Properties

Label 816.2.cj.c.641.4
Level $816$
Weight $2$
Character 816.641
Analytic conductor $6.516$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,2,Mod(65,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 0, 8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.cj (of order \(16\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 641.4
Character \(\chi\) \(=\) 816.641
Dual form 816.2.cj.c.401.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69899 - 0.336782i) q^{3} +(-0.595296 + 2.99276i) q^{5} +(2.11533 - 0.420765i) q^{7} +(2.77316 - 1.14438i) q^{9} +(-1.37013 - 0.915491i) q^{11} +(3.12551 + 3.12551i) q^{13} +(-0.00349923 + 5.28516i) q^{15} +(-3.95657 + 1.15998i) q^{17} +(0.330416 + 0.797694i) q^{19} +(3.45222 - 1.42728i) q^{21} +(0.425893 - 0.637394i) q^{23} +(-3.98282 - 1.64974i) q^{25} +(4.32617 - 2.87824i) q^{27} +(7.83789 + 1.55905i) q^{29} +(-1.60475 - 2.40167i) q^{31} +(-2.63616 - 1.09398i) q^{33} +6.58114i q^{35} +(-1.98027 + 1.32318i) q^{37} +(6.36284 + 4.25761i) q^{39} +(-0.600791 - 3.02038i) q^{41} +(-4.38037 + 10.5751i) q^{43} +(1.77400 + 8.98063i) q^{45} +(-2.21238 + 2.21238i) q^{47} +(-2.16958 + 0.898671i) q^{49} +(-6.33153 + 3.30330i) q^{51} +(5.88369 - 2.43710i) q^{53} +(3.55548 - 3.55548i) q^{55} +(0.830022 + 1.24400i) q^{57} +(2.33146 - 5.62864i) q^{59} +(-1.14061 - 5.73423i) q^{61} +(5.38462 - 3.58759i) q^{63} +(-11.2145 + 7.49329i) q^{65} -7.19481i q^{67} +(0.508927 - 1.22636i) q^{69} +(1.20808 + 1.80802i) q^{71} +(12.3377 + 2.45412i) q^{73} +(-7.32238 - 1.46155i) q^{75} +(-3.28348 - 1.36006i) q^{77} +(3.31013 - 4.95397i) q^{79} +(6.38079 - 6.34708i) q^{81} +(-4.96993 - 11.9985i) q^{83} +(-1.11620 - 12.5316i) q^{85} +(13.8416 + 0.00916431i) q^{87} +(-3.42023 - 3.42023i) q^{89} +(7.92660 + 5.29638i) q^{91} +(-3.53529 - 3.53997i) q^{93} +(-2.58400 + 0.513989i) q^{95} +(-0.692072 + 3.47928i) q^{97} +(-4.84725 - 0.970853i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} - 16 q^{15} + 16 q^{19} + 16 q^{21} + 16 q^{25} + 8 q^{27} - 16 q^{31} + 16 q^{37} + 24 q^{39} - 16 q^{43} - 40 q^{45} - 48 q^{49} + 40 q^{51} + 48 q^{55}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(e\left(\frac{13}{16}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.69899 0.336782i 0.980914 0.194441i
\(4\) 0 0
\(5\) −0.595296 + 2.99276i −0.266225 + 1.33840i 0.583902 + 0.811824i \(0.301525\pi\)
−0.850127 + 0.526578i \(0.823475\pi\)
\(6\) 0 0
\(7\) 2.11533 0.420765i 0.799519 0.159034i 0.221610 0.975135i \(-0.428869\pi\)
0.577909 + 0.816101i \(0.303869\pi\)
\(8\) 0 0
\(9\) 2.77316 1.14438i 0.924385 0.381460i
\(10\) 0 0
\(11\) −1.37013 0.915491i −0.413110 0.276031i 0.331599 0.943420i \(-0.392412\pi\)
−0.744709 + 0.667389i \(0.767412\pi\)
\(12\) 0 0
\(13\) 3.12551 + 3.12551i 0.866861 + 0.866861i 0.992124 0.125262i \(-0.0399772\pi\)
−0.125262 + 0.992124i \(0.539977\pi\)
\(14\) 0 0
\(15\) −0.00349923 + 5.28516i −0.000903497 + 1.36462i
\(16\) 0 0
\(17\) −3.95657 + 1.15998i −0.959609 + 0.281336i
\(18\) 0 0
\(19\) 0.330416 + 0.797694i 0.0758025 + 0.183004i 0.957238 0.289300i \(-0.0934226\pi\)
−0.881436 + 0.472304i \(0.843423\pi\)
\(20\) 0 0
\(21\) 3.45222 1.42728i 0.753337 0.311458i
\(22\) 0 0
\(23\) 0.425893 0.637394i 0.0888049 0.132906i −0.784407 0.620246i \(-0.787033\pi\)
0.873212 + 0.487340i \(0.162033\pi\)
\(24\) 0 0
\(25\) −3.98282 1.64974i −0.796563 0.329947i
\(26\) 0 0
\(27\) 4.32617 2.87824i 0.832571 0.553918i
\(28\) 0 0
\(29\) 7.83789 + 1.55905i 1.45546 + 0.289509i 0.858521 0.512778i \(-0.171384\pi\)
0.596938 + 0.802287i \(0.296384\pi\)
\(30\) 0 0
\(31\) −1.60475 2.40167i −0.288221 0.431353i 0.658900 0.752231i \(-0.271022\pi\)
−0.947121 + 0.320878i \(0.896022\pi\)
\(32\) 0 0
\(33\) −2.63616 1.09398i −0.458897 0.190437i
\(34\) 0 0
\(35\) 6.58114i 1.11242i
\(36\) 0 0
\(37\) −1.98027 + 1.32318i −0.325555 + 0.217529i −0.707597 0.706616i \(-0.750221\pi\)
0.382042 + 0.924145i \(0.375221\pi\)
\(38\) 0 0
\(39\) 6.36284 + 4.25761i 1.01887 + 0.681763i
\(40\) 0 0
\(41\) −0.600791 3.02038i −0.0938278 0.471704i −0.998919 0.0464865i \(-0.985198\pi\)
0.905091 0.425218i \(-0.139802\pi\)
\(42\) 0 0
\(43\) −4.38037 + 10.5751i −0.668000 + 1.61269i 0.116952 + 0.993138i \(0.462688\pi\)
−0.784952 + 0.619557i \(0.787312\pi\)
\(44\) 0 0
\(45\) 1.77400 + 8.98063i 0.264452 + 1.33875i
\(46\) 0 0
\(47\) −2.21238 + 2.21238i −0.322708 + 0.322708i −0.849805 0.527097i \(-0.823281\pi\)
0.527097 + 0.849805i \(0.323281\pi\)
\(48\) 0 0
\(49\) −2.16958 + 0.898671i −0.309940 + 0.128382i
\(50\) 0 0
\(51\) −6.33153 + 3.30330i −0.886591 + 0.462554i
\(52\) 0 0
\(53\) 5.88369 2.43710i 0.808187 0.334762i 0.0599567 0.998201i \(-0.480904\pi\)
0.748230 + 0.663439i \(0.230904\pi\)
\(54\) 0 0
\(55\) 3.55548 3.55548i 0.479420 0.479420i
\(56\) 0 0
\(57\) 0.830022 + 1.24400i 0.109939 + 0.164772i
\(58\) 0 0
\(59\) 2.33146 5.62864i 0.303530 0.732786i −0.696356 0.717696i \(-0.745197\pi\)
0.999886 0.0150898i \(-0.00480343\pi\)
\(60\) 0 0
\(61\) −1.14061 5.73423i −0.146040 0.734193i −0.982514 0.186187i \(-0.940387\pi\)
0.836474 0.548006i \(-0.184613\pi\)
\(62\) 0 0
\(63\) 5.38462 3.58759i 0.678399 0.451993i
\(64\) 0 0
\(65\) −11.2145 + 7.49329i −1.39099 + 0.929429i
\(66\) 0 0
\(67\) 7.19481i 0.878985i −0.898246 0.439493i \(-0.855158\pi\)
0.898246 0.439493i \(-0.144842\pi\)
\(68\) 0 0
\(69\) 0.508927 1.22636i 0.0612676 0.147637i
\(70\) 0 0
\(71\) 1.20808 + 1.80802i 0.143373 + 0.214573i 0.896205 0.443639i \(-0.146313\pi\)
−0.752832 + 0.658212i \(0.771313\pi\)
\(72\) 0 0
\(73\) 12.3377 + 2.45412i 1.44402 + 0.287233i 0.854049 0.520193i \(-0.174140\pi\)
0.589969 + 0.807426i \(0.299140\pi\)
\(74\) 0 0
\(75\) −7.32238 1.46155i −0.845516 0.168766i
\(76\) 0 0
\(77\) −3.28348 1.36006i −0.374187 0.154994i
\(78\) 0 0
\(79\) 3.31013 4.95397i 0.372419 0.557365i −0.597166 0.802117i \(-0.703707\pi\)
0.969586 + 0.244753i \(0.0787068\pi\)
\(80\) 0 0
\(81\) 6.38079 6.34708i 0.708977 0.705232i
\(82\) 0 0
\(83\) −4.96993 11.9985i −0.545521 1.31700i −0.920779 0.390084i \(-0.872446\pi\)
0.375258 0.926920i \(-0.377554\pi\)
\(84\) 0 0
\(85\) −1.11620 12.5316i −0.121069 1.35924i
\(86\) 0 0
\(87\) 13.8416 + 0.00916431i 1.48397 + 0.000982518i
\(88\) 0 0
\(89\) −3.42023 3.42023i −0.362544 0.362544i 0.502205 0.864749i \(-0.332522\pi\)
−0.864749 + 0.502205i \(0.832522\pi\)
\(90\) 0 0
\(91\) 7.92660 + 5.29638i 0.830933 + 0.555212i
\(92\) 0 0
\(93\) −3.53529 3.53997i −0.366592 0.367078i
\(94\) 0 0
\(95\) −2.58400 + 0.513989i −0.265113 + 0.0527342i
\(96\) 0 0
\(97\) −0.692072 + 3.47928i −0.0702692 + 0.353267i −0.999883 0.0152668i \(-0.995140\pi\)
0.929614 + 0.368534i \(0.120140\pi\)
\(98\) 0 0
\(99\) −4.84725 0.970853i −0.487167 0.0975744i
\(100\) 0 0
\(101\) 3.73948 0.372092 0.186046 0.982541i \(-0.440433\pi\)
0.186046 + 0.982541i \(0.440433\pi\)
\(102\) 0 0
\(103\) −9.33404 −0.919710 −0.459855 0.887994i \(-0.652099\pi\)
−0.459855 + 0.887994i \(0.652099\pi\)
\(104\) 0 0
\(105\) 2.21641 + 11.1813i 0.216299 + 1.09119i
\(106\) 0 0
\(107\) −0.368714 + 1.85365i −0.0356449 + 0.179199i −0.994506 0.104675i \(-0.966620\pi\)
0.958862 + 0.283874i \(0.0916198\pi\)
\(108\) 0 0
\(109\) 4.12226 0.819969i 0.394841 0.0785388i 0.00632347 0.999980i \(-0.497987\pi\)
0.388518 + 0.921441i \(0.372987\pi\)
\(110\) 0 0
\(111\) −2.91885 + 2.91499i −0.277045 + 0.276678i
\(112\) 0 0
\(113\) −13.7072 9.15888i −1.28947 0.861595i −0.293917 0.955831i \(-0.594959\pi\)
−0.995550 + 0.0942363i \(0.969959\pi\)
\(114\) 0 0
\(115\) 1.65403 + 1.65403i 0.154239 + 0.154239i
\(116\) 0 0
\(117\) 12.2443 + 5.09076i 1.13199 + 0.470641i
\(118\) 0 0
\(119\) −7.88137 + 4.11852i −0.722484 + 0.377544i
\(120\) 0 0
\(121\) −3.17039 7.65399i −0.288217 0.695817i
\(122\) 0 0
\(123\) −2.03795 4.92927i −0.183756 0.444457i
\(124\) 0 0
\(125\) −1.16808 + 1.74816i −0.104477 + 0.156360i
\(126\) 0 0
\(127\) −11.3753 4.71179i −1.00939 0.418104i −0.184159 0.982896i \(-0.558956\pi\)
−0.825233 + 0.564792i \(0.808956\pi\)
\(128\) 0 0
\(129\) −3.88070 + 19.4423i −0.341677 + 1.71180i
\(130\) 0 0
\(131\) −3.45873 0.687984i −0.302191 0.0601094i 0.0416661 0.999132i \(-0.486733\pi\)
−0.343857 + 0.939022i \(0.611733\pi\)
\(132\) 0 0
\(133\) 1.03458 + 1.54836i 0.0897094 + 0.134260i
\(134\) 0 0
\(135\) 6.03852 + 14.6606i 0.519713 + 1.26178i
\(136\) 0 0
\(137\) 14.6484i 1.25150i −0.780025 0.625748i \(-0.784794\pi\)
0.780025 0.625748i \(-0.215206\pi\)
\(138\) 0 0
\(139\) 4.19445 2.80264i 0.355768 0.237717i −0.364823 0.931077i \(-0.618870\pi\)
0.720591 + 0.693360i \(0.243870\pi\)
\(140\) 0 0
\(141\) −3.01373 + 4.50390i −0.253802 + 0.379297i
\(142\) 0 0
\(143\) −1.42098 7.14374i −0.118828 0.597389i
\(144\) 0 0
\(145\) −9.33173 + 22.5288i −0.774958 + 1.87091i
\(146\) 0 0
\(147\) −3.38345 + 2.25751i −0.279062 + 0.186196i
\(148\) 0 0
\(149\) −4.44785 + 4.44785i −0.364382 + 0.364382i −0.865423 0.501041i \(-0.832950\pi\)
0.501041 + 0.865423i \(0.332950\pi\)
\(150\) 0 0
\(151\) 14.0551 5.82179i 1.14378 0.473771i 0.271339 0.962484i \(-0.412533\pi\)
0.872445 + 0.488713i \(0.162533\pi\)
\(152\) 0 0
\(153\) −9.64473 + 7.74462i −0.779730 + 0.626115i
\(154\) 0 0
\(155\) 8.14291 3.37291i 0.654055 0.270918i
\(156\) 0 0
\(157\) 1.74527 1.74527i 0.139287 0.139287i −0.634025 0.773312i \(-0.718598\pi\)
0.773312 + 0.634025i \(0.218598\pi\)
\(158\) 0 0
\(159\) 9.17558 6.12214i 0.727671 0.485518i
\(160\) 0 0
\(161\) 0.632711 1.52750i 0.0498646 0.120384i
\(162\) 0 0
\(163\) 0.216722 + 1.08953i 0.0169749 + 0.0853388i 0.988344 0.152236i \(-0.0486474\pi\)
−0.971369 + 0.237575i \(0.923647\pi\)
\(164\) 0 0
\(165\) 4.84331 7.23815i 0.377051 0.563489i
\(166\) 0 0
\(167\) −16.5131 + 11.0337i −1.27782 + 0.853815i −0.994452 0.105195i \(-0.966453\pi\)
−0.283373 + 0.959010i \(0.591453\pi\)
\(168\) 0 0
\(169\) 6.53766i 0.502897i
\(170\) 0 0
\(171\) 1.82916 + 1.83401i 0.139879 + 0.140250i
\(172\) 0 0
\(173\) −6.46476 9.67520i −0.491507 0.735591i 0.499946 0.866056i \(-0.333353\pi\)
−0.991453 + 0.130465i \(0.958353\pi\)
\(174\) 0 0
\(175\) −9.11912 1.81391i −0.689341 0.137118i
\(176\) 0 0
\(177\) 2.06551 10.3482i 0.155253 0.777819i
\(178\) 0 0
\(179\) −0.782216 0.324004i −0.0584656 0.0242172i 0.353259 0.935526i \(-0.385073\pi\)
−0.411725 + 0.911308i \(0.635073\pi\)
\(180\) 0 0
\(181\) −0.796600 + 1.19220i −0.0592108 + 0.0886152i −0.859894 0.510473i \(-0.829470\pi\)
0.800683 + 0.599088i \(0.204470\pi\)
\(182\) 0 0
\(183\) −3.86907 9.35828i −0.286010 0.691784i
\(184\) 0 0
\(185\) −2.78110 6.71416i −0.204470 0.493635i
\(186\) 0 0
\(187\) 6.48296 + 2.03288i 0.474081 + 0.148659i
\(188\) 0 0
\(189\) 7.94021 7.90873i 0.577565 0.575275i
\(190\) 0 0
\(191\) 0.509849 + 0.509849i 0.0368914 + 0.0368914i 0.725312 0.688420i \(-0.241696\pi\)
−0.688420 + 0.725312i \(0.741696\pi\)
\(192\) 0 0
\(193\) −9.66292 6.45656i −0.695552 0.464753i 0.156862 0.987621i \(-0.449862\pi\)
−0.852414 + 0.522867i \(0.824862\pi\)
\(194\) 0 0
\(195\) −16.5298 + 16.5079i −1.18372 + 1.18215i
\(196\) 0 0
\(197\) 22.8170 4.53858i 1.62564 0.323360i 0.703643 0.710553i \(-0.251555\pi\)
0.921999 + 0.387193i \(0.126555\pi\)
\(198\) 0 0
\(199\) −4.70456 + 23.6514i −0.333497 + 1.67661i 0.342357 + 0.939570i \(0.388775\pi\)
−0.675854 + 0.737035i \(0.736225\pi\)
\(200\) 0 0
\(201\) −2.42308 12.2239i −0.170911 0.862209i
\(202\) 0 0
\(203\) 17.2357 1.20971
\(204\) 0 0
\(205\) 9.39691 0.656309
\(206\) 0 0
\(207\) 0.451648 2.25498i 0.0313917 0.156732i
\(208\) 0 0
\(209\) 0.277570 1.39544i 0.0191999 0.0965244i
\(210\) 0 0
\(211\) −15.3100 + 3.04535i −1.05398 + 0.209651i −0.691528 0.722350i \(-0.743062\pi\)
−0.362457 + 0.932000i \(0.618062\pi\)
\(212\) 0 0
\(213\) 2.66143 + 2.66496i 0.182358 + 0.182600i
\(214\) 0 0
\(215\) −29.0412 19.4047i −1.98059 1.32339i
\(216\) 0 0
\(217\) −4.40510 4.40510i −0.299038 0.299038i
\(218\) 0 0
\(219\) 21.7882 + 0.0144256i 1.47231 + 0.000974794i
\(220\) 0 0
\(221\) −15.9918 8.74079i −1.07573 0.587969i
\(222\) 0 0
\(223\) −0.930718 2.24695i −0.0623255 0.150467i 0.889648 0.456646i \(-0.150949\pi\)
−0.951974 + 0.306179i \(0.900949\pi\)
\(224\) 0 0
\(225\) −12.9329 0.0171254i −0.862193 0.00114169i
\(226\) 0 0
\(227\) −0.780250 + 1.16773i −0.0517870 + 0.0775048i −0.856460 0.516214i \(-0.827341\pi\)
0.804673 + 0.593719i \(0.202341\pi\)
\(228\) 0 0
\(229\) −10.0488 4.16234i −0.664043 0.275055i 0.0250960 0.999685i \(-0.492011\pi\)
−0.689139 + 0.724630i \(0.742011\pi\)
\(230\) 0 0
\(231\) −6.03666 1.20492i −0.397183 0.0792780i
\(232\) 0 0
\(233\) −14.0608 2.79686i −0.921151 0.183228i −0.288334 0.957530i \(-0.593101\pi\)
−0.632817 + 0.774302i \(0.718101\pi\)
\(234\) 0 0
\(235\) −5.30409 7.93813i −0.346000 0.517826i
\(236\) 0 0
\(237\) 3.95549 9.53155i 0.256937 0.619140i
\(238\) 0 0
\(239\) 23.7093i 1.53362i −0.641872 0.766812i \(-0.721842\pi\)
0.641872 0.766812i \(-0.278158\pi\)
\(240\) 0 0
\(241\) 2.34007 1.56359i 0.150737 0.100719i −0.477914 0.878406i \(-0.658607\pi\)
0.628652 + 0.777687i \(0.283607\pi\)
\(242\) 0 0
\(243\) 8.70334 12.9326i 0.558320 0.829626i
\(244\) 0 0
\(245\) −1.39796 7.02801i −0.0893123 0.449003i
\(246\) 0 0
\(247\) −1.46048 + 3.52592i −0.0929284 + 0.224349i
\(248\) 0 0
\(249\) −12.4847 18.7116i −0.791189 1.18580i
\(250\) 0 0
\(251\) 10.7058 10.7058i 0.675745 0.675745i −0.283289 0.959034i \(-0.591426\pi\)
0.959034 + 0.283289i \(0.0914257\pi\)
\(252\) 0 0
\(253\) −1.16706 + 0.483411i −0.0733723 + 0.0303918i
\(254\) 0 0
\(255\) −6.11683 20.9152i −0.383050 1.30976i
\(256\) 0 0
\(257\) −18.3799 + 7.61319i −1.14650 + 0.474898i −0.873360 0.487075i \(-0.838064\pi\)
−0.273145 + 0.961973i \(0.588064\pi\)
\(258\) 0 0
\(259\) −3.63218 + 3.63218i −0.225693 + 0.225693i
\(260\) 0 0
\(261\) 23.5198 4.64602i 1.45584 0.287581i
\(262\) 0 0
\(263\) −0.0501727 + 0.121128i −0.00309378 + 0.00746905i −0.925419 0.378946i \(-0.876287\pi\)
0.922325 + 0.386415i \(0.126287\pi\)
\(264\) 0 0
\(265\) 3.79112 + 19.0593i 0.232887 + 1.17080i
\(266\) 0 0
\(267\) −6.96282 4.65908i −0.426118 0.285131i
\(268\) 0 0
\(269\) −4.94355 + 3.30317i −0.301413 + 0.201398i −0.697075 0.716999i \(-0.745515\pi\)
0.395661 + 0.918396i \(0.370515\pi\)
\(270\) 0 0
\(271\) 6.87483i 0.417616i 0.977957 + 0.208808i \(0.0669584\pi\)
−0.977957 + 0.208808i \(0.933042\pi\)
\(272\) 0 0
\(273\) 15.2510 + 6.32899i 0.923030 + 0.383048i
\(274\) 0 0
\(275\) 3.94666 + 5.90659i 0.237992 + 0.356181i
\(276\) 0 0
\(277\) −8.13797 1.61874i −0.488963 0.0972608i −0.0555495 0.998456i \(-0.517691\pi\)
−0.433414 + 0.901195i \(0.642691\pi\)
\(278\) 0 0
\(279\) −7.19863 4.82377i −0.430971 0.288792i
\(280\) 0 0
\(281\) 12.2411 + 5.07041i 0.730240 + 0.302475i 0.716651 0.697432i \(-0.245674\pi\)
0.0135893 + 0.999908i \(0.495674\pi\)
\(282\) 0 0
\(283\) 7.79633 11.6680i 0.463444 0.693593i −0.523972 0.851735i \(-0.675550\pi\)
0.987416 + 0.158142i \(0.0505505\pi\)
\(284\) 0 0
\(285\) −4.21709 + 1.74351i −0.249799 + 0.103276i
\(286\) 0 0
\(287\) −2.54174 6.13631i −0.150034 0.362215i
\(288\) 0 0
\(289\) 14.3089 9.17907i 0.841700 0.539945i
\(290\) 0 0
\(291\) −0.00406809 + 6.14435i −0.000238475 + 0.360188i
\(292\) 0 0
\(293\) 18.6721 + 18.6721i 1.09083 + 1.09083i 0.995440 + 0.0953949i \(0.0304114\pi\)
0.0953949 + 0.995440i \(0.469589\pi\)
\(294\) 0 0
\(295\) 15.4572 + 10.3282i 0.899955 + 0.601331i
\(296\) 0 0
\(297\) −8.56241 0.0170072i −0.496842 0.000986857i
\(298\) 0 0
\(299\) 3.32332 0.661049i 0.192193 0.0382295i
\(300\) 0 0
\(301\) −4.81627 + 24.2130i −0.277605 + 1.39561i
\(302\) 0 0
\(303\) 6.35335 1.25939i 0.364990 0.0723499i
\(304\) 0 0
\(305\) 17.8402 1.02152
\(306\) 0 0
\(307\) 24.4315 1.39438 0.697189 0.716887i \(-0.254434\pi\)
0.697189 + 0.716887i \(0.254434\pi\)
\(308\) 0 0
\(309\) −15.8585 + 3.14353i −0.902157 + 0.178829i
\(310\) 0 0
\(311\) −4.55265 + 22.8877i −0.258157 + 1.29784i 0.606340 + 0.795206i \(0.292637\pi\)
−0.864497 + 0.502638i \(0.832363\pi\)
\(312\) 0 0
\(313\) 1.58360 0.314998i 0.0895106 0.0178048i −0.150132 0.988666i \(-0.547970\pi\)
0.239642 + 0.970861i \(0.422970\pi\)
\(314\) 0 0
\(315\) 7.53133 + 18.2505i 0.424342 + 1.02830i
\(316\) 0 0
\(317\) 20.2754 + 13.5476i 1.13878 + 0.760908i 0.974251 0.225464i \(-0.0723900\pi\)
0.164528 + 0.986372i \(0.447390\pi\)
\(318\) 0 0
\(319\) −9.31162 9.31162i −0.521351 0.521351i
\(320\) 0 0
\(321\) −0.00216735 + 3.27351i −0.000120970 + 0.182710i
\(322\) 0 0
\(323\) −2.23262 2.77286i −0.124226 0.154286i
\(324\) 0 0
\(325\) −7.29207 17.6046i −0.404491 0.976529i
\(326\) 0 0
\(327\) 6.72755 2.78143i 0.372034 0.153813i
\(328\) 0 0
\(329\) −3.74901 + 5.61080i −0.206690 + 0.309333i
\(330\) 0 0
\(331\) −28.1459 11.6584i −1.54704 0.640804i −0.564260 0.825597i \(-0.690839\pi\)
−0.982777 + 0.184793i \(0.940839\pi\)
\(332\) 0 0
\(333\) −3.97739 + 5.93556i −0.217960 + 0.325267i
\(334\) 0 0
\(335\) 21.5323 + 4.28304i 1.17644 + 0.234008i
\(336\) 0 0
\(337\) −9.57025 14.3229i −0.521325 0.780218i 0.473611 0.880734i \(-0.342950\pi\)
−0.994935 + 0.100517i \(0.967950\pi\)
\(338\) 0 0
\(339\) −26.3730 10.9445i −1.43239 0.594425i
\(340\) 0 0
\(341\) 4.75973i 0.257754i
\(342\) 0 0
\(343\) −16.7643 + 11.2015i −0.905186 + 0.604826i
\(344\) 0 0
\(345\) 3.36724 + 2.25314i 0.181286 + 0.121305i
\(346\) 0 0
\(347\) 3.94759 + 19.8459i 0.211918 + 1.06538i 0.929476 + 0.368884i \(0.120260\pi\)
−0.717558 + 0.696499i \(0.754740\pi\)
\(348\) 0 0
\(349\) −2.90948 + 7.02410i −0.155741 + 0.375992i −0.982421 0.186681i \(-0.940227\pi\)
0.826680 + 0.562673i \(0.190227\pi\)
\(350\) 0 0
\(351\) 22.5175 + 4.52552i 1.20189 + 0.241554i
\(352\) 0 0
\(353\) 8.44344 8.44344i 0.449399 0.449399i −0.445756 0.895155i \(-0.647065\pi\)
0.895155 + 0.445756i \(0.147065\pi\)
\(354\) 0 0
\(355\) −6.13014 + 2.53919i −0.325354 + 0.134766i
\(356\) 0 0
\(357\) −12.0034 + 9.65164i −0.635285 + 0.510819i
\(358\) 0 0
\(359\) −21.2469 + 8.80076i −1.12137 + 0.464487i −0.864839 0.502049i \(-0.832580\pi\)
−0.256531 + 0.966536i \(0.582580\pi\)
\(360\) 0 0
\(361\) 12.9079 12.9079i 0.679363 0.679363i
\(362\) 0 0
\(363\) −7.96419 11.9364i −0.418012 0.626496i
\(364\) 0 0
\(365\) −14.6892 + 35.4628i −0.768866 + 1.85621i
\(366\) 0 0
\(367\) 3.20154 + 16.0952i 0.167119 + 0.840163i 0.969828 + 0.243792i \(0.0783914\pi\)
−0.802709 + 0.596371i \(0.796609\pi\)
\(368\) 0 0
\(369\) −5.12255 7.68845i −0.266669 0.400245i
\(370\) 0 0
\(371\) 11.4205 7.63093i 0.592923 0.396178i
\(372\) 0 0
\(373\) 1.61824i 0.0837894i 0.999122 + 0.0418947i \(0.0133394\pi\)
−0.999122 + 0.0418947i \(0.986661\pi\)
\(374\) 0 0
\(375\) −1.39582 + 3.36351i −0.0720798 + 0.173691i
\(376\) 0 0
\(377\) 19.6246 + 29.3703i 1.01072 + 1.51265i
\(378\) 0 0
\(379\) 15.2311 + 3.02965i 0.782368 + 0.155623i 0.570085 0.821586i \(-0.306910\pi\)
0.212283 + 0.977208i \(0.431910\pi\)
\(380\) 0 0
\(381\) −20.9134 4.17432i −1.07142 0.213857i
\(382\) 0 0
\(383\) 20.4588 + 8.47433i 1.04540 + 0.433018i 0.838247 0.545291i \(-0.183581\pi\)
0.207151 + 0.978309i \(0.433581\pi\)
\(384\) 0 0
\(385\) 6.02498 9.01702i 0.307061 0.459550i
\(386\) 0 0
\(387\) −0.0454712 + 34.3393i −0.00231143 + 1.74557i
\(388\) 0 0
\(389\) −5.80572 14.0162i −0.294362 0.710652i −0.999998 0.00207747i \(-0.999339\pi\)
0.705636 0.708574i \(-0.250661\pi\)
\(390\) 0 0
\(391\) −0.945713 + 3.01592i −0.0478268 + 0.152522i
\(392\) 0 0
\(393\) −6.10806 0.00404406i −0.308111 0.000203996i
\(394\) 0 0
\(395\) 12.8555 + 12.8555i 0.646831 + 0.646831i
\(396\) 0 0
\(397\) 31.2942 + 20.9101i 1.57061 + 1.04945i 0.967850 + 0.251526i \(0.0809325\pi\)
0.602760 + 0.797922i \(0.294068\pi\)
\(398\) 0 0
\(399\) 2.27920 + 2.28222i 0.114103 + 0.114254i
\(400\) 0 0
\(401\) −3.46595 + 0.689420i −0.173081 + 0.0344280i −0.280870 0.959746i \(-0.590623\pi\)
0.107789 + 0.994174i \(0.465623\pi\)
\(402\) 0 0
\(403\) 2.49080 12.5221i 0.124076 0.623770i
\(404\) 0 0
\(405\) 15.1968 + 22.8746i 0.755136 + 1.13665i
\(406\) 0 0
\(407\) 3.92459 0.194535
\(408\) 0 0
\(409\) 12.2079 0.603641 0.301820 0.953365i \(-0.402406\pi\)
0.301820 + 0.953365i \(0.402406\pi\)
\(410\) 0 0
\(411\) −4.93331 24.8875i −0.243342 1.22761i
\(412\) 0 0
\(413\) 2.56347 12.8874i 0.126140 0.634148i
\(414\) 0 0
\(415\) 38.8671 7.73115i 1.90791 0.379507i
\(416\) 0 0
\(417\) 6.18246 6.17428i 0.302756 0.302356i
\(418\) 0 0
\(419\) 26.1021 + 17.4409i 1.27517 + 0.852042i 0.994187 0.107670i \(-0.0343389\pi\)
0.280985 + 0.959712i \(0.409339\pi\)
\(420\) 0 0
\(421\) 10.7245 + 10.7245i 0.522682 + 0.522682i 0.918380 0.395699i \(-0.129498\pi\)
−0.395699 + 0.918380i \(0.629498\pi\)
\(422\) 0 0
\(423\) −3.60347 + 8.66707i −0.175207 + 0.421407i
\(424\) 0 0
\(425\) 17.6720 + 1.90732i 0.857216 + 0.0925185i
\(426\) 0 0
\(427\) −4.82553 11.6499i −0.233524 0.563776i
\(428\) 0 0
\(429\) −4.82011 11.6586i −0.232717 0.562883i
\(430\) 0 0
\(431\) −6.36331 + 9.52337i −0.306510 + 0.458724i −0.952464 0.304652i \(-0.901460\pi\)
0.645954 + 0.763376i \(0.276460\pi\)
\(432\) 0 0
\(433\) −24.7526 10.2528i −1.18953 0.492720i −0.301930 0.953330i \(-0.597631\pi\)
−0.887603 + 0.460610i \(0.847631\pi\)
\(434\) 0 0
\(435\) −8.26727 + 41.4190i −0.396385 + 1.98589i
\(436\) 0 0
\(437\) 0.649167 + 0.129127i 0.0310539 + 0.00617700i
\(438\) 0 0
\(439\) −4.73699 7.08940i −0.226084 0.338359i 0.701034 0.713128i \(-0.252722\pi\)
−0.927118 + 0.374769i \(0.877722\pi\)
\(440\) 0 0
\(441\) −4.98817 + 4.97498i −0.237532 + 0.236904i
\(442\) 0 0
\(443\) 18.8773i 0.896886i −0.893811 0.448443i \(-0.851979\pi\)
0.893811 0.448443i \(-0.148021\pi\)
\(444\) 0 0
\(445\) 12.2720 8.19987i 0.581747 0.388711i
\(446\) 0 0
\(447\) −6.05891 + 9.05482i −0.286577 + 0.428278i
\(448\) 0 0
\(449\) 5.31908 + 26.7408i 0.251023 + 1.26198i 0.876373 + 0.481633i \(0.159956\pi\)
−0.625350 + 0.780345i \(0.715044\pi\)
\(450\) 0 0
\(451\) −1.94197 + 4.68833i −0.0914438 + 0.220765i
\(452\) 0 0
\(453\) 21.9188 14.6247i 1.02983 0.687127i
\(454\) 0 0
\(455\) −20.5695 + 20.5695i −0.964311 + 0.964311i
\(456\) 0 0
\(457\) 9.73907 4.03405i 0.455574 0.188705i −0.143082 0.989711i \(-0.545701\pi\)
0.598657 + 0.801006i \(0.295701\pi\)
\(458\) 0 0
\(459\) −13.7781 + 16.4062i −0.643106 + 0.765777i
\(460\) 0 0
\(461\) 9.13414 3.78349i 0.425419 0.176215i −0.159693 0.987167i \(-0.551050\pi\)
0.585112 + 0.810952i \(0.301050\pi\)
\(462\) 0 0
\(463\) 16.2123 16.2123i 0.753448 0.753448i −0.221673 0.975121i \(-0.571152\pi\)
0.975121 + 0.221673i \(0.0711518\pi\)
\(464\) 0 0
\(465\) 12.6988 8.47293i 0.588894 0.392923i
\(466\) 0 0
\(467\) −9.89105 + 23.8791i −0.457703 + 1.10499i 0.511621 + 0.859211i \(0.329045\pi\)
−0.969325 + 0.245783i \(0.920955\pi\)
\(468\) 0 0
\(469\) −3.02732 15.2194i −0.139789 0.702766i
\(470\) 0 0
\(471\) 2.37742 3.55297i 0.109546 0.163712i
\(472\) 0 0
\(473\) 15.6831 10.4791i 0.721111 0.481831i
\(474\) 0 0
\(475\) 3.72217i 0.170785i
\(476\) 0 0
\(477\) 13.5274 13.4916i 0.619378 0.617740i
\(478\) 0 0
\(479\) 4.81385 + 7.20443i 0.219950 + 0.329179i 0.924992 0.379987i \(-0.124072\pi\)
−0.705041 + 0.709166i \(0.749072\pi\)
\(480\) 0 0
\(481\) −10.3250 2.05377i −0.470778 0.0936437i
\(482\) 0 0
\(483\) 0.560538 2.80830i 0.0255054 0.127782i
\(484\) 0 0
\(485\) −10.0006 4.14240i −0.454106 0.188097i
\(486\) 0 0
\(487\) 21.5656 32.2752i 0.977229 1.46253i 0.0928931 0.995676i \(-0.470389\pi\)
0.884336 0.466851i \(-0.154611\pi\)
\(488\) 0 0
\(489\) 0.735143 + 1.77812i 0.0332443 + 0.0804094i
\(490\) 0 0
\(491\) −4.84934 11.7073i −0.218848 0.528345i 0.775882 0.630878i \(-0.217305\pi\)
−0.994730 + 0.102533i \(0.967305\pi\)
\(492\) 0 0
\(493\) −32.8196 + 2.92328i −1.47812 + 0.131658i
\(494\) 0 0
\(495\) 5.79108 13.9287i 0.260290 0.626049i
\(496\) 0 0
\(497\) 3.31625 + 3.31625i 0.148754 + 0.148754i
\(498\) 0 0
\(499\) 30.8610 + 20.6206i 1.38153 + 0.923106i 0.999999 0.00125143i \(-0.000398342\pi\)
0.381527 + 0.924358i \(0.375398\pi\)
\(500\) 0 0
\(501\) −24.3397 + 24.3075i −1.08742 + 1.08598i
\(502\) 0 0
\(503\) 31.3353 6.23297i 1.39717 0.277914i 0.561650 0.827375i \(-0.310167\pi\)
0.835520 + 0.549460i \(0.185167\pi\)
\(504\) 0 0
\(505\) −2.22610 + 11.1913i −0.0990600 + 0.498008i
\(506\) 0 0
\(507\) 2.20176 + 11.1074i 0.0977838 + 0.493299i
\(508\) 0 0
\(509\) −2.30289 −0.102074 −0.0510369 0.998697i \(-0.516253\pi\)
−0.0510369 + 0.998697i \(0.516253\pi\)
\(510\) 0 0
\(511\) 27.1309 1.20020
\(512\) 0 0
\(513\) 3.72539 + 2.49994i 0.164480 + 0.110375i
\(514\) 0 0
\(515\) 5.55652 27.9345i 0.244849 1.23094i
\(516\) 0 0
\(517\) 5.05666 1.00583i 0.222391 0.0442364i
\(518\) 0 0
\(519\) −14.2420 14.2609i −0.625155 0.625983i
\(520\) 0 0
\(521\) −2.28875 1.52929i −0.100272 0.0669995i 0.504423 0.863456i \(-0.331705\pi\)
−0.604695 + 0.796457i \(0.706705\pi\)
\(522\) 0 0
\(523\) −29.8001 29.8001i −1.30307 1.30307i −0.926313 0.376755i \(-0.877040\pi\)
−0.376755 0.926313i \(-0.622960\pi\)
\(524\) 0 0
\(525\) −16.1042 0.0106624i −0.702846 0.000465344i
\(526\) 0 0
\(527\) 9.13517 + 7.64091i 0.397934 + 0.332843i
\(528\) 0 0
\(529\) 8.57683 + 20.7063i 0.372906 + 0.900274i
\(530\) 0 0
\(531\) 0.0242021 18.2772i 0.00105028 0.793161i
\(532\) 0 0
\(533\) 7.56246 11.3180i 0.327566 0.490238i
\(534\) 0 0
\(535\) −5.32803 2.20694i −0.230351 0.0954144i
\(536\) 0 0
\(537\) −1.43810 0.287045i −0.0620585 0.0123869i
\(538\) 0 0
\(539\) 3.79534 + 0.754939i 0.163477 + 0.0325175i
\(540\) 0 0
\(541\) −8.13164 12.1699i −0.349606 0.523223i 0.614438 0.788965i \(-0.289383\pi\)
−0.964044 + 0.265742i \(0.914383\pi\)
\(542\) 0 0
\(543\) −0.951908 + 2.29381i −0.0408503 + 0.0984369i
\(544\) 0 0
\(545\) 12.8251i 0.549365i
\(546\) 0 0
\(547\) −22.8049 + 15.2378i −0.975068 + 0.651520i −0.937577 0.347777i \(-0.886937\pi\)
−0.0374912 + 0.999297i \(0.511937\pi\)
\(548\) 0 0
\(549\) −9.72522 14.5966i −0.415062 0.622969i
\(550\) 0 0
\(551\) 1.34611 + 6.76737i 0.0573464 + 0.288300i
\(552\) 0 0
\(553\) 4.91757 11.8721i 0.209116 0.504851i
\(554\) 0 0
\(555\) −6.98627 10.4707i −0.296551 0.444456i
\(556\) 0 0
\(557\) −31.0707 + 31.0707i −1.31651 + 1.31651i −0.399984 + 0.916522i \(0.630984\pi\)
−0.916522 + 0.399984i \(0.869016\pi\)
\(558\) 0 0
\(559\) −46.7436 + 19.3619i −1.97705 + 0.818919i
\(560\) 0 0
\(561\) 11.6992 + 1.27052i 0.493939 + 0.0536412i
\(562\) 0 0
\(563\) −33.9044 + 14.0437i −1.42890 + 0.591870i −0.957080 0.289825i \(-0.906403\pi\)
−0.471821 + 0.881695i \(0.656403\pi\)
\(564\) 0 0
\(565\) 35.5701 35.5701i 1.49645 1.49645i
\(566\) 0 0
\(567\) 10.8268 16.1110i 0.454685 0.676598i
\(568\) 0 0
\(569\) 9.46803 22.8578i 0.396920 0.958251i −0.591472 0.806326i \(-0.701453\pi\)
0.988392 0.151925i \(-0.0485472\pi\)
\(570\) 0 0
\(571\) −0.384503 1.93303i −0.0160910 0.0808947i 0.971905 0.235372i \(-0.0756307\pi\)
−0.987996 + 0.154477i \(0.950631\pi\)
\(572\) 0 0
\(573\) 1.03794 + 0.694522i 0.0433605 + 0.0290141i
\(574\) 0 0
\(575\) −2.74779 + 1.83601i −0.114591 + 0.0765671i
\(576\) 0 0
\(577\) 26.8179i 1.11645i 0.829691 + 0.558223i \(0.188517\pi\)
−0.829691 + 0.558223i \(0.811483\pi\)
\(578\) 0 0
\(579\) −18.5917 7.71536i −0.772644 0.320639i
\(580\) 0 0
\(581\) −15.5616 23.2896i −0.645603 0.966214i
\(582\) 0 0
\(583\) −10.2926 2.04732i −0.426275 0.0847913i
\(584\) 0 0
\(585\) −22.5244 + 33.6137i −0.931270 + 1.38976i
\(586\) 0 0
\(587\) 41.3023 + 17.1080i 1.70473 + 0.706122i 0.999994 0.00334911i \(-0.00106606\pi\)
0.704735 + 0.709471i \(0.251066\pi\)
\(588\) 0 0
\(589\) 1.38557 2.07364i 0.0570912 0.0854430i
\(590\) 0 0
\(591\) 37.2374 15.3953i 1.53174 0.633280i
\(592\) 0 0
\(593\) −8.44534 20.3889i −0.346809 0.837270i −0.996993 0.0774935i \(-0.975308\pi\)
0.650184 0.759777i \(-0.274692\pi\)
\(594\) 0 0
\(595\) −7.63399 26.0388i −0.312963 1.06749i
\(596\) 0 0
\(597\) −0.0276540 + 41.7680i −0.00113180 + 1.70945i
\(598\) 0 0
\(599\) −16.9345 16.9345i −0.691926 0.691926i 0.270729 0.962655i \(-0.412735\pi\)
−0.962655 + 0.270729i \(0.912735\pi\)
\(600\) 0 0
\(601\) 2.19329 + 1.46551i 0.0894662 + 0.0597794i 0.599499 0.800376i \(-0.295367\pi\)
−0.510033 + 0.860155i \(0.670367\pi\)
\(602\) 0 0
\(603\) −8.23359 19.9523i −0.335298 0.812521i
\(604\) 0 0
\(605\) 24.7939 4.93180i 1.00801 0.200506i
\(606\) 0 0
\(607\) −7.07635 + 35.5752i −0.287220 + 1.44395i 0.520234 + 0.854024i \(0.325845\pi\)
−0.807454 + 0.589930i \(0.799155\pi\)
\(608\) 0 0
\(609\) 29.2833 5.80467i 1.18662 0.235217i
\(610\) 0 0
\(611\) −13.8296 −0.559487
\(612\) 0 0
\(613\) −25.0887 −1.01333 −0.506663 0.862144i \(-0.669121\pi\)
−0.506663 + 0.862144i \(0.669121\pi\)
\(614\) 0 0
\(615\) 15.9653 3.16471i 0.643783 0.127613i
\(616\) 0 0
\(617\) −1.92552 + 9.68025i −0.0775186 + 0.389712i 0.922475 + 0.386057i \(0.126163\pi\)
−0.999993 + 0.00365472i \(0.998837\pi\)
\(618\) 0 0
\(619\) −31.6886 + 6.30326i −1.27367 + 0.253349i −0.785207 0.619233i \(-0.787443\pi\)
−0.488466 + 0.872583i \(0.662443\pi\)
\(620\) 0 0
\(621\) 0.00791187 3.98330i 0.000317492 0.159844i
\(622\) 0 0
\(623\) −8.67402 5.79580i −0.347517 0.232204i
\(624\) 0 0
\(625\) −19.7780 19.7780i −0.791122 0.791122i
\(626\) 0 0
\(627\) 0.00163159 2.46432i 6.51594e−5 0.0984154i
\(628\) 0 0
\(629\) 6.30024 7.53232i 0.251207 0.300333i
\(630\) 0 0
\(631\) 1.47845 + 3.56930i 0.0588563 + 0.142092i 0.950572 0.310504i \(-0.100498\pi\)
−0.891716 + 0.452596i \(0.850498\pi\)
\(632\) 0 0
\(633\) −24.9860 + 10.3302i −0.993104 + 0.410587i
\(634\) 0 0
\(635\) 20.8729 31.2385i 0.828316 1.23966i
\(636\) 0 0
\(637\) −9.58987 3.97225i −0.379964 0.157386i
\(638\) 0 0
\(639\) 5.41927 + 3.63143i 0.214383 + 0.143657i
\(640\) 0 0
\(641\) 36.7015 + 7.30038i 1.44962 + 0.288348i 0.856242 0.516575i \(-0.172793\pi\)
0.593380 + 0.804922i \(0.297793\pi\)
\(642\) 0 0
\(643\) 23.5997 + 35.3195i 0.930682 + 1.39286i 0.919570 + 0.392925i \(0.128537\pi\)
0.0111111 + 0.999938i \(0.496463\pi\)
\(644\) 0 0
\(645\) −55.8760 23.1879i −2.20011 0.913024i
\(646\) 0 0
\(647\) 48.3331i 1.90017i 0.311989 + 0.950086i \(0.399005\pi\)
−0.311989 + 0.950086i \(0.600995\pi\)
\(648\) 0 0
\(649\) −8.34737 + 5.57753i −0.327663 + 0.218937i
\(650\) 0 0
\(651\) −8.96780 6.00068i −0.351476 0.235185i
\(652\) 0 0
\(653\) 1.26227 + 6.34586i 0.0493965 + 0.248333i 0.997592 0.0693542i \(-0.0220939\pi\)
−0.948196 + 0.317687i \(0.897094\pi\)
\(654\) 0 0
\(655\) 4.11794 9.94158i 0.160901 0.388450i
\(656\) 0 0
\(657\) 37.0228 7.31334i 1.44440 0.285321i
\(658\) 0 0
\(659\) 17.7005 17.7005i 0.689515 0.689515i −0.272610 0.962125i \(-0.587887\pi\)
0.962125 + 0.272610i \(0.0878869\pi\)
\(660\) 0 0
\(661\) −23.0223 + 9.53615i −0.895464 + 0.370913i −0.782474 0.622683i \(-0.786043\pi\)
−0.112990 + 0.993596i \(0.536043\pi\)
\(662\) 0 0
\(663\) −30.1138 9.46478i −1.16952 0.367582i
\(664\) 0 0
\(665\) −5.24974 + 2.17451i −0.203576 + 0.0843240i
\(666\) 0 0
\(667\) 4.33184 4.33184i 0.167729 0.167729i
\(668\) 0 0
\(669\) −2.33802 3.50411i −0.0903929 0.135477i
\(670\) 0 0
\(671\) −3.68686 + 8.90086i −0.142329 + 0.343614i
\(672\) 0 0
\(673\) 3.66436 + 18.4220i 0.141251 + 0.710115i 0.984887 + 0.173200i \(0.0554106\pi\)
−0.843636 + 0.536915i \(0.819589\pi\)
\(674\) 0 0
\(675\) −21.9787 + 4.32647i −0.845960 + 0.166526i
\(676\) 0 0
\(677\) −8.24041 + 5.50607i −0.316705 + 0.211615i −0.703754 0.710444i \(-0.748494\pi\)
0.387049 + 0.922059i \(0.373494\pi\)
\(678\) 0 0
\(679\) 7.65102i 0.293619i
\(680\) 0 0
\(681\) −0.932371 + 2.24673i −0.0357285 + 0.0860950i
\(682\) 0 0
\(683\) 1.32660 + 1.98540i 0.0507610 + 0.0759692i 0.855982 0.517006i \(-0.172953\pi\)
−0.805221 + 0.592975i \(0.797953\pi\)
\(684\) 0 0
\(685\) 43.8391 + 8.72013i 1.67500 + 0.333179i
\(686\) 0 0
\(687\) −18.4746 3.68755i −0.704851 0.140689i
\(688\) 0 0
\(689\) 26.0068 + 10.7724i 0.990779 + 0.410394i
\(690\) 0 0
\(691\) −18.1140 + 27.1095i −0.689088 + 1.03129i 0.307722 + 0.951476i \(0.400433\pi\)
−0.996810 + 0.0798165i \(0.974567\pi\)
\(692\) 0 0
\(693\) −10.6620 0.0141184i −0.405017 0.000536313i
\(694\) 0 0
\(695\) 5.89068 + 14.2214i 0.223446 + 0.539447i
\(696\) 0 0
\(697\) 5.88065 + 11.2534i 0.222745 + 0.426254i
\(698\) 0 0
\(699\) −24.8311 0.0164403i −0.939197 0.000621829i
\(700\) 0 0
\(701\) −31.7150 31.7150i −1.19786 1.19786i −0.974807 0.223051i \(-0.928398\pi\)
−0.223051 0.974807i \(-0.571602\pi\)
\(702\) 0 0
\(703\) −1.70980 1.14245i −0.0644864 0.0430885i
\(704\) 0 0
\(705\) −11.6850 11.7005i −0.440083 0.440667i
\(706\) 0 0
\(707\) 7.91022 1.57344i 0.297495 0.0591753i
\(708\) 0 0
\(709\) −7.70314 + 38.7263i −0.289297 + 1.45440i 0.513472 + 0.858106i \(0.328359\pi\)
−0.802769 + 0.596290i \(0.796641\pi\)
\(710\) 0 0
\(711\) 3.51030 17.5262i 0.131647 0.657283i
\(712\) 0 0
\(713\) −2.21426 −0.0829248
\(714\) 0 0
\(715\) 22.2254 0.831182
\(716\) 0 0
\(717\) −7.98484 40.2819i −0.298199 1.50435i
\(718\) 0 0
\(719\) 8.57373 43.1030i 0.319746 1.60747i −0.402220 0.915543i \(-0.631761\pi\)
0.721966 0.691929i \(-0.243239\pi\)
\(720\) 0 0
\(721\) −19.7446 + 3.92744i −0.735326 + 0.146265i
\(722\) 0 0
\(723\) 3.44918 3.44461i 0.128276 0.128107i
\(724\) 0 0
\(725\) −28.6448 19.1399i −1.06384 0.710837i
\(726\) 0 0
\(727\) 0.0802760 + 0.0802760i 0.00297727 + 0.00297727i 0.708594 0.705617i \(-0.249330\pi\)
−0.705617 + 0.708594i \(0.749330\pi\)
\(728\) 0 0
\(729\) 10.4315 24.9035i 0.386351 0.922352i
\(730\) 0 0
\(731\) 5.06429 46.9224i 0.187310 1.73549i
\(732\) 0 0
\(733\) −3.12587 7.54651i −0.115457 0.278737i 0.855579 0.517673i \(-0.173201\pi\)
−0.971035 + 0.238936i \(0.923201\pi\)
\(734\) 0 0
\(735\) −4.74203 11.4697i −0.174912 0.423068i
\(736\) 0 0
\(737\) −6.58678 + 9.85781i −0.242627 + 0.363117i
\(738\) 0 0
\(739\) 10.8531 + 4.49550i 0.399237 + 0.165370i 0.573263 0.819372i \(-0.305677\pi\)
−0.174025 + 0.984741i \(0.555677\pi\)
\(740\) 0 0
\(741\) −1.29389 + 6.48238i −0.0475322 + 0.238136i
\(742\) 0 0
\(743\) −40.2557 8.00737i −1.47684 0.293762i −0.610021 0.792385i \(-0.708839\pi\)
−0.866819 + 0.498623i \(0.833839\pi\)
\(744\) 0 0
\(745\) −10.6635 15.9591i −0.390682 0.584697i
\(746\) 0 0
\(747\) −27.5132 27.5862i −1.00666 1.00933i
\(748\) 0 0
\(749\) 4.07622i 0.148942i
\(750\) 0 0
\(751\) 1.40436 0.938366i 0.0512460 0.0342414i −0.529683 0.848195i \(-0.677689\pi\)
0.580929 + 0.813954i \(0.302689\pi\)
\(752\) 0 0
\(753\) 14.5836 21.7946i 0.531456 0.794241i
\(754\) 0 0
\(755\) 9.05629 + 45.5290i 0.329592 + 1.65697i
\(756\) 0 0
\(757\) −20.8300 + 50.2881i −0.757080 + 1.82775i −0.242954 + 0.970038i \(0.578116\pi\)
−0.514126 + 0.857715i \(0.671884\pi\)
\(758\) 0 0
\(759\) −1.82002 + 1.21436i −0.0660625 + 0.0440783i
\(760\) 0 0
\(761\) 24.1395 24.1395i 0.875055 0.875055i −0.117963 0.993018i \(-0.537636\pi\)
0.993018 + 0.117963i \(0.0376365\pi\)
\(762\) 0 0
\(763\) 8.37493 3.46901i 0.303193 0.125587i
\(764\) 0 0
\(765\) −17.4363 33.4747i −0.630410 1.21028i
\(766\) 0 0
\(767\) 24.8794 10.3054i 0.898343 0.372106i
\(768\) 0 0
\(769\) 31.3211 31.3211i 1.12947 1.12947i 0.139204 0.990264i \(-0.455546\pi\)
0.990264 0.139204i \(-0.0444544\pi\)
\(770\) 0 0
\(771\) −28.6633 + 19.1248i −1.03228 + 0.688761i
\(772\) 0 0
\(773\) 5.31114 12.8222i 0.191028 0.461184i −0.799126 0.601164i \(-0.794704\pi\)
0.990154 + 0.139980i \(0.0447039\pi\)
\(774\) 0 0
\(775\) 2.42928 + 12.2128i 0.0872624 + 0.438698i
\(776\) 0 0
\(777\) −4.94780 + 7.39431i −0.177501 + 0.265269i
\(778\) 0 0
\(779\) 2.21083 1.47723i 0.0792111 0.0529272i
\(780\) 0 0
\(781\) 3.58322i 0.128218i
\(782\) 0 0
\(783\) 38.3954 15.8146i 1.37214 0.565168i
\(784\) 0 0
\(785\) 4.18421 + 6.26211i 0.149341 + 0.223504i
\(786\) 0 0
\(787\) 23.4782 + 4.67010i 0.836907 + 0.166471i 0.594896 0.803802i \(-0.297193\pi\)
0.242011 + 0.970274i \(0.422193\pi\)
\(788\) 0 0
\(789\) −0.0444496 + 0.222692i −0.00158245 + 0.00792806i
\(790\) 0 0
\(791\) −32.8490 13.6065i −1.16798 0.483792i
\(792\) 0 0
\(793\) 14.3574 21.4874i 0.509847 0.763040i
\(794\) 0 0
\(795\) 12.8599 + 31.1048i 0.456094 + 1.10317i
\(796\) 0 0
\(797\) 17.9210 + 43.2651i 0.634795 + 1.53253i 0.833529 + 0.552476i \(0.186317\pi\)
−0.198734 + 0.980053i \(0.563683\pi\)
\(798\) 0 0
\(799\) 6.18712 11.3197i 0.218884 0.400463i
\(800\) 0 0
\(801\) −13.3989 5.57079i −0.473426 0.196834i
\(802\) 0 0
\(803\) −14.6575 14.6575i −0.517252 0.517252i
\(804\) 0 0
\(805\) 4.19478 + 2.80287i 0.147847 + 0.0987880i
\(806\) 0 0
\(807\) −7.28661 + 7.27696i −0.256501 + 0.256161i
\(808\) 0 0
\(809\) −11.4907 + 2.28565i −0.403993 + 0.0803592i −0.392904 0.919579i \(-0.628530\pi\)
−0.0110886 + 0.999939i \(0.503530\pi\)
\(810\) 0 0
\(811\) −3.67314 + 18.4661i −0.128982 + 0.648434i 0.861157 + 0.508340i \(0.169741\pi\)
−0.990138 + 0.140094i \(0.955259\pi\)
\(812\) 0 0
\(813\) 2.31531 + 11.6803i 0.0812016 + 0.409645i
\(814\) 0 0
\(815\) −3.38972 −0.118737
\(816\) 0 0
\(817\) −9.88307 −0.345765
\(818\) 0 0
\(819\) 28.0428 + 5.61666i 0.979893 + 0.196262i
\(820\) 0 0
\(821\) 5.91006 29.7119i 0.206263 1.03695i −0.729408 0.684079i \(-0.760205\pi\)
0.935671 0.352874i \(-0.114795\pi\)
\(822\) 0 0
\(823\) −22.5083 + 4.47717i −0.784589 + 0.156064i −0.571099 0.820881i \(-0.693483\pi\)
−0.213489 + 0.976945i \(0.568483\pi\)
\(824\) 0 0
\(825\) 8.69457 + 8.70609i 0.302706 + 0.303107i
\(826\) 0 0
\(827\) 14.5585 + 9.72768i 0.506249 + 0.338265i 0.782324 0.622871i \(-0.214034\pi\)
−0.276076 + 0.961136i \(0.589034\pi\)
\(828\) 0 0
\(829\) −31.1358 31.1358i −1.08139 1.08139i −0.996380 0.0850121i \(-0.972907\pi\)
−0.0850121 0.996380i \(-0.527093\pi\)
\(830\) 0 0
\(831\) −14.3715 0.00951518i −0.498542 0.000330078i
\(832\) 0 0
\(833\) 7.54167 6.07232i 0.261303 0.210394i
\(834\) 0 0
\(835\) −23.1910 55.9881i −0.802559 1.93755i
\(836\) 0 0
\(837\) −13.8550 5.77119i −0.478898 0.199481i
\(838\) 0 0
\(839\) −10.9879 + 16.4446i −0.379346 + 0.567731i −0.971186 0.238325i \(-0.923402\pi\)
0.591840 + 0.806056i \(0.298402\pi\)
\(840\) 0 0
\(841\) 32.2093 + 13.3415i 1.11067 + 0.460053i
\(842\) 0 0
\(843\) 22.5051 + 4.49203i 0.775116 + 0.154714i
\(844\) 0 0
\(845\) −19.5656 3.89185i −0.673078 0.133884i
\(846\) 0 0
\(847\) −9.92694 14.8567i −0.341094 0.510483i
\(848\) 0 0
\(849\) 9.31634 22.4496i 0.319736 0.770468i
\(850\) 0 0
\(851\) 1.82575i 0.0625858i
\(852\) 0 0
\(853\) −5.13456 + 3.43080i −0.175804 + 0.117469i −0.640359 0.768076i \(-0.721214\pi\)
0.464555 + 0.885544i \(0.346214\pi\)
\(854\) 0 0
\(855\) −6.57763 + 4.38245i −0.224950 + 0.149877i
\(856\) 0 0
\(857\) 5.07296 + 25.5035i 0.173289 + 0.871184i 0.965393 + 0.260798i \(0.0839856\pi\)
−0.792104 + 0.610386i \(0.791014\pi\)
\(858\) 0 0
\(859\) 1.25664 3.03380i 0.0428761 0.103512i −0.900991 0.433838i \(-0.857159\pi\)
0.943867 + 0.330326i \(0.107159\pi\)
\(860\) 0 0
\(861\) −6.38500 9.56953i −0.217600 0.326129i
\(862\) 0 0
\(863\) −10.3922 + 10.3922i −0.353754 + 0.353754i −0.861504 0.507750i \(-0.830477\pi\)
0.507750 + 0.861504i \(0.330477\pi\)
\(864\) 0 0
\(865\) 32.8040 13.5878i 1.11537 0.462000i
\(866\) 0 0
\(867\) 21.2194 20.4142i 0.720648 0.693301i
\(868\) 0 0
\(869\) −9.07062 + 3.75718i −0.307700 + 0.127453i
\(870\) 0 0
\(871\) 22.4875 22.4875i 0.761958 0.761958i
\(872\) 0 0
\(873\) 2.06239 + 10.4406i 0.0698014 + 0.353360i
\(874\) 0 0
\(875\) −1.73532 + 4.18943i −0.0586644 + 0.141629i
\(876\) 0 0
\(877\) 2.60180 + 13.0801i 0.0878565 + 0.441684i 0.999527 + 0.0307618i \(0.00979334\pi\)
−0.911670 + 0.410923i \(0.865207\pi\)
\(878\) 0 0
\(879\) 38.0121 + 25.4353i 1.28212 + 0.857912i
\(880\) 0 0
\(881\) −16.3958 + 10.9553i −0.552389 + 0.369094i −0.800218 0.599709i \(-0.795283\pi\)
0.247829 + 0.968804i \(0.420283\pi\)
\(882\) 0 0
\(883\) 44.5932i 1.50068i 0.661051 + 0.750341i \(0.270111\pi\)
−0.661051 + 0.750341i \(0.729889\pi\)
\(884\) 0 0
\(885\) 29.7401 + 12.3418i 0.999702 + 0.414866i
\(886\) 0 0
\(887\) −9.28722 13.8993i −0.311834 0.466693i 0.642137 0.766590i \(-0.278048\pi\)
−0.953972 + 0.299896i \(0.903048\pi\)
\(888\) 0 0
\(889\) −26.0450 5.18067i −0.873522 0.173754i
\(890\) 0 0
\(891\) −14.5532 + 2.85477i −0.487551 + 0.0956383i
\(892\) 0 0
\(893\) −2.49580 1.03380i −0.0835189 0.0345947i
\(894\) 0 0
\(895\) 1.43532 2.14810i 0.0479773 0.0718032i
\(896\) 0 0
\(897\) 5.42367 2.24235i 0.181091 0.0748699i
\(898\) 0 0
\(899\) −8.83348 21.3259i −0.294613 0.711259i
\(900\) 0 0
\(901\) −20.4523 + 16.4675i −0.681363 + 0.548613i
\(902\) 0 0
\(903\) −0.0283106 + 42.7598i −0.000942119 + 1.42296i
\(904\) 0 0
\(905\) −3.09374 3.09374i −0.102839 0.102839i
\(906\) 0 0
\(907\) −7.66078 5.11877i −0.254372 0.169966i 0.421846 0.906668i \(-0.361382\pi\)
−0.676218 + 0.736702i \(0.736382\pi\)
\(908\) 0 0
\(909\) 10.3702 4.27938i 0.343956 0.141938i
\(910\) 0 0
\(911\) −1.96677 + 0.391215i −0.0651621 + 0.0129615i −0.227564 0.973763i \(-0.573076\pi\)
0.162402 + 0.986725i \(0.448076\pi\)
\(912\) 0 0
\(913\) −4.17505 + 20.9894i −0.138174 + 0.694648i
\(914\) 0 0
\(915\) 30.3103 6.00824i 1.00203 0.198626i
\(916\) 0 0
\(917\) −7.60583 −0.251167
\(918\) 0 0
\(919\) −4.18774 −0.138141 −0.0690703 0.997612i \(-0.522003\pi\)
−0.0690703 + 0.997612i \(0.522003\pi\)
\(920\) 0 0
\(921\) 41.5089 8.22807i 1.36777 0.271124i
\(922\) 0 0
\(923\) −1.87512 + 9.42688i −0.0617204 + 0.310290i
\(924\) 0 0
\(925\) 10.0700 2.00304i 0.331098 0.0658595i
\(926\) 0 0
\(927\) −25.8847 + 10.6817i −0.850166 + 0.350832i
\(928\) 0 0
\(929\) −20.3321 13.5854i −0.667073 0.445724i 0.175375 0.984502i \(-0.443886\pi\)
−0.842448 + 0.538778i \(0.818886\pi\)
\(930\) 0 0
\(931\) −1.43373 1.43373i −0.0469885 0.0469885i
\(932\) 0 0
\(933\) −0.0267611 + 40.4193i −0.000876118 + 1.32327i
\(934\) 0 0
\(935\) −9.94321 + 18.1918i −0.325178 + 0.594934i
\(936\) 0 0
\(937\) −19.3663 46.7545i −0.632671 1.52740i −0.836252 0.548345i \(-0.815258\pi\)
0.203582 0.979058i \(-0.434742\pi\)
\(938\) 0 0
\(939\) 2.58445 1.06851i 0.0843403 0.0348695i
\(940\) 0 0
\(941\) −2.00221 + 2.99651i −0.0652701 + 0.0976836i −0.862669 0.505769i \(-0.831209\pi\)
0.797399 + 0.603453i \(0.206209\pi\)
\(942\) 0 0
\(943\) −2.18105 0.903419i −0.0710246 0.0294194i
\(944\) 0 0
\(945\) 18.9421 + 28.4711i 0.616187 + 0.926166i
\(946\) 0 0
\(947\) 26.2908 + 5.22957i 0.854336 + 0.169938i 0.602783 0.797905i \(-0.294059\pi\)
0.251554 + 0.967843i \(0.419059\pi\)
\(948\) 0 0
\(949\) 30.8912 + 46.2320i 1.00277 + 1.50075i
\(950\) 0 0
\(951\) 39.0103 + 16.1889i 1.26500 + 0.524960i
\(952\) 0 0
\(953\) 24.2594i 0.785838i −0.919573 0.392919i \(-0.871465\pi\)
0.919573 0.392919i \(-0.128535\pi\)
\(954\) 0 0
\(955\) −1.82937 + 1.22234i −0.0591969 + 0.0395541i
\(956\) 0 0
\(957\) −18.9564 12.6844i −0.612772 0.410028i
\(958\) 0 0
\(959\) −6.16353 30.9862i −0.199031 1.00060i
\(960\) 0 0
\(961\) 8.67037 20.9321i 0.279689 0.675230i
\(962\) 0 0
\(963\) 1.09878 + 5.56241i 0.0354076 + 0.179246i
\(964\) 0 0
\(965\) 25.0752 25.0752i 0.807200 0.807200i
\(966\) 0 0
\(967\) 12.2636 5.07976i 0.394372 0.163354i −0.176680 0.984268i \(-0.556536\pi\)
0.571051 + 0.820914i \(0.306536\pi\)
\(968\) 0 0
\(969\) −4.72705 3.95916i −0.151855 0.127187i
\(970\) 0 0
\(971\) −14.2905 + 5.91933i −0.458605 + 0.189960i −0.600012 0.799991i \(-0.704837\pi\)
0.141407 + 0.989952i \(0.454837\pi\)
\(972\) 0 0
\(973\) 7.69338 7.69338i 0.246638 0.246638i
\(974\) 0 0
\(975\) −18.3181 27.4543i −0.586649 0.879241i
\(976\) 0 0
\(977\) −7.72995 + 18.6618i −0.247303 + 0.597042i −0.997973 0.0636347i \(-0.979731\pi\)
0.750670 + 0.660677i \(0.229731\pi\)
\(978\) 0 0
\(979\) 1.55497 + 7.81735i 0.0496970 + 0.249844i
\(980\) 0 0
\(981\) 10.4933 6.99134i 0.335026 0.223216i
\(982\) 0 0
\(983\) 21.6898 14.4927i 0.691797 0.462244i −0.159315 0.987228i \(-0.550929\pi\)
0.851112 + 0.524984i \(0.175929\pi\)
\(984\) 0 0
\(985\) 70.9874i 2.26185i
\(986\) 0 0
\(987\) −4.47994 + 10.7953i −0.142598 + 0.343618i
\(988\) 0 0
\(989\) 4.87497 + 7.29590i 0.155015 + 0.231996i
\(990\) 0 0
\(991\) −35.4161 7.04470i −1.12503 0.223782i −0.402701 0.915332i \(-0.631928\pi\)
−0.722329 + 0.691549i \(0.756928\pi\)
\(992\) 0 0
\(993\) −51.7460 10.3285i −1.64211 0.327766i
\(994\) 0 0
\(995\) −67.9824 28.1592i −2.15519 0.892707i
\(996\) 0 0
\(997\) 8.20777 12.2838i 0.259943 0.389032i −0.678425 0.734669i \(-0.737337\pi\)
0.938368 + 0.345638i \(0.112337\pi\)
\(998\) 0 0
\(999\) −4.75858 + 11.4240i −0.150555 + 0.361439i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.cj.c.641.4 32
3.2 odd 2 inner 816.2.cj.c.641.3 32
4.3 odd 2 51.2.i.a.29.1 32
12.11 even 2 51.2.i.a.29.4 yes 32
17.10 odd 16 inner 816.2.cj.c.401.3 32
51.44 even 16 inner 816.2.cj.c.401.4 32
68.3 even 16 867.2.i.g.329.1 32
68.7 even 16 867.2.i.h.503.4 32
68.11 even 16 867.2.i.d.653.1 32
68.15 odd 8 867.2.i.b.65.1 32
68.19 odd 8 867.2.i.i.65.1 32
68.23 even 16 867.2.i.c.653.1 32
68.27 even 16 51.2.i.a.44.4 yes 32
68.31 even 16 867.2.i.f.329.1 32
68.39 even 16 867.2.i.i.827.4 32
68.43 odd 8 867.2.i.g.224.4 32
68.47 odd 4 867.2.i.c.158.4 32
68.55 odd 4 867.2.i.d.158.4 32
68.59 odd 8 867.2.i.f.224.4 32
68.63 even 16 867.2.i.b.827.4 32
68.67 odd 2 867.2.i.h.131.1 32
204.11 odd 16 867.2.i.d.653.4 32
204.23 odd 16 867.2.i.c.653.4 32
204.47 even 4 867.2.i.c.158.1 32
204.59 even 8 867.2.i.f.224.1 32
204.71 odd 16 867.2.i.g.329.4 32
204.83 even 8 867.2.i.b.65.4 32
204.95 odd 16 51.2.i.a.44.1 yes 32
204.107 odd 16 867.2.i.i.827.1 32
204.131 odd 16 867.2.i.b.827.1 32
204.143 odd 16 867.2.i.h.503.1 32
204.155 even 8 867.2.i.i.65.4 32
204.167 odd 16 867.2.i.f.329.4 32
204.179 even 8 867.2.i.g.224.1 32
204.191 even 4 867.2.i.d.158.1 32
204.203 even 2 867.2.i.h.131.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.1 32 4.3 odd 2
51.2.i.a.29.4 yes 32 12.11 even 2
51.2.i.a.44.1 yes 32 204.95 odd 16
51.2.i.a.44.4 yes 32 68.27 even 16
816.2.cj.c.401.3 32 17.10 odd 16 inner
816.2.cj.c.401.4 32 51.44 even 16 inner
816.2.cj.c.641.3 32 3.2 odd 2 inner
816.2.cj.c.641.4 32 1.1 even 1 trivial
867.2.i.b.65.1 32 68.15 odd 8
867.2.i.b.65.4 32 204.83 even 8
867.2.i.b.827.1 32 204.131 odd 16
867.2.i.b.827.4 32 68.63 even 16
867.2.i.c.158.1 32 204.47 even 4
867.2.i.c.158.4 32 68.47 odd 4
867.2.i.c.653.1 32 68.23 even 16
867.2.i.c.653.4 32 204.23 odd 16
867.2.i.d.158.1 32 204.191 even 4
867.2.i.d.158.4 32 68.55 odd 4
867.2.i.d.653.1 32 68.11 even 16
867.2.i.d.653.4 32 204.11 odd 16
867.2.i.f.224.1 32 204.59 even 8
867.2.i.f.224.4 32 68.59 odd 8
867.2.i.f.329.1 32 68.31 even 16
867.2.i.f.329.4 32 204.167 odd 16
867.2.i.g.224.1 32 204.179 even 8
867.2.i.g.224.4 32 68.43 odd 8
867.2.i.g.329.1 32 68.3 even 16
867.2.i.g.329.4 32 204.71 odd 16
867.2.i.h.131.1 32 68.67 odd 2
867.2.i.h.131.4 32 204.203 even 2
867.2.i.h.503.1 32 204.143 odd 16
867.2.i.h.503.4 32 68.7 even 16
867.2.i.i.65.1 32 68.19 odd 8
867.2.i.i.65.4 32 204.155 even 8
867.2.i.i.827.1 32 204.107 odd 16
867.2.i.i.827.4 32 68.39 even 16