Properties

Label 816.2.bf.d.47.12
Level $816$
Weight $2$
Character 816.47
Analytic conductor $6.516$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,2,Mod(47,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.bf (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.12
Character \(\chi\) \(=\) 816.47
Dual form 816.2.bf.d.191.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71292 - 0.256691i) q^{3} +(-1.13275 + 1.13275i) q^{5} +(2.41609 + 2.41609i) q^{7} +(2.86822 - 0.879385i) q^{9} +(-1.45623 + 1.45623i) q^{11} +4.45336 q^{13} +(-1.64955 + 2.23108i) q^{15} +(-4.00097 + 0.996122i) q^{17} -3.93923 q^{19} +(4.75877 + 3.51839i) q^{21} +(3.68731 - 3.68731i) q^{23} +2.43376i q^{25} +(4.68731 - 2.24257i) q^{27} +(-6.86919 + 6.86919i) q^{29} +(2.89122 - 2.89122i) q^{31} +(-2.12061 + 2.86822i) q^{33} -5.47365 q^{35} +(1.53209 + 1.53209i) q^{37} +(7.62827 - 1.14314i) q^{39} +(3.00485 + 3.00485i) q^{41} -0.475129 q^{43} +(-2.25285 + 4.24509i) q^{45} +11.8368 q^{47} +4.67499i q^{49} +(-6.59766 + 2.73329i) q^{51} +8.51548 q^{53} -3.29909i q^{55} +(-6.74760 + 1.01117i) q^{57} -1.90098i q^{59} +(3.29086 - 3.29086i) q^{61} +(9.05455 + 4.80520i) q^{63} +(-5.04454 + 5.04454i) q^{65} -7.87846i q^{67} +(5.36959 - 7.26259i) q^{69} +(-6.24849 - 6.24849i) q^{71} +(-8.75877 - 8.75877i) q^{73} +(0.624726 + 4.16885i) q^{75} -7.03678 q^{77} +(-9.65441 - 9.65441i) q^{79} +(7.45336 - 5.04454i) q^{81} -7.02334i q^{83} +(3.40373 - 5.66044i) q^{85} +(-10.0031 + 13.5297i) q^{87} -2.26550i q^{89} +(10.7597 + 10.7597i) q^{91} +(4.21029 - 5.69459i) q^{93} +(4.46216 - 4.46216i) q^{95} +(9.90673 + 9.90673i) q^{97} +(-2.89621 + 5.45739i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{21} - 96 q^{33} + 24 q^{45} - 48 q^{57} - 48 q^{61} + 72 q^{69} - 120 q^{73} + 72 q^{81} + 192 q^{85} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.71292 0.256691i 0.988957 0.148201i
\(4\) 0 0
\(5\) −1.13275 + 1.13275i −0.506580 + 0.506580i −0.913475 0.406895i \(-0.866612\pi\)
0.406895 + 0.913475i \(0.366612\pi\)
\(6\) 0 0
\(7\) 2.41609 + 2.41609i 0.913197 + 0.913197i 0.996522 0.0833258i \(-0.0265542\pi\)
−0.0833258 + 0.996522i \(0.526554\pi\)
\(8\) 0 0
\(9\) 2.86822 0.879385i 0.956073 0.293128i
\(10\) 0 0
\(11\) −1.45623 + 1.45623i −0.439071 + 0.439071i −0.891699 0.452628i \(-0.850486\pi\)
0.452628 + 0.891699i \(0.350486\pi\)
\(12\) 0 0
\(13\) 4.45336 1.23514 0.617570 0.786516i \(-0.288117\pi\)
0.617570 + 0.786516i \(0.288117\pi\)
\(14\) 0 0
\(15\) −1.64955 + 2.23108i −0.425911 + 0.576062i
\(16\) 0 0
\(17\) −4.00097 + 0.996122i −0.970377 + 0.241595i
\(18\) 0 0
\(19\) −3.93923 −0.903722 −0.451861 0.892088i \(-0.649240\pi\)
−0.451861 + 0.892088i \(0.649240\pi\)
\(20\) 0 0
\(21\) 4.75877 + 3.51839i 1.03845 + 0.767776i
\(22\) 0 0
\(23\) 3.68731 3.68731i 0.768858 0.768858i −0.209048 0.977905i \(-0.567036\pi\)
0.977905 + 0.209048i \(0.0670364\pi\)
\(24\) 0 0
\(25\) 2.43376i 0.486753i
\(26\) 0 0
\(27\) 4.68731 2.24257i 0.902074 0.431582i
\(28\) 0 0
\(29\) −6.86919 + 6.86919i −1.27558 + 1.27558i −0.332458 + 0.943118i \(0.607878\pi\)
−0.943118 + 0.332458i \(0.892122\pi\)
\(30\) 0 0
\(31\) 2.89122 2.89122i 0.519279 0.519279i −0.398075 0.917353i \(-0.630321\pi\)
0.917353 + 0.398075i \(0.130321\pi\)
\(32\) 0 0
\(33\) −2.12061 + 2.86822i −0.369152 + 0.499293i
\(34\) 0 0
\(35\) −5.47365 −0.925215
\(36\) 0 0
\(37\) 1.53209 + 1.53209i 0.251874 + 0.251874i 0.821739 0.569865i \(-0.193004\pi\)
−0.569865 + 0.821739i \(0.693004\pi\)
\(38\) 0 0
\(39\) 7.62827 1.14314i 1.22150 0.183049i
\(40\) 0 0
\(41\) 3.00485 + 3.00485i 0.469278 + 0.469278i 0.901681 0.432403i \(-0.142334\pi\)
−0.432403 + 0.901681i \(0.642334\pi\)
\(42\) 0 0
\(43\) −0.475129 −0.0724566 −0.0362283 0.999344i \(-0.511534\pi\)
−0.0362283 + 0.999344i \(0.511534\pi\)
\(44\) 0 0
\(45\) −2.25285 + 4.24509i −0.335835 + 0.632821i
\(46\) 0 0
\(47\) 11.8368 1.72657 0.863286 0.504715i \(-0.168402\pi\)
0.863286 + 0.504715i \(0.168402\pi\)
\(48\) 0 0
\(49\) 4.67499i 0.667856i
\(50\) 0 0
\(51\) −6.59766 + 2.73329i −0.923857 + 0.382738i
\(52\) 0 0
\(53\) 8.51548 1.16969 0.584846 0.811145i \(-0.301155\pi\)
0.584846 + 0.811145i \(0.301155\pi\)
\(54\) 0 0
\(55\) 3.29909i 0.444849i
\(56\) 0 0
\(57\) −6.74760 + 1.01117i −0.893742 + 0.133932i
\(58\) 0 0
\(59\) 1.90098i 0.247486i −0.992314 0.123743i \(-0.960510\pi\)
0.992314 0.123743i \(-0.0394899\pi\)
\(60\) 0 0
\(61\) 3.29086 3.29086i 0.421351 0.421351i −0.464317 0.885669i \(-0.653700\pi\)
0.885669 + 0.464317i \(0.153700\pi\)
\(62\) 0 0
\(63\) 9.05455 + 4.80520i 1.14077 + 0.605399i
\(64\) 0 0
\(65\) −5.04454 + 5.04454i −0.625698 + 0.625698i
\(66\) 0 0
\(67\) 7.87846i 0.962507i −0.876581 0.481254i \(-0.840182\pi\)
0.876581 0.481254i \(-0.159818\pi\)
\(68\) 0 0
\(69\) 5.36959 7.26259i 0.646422 0.874313i
\(70\) 0 0
\(71\) −6.24849 6.24849i −0.741559 0.741559i 0.231319 0.972878i \(-0.425696\pi\)
−0.972878 + 0.231319i \(0.925696\pi\)
\(72\) 0 0
\(73\) −8.75877 8.75877i −1.02514 1.02514i −0.999676 0.0254607i \(-0.991895\pi\)
−0.0254607 0.999676i \(-0.508105\pi\)
\(74\) 0 0
\(75\) 0.624726 + 4.16885i 0.0721371 + 0.481378i
\(76\) 0 0
\(77\) −7.03678 −0.801916
\(78\) 0 0
\(79\) −9.65441 9.65441i −1.08621 1.08621i −0.995915 0.0902909i \(-0.971220\pi\)
−0.0902909 0.995915i \(-0.528780\pi\)
\(80\) 0 0
\(81\) 7.45336 5.04454i 0.828151 0.560504i
\(82\) 0 0
\(83\) 7.02334i 0.770911i −0.922726 0.385456i \(-0.874044\pi\)
0.922726 0.385456i \(-0.125956\pi\)
\(84\) 0 0
\(85\) 3.40373 5.66044i 0.369187 0.613961i
\(86\) 0 0
\(87\) −10.0031 + 13.5297i −1.07245 + 1.45053i
\(88\) 0 0
\(89\) 2.26550i 0.240142i −0.992765 0.120071i \(-0.961688\pi\)
0.992765 0.120071i \(-0.0383122\pi\)
\(90\) 0 0
\(91\) 10.7597 + 10.7597i 1.12793 + 1.12793i
\(92\) 0 0
\(93\) 4.21029 5.69459i 0.436587 0.590502i
\(94\) 0 0
\(95\) 4.46216 4.46216i 0.457808 0.457808i
\(96\) 0 0
\(97\) 9.90673 + 9.90673i 1.00588 + 1.00588i 0.999983 + 0.00589303i \(0.00187582\pi\)
0.00589303 + 0.999983i \(0.498124\pi\)
\(98\) 0 0
\(99\) −2.89621 + 5.45739i −0.291080 + 0.548488i
\(100\) 0 0
\(101\) 6.00969i 0.597987i 0.954255 + 0.298993i \(0.0966508\pi\)
−0.954255 + 0.298993i \(0.903349\pi\)
\(102\) 0 0
\(103\) 3.21129i 0.316418i −0.987406 0.158209i \(-0.949428\pi\)
0.987406 0.158209i \(-0.0505720\pi\)
\(104\) 0 0
\(105\) −9.37594 + 1.40504i −0.914998 + 0.137118i
\(106\) 0 0
\(107\) −12.7548 12.7548i −1.23305 1.23305i −0.962785 0.270269i \(-0.912887\pi\)
−0.270269 0.962785i \(-0.587113\pi\)
\(108\) 0 0
\(109\) −9.61587 + 9.61587i −0.921033 + 0.921033i −0.997103 0.0760695i \(-0.975763\pi\)
0.0760695 + 0.997103i \(0.475763\pi\)
\(110\) 0 0
\(111\) 3.01763 + 2.23108i 0.286420 + 0.211765i
\(112\) 0 0
\(113\) −0.739349 0.739349i −0.0695521 0.0695521i 0.671475 0.741027i \(-0.265661\pi\)
−0.741027 + 0.671475i \(0.765661\pi\)
\(114\) 0 0
\(115\) 8.35359i 0.778976i
\(116\) 0 0
\(117\) 12.7732 3.91622i 1.18088 0.362055i
\(118\) 0 0
\(119\) −12.0734 7.25998i −1.10677 0.665521i
\(120\) 0 0
\(121\) 6.75877i 0.614434i
\(122\) 0 0
\(123\) 5.91839 + 4.37576i 0.533643 + 0.394549i
\(124\) 0 0
\(125\) −8.42058 8.42058i −0.753160 0.753160i
\(126\) 0 0
\(127\) 9.82938 0.872216 0.436108 0.899894i \(-0.356357\pi\)
0.436108 + 0.899894i \(0.356357\pi\)
\(128\) 0 0
\(129\) −0.813861 + 0.121962i −0.0716564 + 0.0107381i
\(130\) 0 0
\(131\) −5.38019 5.38019i −0.470069 0.470069i 0.431868 0.901937i \(-0.357855\pi\)
−0.901937 + 0.431868i \(0.857855\pi\)
\(132\) 0 0
\(133\) −9.51754 9.51754i −0.825275 0.825275i
\(134\) 0 0
\(135\) −2.76928 + 7.84981i −0.238342 + 0.675604i
\(136\) 0 0
\(137\) 14.3468i 1.22573i −0.790187 0.612866i \(-0.790017\pi\)
0.790187 0.612866i \(-0.209983\pi\)
\(138\) 0 0
\(139\) −14.9331 + 14.9331i −1.26661 + 1.26661i −0.318777 + 0.947830i \(0.603272\pi\)
−0.947830 + 0.318777i \(0.896728\pi\)
\(140\) 0 0
\(141\) 20.2755 3.03840i 1.70751 0.255879i
\(142\) 0 0
\(143\) −6.48513 + 6.48513i −0.542314 + 0.542314i
\(144\) 0 0
\(145\) 15.5621i 1.29236i
\(146\) 0 0
\(147\) 1.20003 + 8.00791i 0.0989768 + 0.660481i
\(148\) 0 0
\(149\) 0.691899i 0.0566826i 0.999598 + 0.0283413i \(0.00902252\pi\)
−0.999598 + 0.0283413i \(0.990977\pi\)
\(150\) 0 0
\(151\) 7.71345 0.627712 0.313856 0.949471i \(-0.398379\pi\)
0.313856 + 0.949471i \(0.398379\pi\)
\(152\) 0 0
\(153\) −10.5997 + 6.37549i −0.856933 + 0.515428i
\(154\) 0 0
\(155\) 6.55005i 0.526113i
\(156\) 0 0
\(157\) −21.7743 −1.73777 −0.868887 0.495010i \(-0.835164\pi\)
−0.868887 + 0.495010i \(0.835164\pi\)
\(158\) 0 0
\(159\) 14.5864 2.18585i 1.15677 0.173349i
\(160\) 0 0
\(161\) 17.8178 1.40424
\(162\) 0 0
\(163\) 4.06564 + 4.06564i 0.318445 + 0.318445i 0.848170 0.529725i \(-0.177705\pi\)
−0.529725 + 0.848170i \(0.677705\pi\)
\(164\) 0 0
\(165\) −0.846848 5.65109i −0.0659270 0.439937i
\(166\) 0 0
\(167\) 7.61127 + 7.61127i 0.588977 + 0.588977i 0.937355 0.348377i \(-0.113267\pi\)
−0.348377 + 0.937355i \(0.613267\pi\)
\(168\) 0 0
\(169\) 6.83244 0.525573
\(170\) 0 0
\(171\) −11.2986 + 3.46410i −0.864024 + 0.264906i
\(172\) 0 0
\(173\) −2.61145 + 2.61145i −0.198545 + 0.198545i −0.799376 0.600831i \(-0.794836\pi\)
0.600831 + 0.799376i \(0.294836\pi\)
\(174\) 0 0
\(175\) −5.88019 + 5.88019i −0.444501 + 0.444501i
\(176\) 0 0
\(177\) −0.487964 3.25623i −0.0366776 0.244753i
\(178\) 0 0
\(179\) 1.36278i 0.101859i 0.998702 + 0.0509293i \(0.0162183\pi\)
−0.998702 + 0.0509293i \(0.983782\pi\)
\(180\) 0 0
\(181\) 6.83750 6.83750i 0.508227 0.508227i −0.405755 0.913982i \(-0.632991\pi\)
0.913982 + 0.405755i \(0.132991\pi\)
\(182\) 0 0
\(183\) 4.79226 6.48173i 0.354254 0.479143i
\(184\) 0 0
\(185\) −3.47094 −0.255189
\(186\) 0 0
\(187\) 4.37576 7.27693i 0.319987 0.532142i
\(188\) 0 0
\(189\) 16.7432 + 5.90673i 1.21789 + 0.429651i
\(190\) 0 0
\(191\) 13.8598 1.00286 0.501428 0.865199i \(-0.332808\pi\)
0.501428 + 0.865199i \(0.332808\pi\)
\(192\) 0 0
\(193\) −1.08378 + 1.08378i −0.0780121 + 0.0780121i −0.745036 0.667024i \(-0.767568\pi\)
0.667024 + 0.745036i \(0.267568\pi\)
\(194\) 0 0
\(195\) −7.34603 + 9.93580i −0.526060 + 0.711518i
\(196\) 0 0
\(197\) −13.9060 13.9060i −0.990759 0.990759i 0.00919834 0.999958i \(-0.497072\pi\)
−0.999958 + 0.00919834i \(0.997072\pi\)
\(198\) 0 0
\(199\) 1.46583 1.46583i 0.103910 0.103910i −0.653240 0.757151i \(-0.726591\pi\)
0.757151 + 0.653240i \(0.226591\pi\)
\(200\) 0 0
\(201\) −2.02233 13.4952i −0.142644 0.951879i
\(202\) 0 0
\(203\) −33.1932 −2.32970
\(204\) 0 0
\(205\) −6.80747 −0.475454
\(206\) 0 0
\(207\) 7.33345 13.8186i 0.509710 0.960458i
\(208\) 0 0
\(209\) 5.73644 5.73644i 0.396798 0.396798i
\(210\) 0 0
\(211\) −6.07386 6.07386i −0.418142 0.418142i 0.466421 0.884563i \(-0.345543\pi\)
−0.884563 + 0.466421i \(0.845543\pi\)
\(212\) 0 0
\(213\) −12.3071 9.09926i −0.843270 0.623471i
\(214\) 0 0
\(215\) 0.538202 0.538202i 0.0367051 0.0367051i
\(216\) 0 0
\(217\) 13.9709 0.948407
\(218\) 0 0
\(219\) −17.2514 12.7548i −1.16574 0.861890i
\(220\) 0 0
\(221\) −17.8178 + 4.43609i −1.19855 + 0.298404i
\(222\) 0 0
\(223\) 3.15398 0.211206 0.105603 0.994408i \(-0.466323\pi\)
0.105603 + 0.994408i \(0.466323\pi\)
\(224\) 0 0
\(225\) 2.14022 + 6.98057i 0.142681 + 0.465371i
\(226\) 0 0
\(227\) 17.2170 17.2170i 1.14273 1.14273i 0.154782 0.987949i \(-0.450533\pi\)
0.987949 0.154782i \(-0.0494674\pi\)
\(228\) 0 0
\(229\) 6.12836i 0.404973i 0.979285 + 0.202487i \(0.0649022\pi\)
−0.979285 + 0.202487i \(0.935098\pi\)
\(230\) 0 0
\(231\) −12.0535 + 1.80628i −0.793061 + 0.118845i
\(232\) 0 0
\(233\) 19.5223 19.5223i 1.27895 1.27895i 0.337688 0.941258i \(-0.390355\pi\)
0.941258 0.337688i \(-0.109645\pi\)
\(234\) 0 0
\(235\) −13.4081 + 13.4081i −0.874647 + 0.874647i
\(236\) 0 0
\(237\) −19.0155 14.0591i −1.23519 0.913235i
\(238\) 0 0
\(239\) −9.81380 −0.634802 −0.317401 0.948291i \(-0.602810\pi\)
−0.317401 + 0.948291i \(0.602810\pi\)
\(240\) 0 0
\(241\) −18.7743 18.7743i −1.20936 1.20936i −0.971236 0.238120i \(-0.923469\pi\)
−0.238120 0.971236i \(-0.576531\pi\)
\(242\) 0 0
\(243\) 11.4722 10.5541i 0.735939 0.677048i
\(244\) 0 0
\(245\) −5.29559 5.29559i −0.338323 0.338323i
\(246\) 0 0
\(247\) −17.5428 −1.11622
\(248\) 0 0
\(249\) −1.80283 12.0304i −0.114250 0.762398i
\(250\) 0 0
\(251\) −13.1996 −0.833149 −0.416574 0.909102i \(-0.636769\pi\)
−0.416574 + 0.909102i \(0.636769\pi\)
\(252\) 0 0
\(253\) 10.7392i 0.675166i
\(254\) 0 0
\(255\) 4.37735 10.5696i 0.274120 0.661895i
\(256\) 0 0
\(257\) 5.73644 0.357829 0.178915 0.983865i \(-0.442741\pi\)
0.178915 + 0.983865i \(0.442741\pi\)
\(258\) 0 0
\(259\) 7.40333i 0.460021i
\(260\) 0 0
\(261\) −13.6617 + 25.7430i −0.845636 + 1.59345i
\(262\) 0 0
\(263\) 15.2225i 0.938662i −0.883022 0.469331i \(-0.844495\pi\)
0.883022 0.469331i \(-0.155505\pi\)
\(264\) 0 0
\(265\) −9.64590 + 9.64590i −0.592543 + 0.592543i
\(266\) 0 0
\(267\) −0.581533 3.88062i −0.0355892 0.237490i
\(268\) 0 0
\(269\) −3.21989 + 3.21989i −0.196320 + 0.196320i −0.798421 0.602100i \(-0.794331\pi\)
0.602100 + 0.798421i \(0.294331\pi\)
\(270\) 0 0
\(271\) 5.36462i 0.325877i −0.986636 0.162939i \(-0.947903\pi\)
0.986636 0.162939i \(-0.0520973\pi\)
\(272\) 0 0
\(273\) 21.1925 + 15.6687i 1.28263 + 0.948311i
\(274\) 0 0
\(275\) −3.54413 3.54413i −0.213719 0.213719i
\(276\) 0 0
\(277\) 17.2618 + 17.2618i 1.03716 + 1.03716i 0.999282 + 0.0378764i \(0.0120593\pi\)
0.0378764 + 0.999282i \(0.487941\pi\)
\(278\) 0 0
\(279\) 5.75016 10.8352i 0.344253 0.648684i
\(280\) 0 0
\(281\) −9.57553 −0.571228 −0.285614 0.958345i \(-0.592198\pi\)
−0.285614 + 0.958345i \(0.592198\pi\)
\(282\) 0 0
\(283\) 1.32948 + 1.32948i 0.0790291 + 0.0790291i 0.745516 0.666487i \(-0.232203\pi\)
−0.666487 + 0.745516i \(0.732203\pi\)
\(284\) 0 0
\(285\) 6.49794 8.78873i 0.384905 0.520600i
\(286\) 0 0
\(287\) 14.5200i 0.857086i
\(288\) 0 0
\(289\) 15.0155 7.97090i 0.883264 0.468877i
\(290\) 0 0
\(291\) 19.5124 + 14.4265i 1.14384 + 0.845697i
\(292\) 0 0
\(293\) 10.7810i 0.629831i 0.949120 + 0.314916i \(0.101976\pi\)
−0.949120 + 0.314916i \(0.898024\pi\)
\(294\) 0 0
\(295\) 2.15333 + 2.15333i 0.125372 + 0.125372i
\(296\) 0 0
\(297\) −3.56012 + 10.0915i −0.206579 + 0.585569i
\(298\) 0 0
\(299\) 16.4209 16.4209i 0.949647 0.949647i
\(300\) 0 0
\(301\) −1.14796 1.14796i −0.0661671 0.0661671i
\(302\) 0 0
\(303\) 1.54263 + 10.2941i 0.0886221 + 0.591383i
\(304\) 0 0
\(305\) 7.45543i 0.426897i
\(306\) 0 0
\(307\) 23.0830i 1.31742i −0.752397 0.658710i \(-0.771103\pi\)
0.752397 0.658710i \(-0.228897\pi\)
\(308\) 0 0
\(309\) −0.824310 5.50070i −0.0468934 0.312924i
\(310\) 0 0
\(311\) 15.5241 + 15.5241i 0.880290 + 0.880290i 0.993564 0.113273i \(-0.0361336\pi\)
−0.113273 + 0.993564i \(0.536134\pi\)
\(312\) 0 0
\(313\) −10.5621 + 10.5621i −0.597006 + 0.597006i −0.939515 0.342509i \(-0.888723\pi\)
0.342509 + 0.939515i \(0.388723\pi\)
\(314\) 0 0
\(315\) −15.6996 + 4.81344i −0.884573 + 0.271207i
\(316\) 0 0
\(317\) 8.34788 + 8.34788i 0.468864 + 0.468864i 0.901546 0.432682i \(-0.142433\pi\)
−0.432682 + 0.901546i \(0.642433\pi\)
\(318\) 0 0
\(319\) 20.0063i 1.12014i
\(320\) 0 0
\(321\) −25.1221 18.5740i −1.40218 1.03670i
\(322\) 0 0
\(323\) 15.7607 3.92396i 0.876951 0.218335i
\(324\) 0 0
\(325\) 10.8384i 0.601208i
\(326\) 0 0
\(327\) −14.0029 + 18.9396i −0.774365 + 1.04736i
\(328\) 0 0
\(329\) 28.5987 + 28.5987i 1.57670 + 1.57670i
\(330\) 0 0
\(331\) 6.45307 0.354693 0.177347 0.984148i \(-0.443249\pi\)
0.177347 + 0.984148i \(0.443249\pi\)
\(332\) 0 0
\(333\) 5.74166 + 3.04707i 0.314641 + 0.166978i
\(334\) 0 0
\(335\) 8.92431 + 8.92431i 0.487587 + 0.487587i
\(336\) 0 0
\(337\) −10.1925 10.1925i −0.555223 0.555223i 0.372721 0.927944i \(-0.378425\pi\)
−0.927944 + 0.372721i \(0.878425\pi\)
\(338\) 0 0
\(339\) −1.45623 1.07666i −0.0790917 0.0584764i
\(340\) 0 0
\(341\) 8.42058i 0.456000i
\(342\) 0 0
\(343\) 5.61743 5.61743i 0.303313 0.303313i
\(344\) 0 0
\(345\) 2.14429 + 14.3091i 0.115445 + 0.770374i
\(346\) 0 0
\(347\) −21.1409 + 21.1409i −1.13490 + 1.13490i −0.145554 + 0.989350i \(0.546496\pi\)
−0.989350 + 0.145554i \(0.953504\pi\)
\(348\) 0 0
\(349\) 20.5817i 1.10171i −0.834600 0.550857i \(-0.814301\pi\)
0.834600 0.550857i \(-0.185699\pi\)
\(350\) 0 0
\(351\) 20.8743 9.98697i 1.11419 0.533065i
\(352\) 0 0
\(353\) 31.0426i 1.65223i −0.563501 0.826115i \(-0.690546\pi\)
0.563501 0.826115i \(-0.309454\pi\)
\(354\) 0 0
\(355\) 14.1559 0.751319
\(356\) 0 0
\(357\) −22.5444 9.33665i −1.19318 0.494148i
\(358\) 0 0
\(359\) 7.18771i 0.379353i −0.981847 0.189676i \(-0.939256\pi\)
0.981847 0.189676i \(-0.0607439\pi\)
\(360\) 0 0
\(361\) −3.48246 −0.183287
\(362\) 0 0
\(363\) 1.73492 + 11.5773i 0.0910595 + 0.607649i
\(364\) 0 0
\(365\) 19.8430 1.03863
\(366\) 0 0
\(367\) 19.0660 + 19.0660i 0.995235 + 0.995235i 0.999989 0.00475336i \(-0.00151305\pi\)
−0.00475336 + 0.999989i \(0.501513\pi\)
\(368\) 0 0
\(369\) 11.2610 + 5.97614i 0.586223 + 0.311105i
\(370\) 0 0
\(371\) 20.5742 + 20.5742i 1.06816 + 1.06816i
\(372\) 0 0
\(373\) 30.0993 1.55848 0.779240 0.626725i \(-0.215605\pi\)
0.779240 + 0.626725i \(0.215605\pi\)
\(374\) 0 0
\(375\) −16.5853 12.2623i −0.856462 0.633224i
\(376\) 0 0
\(377\) −30.5910 + 30.5910i −1.57552 + 1.57552i
\(378\) 0 0
\(379\) −9.15063 + 9.15063i −0.470036 + 0.470036i −0.901926 0.431890i \(-0.857847\pi\)
0.431890 + 0.901926i \(0.357847\pi\)
\(380\) 0 0
\(381\) 16.8370 2.52311i 0.862584 0.129263i
\(382\) 0 0
\(383\) 21.0475i 1.07548i 0.843112 + 0.537738i \(0.180721\pi\)
−0.843112 + 0.537738i \(0.819279\pi\)
\(384\) 0 0
\(385\) 7.97090 7.97090i 0.406235 0.406235i
\(386\) 0 0
\(387\) −1.36278 + 0.417822i −0.0692738 + 0.0212391i
\(388\) 0 0
\(389\) 17.8178 0.903396 0.451698 0.892171i \(-0.350818\pi\)
0.451698 + 0.892171i \(0.350818\pi\)
\(390\) 0 0
\(391\) −11.0798 + 18.4258i −0.560330 + 0.931834i
\(392\) 0 0
\(393\) −10.5969 7.83481i −0.534543 0.395214i
\(394\) 0 0
\(395\) 21.8720 1.10050
\(396\) 0 0
\(397\) −7.33544 + 7.33544i −0.368155 + 0.368155i −0.866804 0.498649i \(-0.833830\pi\)
0.498649 + 0.866804i \(0.333830\pi\)
\(398\) 0 0
\(399\) −18.7459 13.8598i −0.938469 0.693856i
\(400\) 0 0
\(401\) 8.28968 + 8.28968i 0.413967 + 0.413967i 0.883118 0.469151i \(-0.155440\pi\)
−0.469151 + 0.883118i \(0.655440\pi\)
\(402\) 0 0
\(403\) 12.8757 12.8757i 0.641382 0.641382i
\(404\) 0 0
\(405\) −2.72859 + 14.1570i −0.135585 + 0.703466i
\(406\) 0 0
\(407\) −4.46216 −0.221181
\(408\) 0 0
\(409\) 28.8931 1.42867 0.714336 0.699803i \(-0.246729\pi\)
0.714336 + 0.699803i \(0.246729\pi\)
\(410\) 0 0
\(411\) −3.68270 24.5750i −0.181654 1.21220i
\(412\) 0 0
\(413\) 4.59293 4.59293i 0.226004 0.226004i
\(414\) 0 0
\(415\) 7.95567 + 7.95567i 0.390529 + 0.390529i
\(416\) 0 0
\(417\) −21.7460 + 29.4124i −1.06491 + 1.44033i
\(418\) 0 0
\(419\) −0.0934578 + 0.0934578i −0.00456571 + 0.00456571i −0.709386 0.704820i \(-0.751028\pi\)
0.704820 + 0.709386i \(0.251028\pi\)
\(420\) 0 0
\(421\) −0.935822 −0.0456092 −0.0228046 0.999740i \(-0.507260\pi\)
−0.0228046 + 0.999740i \(0.507260\pi\)
\(422\) 0 0
\(423\) 33.9505 10.4091i 1.65073 0.506107i
\(424\) 0 0
\(425\) −2.42432 9.73741i −0.117597 0.472334i
\(426\) 0 0
\(427\) 15.9020 0.769553
\(428\) 0 0
\(429\) −9.44387 + 12.7732i −0.455954 + 0.616697i
\(430\) 0 0
\(431\) 10.1724 10.1724i 0.489989 0.489989i −0.418313 0.908303i \(-0.637379\pi\)
0.908303 + 0.418313i \(0.137379\pi\)
\(432\) 0 0
\(433\) 32.7101i 1.57195i 0.618261 + 0.785973i \(0.287838\pi\)
−0.618261 + 0.785973i \(0.712162\pi\)
\(434\) 0 0
\(435\) −3.99466 26.6567i −0.191529 1.27809i
\(436\) 0 0
\(437\) −14.5252 + 14.5252i −0.694833 + 0.694833i
\(438\) 0 0
\(439\) −16.8927 + 16.8927i −0.806246 + 0.806246i −0.984064 0.177817i \(-0.943096\pi\)
0.177817 + 0.984064i \(0.443096\pi\)
\(440\) 0 0
\(441\) 4.11112 + 13.4089i 0.195768 + 0.638519i
\(442\) 0 0
\(443\) 23.4443 1.11387 0.556936 0.830556i \(-0.311977\pi\)
0.556936 + 0.830556i \(0.311977\pi\)
\(444\) 0 0
\(445\) 2.56624 + 2.56624i 0.121651 + 0.121651i
\(446\) 0 0
\(447\) 0.177604 + 1.18517i 0.00840040 + 0.0560567i
\(448\) 0 0
\(449\) 28.7296 + 28.7296i 1.35584 + 1.35584i 0.878984 + 0.476852i \(0.158222\pi\)
0.476852 + 0.878984i \(0.341778\pi\)
\(450\) 0 0
\(451\) −8.75151 −0.412093
\(452\) 0 0
\(453\) 13.2126 1.97998i 0.620780 0.0930274i
\(454\) 0 0
\(455\) −24.3761 −1.14277
\(456\) 0 0
\(457\) 22.3250i 1.04432i 0.852848 + 0.522160i \(0.174874\pi\)
−0.852848 + 0.522160i \(0.825126\pi\)
\(458\) 0 0
\(459\) −16.5199 + 13.6416i −0.771083 + 0.636734i
\(460\) 0 0
\(461\) −33.5813 −1.56404 −0.782019 0.623254i \(-0.785810\pi\)
−0.782019 + 0.623254i \(0.785810\pi\)
\(462\) 0 0
\(463\) 10.9751i 0.510058i −0.966933 0.255029i \(-0.917915\pi\)
0.966933 0.255029i \(-0.0820850\pi\)
\(464\) 0 0
\(465\) 1.68134 + 11.2197i 0.0779703 + 0.520303i
\(466\) 0 0
\(467\) 38.0066i 1.75874i 0.476143 + 0.879368i \(0.342035\pi\)
−0.476143 + 0.879368i \(0.657965\pi\)
\(468\) 0 0
\(469\) 19.0351 19.0351i 0.878958 0.878958i
\(470\) 0 0
\(471\) −37.2976 + 5.58926i −1.71858 + 0.257539i
\(472\) 0 0
\(473\) 0.691899 0.691899i 0.0318136 0.0318136i
\(474\) 0 0
\(475\) 9.58715i 0.439889i
\(476\) 0 0
\(477\) 24.4243 7.48839i 1.11831 0.342870i
\(478\) 0 0
\(479\) 16.5356 + 16.5356i 0.755530 + 0.755530i 0.975505 0.219975i \(-0.0705977\pi\)
−0.219975 + 0.975505i \(0.570598\pi\)
\(480\) 0 0
\(481\) 6.82295 + 6.82295i 0.311100 + 0.311100i
\(482\) 0 0
\(483\) 30.5205 4.57366i 1.38873 0.208109i
\(484\) 0 0
\(485\) −22.4437 −1.01911
\(486\) 0 0
\(487\) 0.465178 + 0.465178i 0.0210792 + 0.0210792i 0.717568 0.696489i \(-0.245255\pi\)
−0.696489 + 0.717568i \(0.745255\pi\)
\(488\) 0 0
\(489\) 8.00774 + 5.92051i 0.362123 + 0.267735i
\(490\) 0 0
\(491\) 3.38575i 0.152797i 0.997077 + 0.0763984i \(0.0243421\pi\)
−0.997077 + 0.0763984i \(0.975658\pi\)
\(492\) 0 0
\(493\) 20.6408 34.3259i 0.929617 1.54596i
\(494\) 0 0
\(495\) −2.90117 9.46252i −0.130398 0.425308i
\(496\) 0 0
\(497\) 30.1938i 1.35438i
\(498\) 0 0
\(499\) −16.7564 16.7564i −0.750119 0.750119i 0.224383 0.974501i \(-0.427963\pi\)
−0.974501 + 0.224383i \(0.927963\pi\)
\(500\) 0 0
\(501\) 14.9913 + 11.0838i 0.669760 + 0.495187i
\(502\) 0 0
\(503\) −22.5474 + 22.5474i −1.00534 + 1.00534i −0.00535448 + 0.999986i \(0.501704\pi\)
−0.999986 + 0.00535448i \(0.998296\pi\)
\(504\) 0 0
\(505\) −6.80747 6.80747i −0.302928 0.302928i
\(506\) 0 0
\(507\) 11.7035 1.75383i 0.519769 0.0778902i
\(508\) 0 0
\(509\) 2.81200i 0.124640i 0.998056 + 0.0623199i \(0.0198499\pi\)
−0.998056 + 0.0623199i \(0.980150\pi\)
\(510\) 0 0
\(511\) 42.3240i 1.87230i
\(512\) 0 0
\(513\) −18.4644 + 8.83399i −0.815223 + 0.390030i
\(514\) 0 0
\(515\) 3.63758 + 3.63758i 0.160291 + 0.160291i
\(516\) 0 0
\(517\) −17.2371 + 17.2371i −0.758087 + 0.758087i
\(518\) 0 0
\(519\) −3.80287 + 5.14354i −0.166928 + 0.225777i
\(520\) 0 0
\(521\) −11.7606 11.7606i −0.515242 0.515242i 0.400886 0.916128i \(-0.368702\pi\)
−0.916128 + 0.400886i \(0.868702\pi\)
\(522\) 0 0
\(523\) 36.3659i 1.59017i −0.606497 0.795086i \(-0.707426\pi\)
0.606497 0.795086i \(-0.292574\pi\)
\(524\) 0 0
\(525\) −8.56293 + 11.5817i −0.373717 + 0.505468i
\(526\) 0 0
\(527\) −8.68767 + 14.4477i −0.378441 + 0.629351i
\(528\) 0 0
\(529\) 4.19253i 0.182284i
\(530\) 0 0
\(531\) −1.67169 5.45242i −0.0725452 0.236615i
\(532\) 0 0
\(533\) 13.3817 + 13.3817i 0.579624 + 0.579624i
\(534\) 0 0
\(535\) 28.8960 1.24928
\(536\) 0 0
\(537\) 0.349812 + 2.33433i 0.0150955 + 0.100734i
\(538\) 0 0
\(539\) −6.80788 6.80788i −0.293236 0.293236i
\(540\) 0 0
\(541\) −6.80840 6.80840i −0.292716 0.292716i 0.545436 0.838152i \(-0.316364\pi\)
−0.838152 + 0.545436i \(0.816364\pi\)
\(542\) 0 0
\(543\) 9.95699 13.4672i 0.427295 0.577935i
\(544\) 0 0
\(545\) 21.7847i 0.933155i
\(546\) 0 0
\(547\) −16.8840 + 16.8840i −0.721907 + 0.721907i −0.968993 0.247086i \(-0.920527\pi\)
0.247086 + 0.968993i \(0.420527\pi\)
\(548\) 0 0
\(549\) 6.54497 12.3328i 0.279333 0.526353i
\(550\) 0 0
\(551\) 27.0593 27.0593i 1.15277 1.15277i
\(552\) 0 0
\(553\) 46.6519i 1.98384i
\(554\) 0 0
\(555\) −5.94546 + 0.890960i −0.252371 + 0.0378192i
\(556\) 0 0
\(557\) 2.86250i 0.121288i 0.998159 + 0.0606439i \(0.0193154\pi\)
−0.998159 + 0.0606439i \(0.980685\pi\)
\(558\) 0 0
\(559\) −2.11592 −0.0894940
\(560\) 0 0
\(561\) 5.62741 13.5880i 0.237590 0.573688i
\(562\) 0 0
\(563\) 5.70293i 0.240350i −0.992753 0.120175i \(-0.961654\pi\)
0.992753 0.120175i \(-0.0383456\pi\)
\(564\) 0 0
\(565\) 1.67499 0.0704675
\(566\) 0 0
\(567\) 30.1961 + 5.81994i 1.26812 + 0.244414i
\(568\) 0 0
\(569\) −18.8664 −0.790919 −0.395460 0.918483i \(-0.629415\pi\)
−0.395460 + 0.918483i \(0.629415\pi\)
\(570\) 0 0
\(571\) 5.28861 + 5.28861i 0.221321 + 0.221321i 0.809055 0.587733i \(-0.199980\pi\)
−0.587733 + 0.809055i \(0.699980\pi\)
\(572\) 0 0
\(573\) 23.7407 3.55768i 0.991783 0.148624i
\(574\) 0 0
\(575\) 8.97404 + 8.97404i 0.374243 + 0.374243i
\(576\) 0 0
\(577\) −34.4005 −1.43211 −0.716057 0.698042i \(-0.754055\pi\)
−0.716057 + 0.698042i \(0.754055\pi\)
\(578\) 0 0
\(579\) −1.57823 + 2.13463i −0.0655891 + 0.0887120i
\(580\) 0 0
\(581\) 16.9690 16.9690i 0.703994 0.703994i
\(582\) 0 0
\(583\) −12.4005 + 12.4005i −0.513577 + 0.513577i
\(584\) 0 0
\(585\) −10.0328 + 18.9049i −0.414803 + 0.781623i
\(586\) 0 0
\(587\) 25.0363i 1.03336i 0.856179 + 0.516680i \(0.172832\pi\)
−0.856179 + 0.516680i \(0.827168\pi\)
\(588\) 0 0
\(589\) −11.3892 + 11.3892i −0.469283 + 0.469283i
\(590\) 0 0
\(591\) −27.3894 20.2503i −1.12665 0.832987i
\(592\) 0 0
\(593\) 26.5446 1.09005 0.545027 0.838418i \(-0.316519\pi\)
0.545027 + 0.838418i \(0.316519\pi\)
\(594\) 0 0
\(595\) 21.8999 5.45242i 0.897808 0.223527i
\(596\) 0 0
\(597\) 2.13459 2.88713i 0.0873631 0.118162i
\(598\) 0 0
\(599\) −8.92431 −0.364638 −0.182319 0.983239i \(-0.558360\pi\)
−0.182319 + 0.983239i \(0.558360\pi\)
\(600\) 0 0
\(601\) −32.1789 + 32.1789i −1.31261 + 1.31261i −0.393117 + 0.919488i \(0.628603\pi\)
−0.919488 + 0.393117i \(0.871397\pi\)
\(602\) 0 0
\(603\) −6.92820 22.5972i −0.282138 0.920227i
\(604\) 0 0
\(605\) −7.65599 7.65599i −0.311260 0.311260i
\(606\) 0 0
\(607\) 9.23659 9.23659i 0.374902 0.374902i −0.494357 0.869259i \(-0.664597\pi\)
0.869259 + 0.494357i \(0.164597\pi\)
\(608\) 0 0
\(609\) −56.8574 + 8.52039i −2.30398 + 0.345264i
\(610\) 0 0
\(611\) 52.7135 2.13256
\(612\) 0 0
\(613\) 5.51754 0.222851 0.111426 0.993773i \(-0.464458\pi\)
0.111426 + 0.993773i \(0.464458\pi\)
\(614\) 0 0
\(615\) −11.6607 + 1.74742i −0.470204 + 0.0704627i
\(616\) 0 0
\(617\) −5.41574 + 5.41574i −0.218029 + 0.218029i −0.807668 0.589638i \(-0.799270\pi\)
0.589638 + 0.807668i \(0.299270\pi\)
\(618\) 0 0
\(619\) −19.5124 19.5124i −0.784271 0.784271i 0.196277 0.980548i \(-0.437115\pi\)
−0.980548 + 0.196277i \(0.937115\pi\)
\(620\) 0 0
\(621\) 9.01454 25.5526i 0.361741 1.02539i
\(622\) 0 0
\(623\) 5.47365 5.47365i 0.219297 0.219297i
\(624\) 0 0
\(625\) 6.90798 0.276319
\(626\) 0 0
\(627\) 8.35359 11.2986i 0.333610 0.451222i
\(628\) 0 0
\(629\) −7.65599 4.60369i −0.305264 0.183561i
\(630\) 0 0
\(631\) −33.3876 −1.32914 −0.664569 0.747227i \(-0.731385\pi\)
−0.664569 + 0.747227i \(0.731385\pi\)
\(632\) 0 0
\(633\) −11.9632 8.84495i −0.475493 0.351555i
\(634\) 0 0
\(635\) −11.1342 + 11.1342i −0.441848 + 0.441848i
\(636\) 0 0
\(637\) 20.8194i 0.824896i
\(638\) 0 0
\(639\) −23.4169 12.4272i −0.926357 0.491613i
\(640\) 0 0
\(641\) 26.2858 26.2858i 1.03823 1.03823i 0.0389867 0.999240i \(-0.487587\pi\)
0.999240 0.0389867i \(-0.0124130\pi\)
\(642\) 0 0
\(643\) −3.75552 + 3.75552i −0.148103 + 0.148103i −0.777270 0.629167i \(-0.783396\pi\)
0.629167 + 0.777270i \(0.283396\pi\)
\(644\) 0 0
\(645\) 0.783748 1.06005i 0.0308600 0.0417395i
\(646\) 0 0
\(647\) −40.2589 −1.58274 −0.791370 0.611338i \(-0.790632\pi\)
−0.791370 + 0.611338i \(0.790632\pi\)
\(648\) 0 0
\(649\) 2.76827 + 2.76827i 0.108664 + 0.108664i
\(650\) 0 0
\(651\) 23.9311 3.58621i 0.937934 0.140555i
\(652\) 0 0
\(653\) 15.7528 + 15.7528i 0.616455 + 0.616455i 0.944620 0.328165i \(-0.106430\pi\)
−0.328165 + 0.944620i \(0.606430\pi\)
\(654\) 0 0
\(655\) 12.1888 0.476256
\(656\) 0 0
\(657\) −32.8244 17.4197i −1.28060 0.679609i
\(658\) 0 0
\(659\) 11.9588 0.465848 0.232924 0.972495i \(-0.425171\pi\)
0.232924 + 0.972495i \(0.425171\pi\)
\(660\) 0 0
\(661\) 29.9127i 1.16347i 0.813378 + 0.581735i \(0.197626\pi\)
−0.813378 + 0.581735i \(0.802374\pi\)
\(662\) 0 0
\(663\) −29.3818 + 12.1724i −1.14109 + 0.472735i
\(664\) 0 0
\(665\) 21.5620 0.836137
\(666\) 0 0
\(667\) 50.6577i 1.96147i
\(668\) 0 0
\(669\) 5.40253 0.809600i 0.208874 0.0313009i
\(670\) 0 0
\(671\) 9.58452i 0.370006i
\(672\) 0 0
\(673\) −7.21213 + 7.21213i −0.278007 + 0.278007i −0.832313 0.554306i \(-0.812984\pi\)
0.554306 + 0.832313i \(0.312984\pi\)
\(674\) 0 0
\(675\) 5.45788 + 11.4078i 0.210074 + 0.439087i
\(676\) 0 0
\(677\) −8.86143 + 8.86143i −0.340572 + 0.340572i −0.856583 0.516010i \(-0.827417\pi\)
0.516010 + 0.856583i \(0.327417\pi\)
\(678\) 0 0
\(679\) 47.8711i 1.83712i
\(680\) 0 0
\(681\) 25.0719 33.9108i 0.960758 1.29946i
\(682\) 0 0
\(683\) 20.1294 + 20.1294i 0.770231 + 0.770231i 0.978147 0.207915i \(-0.0666679\pi\)
−0.207915 + 0.978147i \(0.566668\pi\)
\(684\) 0 0
\(685\) 16.2513 + 16.2513i 0.620932 + 0.620932i
\(686\) 0 0
\(687\) 1.57310 + 10.4974i 0.0600173 + 0.400501i
\(688\) 0 0
\(689\) 37.9225 1.44473
\(690\) 0 0
\(691\) 9.20794 + 9.20794i 0.350286 + 0.350286i 0.860216 0.509930i \(-0.170329\pi\)
−0.509930 + 0.860216i \(0.670329\pi\)
\(692\) 0 0
\(693\) −20.1830 + 6.18804i −0.766690 + 0.235064i
\(694\) 0 0
\(695\) 33.8308i 1.28328i
\(696\) 0 0
\(697\) −15.0155 9.02910i −0.568752 0.342001i
\(698\) 0 0
\(699\) 28.4290 38.4513i 1.07528 1.45436i
\(700\) 0 0
\(701\) 47.7498i 1.80349i 0.432273 + 0.901743i \(0.357712\pi\)
−0.432273 + 0.901743i \(0.642288\pi\)
\(702\) 0 0
\(703\) −6.03525 6.03525i −0.227624 0.227624i
\(704\) 0 0
\(705\) −19.5253 + 26.4088i −0.735366 + 0.994612i
\(706\) 0 0
\(707\) −14.5200 + 14.5200i −0.546079 + 0.546079i
\(708\) 0 0
\(709\) −16.6064 16.6064i −0.623665 0.623665i 0.322801 0.946467i \(-0.395375\pi\)
−0.946467 + 0.322801i \(0.895375\pi\)
\(710\) 0 0
\(711\) −36.1809 19.2010i −1.35689 0.720095i
\(712\) 0 0
\(713\) 21.3217i 0.798503i
\(714\) 0 0
\(715\) 14.6921i 0.549452i
\(716\) 0 0
\(717\) −16.8103 + 2.51912i −0.627792 + 0.0940781i
\(718\) 0 0
\(719\) −26.4714 26.4714i −0.987216 0.987216i 0.0127033 0.999919i \(-0.495956\pi\)
−0.999919 + 0.0127033i \(0.995956\pi\)
\(720\) 0 0
\(721\) 7.75877 7.75877i 0.288952 0.288952i
\(722\) 0 0
\(723\) −36.9781 27.3397i −1.37523 1.01677i
\(724\) 0 0
\(725\) −16.7180 16.7180i −0.620890 0.620890i
\(726\) 0 0
\(727\) 25.5290i 0.946818i 0.880843 + 0.473409i \(0.156977\pi\)
−0.880843 + 0.473409i \(0.843023\pi\)
\(728\) 0 0
\(729\) 16.9418 21.0232i 0.627474 0.778638i
\(730\) 0 0
\(731\) 1.90098 0.473287i 0.0703102 0.0175051i
\(732\) 0 0
\(733\) 17.2627i 0.637612i −0.947820 0.318806i \(-0.896718\pi\)
0.947820 0.318806i \(-0.103282\pi\)
\(734\) 0 0
\(735\) −10.4303 7.71161i −0.384726 0.284447i
\(736\) 0 0
\(737\) 11.4729 + 11.4729i 0.422609 + 0.422609i
\(738\) 0 0
\(739\) 53.8315 1.98023 0.990113 0.140274i \(-0.0447982\pi\)
0.990113 + 0.140274i \(0.0447982\pi\)
\(740\) 0 0
\(741\) −30.0495 + 4.50309i −1.10390 + 0.165425i
\(742\) 0 0
\(743\) −15.6461 15.6461i −0.573999 0.573999i 0.359244 0.933244i \(-0.383035\pi\)
−0.933244 + 0.359244i \(0.883035\pi\)
\(744\) 0 0
\(745\) −0.783748 0.783748i −0.0287143 0.0287143i
\(746\) 0 0
\(747\) −6.17622 20.1445i −0.225976 0.737048i
\(748\) 0 0
\(749\) 61.6336i 2.25204i
\(750\) 0 0
\(751\) −22.4224 + 22.4224i −0.818204 + 0.818204i −0.985848 0.167644i \(-0.946384\pi\)
0.167644 + 0.985848i \(0.446384\pi\)
\(752\) 0 0
\(753\) −22.6098 + 3.38821i −0.823948 + 0.123473i
\(754\) 0 0
\(755\) −8.73740 + 8.73740i −0.317986 + 0.317986i
\(756\) 0 0
\(757\) 44.2877i 1.60966i −0.593503 0.804831i \(-0.702256\pi\)
0.593503 0.804831i \(-0.297744\pi\)
\(758\) 0 0
\(759\) 2.75665 + 18.3954i 0.100060 + 0.667710i
\(760\) 0 0
\(761\) 42.8507i 1.55334i −0.629911 0.776668i \(-0.716909\pi\)
0.629911 0.776668i \(-0.283091\pi\)
\(762\) 0 0
\(763\) −46.4656 −1.68217
\(764\) 0 0
\(765\) 4.78494 19.2286i 0.173000 0.695211i
\(766\) 0 0
\(767\) 8.46574i 0.305680i
\(768\) 0 0
\(769\) −14.7939 −0.533480 −0.266740 0.963769i \(-0.585946\pi\)
−0.266740 + 0.963769i \(0.585946\pi\)
\(770\) 0 0
\(771\) 9.82608 1.47249i 0.353878 0.0530306i
\(772\) 0 0
\(773\) 7.24809 0.260696 0.130348 0.991468i \(-0.458391\pi\)
0.130348 + 0.991468i \(0.458391\pi\)
\(774\) 0 0
\(775\) 7.03654 + 7.03654i 0.252760 + 0.252760i
\(776\) 0 0
\(777\) 1.90037 + 12.6813i 0.0681754 + 0.454941i
\(778\) 0 0
\(779\) −11.8368 11.8368i −0.424097 0.424097i
\(780\) 0 0
\(781\) 18.1985 0.651194
\(782\) 0 0
\(783\) −16.7934 + 47.6026i −0.600147 + 1.70118i
\(784\) 0 0
\(785\) 24.6647 24.6647i 0.880323 0.880323i
\(786\) 0 0
\(787\) 25.6928 25.6928i 0.915849 0.915849i −0.0808748 0.996724i \(-0.525771\pi\)
0.996724 + 0.0808748i \(0.0257714\pi\)
\(788\) 0 0
\(789\) −3.90749 26.0750i −0.139110 0.928296i
\(790\) 0 0
\(791\) 3.57267i 0.127029i
\(792\) 0 0
\(793\) 14.6554 14.6554i 0.520428 0.520428i
\(794\) 0 0
\(795\) −14.0467 + 18.9987i −0.498184 + 0.673815i
\(796\) 0 0
\(797\) −22.3992 −0.793422 −0.396711 0.917944i \(-0.629849\pi\)
−0.396711 + 0.917944i \(0.629849\pi\)
\(798\) 0 0
\(799\) −47.3586 + 11.7909i −1.67543 + 0.417131i
\(800\) 0 0
\(801\) −1.99224 6.49794i −0.0703925 0.229593i
\(802\) 0 0
\(803\) 25.5096 0.900215
\(804\) 0 0
\(805\) −20.1830 + 20.1830i −0.711359 + 0.711359i
\(806\) 0 0
\(807\) −4.68891 + 6.34195i −0.165058 + 0.223247i
\(808\) 0 0
\(809\) 24.0533 + 24.0533i 0.845667 + 0.845667i 0.989589 0.143922i \(-0.0459713\pi\)
−0.143922 + 0.989589i \(0.545971\pi\)
\(810\) 0 0
\(811\) −0.146308 + 0.146308i −0.00513758 + 0.00513758i −0.709671 0.704533i \(-0.751156\pi\)
0.704533 + 0.709671i \(0.251156\pi\)
\(812\) 0 0
\(813\) −1.37705 9.18919i −0.0482953 0.322279i
\(814\) 0 0
\(815\) −9.21069 −0.322636
\(816\) 0 0
\(817\) 1.87164 0.0654806
\(818\) 0 0
\(819\) 40.3232 + 21.3993i 1.40901 + 0.747753i
\(820\) 0 0
\(821\) 24.0785 24.0785i 0.840346 0.840346i −0.148558 0.988904i \(-0.547463\pi\)
0.988904 + 0.148558i \(0.0474632\pi\)
\(822\) 0 0
\(823\) 29.8830 + 29.8830i 1.04166 + 1.04166i 0.999094 + 0.0425623i \(0.0135521\pi\)
0.0425623 + 0.999094i \(0.486448\pi\)
\(824\) 0 0
\(825\) −6.98057 5.16107i −0.243032 0.179686i
\(826\) 0 0
\(827\) −35.3520 + 35.3520i −1.22931 + 1.22931i −0.265083 + 0.964226i \(0.585399\pi\)
−0.964226 + 0.265083i \(0.914601\pi\)
\(828\) 0 0
\(829\) 31.4783 1.09329 0.546644 0.837365i \(-0.315905\pi\)
0.546644 + 0.837365i \(0.315905\pi\)
\(830\) 0 0
\(831\) 33.9990 + 25.1372i 1.17941 + 0.871998i
\(832\) 0 0
\(833\) −4.65686 18.7045i −0.161351 0.648072i
\(834\) 0 0
\(835\) −17.2433 −0.596729
\(836\) 0 0
\(837\) 7.06830 20.0358i 0.244316 0.692539i
\(838\) 0 0
\(839\) −21.6579 + 21.6579i −0.747715 + 0.747715i −0.974050 0.226335i \(-0.927326\pi\)
0.226335 + 0.974050i \(0.427326\pi\)
\(840\) 0 0
\(841\) 65.3715i 2.25419i
\(842\) 0 0
\(843\) −16.4022 + 2.45796i −0.564920 + 0.0846565i
\(844\) 0 0
\(845\) −7.73944 + 7.73944i −0.266245 + 0.266245i
\(846\) 0 0
\(847\) −16.3298 + 16.3298i −0.561099 + 0.561099i
\(848\) 0 0
\(849\) 2.61856 + 1.93603i 0.0898686 + 0.0664442i
\(850\) 0 0
\(851\) 11.2986 0.387310
\(852\) 0 0
\(853\) −3.20708 3.20708i −0.109808 0.109808i 0.650068 0.759876i \(-0.274740\pi\)
−0.759876 + 0.650068i \(0.774740\pi\)
\(854\) 0 0
\(855\) 8.87449 16.7224i 0.303501 0.571894i
\(856\) 0 0
\(857\) 11.0687 + 11.0687i 0.378100 + 0.378100i 0.870416 0.492316i \(-0.163850\pi\)
−0.492316 + 0.870416i \(0.663850\pi\)
\(858\) 0 0
\(859\) 16.6231 0.567172 0.283586 0.958947i \(-0.408476\pi\)
0.283586 + 0.958947i \(0.408476\pi\)
\(860\) 0 0
\(861\) 3.72715 + 24.8716i 0.127021 + 0.847622i
\(862\) 0 0
\(863\) −5.12236 −0.174367 −0.0871836 0.996192i \(-0.527787\pi\)
−0.0871836 + 0.996192i \(0.527787\pi\)
\(864\) 0 0
\(865\) 5.91622i 0.201158i
\(866\) 0 0
\(867\) 23.6743 17.5079i 0.804022 0.594599i
\(868\) 0 0
\(869\) 28.1182 0.953843
\(870\) 0 0
\(871\) 35.0857i 1.18883i
\(872\) 0 0
\(873\) 37.1265 + 19.7028i 1.25654 + 0.666840i
\(874\) 0 0
\(875\) 40.6898i 1.37557i
\(876\) 0 0
\(877\) 7.64496 7.64496i 0.258152 0.258152i −0.566150 0.824302i \(-0.691568\pi\)
0.824302 + 0.566150i \(0.191568\pi\)
\(878\) 0 0
\(879\) 2.76738 + 18.4670i 0.0933415 + 0.622876i
\(880\) 0 0
\(881\) −28.5513 + 28.5513i −0.961917 + 0.961917i −0.999301 0.0373836i \(-0.988098\pi\)
0.0373836 + 0.999301i \(0.488098\pi\)
\(882\) 0 0
\(883\) 2.01513i 0.0678146i −0.999425 0.0339073i \(-0.989205\pi\)
0.999425 0.0339073i \(-0.0107951\pi\)
\(884\) 0 0
\(885\) 4.24123 + 3.13575i 0.142567 + 0.105407i
\(886\) 0 0
\(887\) 15.2948 + 15.2948i 0.513549 + 0.513549i 0.915612 0.402063i \(-0.131707\pi\)
−0.402063 + 0.915612i \(0.631707\pi\)
\(888\) 0 0
\(889\) 23.7487 + 23.7487i 0.796505 + 0.796505i
\(890\) 0 0
\(891\) −3.50781 + 18.1999i −0.117516 + 0.609718i
\(892\) 0 0
\(893\) −46.6278 −1.56034
\(894\) 0 0
\(895\) −1.54368 1.54368i −0.0515996 0.0515996i
\(896\) 0 0
\(897\) 23.9127 32.3429i 0.798422 1.07990i
\(898\) 0 0
\(899\) 39.7207i 1.32476i
\(900\) 0 0
\(901\) −34.0702 + 8.48246i −1.13504 + 0.282592i
\(902\) 0 0
\(903\) −2.26103 1.67169i −0.0752424 0.0556304i
\(904\) 0 0
\(905\) 15.4903i 0.514916i
\(906\) 0 0
\(907\) 38.7335 + 38.7335i 1.28612 + 1.28612i 0.937122 + 0.349002i \(0.113479\pi\)
0.349002 + 0.937122i \(0.386521\pi\)
\(908\) 0 0
\(909\) 5.28483 + 17.2371i 0.175287 + 0.571719i
\(910\) 0 0
\(911\) 24.3835 24.3835i 0.807861 0.807861i −0.176449 0.984310i \(-0.556461\pi\)
0.984310 + 0.176449i \(0.0564610\pi\)
\(912\) 0 0
\(913\) 10.2276 + 10.2276i 0.338485 + 0.338485i
\(914\) 0 0
\(915\) 1.91374 + 12.7706i 0.0632664 + 0.422183i
\(916\) 0 0
\(917\) 25.9980i 0.858531i
\(918\) 0 0
\(919\) 27.3149i 0.901035i −0.892768 0.450518i \(-0.851239\pi\)
0.892768 0.450518i \(-0.148761\pi\)
\(920\) 0 0
\(921\) −5.92522 39.5395i −0.195242 1.30287i
\(922\) 0 0
\(923\) −27.8268 27.8268i −0.915930 0.915930i
\(924\) 0 0
\(925\) −3.72874 + 3.72874i −0.122600 + 0.122600i
\(926\) 0 0
\(927\) −2.82396 9.21069i −0.0927511 0.302519i
\(928\) 0 0
\(929\) −0.644449 0.644449i −0.0211437 0.0211437i 0.696456 0.717600i \(-0.254759\pi\)
−0.717600 + 0.696456i \(0.754759\pi\)
\(930\) 0 0
\(931\) 18.4159i 0.603556i
\(932\) 0 0
\(933\) 30.5765 + 22.6067i 1.00103 + 0.740110i
\(934\) 0 0
\(935\) 3.28630 + 13.1996i 0.107473 + 0.431672i
\(936\) 0 0
\(937\) 51.5431i 1.68384i 0.539602 + 0.841920i \(0.318575\pi\)
−0.539602 + 0.841920i \(0.681425\pi\)
\(938\) 0 0
\(939\) −15.3809 + 20.8033i −0.501937 + 0.678890i
\(940\) 0 0
\(941\) 8.62114 + 8.62114i 0.281041 + 0.281041i 0.833524 0.552483i \(-0.186320\pi\)
−0.552483 + 0.833524i \(0.686320\pi\)
\(942\) 0 0
\(943\) 22.1596 0.721616
\(944\) 0 0
\(945\) −25.6567 + 12.2750i −0.834612 + 0.399306i
\(946\) 0 0
\(947\) −14.3045 14.3045i −0.464834 0.464834i 0.435402 0.900236i \(-0.356606\pi\)
−0.900236 + 0.435402i \(0.856606\pi\)
\(948\) 0 0
\(949\) −39.0060 39.0060i −1.26619 1.26619i
\(950\) 0 0
\(951\) 16.4421 + 12.1565i 0.533172 + 0.394200i
\(952\) 0 0
\(953\) 5.76940i 0.186889i 0.995624 + 0.0934445i \(0.0297878\pi\)
−0.995624 + 0.0934445i \(0.970212\pi\)
\(954\) 0 0
\(955\) −15.6996 + 15.6996i −0.508028 + 0.508028i
\(956\) 0 0
\(957\) −5.13543 34.2692i −0.166005 1.10777i
\(958\) 0 0
\(959\) 34.6632 34.6632i 1.11933 1.11933i
\(960\) 0 0
\(961\) 14.2817i 0.460700i
\(962\) 0 0
\(963\) −47.8000 25.3672i −1.54033 0.817447i
\(964\) 0 0
\(965\) 2.45530i 0.0790388i
\(966\) 0 0
\(967\) −36.4537 −1.17227 −0.586137 0.810212i \(-0.699352\pi\)
−0.586137 + 0.810212i \(0.699352\pi\)
\(968\) 0 0
\(969\) 25.9897 10.7671i 0.834909 0.345888i
\(970\) 0 0
\(971\) 48.4157i 1.55373i −0.629665 0.776867i \(-0.716808\pi\)
0.629665 0.776867i \(-0.283192\pi\)
\(972\) 0 0
\(973\) −72.1593 −2.31332
\(974\) 0 0
\(975\) 2.78213 + 18.5654i 0.0890995 + 0.594569i
\(976\) 0 0
\(977\) −42.5484 −1.36124 −0.680622 0.732634i \(-0.738291\pi\)
−0.680622 + 0.732634i \(0.738291\pi\)
\(978\) 0 0
\(979\) 3.29909 + 3.29909i 0.105439 + 0.105439i
\(980\) 0 0
\(981\) −19.1244 + 36.0365i −0.610594 + 1.15056i
\(982\) 0 0
\(983\) −20.8108 20.8108i −0.663762 0.663762i 0.292503 0.956265i \(-0.405512\pi\)
−0.956265 + 0.292503i \(0.905512\pi\)
\(984\) 0 0
\(985\) 31.5039 1.00380
\(986\) 0 0
\(987\) 56.3285 + 41.6464i 1.79296 + 1.32562i
\(988\) 0 0
\(989\) −1.75195 + 1.75195i −0.0557088 + 0.0557088i
\(990\) 0 0
\(991\) −5.55017 + 5.55017i −0.176307 + 0.176307i −0.789744 0.613437i \(-0.789787\pi\)
0.613437 + 0.789744i \(0.289787\pi\)
\(992\) 0 0
\(993\) 11.0536 1.65645i 0.350776 0.0525658i
\(994\) 0 0
\(995\) 3.32084i 0.105278i
\(996\) 0 0
\(997\) −19.3200 + 19.3200i −0.611869 + 0.611869i −0.943433 0.331564i \(-0.892424\pi\)
0.331564 + 0.943433i \(0.392424\pi\)
\(998\) 0 0
\(999\) 10.6172 + 3.74557i 0.335913 + 0.118504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.bf.d.47.12 yes 24
3.2 odd 2 inner 816.2.bf.d.47.7 yes 24
4.3 odd 2 inner 816.2.bf.d.47.1 24
12.11 even 2 inner 816.2.bf.d.47.6 yes 24
17.4 even 4 inner 816.2.bf.d.191.6 yes 24
51.38 odd 4 inner 816.2.bf.d.191.1 yes 24
68.55 odd 4 inner 816.2.bf.d.191.7 yes 24
204.191 even 4 inner 816.2.bf.d.191.12 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
816.2.bf.d.47.1 24 4.3 odd 2 inner
816.2.bf.d.47.6 yes 24 12.11 even 2 inner
816.2.bf.d.47.7 yes 24 3.2 odd 2 inner
816.2.bf.d.47.12 yes 24 1.1 even 1 trivial
816.2.bf.d.191.1 yes 24 51.38 odd 4 inner
816.2.bf.d.191.6 yes 24 17.4 even 4 inner
816.2.bf.d.191.7 yes 24 68.55 odd 4 inner
816.2.bf.d.191.12 yes 24 204.191 even 4 inner