Properties

Label 867.2.i.g.224.1
Level $867$
Weight $2$
Character 867.224
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(65,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 224.1
Character \(\chi\) \(=\) 867.224
Dual form 867.2.i.g.329.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.556851 - 1.34436i) q^{2} +(-1.69855 + 0.339031i) q^{3} +(-0.0830021 + 0.0830021i) q^{4} +(-2.53714 + 1.69526i) q^{5} +(1.40162 + 2.09466i) q^{6} +(1.19824 - 1.79329i) q^{7} +(-2.53091 - 1.04834i) q^{8} +(2.77012 - 1.15172i) q^{9} +(3.69185 + 2.46681i) q^{10} +(-1.61618 + 0.321478i) q^{11} +(0.112843 - 0.169123i) q^{12} +(-3.12551 - 3.12551i) q^{13} +(-3.07806 - 0.612265i) q^{14} +(3.73470 - 3.73965i) q^{15} +4.22099i q^{16} +(-3.09087 - 3.08269i) q^{18} +(-0.797694 + 0.330416i) q^{19} +(0.0698774 - 0.351298i) q^{20} +(-1.42728 + 3.45222i) q^{21} +(1.33215 + 1.99371i) q^{22} +(-0.149554 - 0.751858i) q^{23} +(4.65429 + 0.922593i) q^{24} +(1.64974 - 3.98282i) q^{25} +(-2.46136 + 5.94226i) q^{26} +(-4.31470 + 2.89540i) q^{27} +(0.0493905 + 0.248303i) q^{28} +(4.43981 + 6.64464i) q^{29} +(-7.10709 - 2.93834i) q^{30} +(-0.563512 + 2.83296i) q^{31} +(0.612694 - 0.253786i) q^{32} +(2.63616 - 1.09398i) q^{33} +6.58114i q^{35} +(-0.134330 + 0.325520i) q^{36} +(-2.33589 - 0.464638i) q^{37} +(0.888394 + 0.888394i) q^{38} +(6.36847 + 4.24918i) q^{39} +(8.19848 - 1.63078i) q^{40} +(-2.56055 - 1.71091i) q^{41} +(5.43581 - 0.00359897i) q^{42} +(10.5751 + 4.38037i) q^{43} +(0.107463 - 0.160829i) q^{44} +(-5.07570 + 7.61814i) q^{45} +(-0.927487 + 0.619727i) q^{46} +(2.21238 - 2.21238i) q^{47} +(-1.43105 - 7.16954i) q^{48} +(0.898671 + 2.16958i) q^{49} -6.27299 q^{50} +0.518848 q^{52} +(2.43710 + 5.88369i) q^{53} +(6.29511 + 4.18819i) q^{54} +(3.55548 - 3.55548i) q^{55} +(-4.91261 + 3.28250i) q^{56} +(1.24290 - 0.831669i) q^{57} +(6.46046 - 9.66877i) q^{58} +(5.62864 + 2.33146i) q^{59} +(0.000410749 + 0.620386i) q^{60} +(4.86125 + 3.24818i) q^{61} +(4.12231 - 0.819979i) q^{62} +(1.25389 - 6.34765i) q^{63} +(5.28702 + 5.28702i) q^{64} +(13.2284 + 2.63129i) q^{65} +(-2.93865 - 2.93476i) q^{66} +7.19481i q^{67} +(0.508927 + 1.22636i) q^{69} +(8.84742 - 3.66472i) q^{70} +(-0.424222 + 2.13271i) q^{71} +(-8.21831 + 0.0108825i) q^{72} +(-6.98874 - 10.4594i) q^{73} +(0.676105 + 3.39901i) q^{74} +(-1.45186 + 7.32431i) q^{75} +(0.0387851 - 0.0936354i) q^{76} +(-1.36006 + 3.28348i) q^{77} +(2.16613 - 10.9277i) q^{78} +(1.16236 + 5.84360i) q^{79} +(-7.15567 - 10.7092i) q^{80} +(6.34708 - 6.38079i) q^{81} +(-0.874225 + 4.39502i) q^{82} +(-11.9985 + 4.96993i) q^{83} +(-0.168074 - 0.405009i) q^{84} -16.6560i q^{86} +(-9.79395 - 9.78099i) q^{87} +(4.42742 + 0.880669i) q^{88} +(-3.42023 - 3.42023i) q^{89} +(13.0679 + 2.58139i) q^{90} +(-9.35006 + 1.85984i) q^{91} +(0.0748190 + 0.0499925i) q^{92} +(-0.00331239 - 5.00297i) q^{93} +(-4.20619 - 1.74226i) q^{94} +(1.46372 - 2.19061i) q^{95} +(-0.954647 + 0.638789i) q^{96} +(2.94959 - 1.97085i) q^{97} +(2.41627 - 2.41627i) q^{98} +(-4.10675 + 2.75191i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} + 8 q^{6} + 24 q^{9} + 16 q^{10} + 16 q^{12} + 16 q^{13} + 16 q^{15} + 16 q^{18} + 32 q^{19} - 16 q^{21} - 16 q^{22} - 24 q^{24} - 24 q^{27} + 8 q^{30} - 32 q^{31} - 24 q^{36} - 16 q^{37}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.556851 1.34436i −0.393753 0.950605i −0.989115 0.147147i \(-0.952991\pi\)
0.595361 0.803458i \(-0.297009\pi\)
\(3\) −1.69855 + 0.339031i −0.980656 + 0.195740i
\(4\) −0.0830021 + 0.0830021i −0.0415010 + 0.0415010i
\(5\) −2.53714 + 1.69526i −1.13464 + 0.758144i −0.973477 0.228784i \(-0.926525\pi\)
−0.161165 + 0.986928i \(0.551525\pi\)
\(6\) 1.40162 + 2.09466i 0.572208 + 0.855143i
\(7\) 1.19824 1.79329i 0.452891 0.677800i −0.532823 0.846227i \(-0.678869\pi\)
0.985714 + 0.168427i \(0.0538688\pi\)
\(8\) −2.53091 1.04834i −0.894813 0.370644i
\(9\) 2.77012 1.15172i 0.923372 0.383906i
\(10\) 3.69185 + 2.46681i 1.16746 + 0.780075i
\(11\) −1.61618 + 0.321478i −0.487296 + 0.0969292i −0.432623 0.901575i \(-0.642412\pi\)
−0.0546734 + 0.998504i \(0.517412\pi\)
\(12\) 0.112843 0.169123i 0.0325748 0.0488216i
\(13\) −3.12551 3.12551i −0.866861 0.866861i 0.125262 0.992124i \(-0.460023\pi\)
−0.992124 + 0.125262i \(0.960023\pi\)
\(14\) −3.07806 0.612265i −0.822647 0.163635i
\(15\) 3.73470 3.73965i 0.964295 0.965572i
\(16\) 4.22099i 1.05525i
\(17\) 0 0
\(18\) −3.09087 3.08269i −0.728524 0.726597i
\(19\) −0.797694 + 0.330416i −0.183004 + 0.0758025i −0.472304 0.881436i \(-0.656577\pi\)
0.289300 + 0.957238i \(0.406577\pi\)
\(20\) 0.0698774 0.351298i 0.0156251 0.0785525i
\(21\) −1.42728 + 3.45222i −0.311458 + 0.753337i
\(22\) 1.33215 + 1.99371i 0.284016 + 0.425060i
\(23\) −0.149554 0.751858i −0.0311841 0.156773i 0.962056 0.272853i \(-0.0879672\pi\)
−0.993240 + 0.116080i \(0.962967\pi\)
\(24\) 4.65429 + 0.922593i 0.950053 + 0.188323i
\(25\) 1.64974 3.98282i 0.329947 0.796563i
\(26\) −2.46136 + 5.94226i −0.482713 + 1.16537i
\(27\) −4.31470 + 2.89540i −0.830364 + 0.557221i
\(28\) 0.0493905 + 0.248303i 0.00933393 + 0.0469248i
\(29\) 4.43981 + 6.64464i 0.824451 + 1.23388i 0.969655 + 0.244477i \(0.0786163\pi\)
−0.145204 + 0.989402i \(0.546384\pi\)
\(30\) −7.10709 2.93834i −1.29757 0.536466i
\(31\) −0.563512 + 2.83296i −0.101210 + 0.508815i 0.896610 + 0.442820i \(0.146022\pi\)
−0.997820 + 0.0659948i \(0.978978\pi\)
\(32\) 0.612694 0.253786i 0.108310 0.0448635i
\(33\) 2.63616 1.09398i 0.458897 0.190437i
\(34\) 0 0
\(35\) 6.58114i 1.11242i
\(36\) −0.134330 + 0.325520i −0.0223884 + 0.0542534i
\(37\) −2.33589 0.464638i −0.384018 0.0763860i −0.000693887 1.00000i \(-0.500221\pi\)
−0.383324 + 0.923614i \(0.625221\pi\)
\(38\) 0.888394 + 0.888394i 0.144117 + 0.144117i
\(39\) 6.36847 + 4.24918i 1.01977 + 0.680414i
\(40\) 8.19848 1.63078i 1.29629 0.257849i
\(41\) −2.56055 1.71091i −0.399891 0.267199i 0.339322 0.940670i \(-0.389802\pi\)
−0.739213 + 0.673471i \(0.764802\pi\)
\(42\) 5.43581 0.00359897i 0.838764 0.000555333i
\(43\) 10.5751 + 4.38037i 1.61269 + 0.668000i 0.993138 0.116952i \(-0.0373124\pi\)
0.619557 + 0.784952i \(0.287312\pi\)
\(44\) 0.107463 0.160829i 0.0162006 0.0242459i
\(45\) −5.07570 + 7.61814i −0.756640 + 1.13564i
\(46\) −0.927487 + 0.619727i −0.136751 + 0.0913738i
\(47\) 2.21238 2.21238i 0.322708 0.322708i −0.527097 0.849805i \(-0.676719\pi\)
0.849805 + 0.527097i \(0.176719\pi\)
\(48\) −1.43105 7.16954i −0.206554 1.03483i
\(49\) 0.898671 + 2.16958i 0.128382 + 0.309940i
\(50\) −6.27299 −0.887135
\(51\) 0 0
\(52\) 0.518848 0.0719513
\(53\) 2.43710 + 5.88369i 0.334762 + 0.808187i 0.998201 + 0.0599567i \(0.0190963\pi\)
−0.663439 + 0.748230i \(0.730904\pi\)
\(54\) 6.29511 + 4.18819i 0.856655 + 0.569941i
\(55\) 3.55548 3.55548i 0.479420 0.479420i
\(56\) −4.91261 + 3.28250i −0.656475 + 0.438642i
\(57\) 1.24290 0.831669i 0.164626 0.110157i
\(58\) 6.46046 9.66877i 0.848301 1.26957i
\(59\) 5.62864 + 2.33146i 0.732786 + 0.303530i 0.717696 0.696356i \(-0.245197\pi\)
0.0150898 + 0.999886i \(0.495197\pi\)
\(60\) 0.000410749 0.620386i 5.30274e−5 0.0800915i
\(61\) 4.86125 + 3.24818i 0.622419 + 0.415887i 0.826397 0.563089i \(-0.190387\pi\)
−0.203978 + 0.978976i \(0.565387\pi\)
\(62\) 4.12231 0.819979i 0.523534 0.104137i
\(63\) 1.25389 6.34765i 0.157975 0.799729i
\(64\) 5.28702 + 5.28702i 0.660877 + 0.660877i
\(65\) 13.2284 + 2.63129i 1.64078 + 0.326372i
\(66\) −2.93865 2.93476i −0.361723 0.361244i
\(67\) 7.19481i 0.878985i 0.898246 + 0.439493i \(0.144842\pi\)
−0.898246 + 0.439493i \(0.855158\pi\)
\(68\) 0 0
\(69\) 0.508927 + 1.22636i 0.0612676 + 0.147637i
\(70\) 8.84742 3.66472i 1.05747 0.438018i
\(71\) −0.424222 + 2.13271i −0.0503459 + 0.253106i −0.997759 0.0669064i \(-0.978687\pi\)
0.947413 + 0.320012i \(0.103687\pi\)
\(72\) −8.21831 + 0.0108825i −0.968537 + 0.00128251i
\(73\) −6.98874 10.4594i −0.817970 1.22418i −0.971736 0.236072i \(-0.924140\pi\)
0.153765 0.988107i \(-0.450860\pi\)
\(74\) 0.676105 + 3.39901i 0.0785956 + 0.395127i
\(75\) −1.45186 + 7.32431i −0.167646 + 0.845738i
\(76\) 0.0387851 0.0936354i 0.00444895 0.0107407i
\(77\) −1.36006 + 3.28348i −0.154994 + 0.374187i
\(78\) 2.16613 10.9277i 0.245266 1.23732i
\(79\) 1.16236 + 5.84360i 0.130776 + 0.657456i 0.989443 + 0.144922i \(0.0462932\pi\)
−0.858667 + 0.512534i \(0.828707\pi\)
\(80\) −7.15567 10.7092i −0.800028 1.19733i
\(81\) 6.34708 6.38079i 0.705232 0.708977i
\(82\) −0.874225 + 4.39502i −0.0965420 + 0.485349i
\(83\) −11.9985 + 4.96993i −1.31700 + 0.545521i −0.926920 0.375258i \(-0.877554\pi\)
−0.390084 + 0.920779i \(0.627554\pi\)
\(84\) −0.168074 0.405009i −0.0183384 0.0441901i
\(85\) 0 0
\(86\) 16.6560i 1.79606i
\(87\) −9.79395 9.78099i −1.05002 1.04863i
\(88\) 4.42742 + 0.880669i 0.471965 + 0.0938796i
\(89\) −3.42023 3.42023i −0.362544 0.362544i 0.502205 0.864749i \(-0.332522\pi\)
−0.864749 + 0.502205i \(0.832522\pi\)
\(90\) 13.0679 + 2.58139i 1.37748 + 0.272102i
\(91\) −9.35006 + 1.85984i −0.980152 + 0.194964i
\(92\) 0.0748190 + 0.0499925i 0.00780042 + 0.00521208i
\(93\) −0.00331239 5.00297i −0.000343479 0.518783i
\(94\) −4.20619 1.74226i −0.433836 0.179701i
\(95\) 1.46372 2.19061i 0.150174 0.224752i
\(96\) −0.954647 + 0.638789i −0.0974333 + 0.0651962i
\(97\) 2.94959 1.97085i 0.299486 0.200110i −0.396744 0.917929i \(-0.629860\pi\)
0.696229 + 0.717820i \(0.254860\pi\)
\(98\) 2.41627 2.41627i 0.244080 0.244080i
\(99\) −4.10675 + 2.75191i −0.412744 + 0.276578i
\(100\) 0.193650 + 0.467514i 0.0193650 + 0.0467514i
\(101\) −3.73948 −0.372092 −0.186046 0.982541i \(-0.559567\pi\)
−0.186046 + 0.982541i \(0.559567\pi\)
\(102\) 0 0
\(103\) 9.33404 0.919710 0.459855 0.887994i \(-0.347901\pi\)
0.459855 + 0.887994i \(0.347901\pi\)
\(104\) 4.63380 + 11.1870i 0.454382 + 1.09698i
\(105\) −2.23121 11.1784i −0.217744 1.09090i
\(106\) 6.55268 6.55268i 0.636453 0.636453i
\(107\) 1.57145 1.05001i 0.151918 0.101508i −0.477288 0.878747i \(-0.658380\pi\)
0.629206 + 0.777239i \(0.283380\pi\)
\(108\) 0.117805 0.598453i 0.0113357 0.0575862i
\(109\) −2.33508 + 3.49469i −0.223660 + 0.334730i −0.926281 0.376834i \(-0.877013\pi\)
0.702621 + 0.711564i \(0.252013\pi\)
\(110\) −6.75970 2.79996i −0.644513 0.266966i
\(111\) 4.12515 0.00273120i 0.391542 0.000259234i
\(112\) 7.56945 + 5.05774i 0.715246 + 0.477912i
\(113\) 16.1688 3.21617i 1.52103 0.302552i 0.637325 0.770595i \(-0.280041\pi\)
0.883705 + 0.468043i \(0.155041\pi\)
\(114\) −1.81017 1.20778i −0.169538 0.113119i
\(115\) 1.65403 + 1.65403i 0.154239 + 0.154239i
\(116\) −0.920032 0.183006i −0.0854228 0.0169917i
\(117\) −12.2577 5.05832i −1.13323 0.467642i
\(118\) 8.86518i 0.816106i
\(119\) 0 0
\(120\) −13.3726 + 5.54949i −1.22075 + 0.506597i
\(121\) −7.65399 + 3.17039i −0.695817 + 0.288217i
\(122\) 1.65973 8.34401i 0.150265 0.755431i
\(123\) 4.92927 + 2.03795i 0.444457 + 0.183756i
\(124\) −0.188369 0.281914i −0.0169161 0.0253167i
\(125\) −0.410177 2.06210i −0.0366873 0.184440i
\(126\) −9.23175 + 1.84902i −0.822430 + 0.164724i
\(127\) −4.71179 + 11.3753i −0.418104 + 1.00939i 0.564792 + 0.825233i \(0.308956\pi\)
−0.982896 + 0.184159i \(0.941044\pi\)
\(128\) 4.67113 11.2771i 0.412874 0.996766i
\(129\) −19.4474 3.85495i −1.71225 0.339410i
\(130\) −3.82886 19.2490i −0.335813 1.68825i
\(131\) 1.95921 + 2.93217i 0.171177 + 0.256185i 0.907132 0.420846i \(-0.138267\pi\)
−0.735955 + 0.677030i \(0.763267\pi\)
\(132\) −0.128004 + 0.309609i −0.0111413 + 0.0269480i
\(133\) −0.363296 + 1.82641i −0.0315018 + 0.158370i
\(134\) 9.67240 4.00644i 0.835568 0.346103i
\(135\) 6.03852 14.6606i 0.519713 1.26178i
\(136\) 0 0
\(137\) 14.6484i 1.25150i 0.780025 + 0.625748i \(0.215206\pi\)
−0.780025 + 0.625748i \(0.784794\pi\)
\(138\) 1.36527 1.36708i 0.116220 0.116374i
\(139\) −4.94769 0.984156i −0.419657 0.0834750i −0.0192553 0.999815i \(-0.506130\pi\)
−0.400402 + 0.916340i \(0.631130\pi\)
\(140\) −0.546249 0.546249i −0.0461664 0.0461664i
\(141\) −3.00776 + 4.50789i −0.253299 + 0.379633i
\(142\) 3.10335 0.617296i 0.260428 0.0518023i
\(143\) 6.05617 + 4.04660i 0.506442 + 0.338394i
\(144\) 4.86139 + 11.6926i 0.405116 + 0.974385i
\(145\) −22.5288 9.33173i −1.87091 0.774958i
\(146\) −10.1695 + 15.2197i −0.841632 + 1.25959i
\(147\) −2.26199 3.38046i −0.186566 0.278816i
\(148\) 0.232450 0.155318i 0.0191073 0.0127671i
\(149\) −4.44785 + 4.44785i −0.364382 + 0.364382i −0.865423 0.501041i \(-0.832950\pi\)
0.501041 + 0.865423i \(0.332950\pi\)
\(150\) 10.6550 2.12674i 0.869974 0.173647i
\(151\) 5.82179 + 14.0551i 0.473771 + 1.14378i 0.962484 + 0.271339i \(0.0874665\pi\)
−0.488713 + 0.872445i \(0.662533\pi\)
\(152\) 2.36528 0.191850
\(153\) 0 0
\(154\) 5.17153 0.416734
\(155\) −3.37291 8.14291i −0.270918 0.654055i
\(156\) −0.881287 + 0.175906i −0.0705594 + 0.0140837i
\(157\) −1.74527 + 1.74527i −0.139287 + 0.139287i −0.773312 0.634025i \(-0.781402\pi\)
0.634025 + 0.773312i \(0.281402\pi\)
\(158\) 7.20863 4.81665i 0.573488 0.383192i
\(159\) −6.13429 9.16747i −0.486481 0.727027i
\(160\) −1.12425 + 1.68257i −0.0888801 + 0.133018i
\(161\) −1.52750 0.632711i −0.120384 0.0498646i
\(162\) −12.1125 4.97960i −0.951644 0.391235i
\(163\) 0.923662 + 0.617171i 0.0723468 + 0.0483406i 0.591218 0.806512i \(-0.298647\pi\)
−0.518871 + 0.854853i \(0.673647\pi\)
\(164\) 0.354540 0.0705224i 0.0276849 0.00550688i
\(165\) −4.83372 + 7.24455i −0.376305 + 0.563988i
\(166\) 13.3627 + 13.3627i 1.03715 + 1.03715i
\(167\) −19.4786 3.87453i −1.50730 0.299820i −0.628800 0.777567i \(-0.716453\pi\)
−0.878497 + 0.477747i \(0.841453\pi\)
\(168\) 7.23142 7.24100i 0.557916 0.558655i
\(169\) 6.53766i 0.502897i
\(170\) 0 0
\(171\) −1.82916 + 1.83401i −0.139879 + 0.140250i
\(172\) −1.24134 + 0.514179i −0.0946511 + 0.0392058i
\(173\) −2.27012 + 11.4127i −0.172594 + 0.867689i 0.793316 + 0.608811i \(0.208353\pi\)
−0.965910 + 0.258879i \(0.916647\pi\)
\(174\) −7.69538 + 18.6131i −0.583385 + 1.41106i
\(175\) −5.16557 7.73082i −0.390480 0.584395i
\(176\) −1.35695 6.82187i −0.102284 0.514217i
\(177\) −10.3509 2.05181i −0.778024 0.154223i
\(178\) −2.69345 + 6.50257i −0.201883 + 0.487389i
\(179\) 0.324004 0.782216i 0.0242172 0.0584656i −0.911308 0.411725i \(-0.864927\pi\)
0.935526 + 0.353259i \(0.114927\pi\)
\(180\) −0.211028 1.05361i −0.0157291 0.0785318i
\(181\) 0.279729 + 1.40629i 0.0207921 + 0.104529i 0.989788 0.142549i \(-0.0455298\pi\)
−0.968996 + 0.247078i \(0.920530\pi\)
\(182\) 7.70689 + 11.5342i 0.571272 + 0.854970i
\(183\) −9.35828 3.86907i −0.691784 0.286010i
\(184\) −0.409694 + 2.05967i −0.0302030 + 0.151841i
\(185\) 6.71416 2.78110i 0.493635 0.204470i
\(186\) −6.72393 + 2.79036i −0.493023 + 0.204599i
\(187\) 0 0
\(188\) 0.367264i 0.0267855i
\(189\) 0.0222598 + 11.2069i 0.00161916 + 0.815181i
\(190\) −3.76004 0.747918i −0.272782 0.0542596i
\(191\) −0.509849 0.509849i −0.0368914 0.0368914i 0.688420 0.725312i \(-0.258304\pi\)
−0.725312 + 0.688420i \(0.758304\pi\)
\(192\) −10.7727 7.18778i −0.777453 0.518733i
\(193\) −11.3982 + 2.26724i −0.820460 + 0.163200i −0.587435 0.809271i \(-0.699862\pi\)
−0.233025 + 0.972471i \(0.574862\pi\)
\(194\) −4.29202 2.86783i −0.308149 0.205898i
\(195\) −23.3612 + 0.0154671i −1.67293 + 0.00110762i
\(196\) −0.254671 0.105488i −0.0181908 0.00753488i
\(197\) 12.9248 19.3433i 0.920852 1.37815i −0.00488610 0.999988i \(-0.501555\pi\)
0.925738 0.378165i \(-0.123445\pi\)
\(198\) 5.98641 + 3.98853i 0.425435 + 0.283453i
\(199\) −20.0507 + 13.3975i −1.42136 + 0.949720i −0.422293 + 0.906459i \(0.638775\pi\)
−0.999064 + 0.0432612i \(0.986225\pi\)
\(200\) −8.35068 + 8.35068i −0.590482 + 0.590482i
\(201\) −2.43926 12.2207i −0.172052 0.861982i
\(202\) 2.08233 + 5.02720i 0.146512 + 0.353712i
\(203\) 17.2357 1.20971
\(204\) 0 0
\(205\) 9.39691 0.656309
\(206\) −5.19767 12.5483i −0.362139 0.874281i
\(207\) −1.28021 1.91049i −0.0889808 0.132788i
\(208\) 13.1927 13.1927i 0.914753 0.914753i
\(209\) 1.18299 0.790451i 0.0818294 0.0546767i
\(210\) −13.7853 + 9.22424i −0.951275 + 0.636533i
\(211\) −8.67243 + 12.9792i −0.597035 + 0.893525i −0.999762 0.0217944i \(-0.993062\pi\)
0.402728 + 0.915320i \(0.368062\pi\)
\(212\) −0.690643 0.286074i −0.0474336 0.0196476i
\(213\) −0.00249363 3.76633i −0.000170861 0.258065i
\(214\) −2.28665 1.52789i −0.156312 0.104444i
\(215\) −34.2564 + 6.81403i −2.33627 + 0.464713i
\(216\) 13.9555 2.80475i 0.949551 0.190839i
\(217\) 4.40510 + 4.40510i 0.299038 + 0.299038i
\(218\) 5.99840 + 1.19316i 0.406263 + 0.0808107i
\(219\) 15.4168 + 15.3964i 1.04177 + 1.04039i
\(220\) 0.590224i 0.0397929i
\(221\) 0 0
\(222\) −2.30077 5.54415i −0.154417 0.372099i
\(223\) 2.24695 0.930718i 0.150467 0.0623255i −0.306179 0.951974i \(-0.599051\pi\)
0.456646 + 0.889648i \(0.349051\pi\)
\(224\) 0.279041 1.40283i 0.0186442 0.0937307i
\(225\) −0.0171254 12.9329i −0.00114169 0.862193i
\(226\) −13.3273 19.9457i −0.886518 1.32677i
\(227\) 0.273987 + 1.37743i 0.0181852 + 0.0914231i 0.988812 0.149167i \(-0.0476591\pi\)
−0.970627 + 0.240590i \(0.922659\pi\)
\(228\) −0.0341329 + 0.172193i −0.00226051 + 0.0114038i
\(229\) 4.16234 10.0488i 0.275055 0.664043i −0.724630 0.689139i \(-0.757989\pi\)
0.999685 + 0.0250960i \(0.00798914\pi\)
\(230\) 1.30256 3.14466i 0.0858884 0.207353i
\(231\) 1.19693 6.03825i 0.0787520 0.397287i
\(232\) −4.27093 21.4714i −0.280400 1.40967i
\(233\) −7.96478 11.9201i −0.521790 0.780914i 0.473193 0.880959i \(-0.343101\pi\)
−0.994983 + 0.100045i \(0.968101\pi\)
\(234\) 0.0255506 + 19.2955i 0.00167030 + 1.26139i
\(235\) −1.86255 + 9.36366i −0.121499 + 0.610818i
\(236\) −0.660704 + 0.273673i −0.0430082 + 0.0178146i
\(237\) −3.95549 9.53155i −0.256937 0.619140i
\(238\) 0 0
\(239\) 23.7093i 1.53362i −0.641872 0.766812i \(-0.721842\pi\)
0.641872 0.766812i \(-0.278158\pi\)
\(240\) 15.7850 + 15.7641i 1.01892 + 1.01757i
\(241\) 2.76030 + 0.549058i 0.177807 + 0.0353679i 0.283191 0.959064i \(-0.408607\pi\)
−0.105384 + 0.994432i \(0.533607\pi\)
\(242\) 8.52427 + 8.52427i 0.547961 + 0.547961i
\(243\) −8.61753 + 12.9899i −0.552815 + 0.833304i
\(244\) −0.673099 + 0.133888i −0.0430908 + 0.00857128i
\(245\) −5.95806 3.98105i −0.380646 0.254340i
\(246\) −0.00513881 7.76154i −0.000327638 0.494858i
\(247\) 3.52592 + 1.46048i 0.224349 + 0.0929284i
\(248\) 4.39610 6.57923i 0.279153 0.417782i
\(249\) 18.6950 12.5095i 1.18475 0.792758i
\(250\) −2.54379 + 1.69971i −0.160883 + 0.107499i
\(251\) −10.7058 + 10.7058i −0.675745 + 0.675745i −0.959034 0.283289i \(-0.908574\pi\)
0.283289 + 0.959034i \(0.408574\pi\)
\(252\) 0.422793 + 0.630944i 0.0266334 + 0.0397457i
\(253\) 0.483411 + 1.16706i 0.0303918 + 0.0733723i
\(254\) 17.9162 1.12416
\(255\) 0 0
\(256\) −2.80767 −0.175479
\(257\) −7.61319 18.3799i −0.474898 1.14650i −0.961973 0.273145i \(-0.911936\pi\)
0.487075 0.873360i \(-0.338064\pi\)
\(258\) 5.64690 + 28.2910i 0.351561 + 1.76132i
\(259\) −3.63218 + 3.63218i −0.225693 + 0.225693i
\(260\) −1.31639 + 0.879583i −0.0816389 + 0.0545494i
\(261\) 19.9515 + 13.2930i 1.23497 + 0.822817i
\(262\) 2.85090 4.26667i 0.176129 0.263596i
\(263\) −0.121128 0.0501727i −0.00746905 0.00309378i 0.378946 0.925419i \(-0.376287\pi\)
−0.386415 + 0.922325i \(0.626287\pi\)
\(264\) −7.81875 + 0.00517669i −0.481211 + 0.000318603i
\(265\) −16.1577 10.7962i −0.992557 0.663205i
\(266\) 2.65765 0.528640i 0.162951 0.0324130i
\(267\) 6.96898 + 4.64985i 0.426495 + 0.284566i
\(268\) −0.597184 0.597184i −0.0364788 0.0364788i
\(269\) 5.83131 + 1.15992i 0.355541 + 0.0707216i 0.369630 0.929179i \(-0.379485\pi\)
−0.0140883 + 0.999901i \(0.504485\pi\)
\(270\) −23.0716 + 0.0458262i −1.40409 + 0.00278890i
\(271\) 6.87483i 0.417616i −0.977957 0.208808i \(-0.933042\pi\)
0.977957 0.208808i \(-0.0669584\pi\)
\(272\) 0 0
\(273\) 15.2510 6.32899i 0.923030 0.383048i
\(274\) 19.6927 8.15697i 1.18968 0.492781i
\(275\) −1.38588 + 6.96730i −0.0835718 + 0.420144i
\(276\) −0.144033 0.0595485i −0.00866974 0.00358440i
\(277\) 4.60979 + 6.89904i 0.276975 + 0.414523i 0.943711 0.330771i \(-0.107309\pi\)
−0.666736 + 0.745294i \(0.732309\pi\)
\(278\) 1.43207 + 7.19949i 0.0858897 + 0.431797i
\(279\) 1.70179 + 8.49665i 0.101883 + 0.508681i
\(280\) 6.89927 16.6563i 0.412310 0.995404i
\(281\) 5.07041 12.2411i 0.302475 0.730240i −0.697432 0.716651i \(-0.745674\pi\)
0.999908 0.0135893i \(-0.00432576\pi\)
\(282\) 7.73509 + 1.53328i 0.460618 + 0.0913056i
\(283\) 2.73771 + 13.7634i 0.162740 + 0.818149i 0.972772 + 0.231763i \(0.0744495\pi\)
−0.810032 + 0.586385i \(0.800550\pi\)
\(284\) −0.141808 0.212231i −0.00841475 0.0125936i
\(285\) −1.74351 + 4.21709i −0.103276 + 0.249799i
\(286\) 2.06770 10.3950i 0.122266 0.614670i
\(287\) −6.13631 + 2.54174i −0.362215 + 0.150034i
\(288\) 1.40494 1.40867i 0.0827870 0.0830066i
\(289\) 0 0
\(290\) 35.4832i 2.08364i
\(291\) −4.34183 + 4.34759i −0.254523 + 0.254860i
\(292\) 1.44823 + 0.288071i 0.0847513 + 0.0168581i
\(293\) 18.6721 + 18.6721i 1.09083 + 1.09083i 0.995440 + 0.0953949i \(0.0304114\pi\)
0.0953949 + 0.995440i \(0.469589\pi\)
\(294\) −3.28496 + 4.92334i −0.191583 + 0.287135i
\(295\) −18.2331 + 3.62678i −1.06157 + 0.211159i
\(296\) 5.42484 + 3.62476i 0.315312 + 0.210685i
\(297\) 6.04252 6.06657i 0.350622 0.352018i
\(298\) 8.45629 + 3.50271i 0.489860 + 0.202907i
\(299\) −1.88251 + 2.81737i −0.108868 + 0.162933i
\(300\) −0.487426 0.728440i −0.0281415 0.0420565i
\(301\) 20.5268 13.7156i 1.18315 0.790552i
\(302\) 15.6531 15.6531i 0.900738 0.900738i
\(303\) 6.35167 1.26780i 0.364894 0.0728331i
\(304\) −1.39468 3.36705i −0.0799904 0.193114i
\(305\) −17.8402 −1.02152
\(306\) 0 0
\(307\) −24.4315 −1.39438 −0.697189 0.716887i \(-0.745566\pi\)
−0.697189 + 0.716887i \(0.745566\pi\)
\(308\) −0.159648 0.385424i −0.00909677 0.0219616i
\(309\) −15.8543 + 3.16453i −0.901919 + 0.180024i
\(310\) −9.06879 + 9.06879i −0.515073 + 0.515073i
\(311\) 19.4033 12.9649i 1.10026 0.735169i 0.133548 0.991042i \(-0.457363\pi\)
0.966710 + 0.255873i \(0.0823629\pi\)
\(312\) −11.6635 17.4306i −0.660314 0.986814i
\(313\) −0.897040 + 1.34251i −0.0507037 + 0.0758834i −0.855955 0.517050i \(-0.827030\pi\)
0.805252 + 0.592933i \(0.202030\pi\)
\(314\) 3.31812 + 1.37441i 0.187252 + 0.0775624i
\(315\) 7.57963 + 18.2305i 0.427064 + 1.02717i
\(316\) −0.581510 0.388552i −0.0327125 0.0218578i
\(317\) −23.9165 + 4.75728i −1.34328 + 0.267195i −0.813809 0.581132i \(-0.802610\pi\)
−0.529472 + 0.848327i \(0.677610\pi\)
\(318\) −8.90847 + 13.3516i −0.499562 + 0.748720i
\(319\) −9.31162 9.31162i −0.521351 0.521351i
\(320\) −22.3768 4.45101i −1.25090 0.248819i
\(321\) −2.31319 + 2.31626i −0.129110 + 0.129281i
\(322\) 2.40583i 0.134072i
\(323\) 0 0
\(324\) 0.00279782 + 1.05644i 0.000155435 + 0.0586911i
\(325\) −17.6046 + 7.29207i −0.976529 + 0.404491i
\(326\) 0.315357 1.58540i 0.0174660 0.0878074i
\(327\) 2.78143 6.72755i 0.153813 0.372034i
\(328\) 4.68693 + 7.01448i 0.258792 + 0.387310i
\(329\) −1.31648 6.61839i −0.0725798 0.364883i
\(330\) 12.4309 + 2.46411i 0.684301 + 0.135645i
\(331\) −11.6584 + 28.1459i −0.640804 + 1.54704i 0.184793 + 0.982777i \(0.440839\pi\)
−0.825597 + 0.564260i \(0.809161\pi\)
\(332\) 0.583384 1.40841i 0.0320173 0.0772967i
\(333\) −7.00582 + 1.40319i −0.383917 + 0.0768944i
\(334\) 5.63791 + 28.3437i 0.308493 + 1.55090i
\(335\) −12.1971 18.2542i −0.666397 0.997334i
\(336\) −14.5718 6.02453i −0.794956 0.328665i
\(337\) 3.36062 16.8950i 0.183065 0.920329i −0.774602 0.632449i \(-0.782050\pi\)
0.957667 0.287880i \(-0.0929504\pi\)
\(338\) 8.78896 3.64051i 0.478057 0.198018i
\(339\) −26.3730 + 10.9445i −1.43239 + 0.594425i
\(340\) 0 0
\(341\) 4.75973i 0.257754i
\(342\) 3.48413 + 1.43777i 0.188400 + 0.0777459i
\(343\) 19.7748 + 3.93346i 1.06774 + 0.212387i
\(344\) −22.1727 22.1727i −1.19547 1.19547i
\(345\) −3.37022 2.24868i −0.181447 0.121065i
\(346\) 16.6068 3.30331i 0.892789 0.177587i
\(347\) −16.8245 11.2418i −0.903188 0.603491i 0.0148907 0.999889i \(-0.495260\pi\)
−0.918079 + 0.396398i \(0.870260\pi\)
\(348\) 1.62476 0.00107573i 0.0870963 5.76652e-5i
\(349\) −7.02410 2.90948i −0.375992 0.155741i 0.186681 0.982421i \(-0.440227\pi\)
−0.562673 + 0.826680i \(0.690227\pi\)
\(350\) −7.51653 + 11.2493i −0.401776 + 0.601300i
\(351\) 22.5353 + 4.43603i 1.20284 + 0.236778i
\(352\) −0.908636 + 0.607131i −0.0484304 + 0.0323602i
\(353\) 8.44344 8.44344i 0.449399 0.449399i −0.445756 0.895155i \(-0.647065\pi\)
0.895155 + 0.445756i \(0.147065\pi\)
\(354\) 3.00557 + 15.0579i 0.159744 + 0.800319i
\(355\) −2.53919 6.13014i −0.134766 0.325354i
\(356\) 0.567772 0.0300919
\(357\) 0 0
\(358\) −1.23200 −0.0651133
\(359\) 8.80076 + 21.2469i 0.464487 + 1.12137i 0.966536 + 0.256531i \(0.0825795\pi\)
−0.502049 + 0.864839i \(0.667420\pi\)
\(360\) 20.8325 13.9598i 1.09797 0.735746i
\(361\) −12.9079 + 12.9079i −0.679363 + 0.679363i
\(362\) 1.73479 1.15915i 0.0911786 0.0609236i
\(363\) 11.9258 7.97999i 0.625942 0.418841i
\(364\) 0.621703 0.930445i 0.0325861 0.0487685i
\(365\) 35.4628 + 14.6892i 1.85621 + 0.768866i
\(366\) 0.00975609 + 14.7354i 0.000509959 + 0.770231i
\(367\) 13.6449 + 9.11720i 0.712256 + 0.475914i 0.858159 0.513385i \(-0.171609\pi\)
−0.145903 + 0.989299i \(0.546609\pi\)
\(368\) 3.17358 0.631265i 0.165434 0.0329070i
\(369\) −9.06352 1.79037i −0.471828 0.0932031i
\(370\) −7.47758 7.47758i −0.388741 0.388741i
\(371\) 13.4714 + 2.67963i 0.699400 + 0.139119i
\(372\) 0.415531 + 0.414982i 0.0215443 + 0.0215158i
\(373\) 1.61824i 0.0837894i 0.999122 + 0.0418947i \(0.0133394\pi\)
−0.999122 + 0.0418947i \(0.986661\pi\)
\(374\) 0 0
\(375\) 1.39582 + 3.36351i 0.0720798 + 0.173691i
\(376\) −7.91865 + 3.28001i −0.408373 + 0.169154i
\(377\) 6.89124 34.6446i 0.354917 1.78429i
\(378\) 15.0537 6.27050i 0.774278 0.322520i
\(379\) 8.62771 + 12.9123i 0.443176 + 0.663260i 0.984060 0.177838i \(-0.0569102\pi\)
−0.540884 + 0.841097i \(0.681910\pi\)
\(380\) 0.0603334 + 0.303317i 0.00309504 + 0.0155598i
\(381\) 4.14663 20.9189i 0.212438 1.07171i
\(382\) −0.401510 + 0.969330i −0.0205430 + 0.0495952i
\(383\) −8.47433 + 20.4588i −0.433018 + 1.04540i 0.545291 + 0.838247i \(0.316419\pi\)
−0.978309 + 0.207151i \(0.933581\pi\)
\(384\) −4.11084 + 20.7384i −0.209781 + 1.05830i
\(385\) −2.11569 10.6363i −0.107826 0.542076i
\(386\) 9.39509 + 14.0607i 0.478197 + 0.715673i
\(387\) 34.3393 0.0454712i 1.74557 0.00231143i
\(388\) −0.0812372 + 0.408407i −0.00412419 + 0.0207337i
\(389\) 14.0162 5.80572i 0.710652 0.294362i 0.00207747 0.999998i \(-0.499339\pi\)
0.708574 + 0.705636i \(0.249339\pi\)
\(390\) 13.0295 + 31.3972i 0.659774 + 1.58986i
\(391\) 0 0
\(392\) 6.43314i 0.324922i
\(393\) −4.32191 4.31619i −0.218011 0.217723i
\(394\) −33.2015 6.60419i −1.67267 0.332714i
\(395\) −12.8555 12.8555i −0.646831 0.646831i
\(396\) 0.112454 0.569283i 0.00565103 0.0286076i
\(397\) 36.9140 7.34266i 1.85266 0.368517i 0.862230 0.506518i \(-0.169068\pi\)
0.990432 + 0.138000i \(0.0440675\pi\)
\(398\) 29.1762 + 19.4949i 1.46247 + 0.977193i
\(399\) −0.00213550 3.22541i −0.000106909 0.161473i
\(400\) 16.8114 + 6.96352i 0.840571 + 0.348176i
\(401\) −1.96330 + 2.93829i −0.0980426 + 0.146731i −0.877248 0.480038i \(-0.840623\pi\)
0.779205 + 0.626769i \(0.215623\pi\)
\(402\) −15.0707 + 10.0844i −0.751658 + 0.502962i
\(403\) 10.6157 7.09320i 0.528807 0.353338i
\(404\) 0.310384 0.310384i 0.0154422 0.0154422i
\(405\) −5.28632 + 26.9489i −0.262679 + 1.33910i
\(406\) −9.59773 23.1710i −0.476327 1.14996i
\(407\) 3.92459 0.194535
\(408\) 0 0
\(409\) 12.2079 0.603641 0.301820 0.953365i \(-0.402406\pi\)
0.301820 + 0.953365i \(0.402406\pi\)
\(410\) −5.23268 12.6328i −0.258424 0.623890i
\(411\) −4.96626 24.8810i −0.244967 1.22729i
\(412\) −0.774744 + 0.774744i −0.0381689 + 0.0381689i
\(413\) 10.9254 7.30014i 0.537605 0.359216i
\(414\) −1.85550 + 2.78492i −0.0911926 + 0.136871i
\(415\) 22.0164 32.9499i 1.08074 1.61745i
\(416\) −2.70819 1.12177i −0.132780 0.0549993i
\(417\) 8.73753 0.00578500i 0.427879 0.000283293i
\(418\) −1.72140 1.15020i −0.0841965 0.0562583i
\(419\) 30.7895 6.12442i 1.50417 0.299198i 0.626862 0.779130i \(-0.284339\pi\)
0.877305 + 0.479933i \(0.159339\pi\)
\(420\) 1.11302 + 0.742633i 0.0543100 + 0.0362368i
\(421\) −10.7245 10.7245i −0.522682 0.522682i 0.395699 0.918380i \(-0.370502\pi\)
−0.918380 + 0.395699i \(0.870502\pi\)
\(422\) 22.2780 + 4.43136i 1.08447 + 0.215715i
\(423\) 3.58050 8.67658i 0.174090 0.421870i
\(424\) 17.4460i 0.847253i
\(425\) 0 0
\(426\) −5.06191 + 2.10064i −0.245250 + 0.101776i
\(427\) 11.6499 4.82553i 0.563776 0.233524i
\(428\) −0.0432806 + 0.217586i −0.00209205 + 0.0105174i
\(429\) −11.6586 4.82011i −0.562883 0.232717i
\(430\) 28.2362 + 42.2585i 1.36167 + 2.03789i
\(431\) 2.23450 + 11.2336i 0.107632 + 0.541102i 0.996547 + 0.0830303i \(0.0264598\pi\)
−0.888915 + 0.458072i \(0.848540\pi\)
\(432\) −12.2215 18.2123i −0.588005 0.876239i
\(433\) 10.2528 24.7526i 0.492720 1.18953i −0.460610 0.887603i \(-0.652369\pi\)
0.953330 0.301930i \(-0.0976307\pi\)
\(434\) 3.46905 8.37502i 0.166520 0.402014i
\(435\) 41.4299 + 8.21241i 1.98641 + 0.393755i
\(436\) −0.0962502 0.483882i −0.00460955 0.0231738i
\(437\) 0.367724 + 0.550338i 0.0175906 + 0.0263262i
\(438\) 12.1134 29.2991i 0.578799 1.39997i
\(439\) −1.66341 + 8.36252i −0.0793902 + 0.399121i 0.920573 + 0.390570i \(0.127722\pi\)
−0.999963 + 0.00855138i \(0.997278\pi\)
\(440\) −12.7259 + 5.27126i −0.606685 + 0.251297i
\(441\) 4.98817 + 4.97498i 0.237532 + 0.236904i
\(442\) 0 0
\(443\) 18.8773i 0.896886i −0.893811 0.448443i \(-0.851979\pi\)
0.893811 0.448443i \(-0.148021\pi\)
\(444\) −0.342169 + 0.342622i −0.0162386 + 0.0162601i
\(445\) 14.4758 + 2.87941i 0.686217 + 0.136497i
\(446\) −2.50244 2.50244i −0.118494 0.118494i
\(447\) 6.04691 9.06283i 0.286009 0.428657i
\(448\) 15.8163 3.14605i 0.747248 0.148637i
\(449\) 22.6698 + 15.1475i 1.06985 + 0.714853i 0.960255 0.279123i \(-0.0900437\pi\)
0.109598 + 0.993976i \(0.465044\pi\)
\(450\) −17.3769 + 7.22473i −0.819156 + 0.340577i
\(451\) 4.68833 + 1.94197i 0.220765 + 0.0914438i
\(452\) −1.07509 + 1.60899i −0.0505681 + 0.0756805i
\(453\) −14.6537 21.8994i −0.688490 1.02892i
\(454\) 1.69919 1.13536i 0.0797468 0.0532851i
\(455\) 20.5695 20.5695i 0.964311 0.964311i
\(456\) −4.01754 + 0.801903i −0.188138 + 0.0375526i
\(457\) −4.03405 9.73907i −0.188705 0.455574i 0.801006 0.598657i \(-0.204299\pi\)
−0.989711 + 0.143082i \(0.954299\pi\)
\(458\) −15.8270 −0.739546
\(459\) 0 0
\(460\) −0.274576 −0.0128022
\(461\) 3.78349 + 9.13414i 0.176215 + 0.425419i 0.987167 0.159693i \(-0.0510504\pi\)
−0.810952 + 0.585112i \(0.801050\pi\)
\(462\) −8.78408 + 1.75331i −0.408672 + 0.0815713i
\(463\) 16.2123 16.2123i 0.753448 0.753448i −0.221673 0.975121i \(-0.571152\pi\)
0.975121 + 0.221673i \(0.0711518\pi\)
\(464\) −28.0469 + 18.7404i −1.30205 + 0.870000i
\(465\) 8.48974 + 12.6876i 0.393702 + 0.588373i
\(466\) −11.5897 + 17.3453i −0.536884 + 0.803504i
\(467\) −23.8791 9.89105i −1.10499 0.457703i −0.245783 0.969325i \(-0.579045\pi\)
−0.859211 + 0.511621i \(0.829045\pi\)
\(468\) 1.43727 0.597567i 0.0664378 0.0276226i
\(469\) 12.9024 + 8.62109i 0.595776 + 0.398085i
\(470\) 13.6253 2.71024i 0.628487 0.125014i
\(471\) 2.37271 3.55611i 0.109329 0.163857i
\(472\) −11.8014 11.8014i −0.543205 0.543205i
\(473\) −18.4995 3.67978i −0.850608 0.169196i
\(474\) −10.6112 + 10.6253i −0.487388 + 0.488034i
\(475\) 3.72217i 0.170785i
\(476\) 0 0
\(477\) 13.5274 + 13.4916i 0.619378 + 0.617740i
\(478\) −31.8737 + 13.2025i −1.45787 + 0.603870i
\(479\) −1.69040 + 8.49821i −0.0772363 + 0.388293i 0.922759 + 0.385376i \(0.125928\pi\)
−0.999996 + 0.00291662i \(0.999072\pi\)
\(480\) 1.33916 3.23907i 0.0611238 0.147843i
\(481\) 5.84863 + 8.75309i 0.266675 + 0.399107i
\(482\) −0.798947 4.01658i −0.0363910 0.182950i
\(483\) 2.80904 + 0.556819i 0.127816 + 0.0253361i
\(484\) 0.372148 0.898446i 0.0169158 0.0408384i
\(485\) −4.14240 + 10.0006i −0.188097 + 0.454106i
\(486\) 22.2618 + 4.35159i 1.00982 + 0.197392i
\(487\) 7.57282 + 38.0711i 0.343157 + 1.72517i 0.638364 + 0.769735i \(0.279611\pi\)
−0.295207 + 0.955433i \(0.595389\pi\)
\(488\) −8.89820 13.3171i −0.402802 0.602836i
\(489\) −1.77812 0.735143i −0.0804094 0.0332443i
\(490\) −2.03420 + 10.2266i −0.0918958 + 0.461992i
\(491\) −11.7073 + 4.84934i −0.528345 + 0.218848i −0.630878 0.775882i \(-0.717305\pi\)
0.102533 + 0.994730i \(0.467305\pi\)
\(492\) −0.578293 + 0.239986i −0.0260715 + 0.0108194i
\(493\) 0 0
\(494\) 5.55337i 0.249858i
\(495\) 5.75417 13.9440i 0.258631 0.626736i
\(496\) −11.9579 2.37857i −0.536926 0.106801i
\(497\) 3.31625 + 3.31625i 0.148754 + 0.148754i
\(498\) −27.2276 18.1668i −1.22010 0.814076i
\(499\) −36.4030 + 7.24100i −1.62962 + 0.324152i −0.923400 0.383839i \(-0.874602\pi\)
−0.706221 + 0.707991i \(0.749602\pi\)
\(500\) 0.205204 + 0.137113i 0.00917700 + 0.00613187i
\(501\) 34.3988 0.0227750i 1.53683 0.00101751i
\(502\) 20.3540 + 8.43090i 0.908444 + 0.376290i
\(503\) −17.7500 + 26.5648i −0.791433 + 1.18446i 0.187895 + 0.982189i \(0.439833\pi\)
−0.979329 + 0.202275i \(0.935167\pi\)
\(504\) −9.82797 + 14.7509i −0.437773 + 0.657055i
\(505\) 9.48756 6.33939i 0.422191 0.282099i
\(506\) 1.29976 1.29976i 0.0577812 0.0577812i
\(507\) −2.21647 11.1045i −0.0984369 0.493169i
\(508\) −0.553083 1.33526i −0.0245391 0.0592426i
\(509\) 2.30289 0.102074 0.0510369 0.998697i \(-0.483747\pi\)
0.0510369 + 0.998697i \(0.483747\pi\)
\(510\) 0 0
\(511\) −27.1309 −1.20020
\(512\) −7.77882 18.7797i −0.343778 0.829954i
\(513\) 2.48512 3.73529i 0.109721 0.164917i
\(514\) −20.4697 + 20.4697i −0.902880 + 0.902880i
\(515\) −23.6817 + 15.8236i −1.04354 + 0.697272i
\(516\) 1.93415 1.29421i 0.0851461 0.0569744i
\(517\) −2.86437 + 4.28683i −0.125975 + 0.188534i
\(518\) 6.90554 + 2.86037i 0.303412 + 0.125677i
\(519\) −0.0133441 20.1546i −0.000585740 0.884688i
\(520\) −30.7215 20.5274i −1.34723 0.900187i
\(521\) 2.69976 0.537016i 0.118279 0.0235271i −0.135596 0.990764i \(-0.543295\pi\)
0.253875 + 0.967237i \(0.418295\pi\)
\(522\) 6.76053 34.2243i 0.295900 1.49795i
\(523\) −29.8001 29.8001i −1.30307 1.30307i −0.926313 0.376755i \(-0.877040\pi\)
−0.376755 0.926313i \(-0.622960\pi\)
\(524\) −0.405995 0.0807574i −0.0177360 0.00352790i
\(525\) 11.3949 + 11.3799i 0.497316 + 0.496658i
\(526\) 0.190778i 0.00831830i
\(527\) 0 0
\(528\) 4.61767 + 11.1272i 0.200958 + 0.484249i
\(529\) 20.7063 8.57683i 0.900274 0.372906i
\(530\) −5.51655 + 27.7336i −0.239624 + 1.20467i
\(531\) 18.2772 0.0242021i 0.793161 0.00105028i
\(532\) −0.121442 0.181750i −0.00526516 0.00787987i
\(533\) 2.65558 + 13.3505i 0.115026 + 0.578275i
\(534\) 2.37038 11.9581i 0.102576 0.517477i
\(535\) −2.20694 + 5.32803i −0.0954144 + 0.230351i
\(536\) 7.54259 18.2094i 0.325790 0.786527i
\(537\) −0.285141 + 1.43848i −0.0123047 + 0.0620749i
\(538\) −1.68783 8.48527i −0.0727674 0.365826i
\(539\) −2.14988 3.21753i −0.0926021 0.138589i
\(540\) 0.715648 + 1.71807i 0.0307966 + 0.0739339i
\(541\) 2.85545 14.3553i 0.122765 0.617184i −0.869590 0.493774i \(-0.835617\pi\)
0.992356 0.123410i \(-0.0393829\pi\)
\(542\) −9.24223 + 3.82826i −0.396988 + 0.164438i
\(543\) −0.951908 2.29381i −0.0408503 0.0984369i
\(544\) 0 0
\(545\) 12.8251i 0.549365i
\(546\) −17.0009 16.9784i −0.727573 0.726610i
\(547\) 26.9003 + 5.35079i 1.15017 + 0.228783i 0.733120 0.680099i \(-0.238063\pi\)
0.417052 + 0.908883i \(0.363063\pi\)
\(548\) −1.21585 1.21585i −0.0519384 0.0519384i
\(549\) 17.2072 + 3.39905i 0.734386 + 0.145068i
\(550\) 10.1383 2.01663i 0.432297 0.0859893i
\(551\) −5.73710 3.83341i −0.244409 0.163309i
\(552\) −0.00240823 3.63734i −0.000102501 0.154816i
\(553\) 11.8721 + 4.91757i 0.504851 + 0.209116i
\(554\) 6.70781 10.0389i 0.284987 0.426514i
\(555\) −10.4614 + 7.00013i −0.444063 + 0.297139i
\(556\) 0.492355 0.328981i 0.0208805 0.0139519i
\(557\) −31.0707 + 31.0707i −1.31651 + 1.31651i −0.399984 + 0.916522i \(0.630984\pi\)
−0.916522 + 0.399984i \(0.869016\pi\)
\(558\) 10.4749 7.01918i 0.443438 0.297146i
\(559\) −19.3619 46.7436i −0.818919 1.97705i
\(560\) −27.7789 −1.17387
\(561\) 0 0
\(562\) −19.2798 −0.813270
\(563\) 14.0437 + 33.9044i 0.591870 + 1.42890i 0.881695 + 0.471821i \(0.156403\pi\)
−0.289825 + 0.957080i \(0.593597\pi\)
\(564\) −0.124514 0.623814i −0.00524298 0.0262673i
\(565\) −35.5701 + 35.5701i −1.49645 + 1.49645i
\(566\) 16.9784 11.3446i 0.713657 0.476850i
\(567\) −3.83729 19.0279i −0.161151 0.799095i
\(568\) 3.30947 4.95297i 0.138862 0.207822i
\(569\) −22.8578 9.46803i −0.958251 0.396920i −0.151925 0.988392i \(-0.548547\pi\)
−0.806326 + 0.591472i \(0.798547\pi\)
\(570\) 6.64016 0.00439636i 0.278126 0.000184143i
\(571\) −1.63874 1.09497i −0.0685792 0.0458232i 0.520808 0.853674i \(-0.325631\pi\)
−0.589387 + 0.807851i \(0.700631\pi\)
\(572\) −0.838551 + 0.166798i −0.0350616 + 0.00697418i
\(573\) 1.03886 + 0.693147i 0.0433989 + 0.0289566i
\(574\) 6.83402 + 6.83402i 0.285247 + 0.285247i
\(575\) −3.24124 0.644722i −0.135169 0.0268868i
\(576\) 20.7348 + 8.55649i 0.863951 + 0.356520i
\(577\) 26.8179i 1.11645i 0.829691 + 0.558223i \(0.188517\pi\)
−0.829691 + 0.558223i \(0.811483\pi\)
\(578\) 0 0
\(579\) 18.5917 7.71536i 0.772644 0.320639i
\(580\) 2.64449 1.09538i 0.109806 0.0454833i
\(581\) −5.46450 + 27.4719i −0.226706 + 1.13973i
\(582\) 8.26247 + 3.41602i 0.342490 + 0.141599i
\(583\) −5.83027 8.72562i −0.241465 0.361378i
\(584\) 6.72291 + 33.7984i 0.278196 + 1.39859i
\(585\) 39.6748 7.94643i 1.64035 0.328544i
\(586\) 14.7044 35.4995i 0.607433 1.46647i
\(587\) −17.1080 + 41.3023i −0.706122 + 1.70473i 0.00334911 + 0.999994i \(0.498934\pi\)
−0.709471 + 0.704735i \(0.751066\pi\)
\(588\) 0.468335 + 0.0928353i 0.0193138 + 0.00382846i
\(589\) −0.486546 2.44603i −0.0200478 0.100787i
\(590\) 15.0288 + 22.4922i 0.618726 + 0.925988i
\(591\) −15.3953 + 37.2374i −0.633280 + 1.53174i
\(592\) 1.96123 9.85977i 0.0806061 0.405234i
\(593\) 20.3889 8.44534i 0.837270 0.346809i 0.0774935 0.996993i \(-0.475308\pi\)
0.759777 + 0.650184i \(0.225308\pi\)
\(594\) −11.5204 4.74513i −0.472689 0.194695i
\(595\) 0 0
\(596\) 0.738361i 0.0302444i
\(597\) 29.5149 29.5540i 1.20796 1.20956i
\(598\) 4.83584 + 0.961908i 0.197752 + 0.0393353i
\(599\) 16.9345 + 16.9345i 0.691926 + 0.691926i 0.962655 0.270729i \(-0.0872649\pi\)
−0.270729 + 0.962655i \(0.587265\pi\)
\(600\) 11.3529 17.0151i 0.463479 0.694641i
\(601\) 2.58716 0.514619i 0.105533 0.0209917i −0.142041 0.989861i \(-0.545367\pi\)
0.247574 + 0.968869i \(0.420367\pi\)
\(602\) −29.8690 19.9578i −1.21737 0.813421i
\(603\) 8.28640 + 19.9304i 0.337448 + 0.811630i
\(604\) −1.64982 0.683377i −0.0671302 0.0278062i
\(605\) 14.0446 21.0192i 0.570994 0.854553i
\(606\) −5.24131 7.83295i −0.212914 0.318192i
\(607\) −30.1592 + 20.1517i −1.22412 + 0.817934i −0.988100 0.153813i \(-0.950845\pi\)
−0.236025 + 0.971747i \(0.575845\pi\)
\(608\) −0.404887 + 0.404887i −0.0164203 + 0.0164203i
\(609\) −29.2756 + 5.84344i −1.18631 + 0.236788i
\(610\) 9.93432 + 23.9836i 0.402229 + 0.971066i
\(611\) −13.8296 −0.559487
\(612\) 0 0
\(613\) −25.0887 −1.01333 −0.506663 0.862144i \(-0.669121\pi\)
−0.506663 + 0.862144i \(0.669121\pi\)
\(614\) 13.6047 + 32.8447i 0.549041 + 1.32550i
\(615\) −15.9611 + 3.18584i −0.643613 + 0.128466i
\(616\) 6.88440 6.88440i 0.277380 0.277380i
\(617\) −8.20652 + 5.48342i −0.330382 + 0.220754i −0.709686 0.704518i \(-0.751163\pi\)
0.379304 + 0.925272i \(0.376163\pi\)
\(618\) 13.0827 + 19.5517i 0.526265 + 0.786484i
\(619\) −17.9502 + 26.8643i −0.721478 + 1.07977i 0.271611 + 0.962407i \(0.412443\pi\)
−0.993089 + 0.117361i \(0.962557\pi\)
\(620\) 0.955837 + 0.395921i 0.0383873 + 0.0159006i
\(621\) 2.82221 + 2.81102i 0.113251 + 0.112802i
\(622\) −28.2341 18.8655i −1.13209 0.756436i
\(623\) −10.2317 + 2.03521i −0.409925 + 0.0815391i
\(624\) −17.9357 + 26.8812i −0.718004 + 1.07611i
\(625\) 19.7780 + 19.7780i 0.791122 + 0.791122i
\(626\) 2.30434 + 0.458362i 0.0920999 + 0.0183198i
\(627\) −1.74138 + 1.74369i −0.0695441 + 0.0696362i
\(628\) 0.289721i 0.0115611i
\(629\) 0 0
\(630\) 20.2876 20.3414i 0.808279 0.810422i
\(631\) −3.56930 + 1.47845i −0.142092 + 0.0588563i −0.452596 0.891716i \(-0.649502\pi\)
0.310504 + 0.950572i \(0.399502\pi\)
\(632\) 3.18423 16.0082i 0.126662 0.636772i
\(633\) 10.3302 24.9860i 0.410587 0.993104i
\(634\) 19.7134 + 29.5032i 0.782919 + 1.17172i
\(635\) −7.32959 36.8483i −0.290866 1.46228i
\(636\) 1.27008 + 0.251760i 0.0503618 + 0.00998293i
\(637\) 3.97225 9.58987i 0.157386 0.379964i
\(638\) −7.33297 + 17.7033i −0.290315 + 0.700882i
\(639\) 1.28114 + 6.39644i 0.0506810 + 0.253039i
\(640\) 7.26634 + 36.5304i 0.287227 + 1.44399i
\(641\) 20.7897 + 31.1140i 0.821145 + 1.22893i 0.970728 + 0.240181i \(0.0772068\pi\)
−0.149583 + 0.988749i \(0.547793\pi\)
\(642\) 4.40198 + 1.81995i 0.173732 + 0.0718276i
\(643\) 8.28711 41.6621i 0.326812 1.64299i −0.372395 0.928075i \(-0.621463\pi\)
0.699206 0.714920i \(-0.253537\pi\)
\(644\) 0.179302 0.0742693i 0.00706549 0.00292662i
\(645\) 55.8760 23.1879i 2.20011 0.913024i
\(646\) 0 0
\(647\) 48.3331i 1.90017i 0.311989 + 0.950086i \(0.399005\pi\)
−0.311989 + 0.950086i \(0.600995\pi\)
\(648\) −22.7531 + 9.49533i −0.893828 + 0.373012i
\(649\) −9.84639 1.95857i −0.386505 0.0768806i
\(650\) 19.6063 + 19.6063i 0.769023 + 0.769023i
\(651\) −8.97574 5.98880i −0.351787 0.234720i
\(652\) −0.127892 + 0.0254394i −0.00500865 + 0.000996282i
\(653\) 5.37976 + 3.59464i 0.210526 + 0.140669i 0.656363 0.754445i \(-0.272094\pi\)
−0.445837 + 0.895114i \(0.647094\pi\)
\(654\) −10.5931 + 0.00701353i −0.414222 + 0.000274251i
\(655\) −9.94158 4.11794i −0.388450 0.160901i
\(656\) 7.22172 10.8081i 0.281961 0.421984i
\(657\) −31.4059 20.9247i −1.22526 0.816349i
\(658\) −8.16440 + 5.45528i −0.318281 + 0.212669i
\(659\) −17.7005 + 17.7005i −0.689515 + 0.689515i −0.962125 0.272610i \(-0.912113\pi\)
0.272610 + 0.962125i \(0.412113\pi\)
\(660\) −0.200104 1.00252i −0.00778904 0.0390231i
\(661\) 9.53615 + 23.0223i 0.370913 + 0.895464i 0.993596 + 0.112990i \(0.0360427\pi\)
−0.622683 + 0.782474i \(0.713957\pi\)
\(662\) 44.3302 1.72294
\(663\) 0 0
\(664\) 35.5773 1.38067
\(665\) −2.17451 5.24974i −0.0843240 0.203576i
\(666\) 5.78760 + 8.63697i 0.224265 + 0.334676i
\(667\) 4.33184 4.33184i 0.167729 0.167729i
\(668\) 1.93835 1.29517i 0.0749972 0.0501115i
\(669\) −3.50101 + 2.34265i −0.135357 + 0.0905723i
\(670\) −17.7482 + 26.5621i −0.685674 + 1.02618i
\(671\) −8.90086 3.68686i −0.343614 0.142329i
\(672\) 0.00164024 + 2.47738i 6.32736e−5 + 0.0955670i
\(673\) −15.6174 10.4352i −0.602006 0.402248i 0.216884 0.976197i \(-0.430411\pi\)
−0.818891 + 0.573949i \(0.805411\pi\)
\(674\) −24.5843 + 4.89012i −0.946952 + 0.188360i
\(675\) 4.41374 + 21.9613i 0.169885 + 0.845291i
\(676\) −0.542640 0.542640i −0.0208708 0.0208708i
\(677\) 9.72023 + 1.93347i 0.373579 + 0.0743095i 0.378309 0.925679i \(-0.376506\pi\)
−0.00473017 + 0.999989i \(0.501506\pi\)
\(678\) 29.3992 + 29.3603i 1.12907 + 1.12758i
\(679\) 7.65102i 0.293619i
\(680\) 0 0
\(681\) −0.932371 2.24673i −0.0357285 0.0860950i
\(682\) −6.39878 + 2.65046i −0.245022 + 0.101491i
\(683\) −0.465840 + 2.34194i −0.0178249 + 0.0896118i −0.988674 0.150081i \(-0.952047\pi\)
0.970849 + 0.239693i \(0.0770466\pi\)
\(684\) −0.000402615 0.304050i −1.53944e−5 0.0116257i
\(685\) −24.8328 37.1650i −0.948814 1.42000i
\(686\) −5.72366 28.7748i −0.218530 1.09863i
\(687\) −3.66308 + 18.4795i −0.139755 + 0.705037i
\(688\) −18.4895 + 44.6375i −0.704905 + 1.70179i
\(689\) 10.7724 26.0068i 0.410394 0.990779i
\(690\) −1.14632 + 5.78297i −0.0436398 + 0.220154i
\(691\) −6.36078 31.9778i −0.241975 1.21649i −0.890388 0.455203i \(-0.849567\pi\)
0.648412 0.761290i \(-0.275433\pi\)
\(692\) −0.758850 1.13570i −0.0288472 0.0431728i
\(693\) 0.0141184 + 10.6620i 0.000536313 + 0.405017i
\(694\) −5.74423 + 28.8782i −0.218048 + 1.09620i
\(695\) 14.2214 5.89068i 0.539447 0.223446i
\(696\) 14.5338 + 35.0222i 0.550904 + 1.32751i
\(697\) 0 0
\(698\) 11.0631i 0.418743i
\(699\) 17.5698 + 17.5466i 0.664552 + 0.663673i
\(700\) 1.07043 + 0.212921i 0.0404583 + 0.00804766i
\(701\) −31.7150 31.7150i −1.19786 1.19786i −0.974807 0.223051i \(-0.928398\pi\)
−0.223051 0.974807i \(-0.571602\pi\)
\(702\) −6.58518 32.7657i −0.248542 1.23666i
\(703\) 2.01685 0.401176i 0.0760669 0.0151307i
\(704\) −10.2444 6.84510i −0.386101 0.257985i
\(705\) −0.0109483 16.5361i −0.000412337 0.622784i
\(706\) −16.0527 6.64926i −0.604153 0.250248i
\(707\) −4.48078 + 6.70596i −0.168517 + 0.252204i
\(708\) 1.02945 0.688845i 0.0386892 0.0258884i
\(709\) 32.8306 21.9367i 1.23298 0.823849i 0.243693 0.969852i \(-0.421641\pi\)
0.989284 + 0.146003i \(0.0466409\pi\)
\(710\) −6.82716 + 6.82716i −0.256219 + 0.256219i
\(711\) 9.95007 + 14.8487i 0.373157 + 0.556871i
\(712\) 5.07074 + 12.2419i 0.190034 + 0.458783i
\(713\) 2.21426 0.0829248
\(714\) 0 0
\(715\) −22.2254 −0.831182
\(716\) 0.0380325 + 0.0918186i 0.00142134 + 0.00343142i
\(717\) 8.03817 + 40.2713i 0.300191 + 1.50396i
\(718\) 23.6628 23.6628i 0.883086 0.883086i
\(719\) −36.5410 + 24.4159i −1.36275 + 0.910560i −0.999774 0.0212393i \(-0.993239\pi\)
−0.362975 + 0.931799i \(0.618239\pi\)
\(720\) −32.1561 21.4245i −1.19839 0.798442i
\(721\) 11.1844 16.7386i 0.416529 0.623379i
\(722\) 24.5406 + 10.1650i 0.913307 + 0.378304i
\(723\) −4.87465 + 0.00322743i −0.181290 + 0.000120030i
\(724\) −0.139943 0.0935070i −0.00520094 0.00347516i
\(725\) 33.7889 6.72103i 1.25489 0.249613i
\(726\) −17.3689 11.5889i −0.644619 0.430103i
\(727\) 0.0802760 + 0.0802760i 0.00297727 + 0.00297727i 0.708594 0.705617i \(-0.249330\pi\)
−0.705617 + 0.708594i \(0.749330\pi\)
\(728\) 25.6139 + 5.09492i 0.949315 + 0.188830i
\(729\) 10.2333 24.9856i 0.379010 0.925392i
\(730\) 55.8544i 2.06726i
\(731\) 0 0
\(732\) 1.09790 0.455616i 0.0405795 0.0168400i
\(733\) −7.54651 + 3.12587i −0.278737 + 0.115457i −0.517673 0.855579i \(-0.673201\pi\)
0.238936 + 0.971035i \(0.423201\pi\)
\(734\) 4.65863 23.4205i 0.171953 0.864467i
\(735\) 11.4697 + 4.74203i 0.423068 + 0.174912i
\(736\) −0.282442 0.422704i −0.0104109 0.0155811i
\(737\) −2.31297 11.6281i −0.0851993 0.428326i
\(738\) 2.64013 + 13.1816i 0.0971846 + 0.485221i
\(739\) 4.49550 10.8531i 0.165370 0.399237i −0.819372 0.573263i \(-0.805677\pi\)
0.984741 + 0.174025i \(0.0556775\pi\)
\(740\) −0.326452 + 0.788126i −0.0120006 + 0.0289721i
\(741\) −6.48409 1.28530i −0.238199 0.0472168i
\(742\) −3.89919 19.6025i −0.143144 0.719632i
\(743\) 22.8030 + 34.1272i 0.836563 + 1.25200i 0.965513 + 0.260354i \(0.0838391\pi\)
−0.128951 + 0.991651i \(0.541161\pi\)
\(744\) −5.23642 + 12.6655i −0.191976 + 0.464341i
\(745\) 3.74454 18.8251i 0.137189 0.689697i
\(746\) 2.17550 0.901121i 0.0796507 0.0329924i
\(747\) −27.5132 + 27.5862i −1.00666 + 1.00933i
\(748\) 0 0
\(749\) 4.07622i 0.148942i
\(750\) 3.74449 3.74945i 0.136730 0.136911i
\(751\) −1.65656 0.329510i −0.0604487 0.0120240i 0.164773 0.986331i \(-0.447311\pi\)
−0.225222 + 0.974307i \(0.572311\pi\)
\(752\) 9.33841 + 9.33841i 0.340537 + 0.340537i
\(753\) 14.5547 21.8139i 0.530403 0.794944i
\(754\) −50.4121 + 10.0276i −1.83590 + 0.365184i
\(755\) −38.5977 25.7901i −1.40471 0.938599i
\(756\) −0.932042 0.928347i −0.0338980 0.0337637i
\(757\) −50.2881 20.8300i −1.82775 0.757080i −0.970038 0.242954i \(-0.921884\pi\)
−0.857715 0.514126i \(-0.828116\pi\)
\(758\) 12.5544 18.7890i 0.455996 0.682446i
\(759\) −1.21677 1.81841i −0.0441658 0.0660041i
\(760\) −6.00104 + 4.00977i −0.217681 + 0.145450i
\(761\) 24.1395 24.1395i 0.875055 0.875055i −0.117963 0.993018i \(-0.537636\pi\)
0.993018 + 0.117963i \(0.0376365\pi\)
\(762\) −30.4315 + 6.07415i −1.10242 + 0.220043i
\(763\) 3.46901 + 8.37493i 0.125587 + 0.303193i
\(764\) 0.0846370 0.00306206
\(765\) 0 0
\(766\) 32.2229 1.16426
\(767\) −10.3054 24.8794i −0.372106 0.898343i
\(768\) 4.76895 0.951887i 0.172085 0.0343483i
\(769\) −31.3211 + 31.3211i −1.12947 + 1.12947i −0.139204 + 0.990264i \(0.544454\pi\)
−0.990264 + 0.139204i \(0.955546\pi\)
\(770\) −13.1209 + 8.76709i −0.472843 + 0.315944i
\(771\) 19.1627 + 28.6379i 0.690128 + 1.03137i
\(772\) 0.757888 1.13426i 0.0272770 0.0408229i
\(773\) −12.8222 5.31114i −0.461184 0.191028i 0.139980 0.990154i \(-0.455296\pi\)
−0.601164 + 0.799126i \(0.705296\pi\)
\(774\) −19.1830 46.1390i −0.689520 1.65843i
\(775\) 10.3535 + 6.91801i 0.371910 + 0.248502i
\(776\) −9.53128 + 1.89589i −0.342153 + 0.0680584i
\(777\) 4.93801 7.40085i 0.177150 0.265504i
\(778\) −15.6099 15.6099i −0.559643 0.559643i
\(779\) 2.60785 + 0.518733i 0.0934359 + 0.0185856i
\(780\) 1.93774 1.94031i 0.0693822 0.0694742i
\(781\) 3.58322i 0.128218i
\(782\) 0 0
\(783\) −38.3954 15.8146i −1.37214 0.565168i
\(784\) −9.15778 + 3.79328i −0.327064 + 0.135474i
\(785\) 1.46930 7.38666i 0.0524415 0.263641i
\(786\) −3.39584 + 8.21367i −0.121126 + 0.292972i
\(787\) 13.2993 + 19.9038i 0.474070 + 0.709495i 0.989029 0.147719i \(-0.0471931\pi\)
−0.514960 + 0.857214i \(0.672193\pi\)
\(788\) 0.532750 + 2.67832i 0.0189784 + 0.0954111i
\(789\) 0.222751 + 0.0441546i 0.00793015 + 0.00157195i
\(790\) −10.1238 + 24.4410i −0.360189 + 0.869572i
\(791\) 13.6065 32.8490i 0.483792 1.16798i
\(792\) 13.2788 2.65959i 0.471840 0.0945045i
\(793\) −5.04166 25.3461i −0.179034 0.900067i
\(794\) −30.4268 45.5369i −1.07981 1.61604i
\(795\) 31.1048 + 12.8599i 1.10317 + 0.456094i
\(796\) 0.552234 2.77627i 0.0195734 0.0984022i
\(797\) −43.2651 + 17.9210i −1.53253 + 0.634795i −0.980053 0.198734i \(-0.936317\pi\)
−0.552476 + 0.833529i \(0.686317\pi\)
\(798\) −4.33492 + 1.79895i −0.153455 + 0.0636820i
\(799\) 0 0
\(800\) 2.85893i 0.101078i
\(801\) −13.4136 5.53529i −0.473945 0.195580i
\(802\) 5.04338 + 1.00319i 0.178088 + 0.0354239i
\(803\) 14.6575 + 14.6575i 0.517252 + 0.517252i
\(804\) 1.21681 + 0.811880i 0.0429135 + 0.0286328i
\(805\) 4.94809 0.984236i 0.174397 0.0346897i
\(806\) −15.4472 10.3215i −0.544104 0.363559i
\(807\) −10.2980 + 0.00681816i −0.362507 + 0.000240011i
\(808\) 9.46429 + 3.92024i 0.332952 + 0.137913i
\(809\) −6.50898 + 9.74138i −0.228844 + 0.342489i −0.928066 0.372415i \(-0.878530\pi\)
0.699223 + 0.714904i \(0.253530\pi\)
\(810\) 39.1727 7.89983i 1.37639 0.277572i
\(811\) −15.6548 + 10.4602i −0.549716 + 0.367308i −0.799195 0.601072i \(-0.794741\pi\)
0.249479 + 0.968380i \(0.419741\pi\)
\(812\) −1.43060 + 1.43060i −0.0502042 + 0.0502042i
\(813\) 2.33078 + 11.6772i 0.0817440 + 0.409538i
\(814\) −2.18541 5.27605i −0.0765987 0.184926i
\(815\) −3.38972 −0.118737
\(816\) 0 0
\(817\) −9.88307 −0.345765
\(818\) −6.79797 16.4118i −0.237686 0.573824i
\(819\) −23.7587 + 15.9206i −0.830197 + 0.556311i
\(820\) −0.779963 + 0.779963i −0.0272375 + 0.0272375i
\(821\) 25.1885 16.8304i 0.879086 0.587386i −0.0320530 0.999486i \(-0.510205\pi\)
0.911139 + 0.412100i \(0.135205\pi\)
\(822\) −30.6834 + 20.5314i −1.07021 + 0.716116i
\(823\) −12.7499 + 19.0816i −0.444434 + 0.665142i −0.984279 0.176622i \(-0.943483\pi\)
0.539845 + 0.841765i \(0.318483\pi\)
\(824\) −23.6236 9.78523i −0.822968 0.340884i
\(825\) −0.00814639 12.3041i −0.000283621 0.428375i
\(826\) −15.8978 10.6226i −0.553156 0.369607i
\(827\) 17.1729 3.41591i 0.597161 0.118783i 0.112750 0.993623i \(-0.464034\pi\)
0.484411 + 0.874841i \(0.339034\pi\)
\(828\) 0.264835 + 0.0523144i 0.00920364 + 0.00181805i
\(829\) 31.1358 + 31.1358i 1.08139 + 1.08139i 0.996380 + 0.0850121i \(0.0270929\pi\)
0.0850121 + 0.996380i \(0.472907\pi\)
\(830\) −56.5564 11.2498i −1.96310 0.390485i
\(831\) −10.1689 10.1555i −0.352756 0.352289i
\(832\) 33.0493i 1.14578i
\(833\) 0 0
\(834\) −4.87328 11.7432i −0.168748 0.406632i
\(835\) 55.9881 23.1910i 1.93755 0.802559i
\(836\) −0.0325818 + 0.163800i −0.00112687 + 0.00566514i
\(837\) −5.77119 13.8550i −0.199481 0.478898i
\(838\) −25.3786 37.9818i −0.876690 1.31206i
\(839\) 3.85845 + 19.3977i 0.133209 + 0.669684i 0.988461 + 0.151473i \(0.0484018\pi\)
−0.855253 + 0.518211i \(0.826598\pi\)
\(840\) −6.07172 + 30.6306i −0.209494 + 1.05685i
\(841\) −13.3415 + 32.2093i −0.460053 + 1.11067i
\(842\) −8.44564 + 20.3896i −0.291056 + 0.702671i
\(843\) −4.46223 + 22.5110i −0.153687 + 0.775321i
\(844\) −0.357471 1.79713i −0.0123047 0.0618598i
\(845\) −11.0830 16.5869i −0.381268 0.570608i
\(846\) −13.6582 + 0.0180859i −0.469580 + 0.000621805i
\(847\) −3.48588 + 17.5247i −0.119776 + 0.602156i
\(848\) −24.8350 + 10.2870i −0.852837 + 0.353257i
\(849\) −9.31634 22.4496i −0.319736 0.770468i
\(850\) 0 0
\(851\) 1.82575i 0.0625858i
\(852\) 0.312820 + 0.312406i 0.0107170 + 0.0107029i
\(853\) −6.05663 1.20474i −0.207375 0.0412495i 0.0903095 0.995914i \(-0.471214\pi\)
−0.297685 + 0.954664i \(0.596214\pi\)
\(854\) −12.9745 12.9745i −0.443977 0.443977i
\(855\) 1.53170 7.75403i 0.0523831 0.265182i
\(856\) −5.07796 + 1.01007i −0.173561 + 0.0345235i
\(857\) 21.6208 + 14.4466i 0.738554 + 0.493486i 0.867048 0.498224i \(-0.166014\pi\)
−0.128494 + 0.991710i \(0.541014\pi\)
\(858\) 0.0121542 + 18.3574i 0.000414937 + 0.626712i
\(859\) −3.03380 1.25664i −0.103512 0.0428761i 0.330326 0.943867i \(-0.392841\pi\)
−0.433838 + 0.900991i \(0.642841\pi\)
\(860\) 2.27778 3.40893i 0.0776715 0.116244i
\(861\) 9.56107 6.39766i 0.325840 0.218032i
\(862\) 13.8577 9.25940i 0.471994 0.315376i
\(863\) 10.3922 10.3922i 0.353754 0.353754i −0.507750 0.861504i \(-0.669523\pi\)
0.861504 + 0.507750i \(0.169523\pi\)
\(864\) −1.90878 + 2.86901i −0.0649379 + 0.0976056i
\(865\) −13.5878 32.8040i −0.462000 1.11537i
\(866\) −38.9856 −1.32479
\(867\) 0 0
\(868\) −0.731265 −0.0248208
\(869\) −3.75718 9.07062i −0.127453 0.307700i
\(870\) −12.0299 60.2698i −0.407851 2.04334i
\(871\) 22.4875 22.4875i 0.761958 0.761958i
\(872\) 9.57349 6.39680i 0.324199 0.216623i
\(873\) 5.90084 8.85659i 0.199713 0.299750i
\(874\) 0.535083 0.800809i 0.0180995 0.0270878i
\(875\) −4.18943 1.73532i −0.141629 0.0586644i
\(876\) −2.55755 + 0.00169332i −0.0864117 + 5.72119e-5i
\(877\) −11.0888 7.40929i −0.374442 0.250194i 0.354082 0.935214i \(-0.384793\pi\)
−0.728524 + 0.685020i \(0.759793\pi\)
\(878\) 12.1685 2.42046i 0.410667 0.0816867i
\(879\) −38.0458 25.3850i −1.28325 0.856214i
\(880\) 15.0076 + 15.0076i 0.505907 + 0.505907i
\(881\) 19.3402 + 3.84700i 0.651587 + 0.129609i 0.509806 0.860289i \(-0.329717\pi\)
0.141781 + 0.989898i \(0.454717\pi\)
\(882\) 3.91048 9.47622i 0.131673 0.319081i
\(883\) 44.5932i 1.50068i −0.661051 0.750341i \(-0.729889\pi\)
0.661051 0.750341i \(-0.270111\pi\)
\(884\) 0 0
\(885\) 29.7401 12.3418i 0.999702 0.414866i
\(886\) −25.3778 + 10.5118i −0.852584 + 0.353152i
\(887\) 3.26124 16.3954i 0.109502 0.550502i −0.886619 0.462501i \(-0.846952\pi\)
0.996120 0.0880011i \(-0.0280479\pi\)
\(888\) −10.4432 4.31764i −0.350452 0.144890i
\(889\) 14.7533 + 22.0799i 0.494810 + 0.740536i
\(890\) −4.18990 21.0640i −0.140446 0.706068i
\(891\) −8.20674 + 12.3529i −0.274936 + 0.413839i
\(892\) −0.109250 + 0.263753i −0.00365797 + 0.00883111i
\(893\) −1.03380 + 2.49580i −0.0345947 + 0.0835189i
\(894\) −15.5509 3.08257i −0.520101 0.103097i
\(895\) 0.504016 + 2.53386i 0.0168474 + 0.0846976i
\(896\) −14.6260 21.8894i −0.488620 0.731272i
\(897\) 2.24235 5.42367i 0.0748699 0.181091i
\(898\) 7.73992 38.9112i 0.258284 1.29848i
\(899\) −21.3259 + 8.83348i −0.711259 + 0.294613i
\(900\) 1.07488 + 1.07204i 0.0358293 + 0.0357345i
\(901\) 0 0
\(902\) 7.38418i 0.245866i
\(903\) −30.2157 + 30.2557i −1.00552 + 1.00685i
\(904\) −44.2934 8.81050i −1.47318 0.293033i
\(905\) −3.09374 3.09374i −0.102839 0.102839i
\(906\) −21.2807 + 31.8945i −0.707004 + 1.05962i
\(907\) 9.03651 1.79747i 0.300052 0.0596841i −0.0427682 0.999085i \(-0.513618\pi\)
0.342821 + 0.939401i \(0.388618\pi\)
\(908\) −0.137071 0.0915878i −0.00454886 0.00303945i
\(909\) −10.3588 + 4.30683i −0.343579 + 0.142848i
\(910\) −39.1068 16.1986i −1.29638 0.536978i
\(911\) 1.11409 1.66735i 0.0369113 0.0552417i −0.812555 0.582884i \(-0.801924\pi\)
0.849466 + 0.527643i \(0.176924\pi\)
\(912\) 3.51046 + 5.24626i 0.116243 + 0.173721i
\(913\) 17.7940 11.8895i 0.588894 0.393486i
\(914\) −10.8464 + 10.8464i −0.358768 + 0.358768i
\(915\) 30.3023 6.04837i 1.00176 0.199953i
\(916\) 0.488587 + 1.17955i 0.0161434 + 0.0389735i
\(917\) 7.60583 0.251167
\(918\) 0 0
\(919\) 4.18774 0.138141 0.0690703 0.997612i \(-0.477997\pi\)
0.0690703 + 0.997612i \(0.477997\pi\)
\(920\) −2.45223 5.92020i −0.0808475 0.195183i
\(921\) 41.4980 8.28303i 1.36741 0.272935i
\(922\) 10.1727 10.1727i 0.335021 0.335021i
\(923\) 7.99172 5.33990i 0.263051 0.175765i
\(924\) 0.401840 + 0.600534i 0.0132196 + 0.0197561i
\(925\) −5.70418 + 8.53690i −0.187552 + 0.280692i
\(926\) −30.8229 12.7673i −1.01290 0.419558i
\(927\) 25.8564 10.7502i 0.849234 0.353083i
\(928\) 4.40656 + 2.94437i 0.144652 + 0.0966536i
\(929\) 23.9833 4.77057i 0.786866 0.156517i 0.214727 0.976674i \(-0.431114\pi\)
0.572139 + 0.820157i \(0.306114\pi\)
\(930\) 12.3292 18.4784i 0.404289 0.605929i
\(931\) −1.43373 1.43373i −0.0469885 0.0469885i
\(932\) 1.65049 + 0.328303i 0.0540636 + 0.0107539i
\(933\) −28.5619 + 28.5997i −0.935073 + 0.936312i
\(934\) 37.6099i 1.23063i
\(935\) 0 0
\(936\) 25.7205 + 25.6524i 0.840699 + 0.838476i
\(937\) −46.7545 + 19.3663i −1.52740 + 0.632671i −0.979058 0.203582i \(-0.934742\pi\)
−0.548345 + 0.836252i \(0.684742\pi\)
\(938\) 4.40513 22.1461i 0.143832 0.723095i
\(939\) 1.06851 2.58445i 0.0348695 0.0843403i
\(940\) −0.622608 0.931798i −0.0203072 0.0303919i
\(941\) −0.703081 3.53463i −0.0229198 0.115226i 0.967632 0.252366i \(-0.0812088\pi\)
−0.990552 + 0.137141i \(0.956209\pi\)
\(942\) −6.10194 1.20955i −0.198812 0.0394093i
\(943\) −0.903419 + 2.18105i −0.0294194 + 0.0710246i
\(944\) −9.84105 + 23.7584i −0.320299 + 0.773270i
\(945\) −19.0551 28.3957i −0.619861 0.923711i
\(946\) 5.35453 + 26.9191i 0.174091 + 0.875214i
\(947\) −14.8925 22.2883i −0.483943 0.724271i 0.506493 0.862244i \(-0.330941\pi\)
−0.990436 + 0.137972i \(0.955941\pi\)
\(948\) 1.11945 + 0.462824i 0.0363581 + 0.0150318i
\(949\) −10.8476 + 54.5344i −0.352127 + 1.77026i
\(950\) 5.00393 2.07269i 0.162349 0.0672471i
\(951\) 39.0103 16.1889i 1.26500 0.524960i
\(952\) 0 0
\(953\) 24.2594i 0.785838i 0.919573 + 0.392919i \(0.128535\pi\)
−0.919573 + 0.392919i \(0.871465\pi\)
\(954\) 10.6048 25.6985i 0.343344 0.832021i
\(955\) 2.15788 + 0.429230i 0.0698275 + 0.0138895i
\(956\) 1.96792 + 1.96792i 0.0636470 + 0.0636470i
\(957\) 18.9731 + 12.6593i 0.613315 + 0.409217i
\(958\) 12.3659 2.45974i 0.399525 0.0794705i
\(959\) 26.2688 + 17.5522i 0.848264 + 0.566792i
\(960\) 39.5170 0.0261636i 1.27541 0.000844428i
\(961\) 20.9321 + 8.67037i 0.675230 + 0.279689i
\(962\) 8.51048 12.7368i 0.274389 0.410652i
\(963\) 3.14378 4.71851i 0.101307 0.152052i
\(964\) −0.274684 + 0.183538i −0.00884697 + 0.00591135i
\(965\) 25.0752 25.0752i 0.807200 0.807200i
\(966\) −0.815652 4.08642i −0.0262432 0.131478i
\(967\) 5.07976 + 12.2636i 0.163354 + 0.394372i 0.984268 0.176680i \(-0.0565357\pi\)
−0.820914 + 0.571051i \(0.806536\pi\)
\(968\) 22.6952 0.729452
\(969\) 0 0
\(970\) 15.7512 0.505739
\(971\) 5.91933 + 14.2905i 0.189960 + 0.458605i 0.989952 0.141407i \(-0.0451626\pi\)
−0.799991 + 0.600012i \(0.795163\pi\)
\(972\) −0.362918 1.79346i −0.0116406 0.0575254i
\(973\) −7.69338 + 7.69338i −0.246638 + 0.246638i
\(974\) 46.9643 31.3806i 1.50483 1.00550i
\(975\) 27.4300 18.3544i 0.878464 0.587812i
\(976\) −13.7105 + 20.5193i −0.438863 + 0.656805i
\(977\) 18.6618 + 7.72995i 0.597042 + 0.247303i 0.660677 0.750670i \(-0.270269\pi\)
−0.0636347 + 0.997973i \(0.520269\pi\)
\(978\) 0.00185371 + 2.79980i 5.92750e−5 + 0.0895277i
\(979\) 6.62723 + 4.42817i 0.211807 + 0.141525i
\(980\) 0.824966 0.164096i 0.0263526 0.00524185i
\(981\) −2.44353 + 12.3700i −0.0780159 + 0.394945i
\(982\) 13.0385 + 13.0385i 0.416075 + 0.416075i
\(983\) 25.5849 + 5.08915i 0.816031 + 0.162319i 0.585423 0.810728i \(-0.300929\pi\)
0.230608 + 0.973047i \(0.425929\pi\)
\(984\) −10.3391 10.3254i −0.329598 0.329162i
\(985\) 70.9874i 2.26185i
\(986\) 0 0
\(987\) 4.47994 + 10.7953i 0.142598 + 0.343618i
\(988\) −0.413882 + 0.171435i −0.0131673 + 0.00545409i
\(989\) 1.71186 8.60611i 0.0544340 0.273658i
\(990\) −21.9499 + 0.0290655i −0.697615 + 0.000923762i
\(991\) −20.0616 30.0243i −0.637278 0.953754i −0.999763 0.0217647i \(-0.993072\pi\)
0.362485 0.931990i \(-0.381928\pi\)
\(992\) 0.373707 + 1.87875i 0.0118652 + 0.0596504i
\(993\) 10.2600 51.7596i 0.325592 1.64254i
\(994\) 2.61157 6.30488i 0.0828339 0.199979i
\(995\) 28.1592 67.9824i 0.892707 2.15519i
\(996\) −0.513408 + 2.59004i −0.0162680 + 0.0820685i
\(997\) −2.88218 14.4897i −0.0912797 0.458894i −0.999209 0.0397704i \(-0.987337\pi\)
0.907929 0.419124i \(-0.137663\pi\)
\(998\) 30.0056 + 44.9065i 0.949809 + 1.42149i
\(999\) 11.4240 4.75858i 0.361439 0.150555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.g.224.1 32
3.2 odd 2 inner 867.2.i.g.224.4 32
17.2 even 8 51.2.i.a.29.4 yes 32
17.3 odd 16 51.2.i.a.44.1 yes 32
17.4 even 4 867.2.i.i.65.4 32
17.5 odd 16 867.2.i.d.653.4 32
17.6 odd 16 inner 867.2.i.g.329.4 32
17.7 odd 16 867.2.i.b.827.1 32
17.8 even 8 867.2.i.d.158.1 32
17.9 even 8 867.2.i.c.158.1 32
17.10 odd 16 867.2.i.i.827.1 32
17.11 odd 16 867.2.i.f.329.4 32
17.12 odd 16 867.2.i.c.653.4 32
17.13 even 4 867.2.i.b.65.4 32
17.14 odd 16 867.2.i.h.503.1 32
17.15 even 8 867.2.i.h.131.4 32
17.16 even 2 867.2.i.f.224.1 32
51.2 odd 8 51.2.i.a.29.1 32
51.5 even 16 867.2.i.d.653.1 32
51.8 odd 8 867.2.i.d.158.4 32
51.11 even 16 867.2.i.f.329.1 32
51.14 even 16 867.2.i.h.503.4 32
51.20 even 16 51.2.i.a.44.4 yes 32
51.23 even 16 inner 867.2.i.g.329.1 32
51.26 odd 8 867.2.i.c.158.4 32
51.29 even 16 867.2.i.c.653.1 32
51.32 odd 8 867.2.i.h.131.1 32
51.38 odd 4 867.2.i.i.65.1 32
51.41 even 16 867.2.i.b.827.4 32
51.44 even 16 867.2.i.i.827.4 32
51.47 odd 4 867.2.i.b.65.1 32
51.50 odd 2 867.2.i.f.224.4 32
68.3 even 16 816.2.cj.c.401.4 32
68.19 odd 8 816.2.cj.c.641.3 32
204.71 odd 16 816.2.cj.c.401.3 32
204.155 even 8 816.2.cj.c.641.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.1 32 51.2 odd 8
51.2.i.a.29.4 yes 32 17.2 even 8
51.2.i.a.44.1 yes 32 17.3 odd 16
51.2.i.a.44.4 yes 32 51.20 even 16
816.2.cj.c.401.3 32 204.71 odd 16
816.2.cj.c.401.4 32 68.3 even 16
816.2.cj.c.641.3 32 68.19 odd 8
816.2.cj.c.641.4 32 204.155 even 8
867.2.i.b.65.1 32 51.47 odd 4
867.2.i.b.65.4 32 17.13 even 4
867.2.i.b.827.1 32 17.7 odd 16
867.2.i.b.827.4 32 51.41 even 16
867.2.i.c.158.1 32 17.9 even 8
867.2.i.c.158.4 32 51.26 odd 8
867.2.i.c.653.1 32 51.29 even 16
867.2.i.c.653.4 32 17.12 odd 16
867.2.i.d.158.1 32 17.8 even 8
867.2.i.d.158.4 32 51.8 odd 8
867.2.i.d.653.1 32 51.5 even 16
867.2.i.d.653.4 32 17.5 odd 16
867.2.i.f.224.1 32 17.16 even 2
867.2.i.f.224.4 32 51.50 odd 2
867.2.i.f.329.1 32 51.11 even 16
867.2.i.f.329.4 32 17.11 odd 16
867.2.i.g.224.1 32 1.1 even 1 trivial
867.2.i.g.224.4 32 3.2 odd 2 inner
867.2.i.g.329.1 32 51.23 even 16 inner
867.2.i.g.329.4 32 17.6 odd 16 inner
867.2.i.h.131.1 32 51.32 odd 8
867.2.i.h.131.4 32 17.15 even 8
867.2.i.h.503.1 32 17.14 odd 16
867.2.i.h.503.4 32 51.14 even 16
867.2.i.i.65.1 32 51.38 odd 4
867.2.i.i.65.4 32 17.4 even 4
867.2.i.i.827.1 32 17.10 odd 16
867.2.i.i.827.4 32 51.44 even 16