Properties

Label 816.2.bf.d.47.1
Level $816$
Weight $2$
Character 816.47
Analytic conductor $6.516$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,2,Mod(47,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.bf (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.1
Character \(\chi\) \(=\) 816.47
Dual form 816.2.bf.d.191.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71292 + 0.256691i) q^{3} +(-1.13275 + 1.13275i) q^{5} +(-2.41609 - 2.41609i) q^{7} +(2.86822 - 0.879385i) q^{9} +(1.45623 - 1.45623i) q^{11} +4.45336 q^{13} +(1.64955 - 2.23108i) q^{15} +(-4.00097 + 0.996122i) q^{17} +3.93923 q^{19} +(4.75877 + 3.51839i) q^{21} +(-3.68731 + 3.68731i) q^{23} +2.43376i q^{25} +(-4.68731 + 2.24257i) q^{27} +(-6.86919 + 6.86919i) q^{29} +(-2.89122 + 2.89122i) q^{31} +(-2.12061 + 2.86822i) q^{33} +5.47365 q^{35} +(1.53209 + 1.53209i) q^{37} +(-7.62827 + 1.14314i) q^{39} +(3.00485 + 3.00485i) q^{41} +0.475129 q^{43} +(-2.25285 + 4.24509i) q^{45} -11.8368 q^{47} +4.67499i q^{49} +(6.59766 - 2.73329i) q^{51} +8.51548 q^{53} +3.29909i q^{55} +(-6.74760 + 1.01117i) q^{57} +1.90098i q^{59} +(3.29086 - 3.29086i) q^{61} +(-9.05455 - 4.80520i) q^{63} +(-5.04454 + 5.04454i) q^{65} +7.87846i q^{67} +(5.36959 - 7.26259i) q^{69} +(6.24849 + 6.24849i) q^{71} +(-8.75877 - 8.75877i) q^{73} +(-0.624726 - 4.16885i) q^{75} -7.03678 q^{77} +(9.65441 + 9.65441i) q^{79} +(7.45336 - 5.04454i) q^{81} +7.02334i q^{83} +(3.40373 - 5.66044i) q^{85} +(10.0031 - 13.5297i) q^{87} -2.26550i q^{89} +(-10.7597 - 10.7597i) q^{91} +(4.21029 - 5.69459i) q^{93} +(-4.46216 + 4.46216i) q^{95} +(9.90673 + 9.90673i) q^{97} +(2.89621 - 5.45739i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{21} - 96 q^{33} + 24 q^{45} - 48 q^{57} - 48 q^{61} + 72 q^{69} - 120 q^{73} + 72 q^{81} + 192 q^{85} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71292 + 0.256691i −0.988957 + 0.148201i
\(4\) 0 0
\(5\) −1.13275 + 1.13275i −0.506580 + 0.506580i −0.913475 0.406895i \(-0.866612\pi\)
0.406895 + 0.913475i \(0.366612\pi\)
\(6\) 0 0
\(7\) −2.41609 2.41609i −0.913197 0.913197i 0.0833258 0.996522i \(-0.473446\pi\)
−0.996522 + 0.0833258i \(0.973446\pi\)
\(8\) 0 0
\(9\) 2.86822 0.879385i 0.956073 0.293128i
\(10\) 0 0
\(11\) 1.45623 1.45623i 0.439071 0.439071i −0.452628 0.891699i \(-0.649514\pi\)
0.891699 + 0.452628i \(0.149514\pi\)
\(12\) 0 0
\(13\) 4.45336 1.23514 0.617570 0.786516i \(-0.288117\pi\)
0.617570 + 0.786516i \(0.288117\pi\)
\(14\) 0 0
\(15\) 1.64955 2.23108i 0.425911 0.576062i
\(16\) 0 0
\(17\) −4.00097 + 0.996122i −0.970377 + 0.241595i
\(18\) 0 0
\(19\) 3.93923 0.903722 0.451861 0.892088i \(-0.350760\pi\)
0.451861 + 0.892088i \(0.350760\pi\)
\(20\) 0 0
\(21\) 4.75877 + 3.51839i 1.03845 + 0.767776i
\(22\) 0 0
\(23\) −3.68731 + 3.68731i −0.768858 + 0.768858i −0.977905 0.209048i \(-0.932964\pi\)
0.209048 + 0.977905i \(0.432964\pi\)
\(24\) 0 0
\(25\) 2.43376i 0.486753i
\(26\) 0 0
\(27\) −4.68731 + 2.24257i −0.902074 + 0.431582i
\(28\) 0 0
\(29\) −6.86919 + 6.86919i −1.27558 + 1.27558i −0.332458 + 0.943118i \(0.607878\pi\)
−0.943118 + 0.332458i \(0.892122\pi\)
\(30\) 0 0
\(31\) −2.89122 + 2.89122i −0.519279 + 0.519279i −0.917353 0.398075i \(-0.869679\pi\)
0.398075 + 0.917353i \(0.369679\pi\)
\(32\) 0 0
\(33\) −2.12061 + 2.86822i −0.369152 + 0.499293i
\(34\) 0 0
\(35\) 5.47365 0.925215
\(36\) 0 0
\(37\) 1.53209 + 1.53209i 0.251874 + 0.251874i 0.821739 0.569865i \(-0.193004\pi\)
−0.569865 + 0.821739i \(0.693004\pi\)
\(38\) 0 0
\(39\) −7.62827 + 1.14314i −1.22150 + 0.183049i
\(40\) 0 0
\(41\) 3.00485 + 3.00485i 0.469278 + 0.469278i 0.901681 0.432403i \(-0.142334\pi\)
−0.432403 + 0.901681i \(0.642334\pi\)
\(42\) 0 0
\(43\) 0.475129 0.0724566 0.0362283 0.999344i \(-0.488466\pi\)
0.0362283 + 0.999344i \(0.488466\pi\)
\(44\) 0 0
\(45\) −2.25285 + 4.24509i −0.335835 + 0.632821i
\(46\) 0 0
\(47\) −11.8368 −1.72657 −0.863286 0.504715i \(-0.831598\pi\)
−0.863286 + 0.504715i \(0.831598\pi\)
\(48\) 0 0
\(49\) 4.67499i 0.667856i
\(50\) 0 0
\(51\) 6.59766 2.73329i 0.923857 0.382738i
\(52\) 0 0
\(53\) 8.51548 1.16969 0.584846 0.811145i \(-0.301155\pi\)
0.584846 + 0.811145i \(0.301155\pi\)
\(54\) 0 0
\(55\) 3.29909i 0.444849i
\(56\) 0 0
\(57\) −6.74760 + 1.01117i −0.893742 + 0.133932i
\(58\) 0 0
\(59\) 1.90098i 0.247486i 0.992314 + 0.123743i \(0.0394899\pi\)
−0.992314 + 0.123743i \(0.960510\pi\)
\(60\) 0 0
\(61\) 3.29086 3.29086i 0.421351 0.421351i −0.464317 0.885669i \(-0.653700\pi\)
0.885669 + 0.464317i \(0.153700\pi\)
\(62\) 0 0
\(63\) −9.05455 4.80520i −1.14077 0.605399i
\(64\) 0 0
\(65\) −5.04454 + 5.04454i −0.625698 + 0.625698i
\(66\) 0 0
\(67\) 7.87846i 0.962507i 0.876581 + 0.481254i \(0.159818\pi\)
−0.876581 + 0.481254i \(0.840182\pi\)
\(68\) 0 0
\(69\) 5.36959 7.26259i 0.646422 0.874313i
\(70\) 0 0
\(71\) 6.24849 + 6.24849i 0.741559 + 0.741559i 0.972878 0.231319i \(-0.0743040\pi\)
−0.231319 + 0.972878i \(0.574304\pi\)
\(72\) 0 0
\(73\) −8.75877 8.75877i −1.02514 1.02514i −0.999676 0.0254607i \(-0.991895\pi\)
−0.0254607 0.999676i \(-0.508105\pi\)
\(74\) 0 0
\(75\) −0.624726 4.16885i −0.0721371 0.481378i
\(76\) 0 0
\(77\) −7.03678 −0.801916
\(78\) 0 0
\(79\) 9.65441 + 9.65441i 1.08621 + 1.08621i 0.995915 + 0.0902909i \(0.0287797\pi\)
0.0902909 + 0.995915i \(0.471220\pi\)
\(80\) 0 0
\(81\) 7.45336 5.04454i 0.828151 0.560504i
\(82\) 0 0
\(83\) 7.02334i 0.770911i 0.922726 + 0.385456i \(0.125956\pi\)
−0.922726 + 0.385456i \(0.874044\pi\)
\(84\) 0 0
\(85\) 3.40373 5.66044i 0.369187 0.613961i
\(86\) 0 0
\(87\) 10.0031 13.5297i 1.07245 1.45053i
\(88\) 0 0
\(89\) 2.26550i 0.240142i −0.992765 0.120071i \(-0.961688\pi\)
0.992765 0.120071i \(-0.0383122\pi\)
\(90\) 0 0
\(91\) −10.7597 10.7597i −1.12793 1.12793i
\(92\) 0 0
\(93\) 4.21029 5.69459i 0.436587 0.590502i
\(94\) 0 0
\(95\) −4.46216 + 4.46216i −0.457808 + 0.457808i
\(96\) 0 0
\(97\) 9.90673 + 9.90673i 1.00588 + 1.00588i 0.999983 + 0.00589303i \(0.00187582\pi\)
0.00589303 + 0.999983i \(0.498124\pi\)
\(98\) 0 0
\(99\) 2.89621 5.45739i 0.291080 0.548488i
\(100\) 0 0
\(101\) 6.00969i 0.597987i 0.954255 + 0.298993i \(0.0966508\pi\)
−0.954255 + 0.298993i \(0.903349\pi\)
\(102\) 0 0
\(103\) 3.21129i 0.316418i 0.987406 + 0.158209i \(0.0505720\pi\)
−0.987406 + 0.158209i \(0.949428\pi\)
\(104\) 0 0
\(105\) −9.37594 + 1.40504i −0.914998 + 0.137118i
\(106\) 0 0
\(107\) 12.7548 + 12.7548i 1.23305 + 1.23305i 0.962785 + 0.270269i \(0.0871128\pi\)
0.270269 + 0.962785i \(0.412887\pi\)
\(108\) 0 0
\(109\) −9.61587 + 9.61587i −0.921033 + 0.921033i −0.997103 0.0760695i \(-0.975763\pi\)
0.0760695 + 0.997103i \(0.475763\pi\)
\(110\) 0 0
\(111\) −3.01763 2.23108i −0.286420 0.211765i
\(112\) 0 0
\(113\) −0.739349 0.739349i −0.0695521 0.0695521i 0.671475 0.741027i \(-0.265661\pi\)
−0.741027 + 0.671475i \(0.765661\pi\)
\(114\) 0 0
\(115\) 8.35359i 0.778976i
\(116\) 0 0
\(117\) 12.7732 3.91622i 1.18088 0.362055i
\(118\) 0 0
\(119\) 12.0734 + 7.25998i 1.10677 + 0.665521i
\(120\) 0 0
\(121\) 6.75877i 0.614434i
\(122\) 0 0
\(123\) −5.91839 4.37576i −0.533643 0.394549i
\(124\) 0 0
\(125\) −8.42058 8.42058i −0.753160 0.753160i
\(126\) 0 0
\(127\) −9.82938 −0.872216 −0.436108 0.899894i \(-0.643643\pi\)
−0.436108 + 0.899894i \(0.643643\pi\)
\(128\) 0 0
\(129\) −0.813861 + 0.121962i −0.0716564 + 0.0107381i
\(130\) 0 0
\(131\) 5.38019 + 5.38019i 0.470069 + 0.470069i 0.901937 0.431868i \(-0.142145\pi\)
−0.431868 + 0.901937i \(0.642145\pi\)
\(132\) 0 0
\(133\) −9.51754 9.51754i −0.825275 0.825275i
\(134\) 0 0
\(135\) 2.76928 7.84981i 0.238342 0.675604i
\(136\) 0 0
\(137\) 14.3468i 1.22573i −0.790187 0.612866i \(-0.790017\pi\)
0.790187 0.612866i \(-0.209983\pi\)
\(138\) 0 0
\(139\) 14.9331 14.9331i 1.26661 1.26661i 0.318777 0.947830i \(-0.396728\pi\)
0.947830 0.318777i \(-0.103272\pi\)
\(140\) 0 0
\(141\) 20.2755 3.03840i 1.70751 0.255879i
\(142\) 0 0
\(143\) 6.48513 6.48513i 0.542314 0.542314i
\(144\) 0 0
\(145\) 15.5621i 1.29236i
\(146\) 0 0
\(147\) −1.20003 8.00791i −0.0989768 0.660481i
\(148\) 0 0
\(149\) 0.691899i 0.0566826i 0.999598 + 0.0283413i \(0.00902252\pi\)
−0.999598 + 0.0283413i \(0.990977\pi\)
\(150\) 0 0
\(151\) −7.71345 −0.627712 −0.313856 0.949471i \(-0.601621\pi\)
−0.313856 + 0.949471i \(0.601621\pi\)
\(152\) 0 0
\(153\) −10.5997 + 6.37549i −0.856933 + 0.515428i
\(154\) 0 0
\(155\) 6.55005i 0.526113i
\(156\) 0 0
\(157\) −21.7743 −1.73777 −0.868887 0.495010i \(-0.835164\pi\)
−0.868887 + 0.495010i \(0.835164\pi\)
\(158\) 0 0
\(159\) −14.5864 + 2.18585i −1.15677 + 0.173349i
\(160\) 0 0
\(161\) 17.8178 1.40424
\(162\) 0 0
\(163\) −4.06564 4.06564i −0.318445 0.318445i 0.529725 0.848170i \(-0.322295\pi\)
−0.848170 + 0.529725i \(0.822295\pi\)
\(164\) 0 0
\(165\) −0.846848 5.65109i −0.0659270 0.439937i
\(166\) 0 0
\(167\) −7.61127 7.61127i −0.588977 0.588977i 0.348377 0.937355i \(-0.386733\pi\)
−0.937355 + 0.348377i \(0.886733\pi\)
\(168\) 0 0
\(169\) 6.83244 0.525573
\(170\) 0 0
\(171\) 11.2986 3.46410i 0.864024 0.264906i
\(172\) 0 0
\(173\) −2.61145 + 2.61145i −0.198545 + 0.198545i −0.799376 0.600831i \(-0.794836\pi\)
0.600831 + 0.799376i \(0.294836\pi\)
\(174\) 0 0
\(175\) 5.88019 5.88019i 0.444501 0.444501i
\(176\) 0 0
\(177\) −0.487964 3.25623i −0.0366776 0.244753i
\(178\) 0 0
\(179\) 1.36278i 0.101859i −0.998702 0.0509293i \(-0.983782\pi\)
0.998702 0.0509293i \(-0.0162183\pi\)
\(180\) 0 0
\(181\) 6.83750 6.83750i 0.508227 0.508227i −0.405755 0.913982i \(-0.632991\pi\)
0.913982 + 0.405755i \(0.132991\pi\)
\(182\) 0 0
\(183\) −4.79226 + 6.48173i −0.354254 + 0.479143i
\(184\) 0 0
\(185\) −3.47094 −0.255189
\(186\) 0 0
\(187\) −4.37576 + 7.27693i −0.319987 + 0.532142i
\(188\) 0 0
\(189\) 16.7432 + 5.90673i 1.21789 + 0.429651i
\(190\) 0 0
\(191\) −13.8598 −1.00286 −0.501428 0.865199i \(-0.667192\pi\)
−0.501428 + 0.865199i \(0.667192\pi\)
\(192\) 0 0
\(193\) −1.08378 + 1.08378i −0.0780121 + 0.0780121i −0.745036 0.667024i \(-0.767568\pi\)
0.667024 + 0.745036i \(0.267568\pi\)
\(194\) 0 0
\(195\) 7.34603 9.93580i 0.526060 0.711518i
\(196\) 0 0
\(197\) −13.9060 13.9060i −0.990759 0.990759i 0.00919834 0.999958i \(-0.497072\pi\)
−0.999958 + 0.00919834i \(0.997072\pi\)
\(198\) 0 0
\(199\) −1.46583 + 1.46583i −0.103910 + 0.103910i −0.757151 0.653240i \(-0.773409\pi\)
0.653240 + 0.757151i \(0.273409\pi\)
\(200\) 0 0
\(201\) −2.02233 13.4952i −0.142644 0.951879i
\(202\) 0 0
\(203\) 33.1932 2.32970
\(204\) 0 0
\(205\) −6.80747 −0.475454
\(206\) 0 0
\(207\) −7.33345 + 13.8186i −0.509710 + 0.960458i
\(208\) 0 0
\(209\) 5.73644 5.73644i 0.396798 0.396798i
\(210\) 0 0
\(211\) 6.07386 + 6.07386i 0.418142 + 0.418142i 0.884563 0.466421i \(-0.154457\pi\)
−0.466421 + 0.884563i \(0.654457\pi\)
\(212\) 0 0
\(213\) −12.3071 9.09926i −0.843270 0.623471i
\(214\) 0 0
\(215\) −0.538202 + 0.538202i −0.0367051 + 0.0367051i
\(216\) 0 0
\(217\) 13.9709 0.948407
\(218\) 0 0
\(219\) 17.2514 + 12.7548i 1.16574 + 0.861890i
\(220\) 0 0
\(221\) −17.8178 + 4.43609i −1.19855 + 0.298404i
\(222\) 0 0
\(223\) −3.15398 −0.211206 −0.105603 0.994408i \(-0.533677\pi\)
−0.105603 + 0.994408i \(0.533677\pi\)
\(224\) 0 0
\(225\) 2.14022 + 6.98057i 0.142681 + 0.465371i
\(226\) 0 0
\(227\) −17.2170 + 17.2170i −1.14273 + 1.14273i −0.154782 + 0.987949i \(0.549467\pi\)
−0.987949 + 0.154782i \(0.950533\pi\)
\(228\) 0 0
\(229\) 6.12836i 0.404973i 0.979285 + 0.202487i \(0.0649022\pi\)
−0.979285 + 0.202487i \(0.935098\pi\)
\(230\) 0 0
\(231\) 12.0535 1.80628i 0.793061 0.118845i
\(232\) 0 0
\(233\) 19.5223 19.5223i 1.27895 1.27895i 0.337688 0.941258i \(-0.390355\pi\)
0.941258 0.337688i \(-0.109645\pi\)
\(234\) 0 0
\(235\) 13.4081 13.4081i 0.874647 0.874647i
\(236\) 0 0
\(237\) −19.0155 14.0591i −1.23519 0.913235i
\(238\) 0 0
\(239\) 9.81380 0.634802 0.317401 0.948291i \(-0.397190\pi\)
0.317401 + 0.948291i \(0.397190\pi\)
\(240\) 0 0
\(241\) −18.7743 18.7743i −1.20936 1.20936i −0.971236 0.238120i \(-0.923469\pi\)
−0.238120 0.971236i \(-0.576531\pi\)
\(242\) 0 0
\(243\) −11.4722 + 10.5541i −0.735939 + 0.677048i
\(244\) 0 0
\(245\) −5.29559 5.29559i −0.338323 0.338323i
\(246\) 0 0
\(247\) 17.5428 1.11622
\(248\) 0 0
\(249\) −1.80283 12.0304i −0.114250 0.762398i
\(250\) 0 0
\(251\) 13.1996 0.833149 0.416574 0.909102i \(-0.363231\pi\)
0.416574 + 0.909102i \(0.363231\pi\)
\(252\) 0 0
\(253\) 10.7392i 0.675166i
\(254\) 0 0
\(255\) −4.37735 + 10.5696i −0.274120 + 0.661895i
\(256\) 0 0
\(257\) 5.73644 0.357829 0.178915 0.983865i \(-0.442741\pi\)
0.178915 + 0.983865i \(0.442741\pi\)
\(258\) 0 0
\(259\) 7.40333i 0.460021i
\(260\) 0 0
\(261\) −13.6617 + 25.7430i −0.845636 + 1.59345i
\(262\) 0 0
\(263\) 15.2225i 0.938662i 0.883022 + 0.469331i \(0.155505\pi\)
−0.883022 + 0.469331i \(0.844495\pi\)
\(264\) 0 0
\(265\) −9.64590 + 9.64590i −0.592543 + 0.592543i
\(266\) 0 0
\(267\) 0.581533 + 3.88062i 0.0355892 + 0.237490i
\(268\) 0 0
\(269\) −3.21989 + 3.21989i −0.196320 + 0.196320i −0.798421 0.602100i \(-0.794331\pi\)
0.602100 + 0.798421i \(0.294331\pi\)
\(270\) 0 0
\(271\) 5.36462i 0.325877i 0.986636 + 0.162939i \(0.0520973\pi\)
−0.986636 + 0.162939i \(0.947903\pi\)
\(272\) 0 0
\(273\) 21.1925 + 15.6687i 1.28263 + 0.948311i
\(274\) 0 0
\(275\) 3.54413 + 3.54413i 0.213719 + 0.213719i
\(276\) 0 0
\(277\) 17.2618 + 17.2618i 1.03716 + 1.03716i 0.999282 + 0.0378764i \(0.0120593\pi\)
0.0378764 + 0.999282i \(0.487941\pi\)
\(278\) 0 0
\(279\) −5.75016 + 10.8352i −0.344253 + 0.648684i
\(280\) 0 0
\(281\) −9.57553 −0.571228 −0.285614 0.958345i \(-0.592198\pi\)
−0.285614 + 0.958345i \(0.592198\pi\)
\(282\) 0 0
\(283\) −1.32948 1.32948i −0.0790291 0.0790291i 0.666487 0.745516i \(-0.267797\pi\)
−0.745516 + 0.666487i \(0.767797\pi\)
\(284\) 0 0
\(285\) 6.49794 8.78873i 0.384905 0.520600i
\(286\) 0 0
\(287\) 14.5200i 0.857086i
\(288\) 0 0
\(289\) 15.0155 7.97090i 0.883264 0.468877i
\(290\) 0 0
\(291\) −19.5124 14.4265i −1.14384 0.845697i
\(292\) 0 0
\(293\) 10.7810i 0.629831i 0.949120 + 0.314916i \(0.101976\pi\)
−0.949120 + 0.314916i \(0.898024\pi\)
\(294\) 0 0
\(295\) −2.15333 2.15333i −0.125372 0.125372i
\(296\) 0 0
\(297\) −3.56012 + 10.0915i −0.206579 + 0.585569i
\(298\) 0 0
\(299\) −16.4209 + 16.4209i −0.949647 + 0.949647i
\(300\) 0 0
\(301\) −1.14796 1.14796i −0.0661671 0.0661671i
\(302\) 0 0
\(303\) −1.54263 10.2941i −0.0886221 0.591383i
\(304\) 0 0
\(305\) 7.45543i 0.426897i
\(306\) 0 0
\(307\) 23.0830i 1.31742i 0.752397 + 0.658710i \(0.228897\pi\)
−0.752397 + 0.658710i \(0.771103\pi\)
\(308\) 0 0
\(309\) −0.824310 5.50070i −0.0468934 0.312924i
\(310\) 0 0
\(311\) −15.5241 15.5241i −0.880290 0.880290i 0.113273 0.993564i \(-0.463866\pi\)
−0.993564 + 0.113273i \(0.963866\pi\)
\(312\) 0 0
\(313\) −10.5621 + 10.5621i −0.597006 + 0.597006i −0.939515 0.342509i \(-0.888723\pi\)
0.342509 + 0.939515i \(0.388723\pi\)
\(314\) 0 0
\(315\) 15.6996 4.81344i 0.884573 0.271207i
\(316\) 0 0
\(317\) 8.34788 + 8.34788i 0.468864 + 0.468864i 0.901546 0.432682i \(-0.142433\pi\)
−0.432682 + 0.901546i \(0.642433\pi\)
\(318\) 0 0
\(319\) 20.0063i 1.12014i
\(320\) 0 0
\(321\) −25.1221 18.5740i −1.40218 1.03670i
\(322\) 0 0
\(323\) −15.7607 + 3.92396i −0.876951 + 0.218335i
\(324\) 0 0
\(325\) 10.8384i 0.601208i
\(326\) 0 0
\(327\) 14.0029 18.9396i 0.774365 1.04736i
\(328\) 0 0
\(329\) 28.5987 + 28.5987i 1.57670 + 1.57670i
\(330\) 0 0
\(331\) −6.45307 −0.354693 −0.177347 0.984148i \(-0.556751\pi\)
−0.177347 + 0.984148i \(0.556751\pi\)
\(332\) 0 0
\(333\) 5.74166 + 3.04707i 0.314641 + 0.166978i
\(334\) 0 0
\(335\) −8.92431 8.92431i −0.487587 0.487587i
\(336\) 0 0
\(337\) −10.1925 10.1925i −0.555223 0.555223i 0.372721 0.927944i \(-0.378425\pi\)
−0.927944 + 0.372721i \(0.878425\pi\)
\(338\) 0 0
\(339\) 1.45623 + 1.07666i 0.0790917 + 0.0584764i
\(340\) 0 0
\(341\) 8.42058i 0.456000i
\(342\) 0 0
\(343\) −5.61743 + 5.61743i −0.303313 + 0.303313i
\(344\) 0 0
\(345\) 2.14429 + 14.3091i 0.115445 + 0.770374i
\(346\) 0 0
\(347\) 21.1409 21.1409i 1.13490 1.13490i 0.145554 0.989350i \(-0.453504\pi\)
0.989350 0.145554i \(-0.0464964\pi\)
\(348\) 0 0
\(349\) 20.5817i 1.10171i −0.834600 0.550857i \(-0.814301\pi\)
0.834600 0.550857i \(-0.185699\pi\)
\(350\) 0 0
\(351\) −20.8743 + 9.98697i −1.11419 + 0.533065i
\(352\) 0 0
\(353\) 31.0426i 1.65223i −0.563501 0.826115i \(-0.690546\pi\)
0.563501 0.826115i \(-0.309454\pi\)
\(354\) 0 0
\(355\) −14.1559 −0.751319
\(356\) 0 0
\(357\) −22.5444 9.33665i −1.19318 0.494148i
\(358\) 0 0
\(359\) 7.18771i 0.379353i 0.981847 + 0.189676i \(0.0607439\pi\)
−0.981847 + 0.189676i \(0.939256\pi\)
\(360\) 0 0
\(361\) −3.48246 −0.183287
\(362\) 0 0
\(363\) −1.73492 11.5773i −0.0910595 0.607649i
\(364\) 0 0
\(365\) 19.8430 1.03863
\(366\) 0 0
\(367\) −19.0660 19.0660i −0.995235 0.995235i 0.00475336 0.999989i \(-0.498487\pi\)
−0.999989 + 0.00475336i \(0.998487\pi\)
\(368\) 0 0
\(369\) 11.2610 + 5.97614i 0.586223 + 0.311105i
\(370\) 0 0
\(371\) −20.5742 20.5742i −1.06816 1.06816i
\(372\) 0 0
\(373\) 30.0993 1.55848 0.779240 0.626725i \(-0.215605\pi\)
0.779240 + 0.626725i \(0.215605\pi\)
\(374\) 0 0
\(375\) 16.5853 + 12.2623i 0.856462 + 0.633224i
\(376\) 0 0
\(377\) −30.5910 + 30.5910i −1.57552 + 1.57552i
\(378\) 0 0
\(379\) 9.15063 9.15063i 0.470036 0.470036i −0.431890 0.901926i \(-0.642153\pi\)
0.901926 + 0.431890i \(0.142153\pi\)
\(380\) 0 0
\(381\) 16.8370 2.52311i 0.862584 0.129263i
\(382\) 0 0
\(383\) 21.0475i 1.07548i −0.843112 0.537738i \(-0.819279\pi\)
0.843112 0.537738i \(-0.180721\pi\)
\(384\) 0 0
\(385\) 7.97090 7.97090i 0.406235 0.406235i
\(386\) 0 0
\(387\) 1.36278 0.417822i 0.0692738 0.0212391i
\(388\) 0 0
\(389\) 17.8178 0.903396 0.451698 0.892171i \(-0.350818\pi\)
0.451698 + 0.892171i \(0.350818\pi\)
\(390\) 0 0
\(391\) 11.0798 18.4258i 0.560330 0.931834i
\(392\) 0 0
\(393\) −10.5969 7.83481i −0.534543 0.395214i
\(394\) 0 0
\(395\) −21.8720 −1.10050
\(396\) 0 0
\(397\) −7.33544 + 7.33544i −0.368155 + 0.368155i −0.866804 0.498649i \(-0.833830\pi\)
0.498649 + 0.866804i \(0.333830\pi\)
\(398\) 0 0
\(399\) 18.7459 + 13.8598i 0.938469 + 0.693856i
\(400\) 0 0
\(401\) 8.28968 + 8.28968i 0.413967 + 0.413967i 0.883118 0.469151i \(-0.155440\pi\)
−0.469151 + 0.883118i \(0.655440\pi\)
\(402\) 0 0
\(403\) −12.8757 + 12.8757i −0.641382 + 0.641382i
\(404\) 0 0
\(405\) −2.72859 + 14.1570i −0.135585 + 0.703466i
\(406\) 0 0
\(407\) 4.46216 0.221181
\(408\) 0 0
\(409\) 28.8931 1.42867 0.714336 0.699803i \(-0.246729\pi\)
0.714336 + 0.699803i \(0.246729\pi\)
\(410\) 0 0
\(411\) 3.68270 + 24.5750i 0.181654 + 1.21220i
\(412\) 0 0
\(413\) 4.59293 4.59293i 0.226004 0.226004i
\(414\) 0 0
\(415\) −7.95567 7.95567i −0.390529 0.390529i
\(416\) 0 0
\(417\) −21.7460 + 29.4124i −1.06491 + 1.44033i
\(418\) 0 0
\(419\) 0.0934578 0.0934578i 0.00456571 0.00456571i −0.704820 0.709386i \(-0.748972\pi\)
0.709386 + 0.704820i \(0.248972\pi\)
\(420\) 0 0
\(421\) −0.935822 −0.0456092 −0.0228046 0.999740i \(-0.507260\pi\)
−0.0228046 + 0.999740i \(0.507260\pi\)
\(422\) 0 0
\(423\) −33.9505 + 10.4091i −1.65073 + 0.506107i
\(424\) 0 0
\(425\) −2.42432 9.73741i −0.117597 0.472334i
\(426\) 0 0
\(427\) −15.9020 −0.769553
\(428\) 0 0
\(429\) −9.44387 + 12.7732i −0.455954 + 0.616697i
\(430\) 0 0
\(431\) −10.1724 + 10.1724i −0.489989 + 0.489989i −0.908303 0.418313i \(-0.862621\pi\)
0.418313 + 0.908303i \(0.362621\pi\)
\(432\) 0 0
\(433\) 32.7101i 1.57195i 0.618261 + 0.785973i \(0.287838\pi\)
−0.618261 + 0.785973i \(0.712162\pi\)
\(434\) 0 0
\(435\) 3.99466 + 26.6567i 0.191529 + 1.27809i
\(436\) 0 0
\(437\) −14.5252 + 14.5252i −0.694833 + 0.694833i
\(438\) 0 0
\(439\) 16.8927 16.8927i 0.806246 0.806246i −0.177817 0.984064i \(-0.556904\pi\)
0.984064 + 0.177817i \(0.0569036\pi\)
\(440\) 0 0
\(441\) 4.11112 + 13.4089i 0.195768 + 0.638519i
\(442\) 0 0
\(443\) −23.4443 −1.11387 −0.556936 0.830556i \(-0.688023\pi\)
−0.556936 + 0.830556i \(0.688023\pi\)
\(444\) 0 0
\(445\) 2.56624 + 2.56624i 0.121651 + 0.121651i
\(446\) 0 0
\(447\) −0.177604 1.18517i −0.00840040 0.0560567i
\(448\) 0 0
\(449\) 28.7296 + 28.7296i 1.35584 + 1.35584i 0.878984 + 0.476852i \(0.158222\pi\)
0.476852 + 0.878984i \(0.341778\pi\)
\(450\) 0 0
\(451\) 8.75151 0.412093
\(452\) 0 0
\(453\) 13.2126 1.97998i 0.620780 0.0930274i
\(454\) 0 0
\(455\) 24.3761 1.14277
\(456\) 0 0
\(457\) 22.3250i 1.04432i 0.852848 + 0.522160i \(0.174874\pi\)
−0.852848 + 0.522160i \(0.825126\pi\)
\(458\) 0 0
\(459\) 16.5199 13.6416i 0.771083 0.636734i
\(460\) 0 0
\(461\) −33.5813 −1.56404 −0.782019 0.623254i \(-0.785810\pi\)
−0.782019 + 0.623254i \(0.785810\pi\)
\(462\) 0 0
\(463\) 10.9751i 0.510058i 0.966933 + 0.255029i \(0.0820850\pi\)
−0.966933 + 0.255029i \(0.917915\pi\)
\(464\) 0 0
\(465\) 1.68134 + 11.2197i 0.0779703 + 0.520303i
\(466\) 0 0
\(467\) 38.0066i 1.75874i −0.476143 0.879368i \(-0.657965\pi\)
0.476143 0.879368i \(-0.342035\pi\)
\(468\) 0 0
\(469\) 19.0351 19.0351i 0.878958 0.878958i
\(470\) 0 0
\(471\) 37.2976 5.58926i 1.71858 0.257539i
\(472\) 0 0
\(473\) 0.691899 0.691899i 0.0318136 0.0318136i
\(474\) 0 0
\(475\) 9.58715i 0.439889i
\(476\) 0 0
\(477\) 24.4243 7.48839i 1.11831 0.342870i
\(478\) 0 0
\(479\) −16.5356 16.5356i −0.755530 0.755530i 0.219975 0.975505i \(-0.429402\pi\)
−0.975505 + 0.219975i \(0.929402\pi\)
\(480\) 0 0
\(481\) 6.82295 + 6.82295i 0.311100 + 0.311100i
\(482\) 0 0
\(483\) −30.5205 + 4.57366i −1.38873 + 0.208109i
\(484\) 0 0
\(485\) −22.4437 −1.01911
\(486\) 0 0
\(487\) −0.465178 0.465178i −0.0210792 0.0210792i 0.696489 0.717568i \(-0.254745\pi\)
−0.717568 + 0.696489i \(0.754745\pi\)
\(488\) 0 0
\(489\) 8.00774 + 5.92051i 0.362123 + 0.267735i
\(490\) 0 0
\(491\) 3.38575i 0.152797i −0.997077 0.0763984i \(-0.975658\pi\)
0.997077 0.0763984i \(-0.0243421\pi\)
\(492\) 0 0
\(493\) 20.6408 34.3259i 0.929617 1.54596i
\(494\) 0 0
\(495\) 2.90117 + 9.46252i 0.130398 + 0.425308i
\(496\) 0 0
\(497\) 30.1938i 1.35438i
\(498\) 0 0
\(499\) 16.7564 + 16.7564i 0.750119 + 0.750119i 0.974501 0.224383i \(-0.0720365\pi\)
−0.224383 + 0.974501i \(0.572037\pi\)
\(500\) 0 0
\(501\) 14.9913 + 11.0838i 0.669760 + 0.495187i
\(502\) 0 0
\(503\) 22.5474 22.5474i 1.00534 1.00534i 0.00535448 0.999986i \(-0.498296\pi\)
0.999986 0.00535448i \(-0.00170439\pi\)
\(504\) 0 0
\(505\) −6.80747 6.80747i −0.302928 0.302928i
\(506\) 0 0
\(507\) −11.7035 + 1.75383i −0.519769 + 0.0778902i
\(508\) 0 0
\(509\) 2.81200i 0.124640i 0.998056 + 0.0623199i \(0.0198499\pi\)
−0.998056 + 0.0623199i \(0.980150\pi\)
\(510\) 0 0
\(511\) 42.3240i 1.87230i
\(512\) 0 0
\(513\) −18.4644 + 8.83399i −0.815223 + 0.390030i
\(514\) 0 0
\(515\) −3.63758 3.63758i −0.160291 0.160291i
\(516\) 0 0
\(517\) −17.2371 + 17.2371i −0.758087 + 0.758087i
\(518\) 0 0
\(519\) 3.80287 5.14354i 0.166928 0.225777i
\(520\) 0 0
\(521\) −11.7606 11.7606i −0.515242 0.515242i 0.400886 0.916128i \(-0.368702\pi\)
−0.916128 + 0.400886i \(0.868702\pi\)
\(522\) 0 0
\(523\) 36.3659i 1.59017i 0.606497 + 0.795086i \(0.292574\pi\)
−0.606497 + 0.795086i \(0.707426\pi\)
\(524\) 0 0
\(525\) −8.56293 + 11.5817i −0.373717 + 0.505468i
\(526\) 0 0
\(527\) 8.68767 14.4477i 0.378441 0.629351i
\(528\) 0 0
\(529\) 4.19253i 0.182284i
\(530\) 0 0
\(531\) 1.67169 + 5.45242i 0.0725452 + 0.236615i
\(532\) 0 0
\(533\) 13.3817 + 13.3817i 0.579624 + 0.579624i
\(534\) 0 0
\(535\) −28.8960 −1.24928
\(536\) 0 0
\(537\) 0.349812 + 2.33433i 0.0150955 + 0.100734i
\(538\) 0 0
\(539\) 6.80788 + 6.80788i 0.293236 + 0.293236i
\(540\) 0 0
\(541\) −6.80840 6.80840i −0.292716 0.292716i 0.545436 0.838152i \(-0.316364\pi\)
−0.838152 + 0.545436i \(0.816364\pi\)
\(542\) 0 0
\(543\) −9.95699 + 13.4672i −0.427295 + 0.577935i
\(544\) 0 0
\(545\) 21.7847i 0.933155i
\(546\) 0 0
\(547\) 16.8840 16.8840i 0.721907 0.721907i −0.247086 0.968993i \(-0.579473\pi\)
0.968993 + 0.247086i \(0.0794732\pi\)
\(548\) 0 0
\(549\) 6.54497 12.3328i 0.279333 0.526353i
\(550\) 0 0
\(551\) −27.0593 + 27.0593i −1.15277 + 1.15277i
\(552\) 0 0
\(553\) 46.6519i 1.98384i
\(554\) 0 0
\(555\) 5.94546 0.890960i 0.252371 0.0378192i
\(556\) 0 0
\(557\) 2.86250i 0.121288i 0.998159 + 0.0606439i \(0.0193154\pi\)
−0.998159 + 0.0606439i \(0.980685\pi\)
\(558\) 0 0
\(559\) 2.11592 0.0894940
\(560\) 0 0
\(561\) 5.62741 13.5880i 0.237590 0.573688i
\(562\) 0 0
\(563\) 5.70293i 0.240350i 0.992753 + 0.120175i \(0.0383456\pi\)
−0.992753 + 0.120175i \(0.961654\pi\)
\(564\) 0 0
\(565\) 1.67499 0.0704675
\(566\) 0 0
\(567\) −30.1961 5.81994i −1.26812 0.244414i
\(568\) 0 0
\(569\) −18.8664 −0.790919 −0.395460 0.918483i \(-0.629415\pi\)
−0.395460 + 0.918483i \(0.629415\pi\)
\(570\) 0 0
\(571\) −5.28861 5.28861i −0.221321 0.221321i 0.587733 0.809055i \(-0.300020\pi\)
−0.809055 + 0.587733i \(0.800020\pi\)
\(572\) 0 0
\(573\) 23.7407 3.55768i 0.991783 0.148624i
\(574\) 0 0
\(575\) −8.97404 8.97404i −0.374243 0.374243i
\(576\) 0 0
\(577\) −34.4005 −1.43211 −0.716057 0.698042i \(-0.754055\pi\)
−0.716057 + 0.698042i \(0.754055\pi\)
\(578\) 0 0
\(579\) 1.57823 2.13463i 0.0655891 0.0887120i
\(580\) 0 0
\(581\) 16.9690 16.9690i 0.703994 0.703994i
\(582\) 0 0
\(583\) 12.4005 12.4005i 0.513577 0.513577i
\(584\) 0 0
\(585\) −10.0328 + 18.9049i −0.414803 + 0.781623i
\(586\) 0 0
\(587\) 25.0363i 1.03336i −0.856179 0.516680i \(-0.827168\pi\)
0.856179 0.516680i \(-0.172832\pi\)
\(588\) 0 0
\(589\) −11.3892 + 11.3892i −0.469283 + 0.469283i
\(590\) 0 0
\(591\) 27.3894 + 20.2503i 1.12665 + 0.832987i
\(592\) 0 0
\(593\) 26.5446 1.09005 0.545027 0.838418i \(-0.316519\pi\)
0.545027 + 0.838418i \(0.316519\pi\)
\(594\) 0 0
\(595\) −21.8999 + 5.45242i −0.897808 + 0.223527i
\(596\) 0 0
\(597\) 2.13459 2.88713i 0.0873631 0.118162i
\(598\) 0 0
\(599\) 8.92431 0.364638 0.182319 0.983239i \(-0.441640\pi\)
0.182319 + 0.983239i \(0.441640\pi\)
\(600\) 0 0
\(601\) −32.1789 + 32.1789i −1.31261 + 1.31261i −0.393117 + 0.919488i \(0.628603\pi\)
−0.919488 + 0.393117i \(0.871397\pi\)
\(602\) 0 0
\(603\) 6.92820 + 22.5972i 0.282138 + 0.920227i
\(604\) 0 0
\(605\) −7.65599 7.65599i −0.311260 0.311260i
\(606\) 0 0
\(607\) −9.23659 + 9.23659i −0.374902 + 0.374902i −0.869259 0.494357i \(-0.835403\pi\)
0.494357 + 0.869259i \(0.335403\pi\)
\(608\) 0 0
\(609\) −56.8574 + 8.52039i −2.30398 + 0.345264i
\(610\) 0 0
\(611\) −52.7135 −2.13256
\(612\) 0 0
\(613\) 5.51754 0.222851 0.111426 0.993773i \(-0.464458\pi\)
0.111426 + 0.993773i \(0.464458\pi\)
\(614\) 0 0
\(615\) 11.6607 1.74742i 0.470204 0.0704627i
\(616\) 0 0
\(617\) −5.41574 + 5.41574i −0.218029 + 0.218029i −0.807668 0.589638i \(-0.799270\pi\)
0.589638 + 0.807668i \(0.299270\pi\)
\(618\) 0 0
\(619\) 19.5124 + 19.5124i 0.784271 + 0.784271i 0.980548 0.196277i \(-0.0628852\pi\)
−0.196277 + 0.980548i \(0.562885\pi\)
\(620\) 0 0
\(621\) 9.01454 25.5526i 0.361741 1.02539i
\(622\) 0 0
\(623\) −5.47365 + 5.47365i −0.219297 + 0.219297i
\(624\) 0 0
\(625\) 6.90798 0.276319
\(626\) 0 0
\(627\) −8.35359 + 11.2986i −0.333610 + 0.451222i
\(628\) 0 0
\(629\) −7.65599 4.60369i −0.305264 0.183561i
\(630\) 0 0
\(631\) 33.3876 1.32914 0.664569 0.747227i \(-0.268615\pi\)
0.664569 + 0.747227i \(0.268615\pi\)
\(632\) 0 0
\(633\) −11.9632 8.84495i −0.475493 0.351555i
\(634\) 0 0
\(635\) 11.1342 11.1342i 0.441848 0.441848i
\(636\) 0 0
\(637\) 20.8194i 0.824896i
\(638\) 0 0
\(639\) 23.4169 + 12.4272i 0.926357 + 0.491613i
\(640\) 0 0
\(641\) 26.2858 26.2858i 1.03823 1.03823i 0.0389867 0.999240i \(-0.487587\pi\)
0.999240 0.0389867i \(-0.0124130\pi\)
\(642\) 0 0
\(643\) 3.75552 3.75552i 0.148103 0.148103i −0.629167 0.777270i \(-0.716604\pi\)
0.777270 + 0.629167i \(0.216604\pi\)
\(644\) 0 0
\(645\) 0.783748 1.06005i 0.0308600 0.0417395i
\(646\) 0 0
\(647\) 40.2589 1.58274 0.791370 0.611338i \(-0.209368\pi\)
0.791370 + 0.611338i \(0.209368\pi\)
\(648\) 0 0
\(649\) 2.76827 + 2.76827i 0.108664 + 0.108664i
\(650\) 0 0
\(651\) −23.9311 + 3.58621i −0.937934 + 0.140555i
\(652\) 0 0
\(653\) 15.7528 + 15.7528i 0.616455 + 0.616455i 0.944620 0.328165i \(-0.106430\pi\)
−0.328165 + 0.944620i \(0.606430\pi\)
\(654\) 0 0
\(655\) −12.1888 −0.476256
\(656\) 0 0
\(657\) −32.8244 17.4197i −1.28060 0.679609i
\(658\) 0 0
\(659\) −11.9588 −0.465848 −0.232924 0.972495i \(-0.574829\pi\)
−0.232924 + 0.972495i \(0.574829\pi\)
\(660\) 0 0
\(661\) 29.9127i 1.16347i 0.813378 + 0.581735i \(0.197626\pi\)
−0.813378 + 0.581735i \(0.802374\pi\)
\(662\) 0 0
\(663\) 29.3818 12.1724i 1.14109 0.472735i
\(664\) 0 0
\(665\) 21.5620 0.836137
\(666\) 0 0
\(667\) 50.6577i 1.96147i
\(668\) 0 0
\(669\) 5.40253 0.809600i 0.208874 0.0313009i
\(670\) 0 0
\(671\) 9.58452i 0.370006i
\(672\) 0 0
\(673\) −7.21213 + 7.21213i −0.278007 + 0.278007i −0.832313 0.554306i \(-0.812984\pi\)
0.554306 + 0.832313i \(0.312984\pi\)
\(674\) 0 0
\(675\) −5.45788 11.4078i −0.210074 0.439087i
\(676\) 0 0
\(677\) −8.86143 + 8.86143i −0.340572 + 0.340572i −0.856583 0.516010i \(-0.827417\pi\)
0.516010 + 0.856583i \(0.327417\pi\)
\(678\) 0 0
\(679\) 47.8711i 1.83712i
\(680\) 0 0
\(681\) 25.0719 33.9108i 0.960758 1.29946i
\(682\) 0 0
\(683\) −20.1294 20.1294i −0.770231 0.770231i 0.207915 0.978147i \(-0.433332\pi\)
−0.978147 + 0.207915i \(0.933332\pi\)
\(684\) 0 0
\(685\) 16.2513 + 16.2513i 0.620932 + 0.620932i
\(686\) 0 0
\(687\) −1.57310 10.4974i −0.0600173 0.400501i
\(688\) 0 0
\(689\) 37.9225 1.44473
\(690\) 0 0
\(691\) −9.20794 9.20794i −0.350286 0.350286i 0.509930 0.860216i \(-0.329671\pi\)
−0.860216 + 0.509930i \(0.829671\pi\)
\(692\) 0 0
\(693\) −20.1830 + 6.18804i −0.766690 + 0.235064i
\(694\) 0 0
\(695\) 33.8308i 1.28328i
\(696\) 0 0
\(697\) −15.0155 9.02910i −0.568752 0.342001i
\(698\) 0 0
\(699\) −28.4290 + 38.4513i −1.07528 + 1.45436i
\(700\) 0 0
\(701\) 47.7498i 1.80349i 0.432273 + 0.901743i \(0.357712\pi\)
−0.432273 + 0.901743i \(0.642288\pi\)
\(702\) 0 0
\(703\) 6.03525 + 6.03525i 0.227624 + 0.227624i
\(704\) 0 0
\(705\) −19.5253 + 26.4088i −0.735366 + 0.994612i
\(706\) 0 0
\(707\) 14.5200 14.5200i 0.546079 0.546079i
\(708\) 0 0
\(709\) −16.6064 16.6064i −0.623665 0.623665i 0.322801 0.946467i \(-0.395375\pi\)
−0.946467 + 0.322801i \(0.895375\pi\)
\(710\) 0 0
\(711\) 36.1809 + 19.2010i 1.35689 + 0.720095i
\(712\) 0 0
\(713\) 21.3217i 0.798503i
\(714\) 0 0
\(715\) 14.6921i 0.549452i
\(716\) 0 0
\(717\) −16.8103 + 2.51912i −0.627792 + 0.0940781i
\(718\) 0 0
\(719\) 26.4714 + 26.4714i 0.987216 + 0.987216i 0.999919 0.0127033i \(-0.00404369\pi\)
−0.0127033 + 0.999919i \(0.504044\pi\)
\(720\) 0 0
\(721\) 7.75877 7.75877i 0.288952 0.288952i
\(722\) 0 0
\(723\) 36.9781 + 27.3397i 1.37523 + 1.01677i
\(724\) 0 0
\(725\) −16.7180 16.7180i −0.620890 0.620890i
\(726\) 0 0
\(727\) 25.5290i 0.946818i −0.880843 0.473409i \(-0.843023\pi\)
0.880843 0.473409i \(-0.156977\pi\)
\(728\) 0 0
\(729\) 16.9418 21.0232i 0.627474 0.778638i
\(730\) 0 0
\(731\) −1.90098 + 0.473287i −0.0703102 + 0.0175051i
\(732\) 0 0
\(733\) 17.2627i 0.637612i −0.947820 0.318806i \(-0.896718\pi\)
0.947820 0.318806i \(-0.103282\pi\)
\(734\) 0 0
\(735\) 10.4303 + 7.71161i 0.384726 + 0.284447i
\(736\) 0 0
\(737\) 11.4729 + 11.4729i 0.422609 + 0.422609i
\(738\) 0 0
\(739\) −53.8315 −1.98023 −0.990113 0.140274i \(-0.955202\pi\)
−0.990113 + 0.140274i \(0.955202\pi\)
\(740\) 0 0
\(741\) −30.0495 + 4.50309i −1.10390 + 0.165425i
\(742\) 0 0
\(743\) 15.6461 + 15.6461i 0.573999 + 0.573999i 0.933244 0.359244i \(-0.116965\pi\)
−0.359244 + 0.933244i \(0.616965\pi\)
\(744\) 0 0
\(745\) −0.783748 0.783748i −0.0287143 0.0287143i
\(746\) 0 0
\(747\) 6.17622 + 20.1445i 0.225976 + 0.737048i
\(748\) 0 0
\(749\) 61.6336i 2.25204i
\(750\) 0 0
\(751\) 22.4224 22.4224i 0.818204 0.818204i −0.167644 0.985848i \(-0.553616\pi\)
0.985848 + 0.167644i \(0.0536159\pi\)
\(752\) 0 0
\(753\) −22.6098 + 3.38821i −0.823948 + 0.123473i
\(754\) 0 0
\(755\) 8.73740 8.73740i 0.317986 0.317986i
\(756\) 0 0
\(757\) 44.2877i 1.60966i −0.593503 0.804831i \(-0.702256\pi\)
0.593503 0.804831i \(-0.297744\pi\)
\(758\) 0 0
\(759\) −2.75665 18.3954i −0.100060 0.667710i
\(760\) 0 0
\(761\) 42.8507i 1.55334i −0.629911 0.776668i \(-0.716909\pi\)
0.629911 0.776668i \(-0.283091\pi\)
\(762\) 0 0
\(763\) 46.4656 1.68217
\(764\) 0 0
\(765\) 4.78494 19.2286i 0.173000 0.695211i
\(766\) 0 0
\(767\) 8.46574i 0.305680i
\(768\) 0 0
\(769\) −14.7939 −0.533480 −0.266740 0.963769i \(-0.585946\pi\)
−0.266740 + 0.963769i \(0.585946\pi\)
\(770\) 0 0
\(771\) −9.82608 + 1.47249i −0.353878 + 0.0530306i
\(772\) 0 0
\(773\) 7.24809 0.260696 0.130348 0.991468i \(-0.458391\pi\)
0.130348 + 0.991468i \(0.458391\pi\)
\(774\) 0 0
\(775\) −7.03654 7.03654i −0.252760 0.252760i
\(776\) 0 0
\(777\) 1.90037 + 12.6813i 0.0681754 + 0.454941i
\(778\) 0 0
\(779\) 11.8368 + 11.8368i 0.424097 + 0.424097i
\(780\) 0 0
\(781\) 18.1985 0.651194
\(782\) 0 0
\(783\) 16.7934 47.6026i 0.600147 1.70118i
\(784\) 0 0
\(785\) 24.6647 24.6647i 0.880323 0.880323i
\(786\) 0 0
\(787\) −25.6928 + 25.6928i −0.915849 + 0.915849i −0.996724 0.0808748i \(-0.974229\pi\)
0.0808748 + 0.996724i \(0.474229\pi\)
\(788\) 0 0
\(789\) −3.90749 26.0750i −0.139110 0.928296i
\(790\) 0 0
\(791\) 3.57267i 0.127029i
\(792\) 0 0
\(793\) 14.6554 14.6554i 0.520428 0.520428i
\(794\) 0 0
\(795\) 14.0467 18.9987i 0.498184 0.673815i
\(796\) 0 0
\(797\) −22.3992 −0.793422 −0.396711 0.917944i \(-0.629849\pi\)
−0.396711 + 0.917944i \(0.629849\pi\)
\(798\) 0 0
\(799\) 47.3586 11.7909i 1.67543 0.417131i
\(800\) 0 0
\(801\) −1.99224 6.49794i −0.0703925 0.229593i
\(802\) 0 0
\(803\) −25.5096 −0.900215
\(804\) 0 0
\(805\) −20.1830 + 20.1830i −0.711359 + 0.711359i
\(806\) 0 0
\(807\) 4.68891 6.34195i 0.165058 0.223247i
\(808\) 0 0
\(809\) 24.0533 + 24.0533i 0.845667 + 0.845667i 0.989589 0.143922i \(-0.0459713\pi\)
−0.143922 + 0.989589i \(0.545971\pi\)
\(810\) 0 0
\(811\) 0.146308 0.146308i 0.00513758 0.00513758i −0.704533 0.709671i \(-0.748844\pi\)
0.709671 + 0.704533i \(0.248844\pi\)
\(812\) 0 0
\(813\) −1.37705 9.18919i −0.0482953 0.322279i
\(814\) 0 0
\(815\) 9.21069 0.322636
\(816\) 0 0
\(817\) 1.87164 0.0654806
\(818\) 0 0
\(819\) −40.3232 21.3993i −1.40901 0.747753i
\(820\) 0 0
\(821\) 24.0785 24.0785i 0.840346 0.840346i −0.148558 0.988904i \(-0.547463\pi\)
0.988904 + 0.148558i \(0.0474632\pi\)
\(822\) 0 0
\(823\) −29.8830 29.8830i −1.04166 1.04166i −0.999094 0.0425623i \(-0.986448\pi\)
−0.0425623 0.999094i \(-0.513552\pi\)
\(824\) 0 0
\(825\) −6.98057 5.16107i −0.243032 0.179686i
\(826\) 0 0
\(827\) 35.3520 35.3520i 1.22931 1.22931i 0.265083 0.964226i \(-0.414601\pi\)
0.964226 0.265083i \(-0.0853993\pi\)
\(828\) 0 0
\(829\) 31.4783 1.09329 0.546644 0.837365i \(-0.315905\pi\)
0.546644 + 0.837365i \(0.315905\pi\)
\(830\) 0 0
\(831\) −33.9990 25.1372i −1.17941 0.871998i
\(832\) 0 0
\(833\) −4.65686 18.7045i −0.161351 0.648072i
\(834\) 0 0
\(835\) 17.2433 0.596729
\(836\) 0 0
\(837\) 7.06830 20.0358i 0.244316 0.692539i
\(838\) 0 0
\(839\) 21.6579 21.6579i 0.747715 0.747715i −0.226335 0.974050i \(-0.572674\pi\)
0.974050 + 0.226335i \(0.0726742\pi\)
\(840\) 0 0
\(841\) 65.3715i 2.25419i
\(842\) 0 0
\(843\) 16.4022 2.45796i 0.564920 0.0846565i
\(844\) 0 0
\(845\) −7.73944 + 7.73944i −0.266245 + 0.266245i
\(846\) 0 0
\(847\) 16.3298 16.3298i 0.561099 0.561099i
\(848\) 0 0
\(849\) 2.61856 + 1.93603i 0.0898686 + 0.0664442i
\(850\) 0 0
\(851\) −11.2986 −0.387310
\(852\) 0 0
\(853\) −3.20708 3.20708i −0.109808 0.109808i 0.650068 0.759876i \(-0.274740\pi\)
−0.759876 + 0.650068i \(0.774740\pi\)
\(854\) 0 0
\(855\) −8.87449 + 16.7224i −0.303501 + 0.571894i
\(856\) 0 0
\(857\) 11.0687 + 11.0687i 0.378100 + 0.378100i 0.870416 0.492316i \(-0.163850\pi\)
−0.492316 + 0.870416i \(0.663850\pi\)
\(858\) 0 0
\(859\) −16.6231 −0.567172 −0.283586 0.958947i \(-0.591524\pi\)
−0.283586 + 0.958947i \(0.591524\pi\)
\(860\) 0 0
\(861\) 3.72715 + 24.8716i 0.127021 + 0.847622i
\(862\) 0 0
\(863\) 5.12236 0.174367 0.0871836 0.996192i \(-0.472213\pi\)
0.0871836 + 0.996192i \(0.472213\pi\)
\(864\) 0 0
\(865\) 5.91622i 0.201158i
\(866\) 0 0
\(867\) −23.6743 + 17.5079i −0.804022 + 0.594599i
\(868\) 0 0
\(869\) 28.1182 0.953843
\(870\) 0 0
\(871\) 35.0857i 1.18883i
\(872\) 0 0
\(873\) 37.1265 + 19.7028i 1.25654 + 0.666840i
\(874\) 0 0
\(875\) 40.6898i 1.37557i
\(876\) 0 0
\(877\) 7.64496 7.64496i 0.258152 0.258152i −0.566150 0.824302i \(-0.691568\pi\)
0.824302 + 0.566150i \(0.191568\pi\)
\(878\) 0 0
\(879\) −2.76738 18.4670i −0.0933415 0.622876i
\(880\) 0 0
\(881\) −28.5513 + 28.5513i −0.961917 + 0.961917i −0.999301 0.0373836i \(-0.988098\pi\)
0.0373836 + 0.999301i \(0.488098\pi\)
\(882\) 0 0
\(883\) 2.01513i 0.0678146i 0.999425 + 0.0339073i \(0.0107951\pi\)
−0.999425 + 0.0339073i \(0.989205\pi\)
\(884\) 0 0
\(885\) 4.24123 + 3.13575i 0.142567 + 0.105407i
\(886\) 0 0
\(887\) −15.2948 15.2948i −0.513549 0.513549i 0.402063 0.915612i \(-0.368293\pi\)
−0.915612 + 0.402063i \(0.868293\pi\)
\(888\) 0 0
\(889\) 23.7487 + 23.7487i 0.796505 + 0.796505i
\(890\) 0 0
\(891\) 3.50781 18.1999i 0.117516 0.609718i
\(892\) 0 0
\(893\) −46.6278 −1.56034
\(894\) 0 0
\(895\) 1.54368 + 1.54368i 0.0515996 + 0.0515996i
\(896\) 0 0
\(897\) 23.9127 32.3429i 0.798422 1.07990i
\(898\) 0 0
\(899\) 39.7207i 1.32476i
\(900\) 0 0
\(901\) −34.0702 + 8.48246i −1.13504 + 0.282592i
\(902\) 0 0
\(903\) 2.26103 + 1.67169i 0.0752424 + 0.0556304i
\(904\) 0 0
\(905\) 15.4903i 0.514916i
\(906\) 0 0
\(907\) −38.7335 38.7335i −1.28612 1.28612i −0.937122 0.349002i \(-0.886521\pi\)
−0.349002 0.937122i \(-0.613479\pi\)
\(908\) 0 0
\(909\) 5.28483 + 17.2371i 0.175287 + 0.571719i
\(910\) 0 0
\(911\) −24.3835 + 24.3835i −0.807861 + 0.807861i −0.984310 0.176449i \(-0.943539\pi\)
0.176449 + 0.984310i \(0.443539\pi\)
\(912\) 0 0
\(913\) 10.2276 + 10.2276i 0.338485 + 0.338485i
\(914\) 0 0
\(915\) −1.91374 12.7706i −0.0632664 0.422183i
\(916\) 0 0
\(917\) 25.9980i 0.858531i
\(918\) 0 0
\(919\) 27.3149i 0.901035i 0.892768 + 0.450518i \(0.148761\pi\)
−0.892768 + 0.450518i \(0.851239\pi\)
\(920\) 0 0
\(921\) −5.92522 39.5395i −0.195242 1.30287i
\(922\) 0 0
\(923\) 27.8268 + 27.8268i 0.915930 + 0.915930i
\(924\) 0 0
\(925\) −3.72874 + 3.72874i −0.122600 + 0.122600i
\(926\) 0 0
\(927\) 2.82396 + 9.21069i 0.0927511 + 0.302519i
\(928\) 0 0
\(929\) −0.644449 0.644449i −0.0211437 0.0211437i 0.696456 0.717600i \(-0.254759\pi\)
−0.717600 + 0.696456i \(0.754759\pi\)
\(930\) 0 0
\(931\) 18.4159i 0.603556i
\(932\) 0 0
\(933\) 30.5765 + 22.6067i 1.00103 + 0.740110i
\(934\) 0 0
\(935\) −3.28630 13.1996i −0.107473 0.431672i
\(936\) 0 0
\(937\) 51.5431i 1.68384i 0.539602 + 0.841920i \(0.318575\pi\)
−0.539602 + 0.841920i \(0.681425\pi\)
\(938\) 0 0
\(939\) 15.3809 20.8033i 0.501937 0.678890i
\(940\) 0 0
\(941\) 8.62114 + 8.62114i 0.281041 + 0.281041i 0.833524 0.552483i \(-0.186320\pi\)
−0.552483 + 0.833524i \(0.686320\pi\)
\(942\) 0 0
\(943\) −22.1596 −0.721616
\(944\) 0 0
\(945\) −25.6567 + 12.2750i −0.834612 + 0.399306i
\(946\) 0 0
\(947\) 14.3045 + 14.3045i 0.464834 + 0.464834i 0.900236 0.435402i \(-0.143394\pi\)
−0.435402 + 0.900236i \(0.643394\pi\)
\(948\) 0 0
\(949\) −39.0060 39.0060i −1.26619 1.26619i
\(950\) 0 0
\(951\) −16.4421 12.1565i −0.533172 0.394200i
\(952\) 0 0
\(953\) 5.76940i 0.186889i 0.995624 + 0.0934445i \(0.0297878\pi\)
−0.995624 + 0.0934445i \(0.970212\pi\)
\(954\) 0 0
\(955\) 15.6996 15.6996i 0.508028 0.508028i
\(956\) 0 0
\(957\) −5.13543 34.2692i −0.166005 1.10777i
\(958\) 0 0
\(959\) −34.6632 + 34.6632i −1.11933 + 1.11933i
\(960\) 0 0
\(961\) 14.2817i 0.460700i
\(962\) 0 0
\(963\) 47.8000 + 25.3672i 1.54033 + 0.817447i
\(964\) 0 0
\(965\) 2.45530i 0.0790388i
\(966\) 0 0
\(967\) 36.4537 1.17227 0.586137 0.810212i \(-0.300648\pi\)
0.586137 + 0.810212i \(0.300648\pi\)
\(968\) 0 0
\(969\) 25.9897 10.7671i 0.834909 0.345888i
\(970\) 0 0
\(971\) 48.4157i 1.55373i 0.629665 + 0.776867i \(0.283192\pi\)
−0.629665 + 0.776867i \(0.716808\pi\)
\(972\) 0 0
\(973\) −72.1593 −2.31332
\(974\) 0 0
\(975\) −2.78213 18.5654i −0.0890995 0.594569i
\(976\) 0 0
\(977\) −42.5484 −1.36124 −0.680622 0.732634i \(-0.738291\pi\)
−0.680622 + 0.732634i \(0.738291\pi\)
\(978\) 0 0
\(979\) −3.29909 3.29909i −0.105439 0.105439i
\(980\) 0 0
\(981\) −19.1244 + 36.0365i −0.610594 + 1.15056i
\(982\) 0 0
\(983\) 20.8108 + 20.8108i 0.663762 + 0.663762i 0.956265 0.292503i \(-0.0944880\pi\)
−0.292503 + 0.956265i \(0.594488\pi\)
\(984\) 0 0
\(985\) 31.5039 1.00380
\(986\) 0 0
\(987\) −56.3285 41.6464i −1.79296 1.32562i
\(988\) 0 0
\(989\) −1.75195 + 1.75195i −0.0557088 + 0.0557088i
\(990\) 0 0
\(991\) 5.55017 5.55017i 0.176307 0.176307i −0.613437 0.789744i \(-0.710213\pi\)
0.789744 + 0.613437i \(0.210213\pi\)
\(992\) 0 0
\(993\) 11.0536 1.65645i 0.350776 0.0525658i
\(994\) 0 0
\(995\) 3.32084i 0.105278i
\(996\) 0 0
\(997\) −19.3200 + 19.3200i −0.611869 + 0.611869i −0.943433 0.331564i \(-0.892424\pi\)
0.331564 + 0.943433i \(0.392424\pi\)
\(998\) 0 0
\(999\) −10.6172 3.74557i −0.335913 0.118504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.bf.d.47.1 24
3.2 odd 2 inner 816.2.bf.d.47.6 yes 24
4.3 odd 2 inner 816.2.bf.d.47.12 yes 24
12.11 even 2 inner 816.2.bf.d.47.7 yes 24
17.4 even 4 inner 816.2.bf.d.191.7 yes 24
51.38 odd 4 inner 816.2.bf.d.191.12 yes 24
68.55 odd 4 inner 816.2.bf.d.191.6 yes 24
204.191 even 4 inner 816.2.bf.d.191.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
816.2.bf.d.47.1 24 1.1 even 1 trivial
816.2.bf.d.47.6 yes 24 3.2 odd 2 inner
816.2.bf.d.47.7 yes 24 12.11 even 2 inner
816.2.bf.d.47.12 yes 24 4.3 odd 2 inner
816.2.bf.d.191.1 yes 24 204.191 even 4 inner
816.2.bf.d.191.6 yes 24 68.55 odd 4 inner
816.2.bf.d.191.7 yes 24 17.4 even 4 inner
816.2.bf.d.191.12 yes 24 51.38 odd 4 inner