071e7 8.20631e6i −0.794736 0.459056i
\(797\) 3.10994e7i 1.73423i −0.498109 0.867115i \(-0.665972\pi\)
0.498109 0.867115i \(-0.334028\pi\)
\(798\) −8.99994e6 + 3.35746e7i −0.500302 + 1.86640i
\(799\) −2.81192e6 −0.155825
\(800\) 0 0
\(801\) 2.33333e6 0.128498
\(802\) 1.68799e6 6.29710e6i 0.0926687 0.345704i
\(803\) 4.43965e7i 2.42974i
\(804\) 5.38414e7 + 3.10999e7i 2.93749 + 1.69675i
\(805\) 0 0
\(806\) −6.29623e6 1.68775e6i −0.341384 0.0915106i
\(807\) 2.61478e7 1.41336
\(808\) −1.27368e7 1.27445e7i −0.686327 0.686744i
\(809\) 1.19594e6 0.0642449 0.0321225 0.999484i \(-0.489773\pi\)
0.0321225 + 0.999484i \(0.489773\pi\)
\(810\) 0 0
\(811\) 5.59211e6i 0.298554i 0.988795 + 0.149277i \(0.0476947\pi\)
−0.988795 + 0.149277i \(0.952305\pi\)
\(812\) 9.32249e6 1.61395e7i 0.496183 0.859012i
\(813\) 488400.i 0.0259149i
\(814\) −5.56744e6 + 2.07696e7i −0.294507 + 1.09867i
\(815\) 0 0
\(816\) −4.74361e6 + 2.73616e6i −0.249392 + 0.143852i
\(817\) −1.89638e7 −0.993963
\(818\) −3.72694e6 + 1.39035e7i −0.194747 + 0.726510i
\(819\) 5.04424e7i 2.62776i
\(820\) 0 0
\(821\) 2.42817e7i 1.25725i 0.777708 + 0.628625i \(0.216382\pi\)
−0.777708 + 0.628625i \(0.783618\pi\)
\(822\) 1.18750e7 + 3.18320e6i 0.612993 + 0.164318i
\(823\) 1.21094e7 0.623193 0.311597 0.950214i \(-0.399136\pi\)
0.311597 + 0.950214i \(0.399136\pi\)
\(824\) −6.00774e6 + 6.00410e6i −0.308243 + 0.308056i
\(825\) 0 0
\(826\) −1.10065e7 2.95037e6i −0.561303 0.150462i
\(827\) 2.18004e7i 1.10841i 0.832380 + 0.554205i \(0.186977\pi\)
−0.832380 + 0.554205i \(0.813023\pi\)
\(828\) 7.15961e6 + 4.13554e6i 0.362922 + 0.209631i
\(829\) 2.81218e7i 1.42121i 0.703593 + 0.710603i \(0.251578\pi\)
−0.703593 + 0.710603i \(0.748422\pi\)
\(830\) 0 0
\(831\) −1.67629e7 −0.842067
\(832\) 1.61095e7 + 9785.55i 0.806813 + 0.000490091i
\(833\) −2.10106e6 −0.104912
\(834\) −3.44096e6 + 1.28366e7i −0.171303 + 0.639052i
\(835\) 0 0
\(836\) 1.78342e7 + 1.03014e7i 0.882547 + 0.509777i
\(837\) 2.51328e7i 1.24002i
\(838\) 343248. + 92010.2i 0.0168849 + 0.00452612i
\(839\) 1.77035e6 0.0868270 0.0434135 0.999057i \(-0.486177\pi\)
0.0434135 + 0.999057i \(0.486177\pi\)
\(840\) 0 0
\(841\) 8.51602e6 0.415190
\(842\) −1.03782e7 2.78197e6i −0.504479 0.135230i
\(843\) 5.72376e7i 2.77404i
\(844\) 1.05937e7 1.83402e7i 0.511906 0.886233i
\(845\) 0 0
\(846\) 1.37237e7 5.11970e7i 0.659245 2.45934i
\(847\) −1.74315e7 −0.834883
\(848\) −1.01066e7 + 5.82956e6i −0.482629 + 0.278385i
\(849\) −5.97171e7 −2.84335
\(850\) 0 0
\(851\) 3.12891e6i 0.148105i
\(852\) 1.22551e7 2.12165e7i 0.578385 1.00132i
\(853\) 2.98606e7i 1.40516i −0.711604 0.702581i \(-0.752031\pi\)
0.711604 0.702581i \(-0.247969\pi\)
\(854\) −3.80917e7 1.02108e7i −1.78725 0.479087i
\(855\) 0 0
\(856\) 4.91131e6 + 4.91429e6i 0.229094 + 0.229233i
\(857\) 1.59538e7 0.742012 0.371006 0.928630i \(-0.379013\pi\)
0.371006 + 0.928630i \(0.379013\pi\)
\(858\) −4.03664e7 1.08205e7i −1.87198 0.501799i
\(859\) 2.68382e7i 1.24099i 0.784209 + 0.620497i \(0.213069\pi\)
−0.784209 + 0.620497i \(0.786931\pi\)
\(860\) 0 0
\(861\) 2.08288e7i 0.957541i
\(862\) −8.66576e6 + 3.23280e7i −0.397227 + 1.48187i
\(863\) −1.99512e7 −0.911891 −0.455946 0.890008i \(-0.650699\pi\)
−0.455946 + 0.890008i \(0.650699\pi\)
\(864\) −1.60453e7 6.00034e7i −0.731246 2.73458i
\(865\) 0 0
\(866\) −2.40655e6 + 8.97773e6i −0.109044 + 0.406792i
\(867\) 4.04921e7i 1.82946i
\(868\) −1.09227e7 6.30917e6i −0.492074 0.284232i
\(869\) 1.01867e7i 0.457596i
\(870\) 0 0
\(871\) 3.27051e7 1.46073
\(872\) −1.82840e6 1.82951e6i −0.0814292 0.0814787i
\(873\) 2.14505e7 0.952582
\(874\) −2.89470e6 775946.i −0.128181 0.0343600i
\(875\) 0 0
\(876\) −4.03408e7 + 6.98397e7i −1.77617 + 3.07498i
\(877\) 2.73500e7i 1.20077i −0.799712 0.600384i \(-0.795014\pi\)
0.799712 0.600384i \(-0.204986\pi\)
\(878\) 6.37090e6 2.37669e7i 0.278910 1.04049i
\(879\) −6.57510e7 −2.87032
\(880\) 0 0
\(881\) −3.29524e7 −1.43037 −0.715184 0.698937i \(-0.753657\pi\)
−0.715184 + 0.698937i \(0.753657\pi\)
\(882\) 1.02543e7 3.82541e7i 0.443849 1.65580i
\(883\) 1.45135e7i 0.626429i 0.949682 + 0.313214i \(0.101406\pi\)
−0.949682 + 0.313214i \(0.898594\pi\)
\(884\) −1.44071e6 + 2.49422e6i −0.0620079 + 0.107351i
\(885\) 0 0
\(886\) −1.24185e7 3.32886e6i −0.531475 0.142466i
\(887\) −2.89058e7 −1.23360 −0.616802 0.787118i \(-0.711572\pi\)
−0.616802 + 0.787118i \(0.711572\pi\)
\(888\) −2.76303e7 + 2.76135e7i −1.17585 + 1.17514i
\(889\) 5.50926e7 2.33797
\(890\) 0 0
\(891\) 8.48543e7i 3.58079i
\(892\) 2.95049e7 + 1.70426e7i 1.24160 + 0.717173i
\(893\) 1.92121e7i 0.806205i
\(894\) 2.47769e6 9.24312e6i 0.103682 0.386790i
\(895\) 0 0
\(896\) 3.01053e7 + 8.08957e6i 1.25278 + 0.336632i
\(897\) 6.08114e6 0.252351
\(898\) −1.07843e7 + 4.02313e7i −0.446274 + 1.66484i
\(899\) 8.11793e6i 0.335001i
\(900\) 0 0
\(901\) 2.08615e6i 0.0856117i
\(902\) −1.19204e7 3.19536e6i −0.487838 0.130769i
\(903\) 7.44630e7 3.03893
\(904\) −1.67157e7 + 1.67055e7i −0.680305 + 0.679892i
\(905\) 0 0
\(906\) 7.19459e7 + 1.92857e7i 2.91196 + 0.780574i
\(907\) 1.75219e7i 0.707233i 0.935390 + 0.353617i \(0.115048\pi\)
−0.935390 + 0.353617i \(0.884952\pi\)
\(908\) 9.91915e6 1.71724e7i 0.399264 0.691222i
\(909\) 6.07280e7i 2.43770i
\(910\) 0 0
\(911\) −5.49598e6 −0.219406 −0.109703 0.993964i \(-0.534990\pi\)
−0.109703 + 0.993964i \(0.534990\pi\)
\(912\) 1.86944e7 + 3.24100e7i 0.744261 + 1.29030i
\(913\) −4.30643e6 −0.170978
\(914\) −9.13922e6 + 3.40942e7i −0.361862 + 1.34994i
\(915\) 0 0
\(916\) −6.96096e6 + 1.20511e7i −0.274113 + 0.474556i
\(917\) 1.96762e7i 0.772711i
\(918\) 1.07270e7 + 2.87546e6i 0.420119 + 0.112616i
\(919\) 1.89582e6 0.0740472 0.0370236 0.999314i \(-0.488212\pi\)
0.0370236 + 0.999314i \(0.488212\pi\)
\(920\) 0 0
\(921\) 1.67197e7 0.649502
\(922\) −4.54760e6 1.21902e6i −0.176179 0.0472262i
\(923\) 1.28876e7i 0.497930i
\(924\) −7.00275e7 4.04493e7i −2.69829 1.55859i
\(925\) 0 0
\(926\) −5.29988e6 + 1.97714e7i −0.203114 + 0.757723i
\(927\) 2.86271e7 1.09415
\(928\) −5.18266e6 1.93812e7i −0.197552 0.738771i
\(929\) 3.44700e7 1.31040 0.655198 0.755457i \(-0.272585\pi\)
0.655198 + 0.755457i \(0.272585\pi\)
\(930\) 0 0
\(931\) 1.43552e7i 0.542793i
\(932\) 2.19961e7 + 1.27054e7i 0.829481 + 0.479125i
\(933\) 8.35868e7i 3.14365i
\(934\) 1.56275e6 + 418906.i 0.0586167 + 0.0157127i
\(935\) 0 0
\(936\) −3.83811e7 3.84044e7i −1.43195 1.43282i
\(937\) −3.96544e7 −1.47551 −0.737756 0.675068i \(-0.764114\pi\)
−0.737756 + 0.675068i \(0.764114\pi\)
\(938\) 6.11292e7 + 1.63861e7i 2.26851 + 0.608093i
\(939\) 1.00955e7i 0.373651i
\(940\) 0 0
\(941\) 1.88367e7i 0.693474i −0.937962 0.346737i \(-0.887290\pi\)
0.937962 0.346737i \(-0.112710\pi\)
\(942\) 3.08302e6 1.15013e7i 0.113201 0.422299i
\(943\) 1.79580e6 0.0657625
\(944\) −1.06247e7 + 6.12842e6i −0.388048 + 0.223830i
\(945\) 0 0
\(946\) 1.14234e7 4.26154e7i 0.415019 1.54824i
\(947\) 4.04648e6i 0.146623i −0.997309 0.0733115i \(-0.976643\pi\)
0.997309 0.0733115i \(-0.0233567\pi\)
\(948\) 9.25607e6 1.60245e7i 0.334508 0.579113i
\(949\) 4.24230e7i 1.52910i
\(950\) 0 0
\(951\) 8.30590e7 2.97807
\(952\) −3.94251e6 + 3.94012e6i −0.140988 + 0.140902i
\(953\) −4.74092e7 −1.69095 −0.845474 0.534016i \(-0.820682\pi\)
−0.845474 + 0.534016i \(0.820682\pi\)
\(954\) 3.79827e7 + 1.01816e7i 1.35118 + 0.362195i
\(955\) 0 0
\(956\) 4.56590e7 + 2.63735e7i 1.61578 + 0.933305i
\(957\) 5.20456e7i 1.83698i
\(958\) 3.35401e6 1.25123e7i 0.118073 0.440476i
\(959\) 1.25136e7 0.439376
\(960\) 0 0
\(961\) −2.31352e7 −0.808099
\(962\) −5.31995e6 + 1.98463e7i −0.185340 + 0.691420i
\(963\) 2.34168e7i 0.813695i
\(964\) −1.64207e7 9.48491e6i −0.569112 0.328731i
\(965\) 0 0
\(966\) 1.13663e7 + 3.04682e6i 0.391900 + 0.105052i
\(967\) 1.05815e7 0.363898 0.181949 0.983308i \(-0.441759\pi\)
0.181949 + 0.983308i \(0.441759\pi\)
\(968\) −1.32715e7 + 1.32634e7i −0.455229 + 0.454953i
\(969\) −6.68992e6 −0.228882
\(970\) 0 0
\(971\) 3.45206e7i 1.17498i −0.809232 0.587489i \(-0.800116\pi\)
0.809232 0.587489i \(-0.199884\pi\)
\(972\) −3.53987e7 + 6.12837e7i −1.20177 + 2.08056i
\(973\) 1.35269e7i 0.458055i
\(974\) 9.60689e6 3.58389e7i 0.324478 1.21048i
\(975\) 0 0
\(976\) −3.67704e7 + 2.12095e7i −1.23559 + 0.712700i
\(977\) 1.80039e7 0.603433 0.301717 0.953398i \(-0.402440\pi\)
0.301717 + 0.953398i \(0.402440\pi\)
\(978\) 2.01554e7 7.51906e7i 0.673821 2.51372i
\(979\) 1.96765e6i 0.0656133i
\(980\) 0 0
\(981\) 8.71768e6i 0.289220i
\(982\) 1.91551e7 + 5.13468e6i 0.633879 + 0.169916i
\(983\) 2.71815e7 0.897200 0.448600 0.893733i \(-0.351923\pi\)
0.448600 + 0.893733i \(0.351923\pi\)
\(984\) −1.58484e7 1.58580e7i −0.521793 0.522110i
\(985\) 0 0
\(986\) 3.46484e6 + 928778.i 0.113499 + 0.0304242i
\(987\) 7.54378e7i 2.46488i
\(988\) 1.70414e7 + 9.84346e6i 0.555409 + 0.320816i
\(989\) 6.41996e6i 0.208709i
\(990\) 0 0
\(991\) −2.26954e7 −0.734097 −0.367048 0.930202i \(-0.619632\pi\)
−0.367048 + 0.930202i \(0.619632\pi\)
\(992\) −1.31166e7 + 3.50746e6i −0.423195 + 0.113165i
\(993\) −6.44416e7 −2.07393
\(994\) 6.45705e6 2.40883e7i 0.207285 0.773286i
\(995\) 0 0
\(996\) −6.77439e6 3.91302e6i −0.216382 0.124987i
\(997\) 2.28102e7i 0.726762i −0.931641 0.363381i \(-0.881622\pi\)
0.931641 0.363381i \(-0.118378\pi\)
\(998\) 6.10809e6 + 1.63732e6i 0.194124 + 0.0520364i
\(999\) 7.92208e7 2.51146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.6.d.b.101.8 20
4.3 odd 2 800.6.d.c.401.20 20
5.2 odd 4 200.6.f.b.149.3 20
5.3 odd 4 200.6.f.c.149.18 20
5.4 even 2 40.6.d.a.21.13 20
8.3 odd 2 800.6.d.c.401.1 20
8.5 even 2 inner 200.6.d.b.101.7 20
15.14 odd 2 360.6.k.b.181.8 20
20.3 even 4 800.6.f.b.49.2 20
20.7 even 4 800.6.f.c.49.19 20
20.19 odd 2 160.6.d.a.81.1 20
40.3 even 4 800.6.f.c.49.20 20
40.13 odd 4 200.6.f.b.149.4 20
40.19 odd 2 160.6.d.a.81.20 20
40.27 even 4 800.6.f.b.49.1 20
40.29 even 2 40.6.d.a.21.14 yes 20
40.37 odd 4 200.6.f.c.149.17 20
120.29 odd 2 360.6.k.b.181.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.13 20 5.4 even 2
40.6.d.a.21.14 yes 20 40.29 even 2
160.6.d.a.81.1 20 20.19 odd 2
160.6.d.a.81.20 20 40.19 odd 2
200.6.d.b.101.7 20 8.5 even 2 inner
200.6.d.b.101.8 20 1.1 even 1 trivial
200.6.f.b.149.3 20 5.2 odd 4
200.6.f.b.149.4 20 40.13 odd 4
200.6.f.c.149.17 20 40.37 odd 4
200.6.f.c.149.18 20 5.3 odd 4
360.6.k.b.181.7 20 120.29 odd 2
360.6.k.b.181.8 20 15.14 odd 2
800.6.d.c.401.1 20 8.3 odd 2
800.6.d.c.401.20 20 4.3 odd 2
800.6.f.b.49.1 20 40.27 even 4
800.6.f.b.49.2 20 20.3 even 4
800.6.f.c.49.19 20 20.7 even 4
800.6.f.c.49.20 20 40.3 even 4