Properties

Label 867.2.i.c.158.4
Level $867$
Weight $2$
Character 867.158
Analytic conductor $6.923$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(65,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 158.4
Character \(\chi\) \(=\) 867.158
Dual form 867.2.i.c.653.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34436 - 0.556851i) q^{2} +(-0.336782 - 1.69899i) q^{3} +(0.0830021 - 0.0830021i) q^{4} +(-2.99276 - 0.595296i) q^{5} +(-1.39884 - 2.09652i) q^{6} +(0.420765 + 2.11533i) q^{7} +(-1.04834 + 2.53091i) q^{8} +(-2.77316 + 1.14438i) q^{9} +(-4.35483 + 0.866229i) q^{10} +(0.915491 - 1.37013i) q^{11} +(-0.168973 - 0.113066i) q^{12} +(3.12551 + 3.12551i) q^{13} +(1.74358 + 2.60946i) q^{14} +(-0.00349923 + 5.28516i) q^{15} +4.22099i q^{16} +(-3.09087 + 3.08269i) q^{18} +(0.330416 + 0.797694i) q^{19} +(-0.297816 + 0.198994i) q^{20} +(3.45222 - 1.42728i) q^{21} +(0.467790 - 2.35174i) q^{22} +(0.637394 + 0.425893i) q^{23} +(4.65306 + 0.928755i) q^{24} +(3.98282 + 1.64974i) q^{25} +(5.94226 + 2.46136i) q^{26} +(2.87824 + 4.32617i) q^{27} +(0.210501 + 0.140652i) q^{28} +(-1.55905 + 7.83789i) q^{29} +(2.93834 + 7.10709i) q^{30} +(-2.40167 + 1.60475i) q^{31} +(0.253786 + 0.612694i) q^{32} +(-2.63616 - 1.09398i) q^{33} -6.58114i q^{35} +(-0.135192 + 0.325163i) q^{36} +(-1.32318 - 1.98027i) q^{37} +(0.888394 + 0.888394i) q^{38} +(4.25761 - 6.36284i) q^{39} +(4.64406 - 6.95033i) q^{40} +(-3.02038 + 0.600791i) q^{41} +(3.84624 - 3.84115i) q^{42} +(-4.38037 + 10.5751i) q^{43} +(-0.0377359 - 0.189711i) q^{44} +(8.98063 - 1.77400i) q^{45} +(1.09405 + 0.217619i) q^{46} +(2.21238 - 2.21238i) q^{47} +(7.17143 - 1.42155i) q^{48} +(2.16958 - 0.898671i) q^{49} +6.27299 q^{50} +0.518848 q^{52} +(-5.88369 + 2.43710i) q^{53} +(6.27842 + 4.21317i) q^{54} +(-3.55548 + 3.55548i) q^{55} +(-5.79482 - 1.15266i) q^{56} +(1.24400 - 0.830022i) q^{57} +(2.26861 + 11.4051i) q^{58} +(2.33146 - 5.62864i) q^{59} +(0.438389 + 0.438969i) q^{60} +(-5.73423 + 1.14061i) q^{61} +(-2.33510 + 3.49473i) q^{62} +(-3.58759 - 5.38462i) q^{63} +(-5.28702 - 5.28702i) q^{64} +(-7.49329 - 11.2145i) q^{65} +(-4.15313 - 0.00274973i) q^{66} +7.19481i q^{67} +(0.508927 - 1.22636i) q^{69} +(-3.66472 - 8.84742i) q^{70} +(1.80802 - 1.20808i) q^{71} +(0.0108825 - 8.21831i) q^{72} +(-2.45412 + 12.3377i) q^{73} +(-2.88154 - 1.92538i) q^{74} +(1.46155 - 7.32238i) q^{75} +(0.0936354 + 0.0387851i) q^{76} +(3.28348 + 1.36006i) q^{77} +(2.18060 - 10.9248i) q^{78} +(4.95397 + 3.31013i) q^{79} +(2.51274 - 12.6324i) q^{80} +(6.38079 - 6.34708i) q^{81} +(-3.72592 + 2.48958i) q^{82} +(-4.96993 - 11.9985i) q^{83} +(0.168074 - 0.405009i) q^{84} +16.6560i q^{86} +(13.8416 + 0.00916431i) q^{87} +(2.50793 + 3.75339i) q^{88} +(-3.42023 - 3.42023i) q^{89} +(11.0853 - 7.38576i) q^{90} +(-5.29638 + 7.92660i) q^{91} +(0.0882551 - 0.0175550i) q^{92} +(3.53529 + 3.53997i) q^{93} +(1.74226 - 4.20619i) q^{94} +(-0.513989 - 2.58400i) q^{95} +(0.955492 - 0.637525i) q^{96} +(-3.47928 - 0.692072i) q^{97} +(2.41627 - 2.41627i) q^{98} +(-0.970853 + 4.84725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{4} + 8 q^{9} - 32 q^{10} - 24 q^{12} - 16 q^{13} - 16 q^{15} + 16 q^{18} + 16 q^{19} + 16 q^{21} + 48 q^{22} - 8 q^{24} - 16 q^{25} + 48 q^{27} + 64 q^{28} - 8 q^{30} - 16 q^{31} - 8 q^{36}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34436 0.556851i 0.950605 0.393753i 0.147147 0.989115i \(-0.452991\pi\)
0.803458 + 0.595361i \(0.202991\pi\)
\(3\) −0.336782 1.69899i −0.194441 0.980914i
\(4\) 0.0830021 0.0830021i 0.0415010 0.0415010i
\(5\) −2.99276 0.595296i −1.33840 0.266225i −0.526578 0.850127i \(-0.676525\pi\)
−0.811824 + 0.583902i \(0.801525\pi\)
\(6\) −1.39884 2.09652i −0.571075 0.855900i
\(7\) 0.420765 + 2.11533i 0.159034 + 0.799519i 0.975135 + 0.221610i \(0.0711312\pi\)
−0.816101 + 0.577909i \(0.803869\pi\)
\(8\) −1.04834 + 2.53091i −0.370644 + 0.894813i
\(9\) −2.77316 + 1.14438i −0.924385 + 0.381460i
\(10\) −4.35483 + 0.866229i −1.37712 + 0.273926i
\(11\) 0.915491 1.37013i 0.276031 0.413110i −0.667389 0.744709i \(-0.732588\pi\)
0.943420 + 0.331599i \(0.107588\pi\)
\(12\) −0.168973 0.113066i −0.0487784 0.0326395i
\(13\) 3.12551 + 3.12551i 0.866861 + 0.866861i 0.992124 0.125262i \(-0.0399772\pi\)
−0.125262 + 0.992124i \(0.539977\pi\)
\(14\) 1.74358 + 2.60946i 0.465992 + 0.697407i
\(15\) −0.00349923 + 5.28516i −0.000903497 + 1.36462i
\(16\) 4.22099i 1.05525i
\(17\) 0 0
\(18\) −3.09087 + 3.08269i −0.728524 + 0.726597i
\(19\) 0.330416 + 0.797694i 0.0758025 + 0.183004i 0.957238 0.289300i \(-0.0934226\pi\)
−0.881436 + 0.472304i \(0.843423\pi\)
\(20\) −0.297816 + 0.198994i −0.0665936 + 0.0444964i
\(21\) 3.45222 1.42728i 0.753337 0.311458i
\(22\) 0.467790 2.35174i 0.0997331 0.501392i
\(23\) 0.637394 + 0.425893i 0.132906 + 0.0888049i 0.620246 0.784407i \(-0.287033\pi\)
−0.487340 + 0.873212i \(0.662033\pi\)
\(24\) 4.65306 + 0.928755i 0.949803 + 0.189581i
\(25\) 3.98282 + 1.64974i 0.796563 + 0.329947i
\(26\) 5.94226 + 2.46136i 1.16537 + 0.482713i
\(27\) 2.87824 + 4.32617i 0.553918 + 0.832571i
\(28\) 0.210501 + 0.140652i 0.0397810 + 0.0265808i
\(29\) −1.55905 + 7.83789i −0.289509 + 1.45546i 0.512778 + 0.858521i \(0.328616\pi\)
−0.802287 + 0.596938i \(0.796384\pi\)
\(30\) 2.93834 + 7.10709i 0.536466 + 1.29757i
\(31\) −2.40167 + 1.60475i −0.431353 + 0.288221i −0.752231 0.658900i \(-0.771022\pi\)
0.320878 + 0.947121i \(0.396022\pi\)
\(32\) 0.253786 + 0.612694i 0.0448635 + 0.108310i
\(33\) −2.63616 1.09398i −0.458897 0.190437i
\(34\) 0 0
\(35\) 6.58114i 1.11242i
\(36\) −0.135192 + 0.325163i −0.0225320 + 0.0541939i
\(37\) −1.32318 1.98027i −0.217529 0.325555i 0.706616 0.707597i \(-0.250221\pi\)
−0.924145 + 0.382042i \(0.875221\pi\)
\(38\) 0.888394 + 0.888394i 0.144117 + 0.144117i
\(39\) 4.25761 6.36284i 0.681763 1.01887i
\(40\) 4.64406 6.95033i 0.734291 1.09894i
\(41\) −3.02038 + 0.600791i −0.471704 + 0.0938278i −0.425218 0.905091i \(-0.639802\pi\)
−0.0464865 + 0.998919i \(0.514802\pi\)
\(42\) 3.84624 3.84115i 0.593488 0.592703i
\(43\) −4.38037 + 10.5751i −0.668000 + 1.61269i 0.116952 + 0.993138i \(0.462688\pi\)
−0.784952 + 0.619557i \(0.787312\pi\)
\(44\) −0.0377359 0.189711i −0.00568890 0.0286000i
\(45\) 8.98063 1.77400i 1.33875 0.264452i
\(46\) 1.09405 + 0.217619i 0.161308 + 0.0320862i
\(47\) 2.21238 2.21238i 0.322708 0.322708i −0.527097 0.849805i \(-0.676719\pi\)
0.849805 + 0.527097i \(0.176719\pi\)
\(48\) 7.17143 1.42155i 1.03511 0.205183i
\(49\) 2.16958 0.898671i 0.309940 0.128382i
\(50\) 6.27299 0.887135
\(51\) 0 0
\(52\) 0.518848 0.0719513
\(53\) −5.88369 + 2.43710i −0.808187 + 0.334762i −0.748230 0.663439i \(-0.769096\pi\)
−0.0599567 + 0.998201i \(0.519096\pi\)
\(54\) 6.27842 + 4.21317i 0.854385 + 0.573340i
\(55\) −3.55548 + 3.55548i −0.479420 + 0.479420i
\(56\) −5.79482 1.15266i −0.774365 0.154031i
\(57\) 1.24400 0.830022i 0.164772 0.109939i
\(58\) 2.26861 + 11.4051i 0.297884 + 1.49756i
\(59\) 2.33146 5.62864i 0.303530 0.732786i −0.696356 0.717696i \(-0.745197\pi\)
0.999886 0.0150898i \(-0.00480343\pi\)
\(60\) 0.438389 + 0.438969i 0.0565957 + 0.0566707i
\(61\) −5.73423 + 1.14061i −0.734193 + 0.146040i −0.548006 0.836474i \(-0.684613\pi\)
−0.186187 + 0.982514i \(0.559613\pi\)
\(62\) −2.33510 + 3.49473i −0.296558 + 0.443831i
\(63\) −3.58759 5.38462i −0.451993 0.678399i
\(64\) −5.28702 5.28702i −0.660877 0.660877i
\(65\) −7.49329 11.2145i −0.929429 1.39099i
\(66\) −4.15313 0.00274973i −0.511215 0.000338468i
\(67\) 7.19481i 0.878985i 0.898246 + 0.439493i \(0.144842\pi\)
−0.898246 + 0.439493i \(0.855158\pi\)
\(68\) 0 0
\(69\) 0.508927 1.22636i 0.0612676 0.147637i
\(70\) −3.66472 8.84742i −0.438018 1.05747i
\(71\) 1.80802 1.20808i 0.214573 0.143373i −0.443639 0.896205i \(-0.646313\pi\)
0.658212 + 0.752832i \(0.271313\pi\)
\(72\) 0.0108825 8.21831i 0.00128251 0.968537i
\(73\) −2.45412 + 12.3377i −0.287233 + 1.44402i 0.520193 + 0.854049i \(0.325860\pi\)
−0.807426 + 0.589969i \(0.799140\pi\)
\(74\) −2.88154 1.92538i −0.334972 0.223821i
\(75\) 1.46155 7.32238i 0.168766 0.845516i
\(76\) 0.0936354 + 0.0387851i 0.0107407 + 0.00444895i
\(77\) 3.28348 + 1.36006i 0.374187 + 0.154994i
\(78\) 2.18060 10.9248i 0.246904 1.23699i
\(79\) 4.95397 + 3.31013i 0.557365 + 0.372419i 0.802117 0.597166i \(-0.203707\pi\)
−0.244753 + 0.969586i \(0.578707\pi\)
\(80\) 2.51274 12.6324i 0.280933 1.41234i
\(81\) 6.38079 6.34708i 0.708977 0.705232i
\(82\) −3.72592 + 2.48958i −0.411459 + 0.274928i
\(83\) −4.96993 11.9985i −0.545521 1.31700i −0.920779 0.390084i \(-0.872446\pi\)
0.375258 0.926920i \(-0.377554\pi\)
\(84\) 0.168074 0.405009i 0.0183384 0.0441901i
\(85\) 0 0
\(86\) 16.6560i 1.79606i
\(87\) 13.8416 + 0.00916431i 1.48397 + 0.000982518i
\(88\) 2.50793 + 3.75339i 0.267347 + 0.400112i
\(89\) −3.42023 3.42023i −0.362544 0.362544i 0.502205 0.864749i \(-0.332522\pi\)
−0.864749 + 0.502205i \(0.832522\pi\)
\(90\) 11.0853 7.38576i 1.16850 0.778528i
\(91\) −5.29638 + 7.92660i −0.555212 + 0.830933i
\(92\) 0.0882551 0.0175550i 0.00920123 0.00183024i
\(93\) 3.53529 + 3.53997i 0.366592 + 0.367078i
\(94\) 1.74226 4.20619i 0.179701 0.433836i
\(95\) −0.513989 2.58400i −0.0527342 0.265113i
\(96\) 0.955492 0.637525i 0.0975195 0.0650671i
\(97\) −3.47928 0.692072i −0.353267 0.0702692i 0.0152668 0.999883i \(-0.495140\pi\)
−0.368534 + 0.929614i \(0.620140\pi\)
\(98\) 2.41627 2.41627i 0.244080 0.244080i
\(99\) −0.970853 + 4.84725i −0.0975744 + 0.487167i
\(100\) 0.467514 0.193650i 0.0467514 0.0193650i
\(101\) 3.73948 0.372092 0.186046 0.982541i \(-0.440433\pi\)
0.186046 + 0.982541i \(0.440433\pi\)
\(102\) 0 0
\(103\) 9.33404 0.919710 0.459855 0.887994i \(-0.347901\pi\)
0.459855 + 0.887994i \(0.347901\pi\)
\(104\) −11.1870 + 4.63380i −1.09698 + 0.454382i
\(105\) −11.1813 + 2.21641i −1.09119 + 0.216299i
\(106\) −6.55268 + 6.55268i −0.636453 + 0.636453i
\(107\) 1.85365 + 0.368714i 0.179199 + 0.0356449i 0.283874 0.958862i \(-0.408380\pi\)
−0.104675 + 0.994506i \(0.533380\pi\)
\(108\) 0.597981 + 0.120181i 0.0575407 + 0.0115644i
\(109\) −0.819969 4.12226i −0.0785388 0.394841i −0.999980 0.00632347i \(-0.997987\pi\)
0.921441 0.388518i \(-0.127013\pi\)
\(110\) −2.79996 + 6.75970i −0.266966 + 0.644513i
\(111\) −2.91885 + 2.91499i −0.277045 + 0.276678i
\(112\) −8.92878 + 1.77604i −0.843690 + 0.167820i
\(113\) −9.15888 + 13.7072i −0.861595 + 1.28947i 0.0942363 + 0.995550i \(0.469959\pi\)
−0.955831 + 0.293917i \(0.905041\pi\)
\(114\) 1.21018 1.80857i 0.113344 0.169388i
\(115\) −1.65403 1.65403i −0.154239 0.154239i
\(116\) 0.521156 + 0.779965i 0.0483881 + 0.0724180i
\(117\) −12.2443 5.09076i −1.13199 0.470641i
\(118\) 8.86518i 0.816106i
\(119\) 0 0
\(120\) −13.3726 5.54949i −1.22075 0.506597i
\(121\) 3.17039 + 7.65399i 0.288217 + 0.695817i
\(122\) −7.07371 + 4.72650i −0.640424 + 0.427917i
\(123\) 2.03795 + 4.92927i 0.183756 + 0.444457i
\(124\) −0.0661465 + 0.332541i −0.00594013 + 0.0298630i
\(125\) 1.74816 + 1.16808i 0.156360 + 0.104477i
\(126\) −7.82144 5.24111i −0.696789 0.466915i
\(127\) −11.3753 4.71179i −1.00939 0.418104i −0.184159 0.982896i \(-0.558956\pi\)
−0.825233 + 0.564792i \(0.808956\pi\)
\(128\) −11.2771 4.67113i −0.996766 0.412874i
\(129\) 19.4423 + 3.88070i 1.71180 + 0.341677i
\(130\) −16.3185 10.9037i −1.43123 0.956315i
\(131\) −0.687984 + 3.45873i −0.0601094 + 0.302191i −0.999132 0.0416661i \(-0.986733\pi\)
0.939022 + 0.343857i \(0.111733\pi\)
\(132\) −0.309609 + 0.128004i −0.0269480 + 0.0111413i
\(133\) −1.54836 + 1.03458i −0.134260 + 0.0897094i
\(134\) 4.00644 + 9.67240i 0.346103 + 0.835568i
\(135\) −6.03852 14.6606i −0.519713 1.26178i
\(136\) 0 0
\(137\) 14.6484i 1.25150i −0.780025 0.625748i \(-0.784794\pi\)
0.780025 0.625748i \(-0.215206\pi\)
\(138\) 0.00127919 1.93207i 0.000108892 0.164468i
\(139\) −2.80264 4.19445i −0.237717 0.355768i 0.693360 0.720591i \(-0.256130\pi\)
−0.931077 + 0.364823i \(0.881130\pi\)
\(140\) −0.546249 0.546249i −0.0461664 0.0461664i
\(141\) −4.50390 3.01373i −0.379297 0.253802i
\(142\) 1.75791 2.63090i 0.147520 0.220780i
\(143\) 7.14374 1.42098i 0.597389 0.118828i
\(144\) −4.83041 11.7055i −0.402534 0.975455i
\(145\) 9.33173 22.5288i 0.774958 1.87091i
\(146\) 3.57105 + 17.9529i 0.295542 + 1.48579i
\(147\) −2.25751 3.38345i −0.186196 0.279062i
\(148\) −0.274193 0.0545404i −0.0225385 0.00448319i
\(149\) −4.44785 + 4.44785i −0.364382 + 0.364382i −0.865423 0.501041i \(-0.832950\pi\)
0.501041 + 0.865423i \(0.332950\pi\)
\(150\) −2.11263 10.6578i −0.172495 0.870203i
\(151\) 14.0551 5.82179i 1.14378 0.473771i 0.271339 0.962484i \(-0.412533\pi\)
0.872445 + 0.488713i \(0.162533\pi\)
\(152\) −2.36528 −0.191850
\(153\) 0 0
\(154\) 5.17153 0.416734
\(155\) 8.14291 3.37291i 0.654055 0.270918i
\(156\) −0.174738 0.881519i −0.0139903 0.0705780i
\(157\) 1.74527 1.74527i 0.139287 0.139287i −0.634025 0.773312i \(-0.718598\pi\)
0.773312 + 0.634025i \(0.218598\pi\)
\(158\) 8.50316 + 1.69138i 0.676475 + 0.134559i
\(159\) 6.12214 + 9.17558i 0.485518 + 0.727671i
\(160\) −0.394786 1.98472i −0.0312105 0.156906i
\(161\) −0.632711 + 1.52750i −0.0498646 + 0.120384i
\(162\) 5.04369 12.0859i 0.396270 0.949559i
\(163\) −1.08953 + 0.216722i −0.0853388 + 0.0169749i −0.237575 0.971369i \(-0.576353\pi\)
0.152236 + 0.988344i \(0.451353\pi\)
\(164\) −0.200831 + 0.300565i −0.0156823 + 0.0234702i
\(165\) 7.23815 + 4.84331i 0.563489 + 0.377051i
\(166\) −13.3627 13.3627i −1.03715 1.03715i
\(167\) 11.0337 + 16.5131i 0.853815 + 1.27782i 0.959010 + 0.283373i \(0.0914534\pi\)
−0.105195 + 0.994452i \(0.533547\pi\)
\(168\) −0.00677549 + 10.2335i −0.000522740 + 0.789535i
\(169\) 6.53766i 0.502897i
\(170\) 0 0
\(171\) −1.82916 1.83401i −0.139879 0.140250i
\(172\) 0.514179 + 1.24134i 0.0392058 + 0.0946511i
\(173\) 9.67520 6.46476i 0.735591 0.491507i −0.130465 0.991453i \(-0.541647\pi\)
0.866056 + 0.499946i \(0.166647\pi\)
\(174\) 18.6131 7.69538i 1.41106 0.583385i
\(175\) −1.81391 + 9.11912i −0.137118 + 0.689341i
\(176\) 5.78330 + 3.86428i 0.435933 + 0.291281i
\(177\) −10.3482 2.06551i −0.777819 0.155253i
\(178\) −6.50257 2.69345i −0.487389 0.201883i
\(179\) −0.782216 0.324004i −0.0584656 0.0242172i 0.353259 0.935526i \(-0.385073\pi\)
−0.411725 + 0.911308i \(0.635073\pi\)
\(180\) 0.598165 0.892656i 0.0445846 0.0665347i
\(181\) 1.19220 + 0.796600i 0.0886152 + 0.0592108i 0.599088 0.800683i \(-0.295530\pi\)
−0.510473 + 0.859894i \(0.670530\pi\)
\(182\) −2.70630 + 13.6055i −0.200604 + 1.00851i
\(183\) 3.86907 + 9.35828i 0.286010 + 0.691784i
\(184\) −1.74610 + 1.16671i −0.128724 + 0.0860109i
\(185\) 2.78110 + 6.71416i 0.204470 + 0.493635i
\(186\) 6.72393 + 2.79036i 0.493023 + 0.204599i
\(187\) 0 0
\(188\) 0.367264i 0.0267855i
\(189\) −7.94021 + 7.90873i −0.577565 + 0.575275i
\(190\) −2.12989 3.18760i −0.154518 0.231253i
\(191\) −0.509849 0.509849i −0.0368914 0.0368914i 0.688420 0.725312i \(-0.258304\pi\)
−0.725312 + 0.688420i \(0.758304\pi\)
\(192\) −7.20204 + 10.7632i −0.519762 + 0.776765i
\(193\) −6.45656 + 9.66292i −0.464753 + 0.695552i −0.987621 0.156862i \(-0.949862\pi\)
0.522867 + 0.852414i \(0.324862\pi\)
\(194\) −5.06278 + 1.00705i −0.363486 + 0.0723019i
\(195\) −16.5298 + 16.5079i −1.18372 + 1.18215i
\(196\) 0.105488 0.254671i 0.00753488 0.0181908i
\(197\) −4.53858 22.8170i −0.323360 1.62564i −0.710553 0.703643i \(-0.751555\pi\)
0.387193 0.921999i \(-0.373445\pi\)
\(198\) 1.39403 + 7.05706i 0.0990691 + 0.501524i
\(199\) 23.6514 + 4.70456i 1.67661 + 0.333497i 0.939570 0.342357i \(-0.111225\pi\)
0.737035 + 0.675854i \(0.236225\pi\)
\(200\) −8.35068 + 8.35068i −0.590482 + 0.590482i
\(201\) 12.2239 2.42308i 0.862209 0.170911i
\(202\) 5.02720 2.08233i 0.353712 0.146512i
\(203\) −17.2357 −1.20971
\(204\) 0 0
\(205\) 9.39691 0.656309
\(206\) 12.5483 5.19767i 0.874281 0.362139i
\(207\) −2.25498 0.451648i −0.156732 0.0313917i
\(208\) −13.1927 + 13.1927i −0.914753 + 0.914753i
\(209\) 1.39544 + 0.277570i 0.0965244 + 0.0191999i
\(210\) −13.7975 + 9.20598i −0.952117 + 0.635273i
\(211\) −3.04535 15.3100i −0.209651 1.05398i −0.932000 0.362457i \(-0.881938\pi\)
0.722350 0.691528i \(-0.243062\pi\)
\(212\) −0.286074 + 0.690643i −0.0196476 + 0.0474336i
\(213\) −2.66143 2.66496i −0.182358 0.182600i
\(214\) 2.69729 0.536524i 0.184383 0.0366760i
\(215\) 19.4047 29.0412i 1.32339 1.98059i
\(216\) −13.9665 + 2.74929i −0.950301 + 0.187065i
\(217\) −4.40510 4.40510i −0.299038 0.299038i
\(218\) −3.39782 5.08520i −0.230130 0.344413i
\(219\) 21.7882 + 0.0144256i 1.47231 + 0.000974794i
\(220\) 0.590224i 0.0397929i
\(221\) 0 0
\(222\) −2.30077 + 5.54415i −0.154417 + 0.372099i
\(223\) −0.930718 2.24695i −0.0623255 0.150467i 0.889648 0.456646i \(-0.150949\pi\)
−0.951974 + 0.306179i \(0.900949\pi\)
\(224\) −1.18926 + 0.794641i −0.0794611 + 0.0530942i
\(225\) −12.9329 0.0171254i −0.862193 0.00114169i
\(226\) −4.67992 + 23.5276i −0.311304 + 1.56503i
\(227\) −1.16773 0.780250i −0.0775048 0.0517870i 0.516214 0.856460i \(-0.327341\pi\)
−0.593719 + 0.804673i \(0.702341\pi\)
\(228\) 0.0343609 0.172148i 0.00227560 0.0114008i
\(229\) 10.0488 + 4.16234i 0.664043 + 0.275055i 0.689139 0.724630i \(-0.257989\pi\)
−0.0250960 + 0.999685i \(0.507989\pi\)
\(230\) −3.14466 1.30256i −0.207353 0.0858884i
\(231\) 1.20492 6.03666i 0.0792780 0.397183i
\(232\) −18.2026 12.1626i −1.19506 0.798513i
\(233\) 2.79686 14.0608i 0.183228 0.921151i −0.774302 0.632817i \(-0.781899\pi\)
0.957530 0.288334i \(-0.0931014\pi\)
\(234\) −19.2955 0.0255506i −1.26139 0.00167030i
\(235\) −7.93813 + 5.30409i −0.517826 + 0.346000i
\(236\) −0.273673 0.660704i −0.0178146 0.0430082i
\(237\) 3.95549 9.53155i 0.256937 0.619140i
\(238\) 0 0
\(239\) 23.7093i 1.53362i 0.641872 + 0.766812i \(0.278158\pi\)
−0.641872 + 0.766812i \(0.721842\pi\)
\(240\) −22.3086 0.0147702i −1.44001 0.000953412i
\(241\) 1.56359 + 2.34007i 0.100719 + 0.150737i 0.878406 0.477914i \(-0.158607\pi\)
−0.777687 + 0.628652i \(0.783607\pi\)
\(242\) 8.52427 + 8.52427i 0.547961 + 0.547961i
\(243\) −12.9326 8.70334i −0.829626 0.558320i
\(244\) −0.381280 + 0.570626i −0.0244090 + 0.0365306i
\(245\) −7.02801 + 1.39796i −0.449003 + 0.0893123i
\(246\) 5.48460 + 5.49187i 0.349686 + 0.350149i
\(247\) −1.46048 + 3.52592i −0.0929284 + 0.224349i
\(248\) −1.54371 7.76073i −0.0980254 0.492807i
\(249\) −18.7116 + 12.4847i −1.18580 + 0.791189i
\(250\) 3.00061 + 0.596858i 0.189775 + 0.0377486i
\(251\) −10.7058 + 10.7058i −0.675745 + 0.675745i −0.959034 0.283289i \(-0.908574\pi\)
0.283289 + 0.959034i \(0.408574\pi\)
\(252\) −0.744712 0.149158i −0.0469124 0.00939606i
\(253\) 1.16706 0.483411i 0.0733723 0.0303918i
\(254\) −17.9162 −1.12416
\(255\) 0 0
\(256\) −2.80767 −0.175479
\(257\) 18.3799 7.61319i 1.14650 0.474898i 0.273145 0.961973i \(-0.411936\pi\)
0.873360 + 0.487075i \(0.161936\pi\)
\(258\) 28.2984 5.60943i 1.76178 0.349228i
\(259\) 3.63218 3.63218i 0.225693 0.225693i
\(260\) −1.55279 0.308868i −0.0962997 0.0191552i
\(261\) −4.64602 23.5198i −0.287581 1.45584i
\(262\) 1.00110 + 5.03288i 0.0618482 + 0.310932i
\(263\) −0.0501727 + 0.121128i −0.00309378 + 0.00746905i −0.925419 0.378946i \(-0.876287\pi\)
0.922325 + 0.386415i \(0.126287\pi\)
\(264\) 5.53235 5.52503i 0.340493 0.340042i
\(265\) 19.0593 3.79112i 1.17080 0.232887i
\(266\) −1.50544 + 2.25305i −0.0923045 + 0.138143i
\(267\) −4.65908 + 6.96282i −0.285131 + 0.426118i
\(268\) 0.597184 + 0.597184i 0.0364788 + 0.0364788i
\(269\) −3.30317 4.94355i −0.201398 0.301413i 0.716999 0.697075i \(-0.245515\pi\)
−0.918396 + 0.395661i \(0.870515\pi\)
\(270\) −16.2817 16.3465i −0.990873 0.994817i
\(271\) 6.87483i 0.417616i −0.977957 0.208808i \(-0.933042\pi\)
0.977957 0.208808i \(-0.0669584\pi\)
\(272\) 0 0
\(273\) 15.2510 + 6.32899i 0.923030 + 0.383048i
\(274\) −8.15697 19.6927i −0.492781 1.18968i
\(275\) 5.90659 3.94666i 0.356181 0.237992i
\(276\) −0.0595485 0.144033i −0.00358440 0.00866974i
\(277\) 1.61874 8.13797i 0.0972608 0.488963i −0.901195 0.433414i \(-0.857309\pi\)
0.998456 0.0555495i \(-0.0176911\pi\)
\(278\) −6.10344 4.07818i −0.366060 0.244593i
\(279\) 4.82377 7.19863i 0.288792 0.430971i
\(280\) 16.6563 + 6.89927i 0.995404 + 0.412310i
\(281\) −12.2411 5.07041i −0.730240 0.302475i −0.0135893 0.999908i \(-0.504326\pi\)
−0.716651 + 0.697432i \(0.754326\pi\)
\(282\) −7.73306 1.54352i −0.460497 0.0919155i
\(283\) 11.6680 + 7.79633i 0.693593 + 0.463444i 0.851735 0.523972i \(-0.175550\pi\)
−0.158142 + 0.987416i \(0.550550\pi\)
\(284\) 0.0497963 0.250343i 0.00295487 0.0148551i
\(285\) −4.21709 + 1.74351i −0.249799 + 0.103276i
\(286\) 8.81247 5.88830i 0.521092 0.348183i
\(287\) −2.54174 6.13631i −0.150034 0.362215i
\(288\) −1.40494 1.40867i −0.0827870 0.0830066i
\(289\) 0 0
\(290\) 35.4832i 2.08364i
\(291\) −0.00406809 + 6.14435i −0.000238475 + 0.360188i
\(292\) 0.820357 + 1.22775i 0.0480078 + 0.0718487i
\(293\) 18.6721 + 18.6721i 1.09083 + 1.09083i 0.995440 + 0.0953949i \(0.0304114\pi\)
0.0953949 + 0.995440i \(0.469589\pi\)
\(294\) −4.91898 3.29147i −0.286881 0.191963i
\(295\) −10.3282 + 15.4572i −0.601331 + 0.899955i
\(296\) 6.39904 1.27285i 0.371936 0.0739827i
\(297\) 8.56241 + 0.0170072i 0.496842 + 0.000986857i
\(298\) −3.50271 + 8.45629i −0.202907 + 0.489860i
\(299\) 0.661049 + 3.32332i 0.0382295 + 0.192193i
\(300\) −0.486461 0.729085i −0.0280858 0.0420937i
\(301\) −24.2130 4.81627i −1.39561 0.277605i
\(302\) 15.6531 15.6531i 0.900738 0.900738i
\(303\) −1.25939 6.35335i −0.0723499 0.364990i
\(304\) −3.36705 + 1.39468i −0.193114 + 0.0799904i
\(305\) 17.8402 1.02152
\(306\) 0 0
\(307\) −24.4315 −1.39438 −0.697189 0.716887i \(-0.745566\pi\)
−0.697189 + 0.716887i \(0.745566\pi\)
\(308\) 0.385424 0.159648i 0.0219616 0.00909677i
\(309\) −3.14353 15.8585i −0.178829 0.902157i
\(310\) 9.06879 9.06879i 0.515073 0.515073i
\(311\) 22.8877 + 4.55265i 1.29784 + 0.258157i 0.795206 0.606340i \(-0.207363\pi\)
0.502638 + 0.864497i \(0.332363\pi\)
\(312\) 11.6404 + 17.4460i 0.659007 + 0.987688i
\(313\) −0.314998 1.58360i −0.0178048 0.0895106i 0.970861 0.239642i \(-0.0770302\pi\)
−0.988666 + 0.150132i \(0.952030\pi\)
\(314\) 1.37441 3.31812i 0.0775624 0.187252i
\(315\) 7.53133 + 18.2505i 0.424342 + 1.02830i
\(316\) 0.685937 0.136441i 0.0385870 0.00767543i
\(317\) 13.5476 20.2754i 0.760908 1.13878i −0.225464 0.974251i \(-0.572390\pi\)
0.986372 0.164528i \(-0.0526100\pi\)
\(318\) 13.3398 + 8.92614i 0.748058 + 0.500553i
\(319\) 9.31162 + 9.31162i 0.521351 + 0.521351i
\(320\) 12.6754 + 18.9701i 0.708577 + 1.06046i
\(321\) 0.00216735 3.27351i 0.000120970 0.182710i
\(322\) 2.40583i 0.134072i
\(323\) 0 0
\(324\) 0.00279782 1.05644i 0.000155435 0.0586911i
\(325\) 7.29207 + 17.6046i 0.404491 + 0.976529i
\(326\) −1.34404 + 0.898060i −0.0744396 + 0.0497389i
\(327\) −6.72755 + 2.78143i −0.372034 + 0.153813i
\(328\) 1.64583 8.27415i 0.0908758 0.456863i
\(329\) 5.61080 + 3.74901i 0.309333 + 0.206690i
\(330\) 12.4277 + 2.48057i 0.684121 + 0.136551i
\(331\) −28.1459 11.6584i −1.54704 0.640804i −0.564260 0.825597i \(-0.690839\pi\)
−0.982777 + 0.184793i \(0.940839\pi\)
\(332\) −1.40841 0.583384i −0.0772967 0.0320173i
\(333\) 5.93556 + 3.97739i 0.325267 + 0.217960i
\(334\) 24.0286 + 16.0554i 1.31479 + 0.878514i
\(335\) 4.28304 21.5323i 0.234008 1.17644i
\(336\) 6.02453 + 14.5718i 0.328665 + 0.794956i
\(337\) 14.3229 9.57025i 0.780218 0.521325i −0.100517 0.994935i \(-0.532050\pi\)
0.880734 + 0.473611i \(0.157050\pi\)
\(338\) 3.64051 + 8.78896i 0.198018 + 0.478057i
\(339\) 26.3730 + 10.9445i 1.43239 + 0.594425i
\(340\) 0 0
\(341\) 4.75973i 0.257754i
\(342\) −3.48031 1.44700i −0.188194 0.0782446i
\(343\) 11.2015 + 16.7643i 0.604826 + 0.905186i
\(344\) −22.1727 22.1727i −1.19547 1.19547i
\(345\) −2.25314 + 3.36724i −0.121305 + 0.181286i
\(346\) 9.40702 14.0786i 0.505724 0.756870i
\(347\) −19.8459 + 3.94759i −1.06538 + 0.211918i −0.696499 0.717558i \(-0.745260\pi\)
−0.368884 + 0.929476i \(0.620260\pi\)
\(348\) 1.14964 1.14812i 0.0616272 0.0615456i
\(349\) 2.90948 7.02410i 0.155741 0.375992i −0.826680 0.562673i \(-0.809773\pi\)
0.982421 + 0.186681i \(0.0597731\pi\)
\(350\) 2.63946 + 13.2694i 0.141085 + 0.709281i
\(351\) −4.52552 + 22.5175i −0.241554 + 1.20189i
\(352\) 1.07181 + 0.213196i 0.0571276 + 0.0113634i
\(353\) 8.44344 8.44344i 0.449399 0.449399i −0.445756 0.895155i \(-0.647065\pi\)
0.895155 + 0.445756i \(0.147065\pi\)
\(354\) −15.0619 + 2.98563i −0.800530 + 0.158684i
\(355\) −6.13014 + 2.53919i −0.325354 + 0.134766i
\(356\) −0.567772 −0.0300919
\(357\) 0 0
\(358\) −1.23200 −0.0651133
\(359\) −21.2469 + 8.80076i −1.12137 + 0.464487i −0.864839 0.502049i \(-0.832580\pi\)
−0.256531 + 0.966536i \(0.582580\pi\)
\(360\) −4.92490 + 24.5889i −0.259565 + 1.29595i
\(361\) 12.9079 12.9079i 0.679363 0.679363i
\(362\) 2.04633 + 0.407040i 0.107553 + 0.0213935i
\(363\) 11.9364 7.96419i 0.626496 0.418012i
\(364\) 0.218313 + 1.09753i 0.0114427 + 0.0575264i
\(365\) 14.6892 35.4628i 0.768866 1.85621i
\(366\) 10.4126 + 10.4264i 0.544275 + 0.544996i
\(367\) −16.0952 + 3.20154i −0.840163 + 0.167119i −0.596371 0.802709i \(-0.703391\pi\)
−0.243792 + 0.969828i \(0.578391\pi\)
\(368\) −1.79769 + 2.69043i −0.0937111 + 0.140249i
\(369\) 7.68845 5.12255i 0.400245 0.266669i
\(370\) 7.47758 + 7.47758i 0.388741 + 0.388741i
\(371\) −7.63093 11.4205i −0.396178 0.592923i
\(372\) 0.587261 0.000388817i 0.0304481 2.01592e-5i
\(373\) 1.61824i 0.0837894i 0.999122 + 0.0418947i \(0.0133394\pi\)
−0.999122 + 0.0418947i \(0.986661\pi\)
\(374\) 0 0
\(375\) 1.39582 3.36351i 0.0720798 0.173691i
\(376\) 3.28001 + 7.91865i 0.169154 + 0.408373i
\(377\) −29.3703 + 19.6246i −1.51265 + 1.01072i
\(378\) −6.27050 + 15.0537i −0.322520 + 0.774278i
\(379\) 3.02965 15.2311i 0.155623 0.782368i −0.821586 0.570085i \(-0.806910\pi\)
0.977208 0.212283i \(-0.0680898\pi\)
\(380\) −0.257139 0.171815i −0.0131910 0.00881393i
\(381\) −4.17432 + 20.9134i −0.213857 + 1.07142i
\(382\) −0.969330 0.401510i −0.0495952 0.0205430i
\(383\) 20.4588 + 8.47433i 1.04540 + 0.433018i 0.838247 0.545291i \(-0.183581\pi\)
0.207151 + 0.978309i \(0.433581\pi\)
\(384\) −4.13830 + 20.7329i −0.211182 + 1.05802i
\(385\) −9.01702 6.02498i −0.459550 0.307061i
\(386\) −3.29912 + 16.5858i −0.167921 + 0.844194i
\(387\) 0.0454712 34.3393i 0.00231143 1.74557i
\(388\) −0.346231 + 0.231344i −0.0175772 + 0.0117447i
\(389\) 5.80572 + 14.0162i 0.294362 + 0.710652i 0.999998 + 0.00207747i \(0.000661280\pi\)
−0.705636 + 0.708574i \(0.749339\pi\)
\(390\) −13.0295 + 31.3972i −0.659774 + 1.58986i
\(391\) 0 0
\(392\) 6.43314i 0.324922i
\(393\) 6.10806 + 0.00404406i 0.308111 + 0.000203996i
\(394\) −18.8071 28.1469i −0.947490 1.41802i
\(395\) −12.8555 12.8555i −0.646831 0.646831i
\(396\) 0.321749 + 0.482915i 0.0161685 + 0.0242674i
\(397\) 20.9101 31.2942i 1.04945 1.57061i 0.251526 0.967850i \(-0.419068\pi\)
0.797922 0.602760i \(-0.205932\pi\)
\(398\) 34.4157 6.84571i 1.72510 0.343145i
\(399\) 2.27920 + 2.28222i 0.114103 + 0.114254i
\(400\) −6.96352 + 16.8114i −0.348176 + 0.840571i
\(401\) 0.689420 + 3.46595i 0.0344280 + 0.173081i 0.994174 0.107789i \(-0.0343770\pi\)
−0.959746 + 0.280870i \(0.909377\pi\)
\(402\) 15.0840 10.0644i 0.752324 0.501966i
\(403\) −12.5221 2.49080i −0.623770 0.124076i
\(404\) 0.310384 0.310384i 0.0154422 0.0154422i
\(405\) −22.8746 + 15.1968i −1.13665 + 0.755136i
\(406\) −23.1710 + 9.59773i −1.14996 + 0.476327i
\(407\) −3.92459 −0.194535
\(408\) 0 0
\(409\) 12.2079 0.603641 0.301820 0.953365i \(-0.402406\pi\)
0.301820 + 0.953365i \(0.402406\pi\)
\(410\) 12.6328 5.23268i 0.623890 0.258424i
\(411\) −24.8875 + 4.93331i −1.22761 + 0.243342i
\(412\) 0.774744 0.774744i 0.0381689 0.0381689i
\(413\) 12.8874 + 2.56347i 0.634148 + 0.126140i
\(414\) −3.28300 + 0.648511i −0.161351 + 0.0318726i
\(415\) 7.73115 + 38.8671i 0.379507 + 1.90791i
\(416\) −1.12177 + 2.70819i −0.0549993 + 0.132780i
\(417\) −6.18246 + 6.17428i −0.302756 + 0.302356i
\(418\) 2.03053 0.403898i 0.0993165 0.0197553i
\(419\) −17.4409 + 26.1021i −0.852042 + 1.27517i 0.107670 + 0.994187i \(0.465661\pi\)
−0.959712 + 0.280985i \(0.909339\pi\)
\(420\) −0.744106 + 1.11204i −0.0363087 + 0.0542619i
\(421\) 10.7245 + 10.7245i 0.522682 + 0.522682i 0.918380 0.395699i \(-0.129498\pi\)
−0.395699 + 0.918380i \(0.629498\pi\)
\(422\) −12.6194 18.8863i −0.614305 0.919373i
\(423\) −3.60347 + 8.66707i −0.175207 + 0.421407i
\(424\) 17.4460i 0.847253i
\(425\) 0 0
\(426\) −5.06191 2.10064i −0.245250 0.101776i
\(427\) −4.82553 11.6499i −0.233524 0.563776i
\(428\) 0.184461 0.123253i 0.00891625 0.00595764i
\(429\) −4.82011 11.6586i −0.232717 0.562883i
\(430\) 9.91525 49.8473i 0.478156 2.40385i
\(431\) −9.52337 6.36331i −0.458724 0.306510i 0.304652 0.952464i \(-0.401460\pi\)
−0.763376 + 0.645954i \(0.776460\pi\)
\(432\) −18.2607 + 12.1490i −0.878568 + 0.584520i
\(433\) 24.7526 + 10.2528i 1.18953 + 0.492720i 0.887603 0.460610i \(-0.152369\pi\)
0.301930 + 0.953330i \(0.402369\pi\)
\(434\) −8.37502 3.46905i −0.402014 0.166520i
\(435\) −41.4190 8.26727i −1.98589 0.396385i
\(436\) −0.410216 0.274097i −0.0196458 0.0131269i
\(437\) −0.129127 + 0.649167i −0.00617700 + 0.0310539i
\(438\) 29.2991 12.1134i 1.39997 0.578799i
\(439\) −7.08940 + 4.73699i −0.338359 + 0.226084i −0.713128 0.701034i \(-0.752722\pi\)
0.374769 + 0.927118i \(0.377722\pi\)
\(440\) −5.27126 12.7259i −0.251297 0.606685i
\(441\) −4.98817 + 4.97498i −0.237532 + 0.236904i
\(442\) 0 0
\(443\) 18.8773i 0.896886i 0.893811 + 0.448443i \(0.148021\pi\)
−0.893811 + 0.448443i \(0.851979\pi\)
\(444\) −0.000320596 0.484221i −1.52148e−5 0.0229801i
\(445\) 8.19987 + 12.2720i 0.388711 + 0.581747i
\(446\) −2.50244 2.50244i −0.118494 0.118494i
\(447\) 9.05482 + 6.05891i 0.428278 + 0.286577i
\(448\) 8.95919 13.4084i 0.423282 0.633486i
\(449\) 26.7408 5.31908i 1.26198 0.251023i 0.481633 0.876373i \(-0.340044\pi\)
0.780345 + 0.625350i \(0.215044\pi\)
\(450\) −17.3960 + 7.17868i −0.820055 + 0.338406i
\(451\) −1.94197 + 4.68833i −0.0914438 + 0.220765i
\(452\) 0.377522 + 1.89793i 0.0177572 + 0.0892713i
\(453\) −14.6247 21.9188i −0.687127 1.02983i
\(454\) −2.00433 0.398685i −0.0940677 0.0187112i
\(455\) 20.5695 20.5695i 0.964311 0.964311i
\(456\) 0.796583 + 4.01860i 0.0373034 + 0.188188i
\(457\) −9.73907 + 4.03405i −0.455574 + 0.188705i −0.598657 0.801006i \(-0.704299\pi\)
0.143082 + 0.989711i \(0.454299\pi\)
\(458\) 15.8270 0.739546
\(459\) 0 0
\(460\) −0.274576 −0.0128022
\(461\) −9.13414 + 3.78349i −0.425419 + 0.176215i −0.585112 0.810952i \(-0.698950\pi\)
0.159693 + 0.987167i \(0.448950\pi\)
\(462\) −1.74168 8.78639i −0.0810301 0.408780i
\(463\) −16.2123 + 16.2123i −0.753448 + 0.753448i −0.975121 0.221673i \(-0.928848\pi\)
0.221673 + 0.975121i \(0.428848\pi\)
\(464\) −33.0836 6.58074i −1.53587 0.305503i
\(465\) −8.47293 12.6988i −0.392923 0.588894i
\(466\) −4.06977 20.4601i −0.188529 0.947797i
\(467\) −9.89105 + 23.8791i −0.457703 + 1.10499i 0.511621 + 0.859211i \(0.329045\pi\)
−0.969325 + 0.245783i \(0.920955\pi\)
\(468\) −1.43885 + 0.593759i −0.0665107 + 0.0274465i
\(469\) −15.2194 + 3.02732i −0.702766 + 0.139789i
\(470\) −7.71810 + 11.5509i −0.356009 + 0.532806i
\(471\) −3.55297 2.37742i −0.163712 0.109546i
\(472\) 11.8014 + 11.8014i 0.543205 + 0.543205i
\(473\) 10.4791 + 15.6831i 0.481831 + 0.721111i
\(474\) 0.00994217 15.0164i 0.000456659 0.689728i
\(475\) 3.72217i 0.170785i
\(476\) 0 0
\(477\) 13.5274 13.4916i 0.619378 0.617740i
\(478\) 13.2025 + 31.8737i 0.603870 + 1.45787i
\(479\) 7.20443 4.81385i 0.329179 0.219950i −0.379987 0.924992i \(-0.624072\pi\)
0.709166 + 0.705041i \(0.249072\pi\)
\(480\) −3.23907 + 1.33916i −0.147843 + 0.0611238i
\(481\) 2.05377 10.3250i 0.0936437 0.470778i
\(482\) 3.40509 + 2.27521i 0.155098 + 0.103633i
\(483\) 2.80830 + 0.560538i 0.127782 + 0.0255054i
\(484\) 0.898446 + 0.372148i 0.0408384 + 0.0169158i
\(485\) 10.0006 + 4.14240i 0.454106 + 0.188097i
\(486\) −22.2325 4.49888i −1.00849 0.204073i
\(487\) 32.2752 + 21.5656i 1.46253 + 0.977229i 0.995676 + 0.0928931i \(0.0296115\pi\)
0.466851 + 0.884336i \(0.345389\pi\)
\(488\) 3.12463 15.7086i 0.141445 0.711094i
\(489\) 0.735143 + 1.77812i 0.0332443 + 0.0804094i
\(490\) −8.66971 + 5.79291i −0.391658 + 0.261697i
\(491\) −4.84934 11.7073i −0.218848 0.528345i 0.775882 0.630878i \(-0.217305\pi\)
−0.994730 + 0.102533i \(0.967305\pi\)
\(492\) 0.578293 + 0.239986i 0.0260715 + 0.0108194i
\(493\) 0 0
\(494\) 5.55337i 0.249858i
\(495\) 5.79108 13.9287i 0.260290 0.626049i
\(496\) −6.77361 10.1374i −0.304144 0.455184i
\(497\) 3.31625 + 3.31625i 0.148754 + 0.148754i
\(498\) −18.2029 + 27.2035i −0.815691 + 1.21902i
\(499\) −20.6206 + 30.8610i −0.923106 + 1.38153i 0.00125143 + 0.999999i \(0.499602\pi\)
−0.924358 + 0.381527i \(0.875398\pi\)
\(500\) 0.242054 0.0481476i 0.0108250 0.00215323i
\(501\) 24.3397 24.3075i 1.08742 1.08598i
\(502\) −8.43090 + 20.3540i −0.376290 + 0.908444i
\(503\) 6.23297 + 31.3353i 0.277914 + 1.39717i 0.827375 + 0.561650i \(0.189833\pi\)
−0.549460 + 0.835520i \(0.685167\pi\)
\(504\) 17.3890 3.43496i 0.774568 0.153005i
\(505\) −11.1913 2.22610i −0.498008 0.0990600i
\(506\) 1.29976 1.29976i 0.0577812 0.0577812i
\(507\) 11.1074 2.20176i 0.493299 0.0977838i
\(508\) −1.33526 + 0.553083i −0.0592426 + 0.0245391i
\(509\) −2.30289 −0.102074 −0.0510369 0.998697i \(-0.516253\pi\)
−0.0510369 + 0.998697i \(0.516253\pi\)
\(510\) 0 0
\(511\) −27.1309 −1.20020
\(512\) 18.7797 7.77882i 0.829954 0.343778i
\(513\) −2.49994 + 3.72539i −0.110375 + 0.164480i
\(514\) 20.4697 20.4697i 0.902880 0.902880i
\(515\) −27.9345 5.55652i −1.23094 0.244849i
\(516\) 1.93586 1.29165i 0.0852214 0.0568616i
\(517\) −1.00583 5.05666i −0.0442364 0.222391i
\(518\) 2.86037 6.90554i 0.125677 0.303412i
\(519\) −14.2420 14.2609i −0.625155 0.625983i
\(520\) 36.2384 7.20827i 1.58916 0.316104i
\(521\) −1.52929 + 2.28875i −0.0669995 + 0.100272i −0.863456 0.504423i \(-0.831705\pi\)
0.796457 + 0.604695i \(0.206705\pi\)
\(522\) −19.3430 29.0319i −0.846619 1.27069i
\(523\) 29.8001 + 29.8001i 1.30307 + 1.30307i 0.926313 + 0.376755i \(0.122960\pi\)
0.376755 + 0.926313i \(0.377040\pi\)
\(524\) 0.229978 + 0.344186i 0.0100466 + 0.0150358i
\(525\) 16.1042 + 0.0106624i 0.702846 + 0.000465344i
\(526\) 0.190778i 0.00831830i
\(527\) 0 0
\(528\) 4.61767 11.1272i 0.200958 0.484249i
\(529\) −8.57683 20.7063i −0.372906 0.900274i
\(530\) 23.5114 15.7098i 1.02127 0.682390i
\(531\) −0.0242021 + 18.2772i −0.00105028 + 0.793161i
\(532\) −0.0426446 + 0.214389i −0.00184888 + 0.00929494i
\(533\) −11.3180 7.56246i −0.490238 0.327566i
\(534\) −2.38621 + 11.9549i −0.103262 + 0.517341i
\(535\) −5.32803 2.20694i −0.230351 0.0954144i
\(536\) −18.2094 7.54259i −0.786527 0.325790i
\(537\) −0.287045 + 1.43810i −0.0123869 + 0.0620585i
\(538\) −7.19347 4.80652i −0.310132 0.207224i
\(539\) 0.754939 3.79534i 0.0325175 0.163477i
\(540\) −1.71807 0.715648i −0.0739339 0.0307966i
\(541\) 12.1699 8.13164i 0.523223 0.349606i −0.265742 0.964044i \(-0.585617\pi\)
0.788965 + 0.614438i \(0.210617\pi\)
\(542\) −3.82826 9.24223i −0.164438 0.396988i
\(543\) 0.951908 2.29381i 0.0408503 0.0984369i
\(544\) 0 0
\(545\) 12.8251i 0.549365i
\(546\) 24.0271 + 0.0159080i 1.02826 + 0.000680798i
\(547\) 15.2378 + 22.8049i 0.651520 + 0.975068i 0.999297 + 0.0374912i \(0.0119366\pi\)
−0.347777 + 0.937577i \(0.613063\pi\)
\(548\) −1.21585 1.21585i −0.0519384 0.0519384i
\(549\) 14.5966 9.72522i 0.622969 0.415062i
\(550\) 5.74287 8.59481i 0.244877 0.366484i
\(551\) −6.76737 + 1.34611i −0.288300 + 0.0573464i
\(552\) 2.57029 + 2.57369i 0.109399 + 0.109544i
\(553\) −4.91757 + 11.8721i −0.209116 + 0.504851i
\(554\) −2.35547 11.8417i −0.100074 0.503107i
\(555\) 10.4707 6.98627i 0.444456 0.296551i
\(556\) −0.580773 0.115523i −0.0246302 0.00489926i
\(557\) −31.0707 + 31.0707i −1.31651 + 1.31651i −0.399984 + 0.916522i \(0.630984\pi\)
−0.916522 + 0.399984i \(0.869016\pi\)
\(558\) 2.47631 12.3637i 0.104831 0.523396i
\(559\) −46.7436 + 19.3619i −1.97705 + 0.818919i
\(560\) 27.7789 1.17387
\(561\) 0 0
\(562\) −19.2798 −0.813270
\(563\) −33.9044 + 14.0437i −1.42890 + 0.591870i −0.957080 0.289825i \(-0.906403\pi\)
−0.471821 + 0.881695i \(0.656403\pi\)
\(564\) −0.623979 + 0.123688i −0.0262742 + 0.00520819i
\(565\) 35.5701 35.5701i 1.49645 1.49645i
\(566\) 20.0274 + 3.98370i 0.841815 + 0.167448i
\(567\) 16.1110 + 10.8268i 0.676598 + 0.454685i
\(568\) 1.16213 + 5.84243i 0.0487620 + 0.245143i
\(569\) −9.46803 + 22.8578i −0.396920 + 0.958251i 0.591472 + 0.806326i \(0.298547\pi\)
−0.988392 + 0.151925i \(0.951453\pi\)
\(570\) −4.69841 + 4.69219i −0.196795 + 0.196534i
\(571\) 1.93303 0.384503i 0.0808947 0.0160910i −0.154477 0.987996i \(-0.549369\pi\)
0.235372 + 0.971905i \(0.424369\pi\)
\(572\) 0.475001 0.710889i 0.0198608 0.0297238i
\(573\) −0.694522 + 1.03794i −0.0290141 + 0.0433605i
\(574\) −6.83402 6.83402i −0.285247 0.285247i
\(575\) 1.83601 + 2.74779i 0.0765671 + 0.114591i
\(576\) 20.7121 + 8.61137i 0.863003 + 0.358807i
\(577\) 26.8179i 1.11645i 0.829691 + 0.558223i \(0.188517\pi\)
−0.829691 + 0.558223i \(0.811483\pi\)
\(578\) 0 0
\(579\) 18.5917 + 7.71536i 0.772644 + 0.320639i
\(580\) −1.09538 2.64449i −0.0454833 0.109806i
\(581\) 23.2896 15.5616i 0.966214 0.645603i
\(582\) 3.41602 + 8.26247i 0.141599 + 0.342490i
\(583\) −2.04732 + 10.2926i −0.0847913 + 0.426275i
\(584\) −28.6529 19.1452i −1.18566 0.792235i
\(585\) 33.6137 + 22.5244i 1.38976 + 0.931270i
\(586\) 35.4995 + 14.7044i 1.46647 + 0.607433i
\(587\) 41.3023 + 17.1080i 1.70473 + 0.706122i 0.999994 0.00334911i \(-0.00106606\pi\)
0.704735 + 0.709471i \(0.251066\pi\)
\(588\) −0.468212 0.0934554i −0.0193087 0.00385403i
\(589\) −2.07364 1.38557i −0.0854430 0.0570912i
\(590\) −5.27741 + 26.5313i −0.217268 + 1.09228i
\(591\) −37.2374 + 15.3953i −1.53174 + 0.633280i
\(592\) 8.35871 5.58511i 0.343541 0.229547i
\(593\) 8.44534 + 20.3889i 0.346809 + 0.837270i 0.996993 + 0.0774935i \(0.0246917\pi\)
−0.650184 + 0.759777i \(0.725308\pi\)
\(594\) 11.5204 4.74513i 0.472689 0.194695i
\(595\) 0 0
\(596\) 0.738361i 0.0302444i
\(597\) 0.0276540 41.7680i 0.00113180 1.70945i
\(598\) 2.73928 + 4.09963i 0.112018 + 0.167646i
\(599\) 16.9345 + 16.9345i 0.691926 + 0.691926i 0.962655 0.270729i \(-0.0872649\pi\)
−0.270729 + 0.962655i \(0.587265\pi\)
\(600\) 17.0001 + 11.3754i 0.694026 + 0.464398i
\(601\) 1.46551 2.19329i 0.0597794 0.0894662i −0.800376 0.599499i \(-0.795367\pi\)
0.860155 + 0.510033i \(0.170367\pi\)
\(602\) −35.2329 + 7.00826i −1.43599 + 0.285635i
\(603\) −8.23359 19.9523i −0.335298 0.812521i
\(604\) 0.683377 1.64982i 0.0278062 0.0671302i
\(605\) −4.93180 24.7939i −0.200506 1.00801i
\(606\) −5.23094 7.83988i −0.212492 0.318473i
\(607\) 35.5752 + 7.07635i 1.44395 + 0.287220i 0.854024 0.520234i \(-0.174155\pi\)
0.589930 + 0.807454i \(0.299155\pi\)
\(608\) −0.404887 + 0.404887i −0.0164203 + 0.0164203i
\(609\) 5.80467 + 29.2833i 0.235217 + 1.18662i
\(610\) 23.9836 9.93432i 0.971066 0.402229i
\(611\) 13.8296 0.559487
\(612\) 0 0
\(613\) −25.0887 −1.01333 −0.506663 0.862144i \(-0.669121\pi\)
−0.506663 + 0.862144i \(0.669121\pi\)
\(614\) −32.8447 + 13.6047i −1.32550 + 0.549041i
\(615\) −3.16471 15.9653i −0.127613 0.643783i
\(616\) −6.88440 + 6.88440i −0.277380 + 0.277380i
\(617\) −9.68025 1.92552i −0.389712 0.0775186i −0.00365472 0.999993i \(-0.501163\pi\)
−0.386057 + 0.922475i \(0.626163\pi\)
\(618\) −13.0568 19.5690i −0.525223 0.787180i
\(619\) −6.30326 31.6886i −0.253349 1.27367i −0.872583 0.488466i \(-0.837557\pi\)
0.619233 0.785207i \(-0.287443\pi\)
\(620\) 0.395921 0.955837i 0.0159006 0.0383873i
\(621\) −0.00791187 + 3.98330i −0.000317492 + 0.159844i
\(622\) 33.3044 6.62467i 1.33539 0.265625i
\(623\) 5.79580 8.67402i 0.232204 0.347517i
\(624\) 26.8575 + 17.9713i 1.07516 + 0.719428i
\(625\) −19.7780 19.7780i −0.791122 0.791122i
\(626\) −1.30530 1.95352i −0.0521704 0.0780785i
\(627\) 0.00163159 2.46432i 6.51594e−5 0.0984154i
\(628\) 0.289721i 0.0115611i
\(629\) 0 0
\(630\) 20.2876 + 20.3414i 0.808279 + 0.810422i
\(631\) 1.47845 + 3.56930i 0.0588563 + 0.142092i 0.950572 0.310504i \(-0.100498\pi\)
−0.891716 + 0.452596i \(0.850498\pi\)
\(632\) −13.5711 + 9.06791i −0.539829 + 0.360702i
\(633\) −24.9860 + 10.3302i −0.993104 + 0.410587i
\(634\) 6.92242 34.8014i 0.274925 1.38214i
\(635\) 31.2385 + 20.8729i 1.23966 + 0.828316i
\(636\) 1.26974 + 0.253442i 0.0503486 + 0.0100496i
\(637\) 9.58987 + 3.97225i 0.379964 + 0.157386i
\(638\) 17.7033 + 7.33297i 0.700882 + 0.290315i
\(639\) −3.63143 + 5.41927i −0.143657 + 0.214383i
\(640\) 30.9690 + 20.6928i 1.22416 + 0.817955i
\(641\) −7.30038 + 36.7015i −0.288348 + 1.44962i 0.516575 + 0.856242i \(0.327207\pi\)
−0.804922 + 0.593380i \(0.797793\pi\)
\(642\) −1.81995 4.40198i −0.0718276 0.173732i
\(643\) 35.3195 23.5997i 1.39286 0.930682i 0.392925 0.919570i \(-0.371463\pi\)
0.999938 0.0111111i \(-0.00353683\pi\)
\(644\) 0.0742693 + 0.179302i 0.00292662 + 0.00706549i
\(645\) −55.8760 23.1879i −2.20011 0.913024i
\(646\) 0 0
\(647\) 48.3331i 1.90017i −0.311989 0.950086i \(-0.600995\pi\)
0.311989 0.950086i \(-0.399005\pi\)
\(648\) 9.37469 + 22.8031i 0.368272 + 0.895791i
\(649\) −5.57753 8.34737i −0.218937 0.327663i
\(650\) 19.6063 + 19.6063i 0.769023 + 0.769023i
\(651\) −6.00068 + 8.96780i −0.235185 + 0.351476i
\(652\) −0.0724451 + 0.108422i −0.00283717 + 0.00424613i
\(653\) 6.34586 1.26227i 0.248333 0.0493965i −0.0693542 0.997592i \(-0.522094\pi\)
0.317687 + 0.948196i \(0.397094\pi\)
\(654\) −7.49540 + 7.48548i −0.293093 + 0.292705i
\(655\) 4.11794 9.94158i 0.160901 0.388450i
\(656\) −2.53593 12.7490i −0.0990114 0.497764i
\(657\) −7.31334 37.0228i −0.285321 1.44440i
\(658\) 9.63056 + 1.91564i 0.375439 + 0.0746794i
\(659\) −17.7005 + 17.7005i −0.689515 + 0.689515i −0.962125 0.272610i \(-0.912113\pi\)
0.272610 + 0.962125i \(0.412113\pi\)
\(660\) 1.00279 0.198776i 0.0390334 0.00773736i
\(661\) 23.0223 9.53615i 0.895464 0.370913i 0.112990 0.993596i \(-0.463957\pi\)
0.782474 + 0.622683i \(0.213957\pi\)
\(662\) −44.3302 −1.72294
\(663\) 0 0
\(664\) 35.5773 1.38067
\(665\) 5.24974 2.17451i 0.203576 0.0843240i
\(666\) 10.1943 + 2.04182i 0.395022 + 0.0791188i
\(667\) −4.33184 + 4.33184i −0.167729 + 0.167729i
\(668\) 2.28645 + 0.454802i 0.0884652 + 0.0175968i
\(669\) −3.50411 + 2.33802i −0.135477 + 0.0903929i
\(670\) −6.23235 31.3321i −0.240777 1.21047i
\(671\) −3.68686 + 8.90086i −0.142329 + 0.343614i
\(672\) 1.75061 + 1.75293i 0.0675313 + 0.0676208i
\(673\) 18.4220 3.66436i 0.710115 0.141251i 0.173200 0.984887i \(-0.444589\pi\)
0.536915 + 0.843636i \(0.319589\pi\)
\(674\) 13.9259 20.8416i 0.536405 0.802787i
\(675\) 4.32647 + 21.9787i 0.166526 + 0.845960i
\(676\) 0.542640 + 0.542640i 0.0208708 + 0.0208708i
\(677\) −5.50607 8.24041i −0.211615 0.316705i 0.710444 0.703754i \(-0.248494\pi\)
−0.922059 + 0.387049i \(0.873494\pi\)
\(678\) 41.5493 + 0.0275092i 1.59569 + 0.00105648i
\(679\) 7.65102i 0.293619i
\(680\) 0 0
\(681\) −0.932371 + 2.24673i −0.0357285 + 0.0860950i
\(682\) 2.65046 + 6.39878i 0.101491 + 0.245022i
\(683\) 1.98540 1.32660i 0.0759692 0.0507610i −0.517006 0.855982i \(-0.672953\pi\)
0.592975 + 0.805221i \(0.297953\pi\)
\(684\) −0.304050 0.000402615i −0.0116257 1.53944e-5i
\(685\) −8.72013 + 43.8391i −0.333179 + 1.67500i
\(686\) 24.3941 + 16.2996i 0.931370 + 0.622322i
\(687\) 3.68755 18.4746i 0.140689 0.704851i
\(688\) −44.6375 18.4895i −1.70179 0.704905i
\(689\) −26.0068 10.7724i −0.990779 0.410394i
\(690\) −1.15398 + 5.78144i −0.0439313 + 0.220096i
\(691\) −27.1095 18.1140i −1.03129 0.689088i −0.0798165 0.996810i \(-0.525433\pi\)
−0.951476 + 0.307722i \(0.900433\pi\)
\(692\) 0.266473 1.33965i 0.0101298 0.0509258i
\(693\) −10.6620 0.0141184i −0.405017 0.000536313i
\(694\) −24.4818 + 16.3582i −0.929315 + 0.620948i
\(695\) 5.89068 + 14.2214i 0.223446 + 0.539447i
\(696\) −14.5338 + 35.0222i −0.550904 + 1.32751i
\(697\) 0 0
\(698\) 11.0631i 0.418743i
\(699\) −24.8311 0.0164403i −0.939197 0.000621829i
\(700\) 0.606348 + 0.907464i 0.0229178 + 0.0342989i
\(701\) −31.7150 31.7150i −1.19786 1.19786i −0.974807 0.223051i \(-0.928398\pi\)
−0.223051 0.974807i \(-0.571602\pi\)
\(702\) 6.45497 + 32.7916i 0.243627 + 1.23764i
\(703\) 1.14245 1.70980i 0.0430885 0.0644864i
\(704\) −12.0841 + 2.40368i −0.455437 + 0.0905921i
\(705\) 11.6850 + 11.7005i 0.440083 + 0.440667i
\(706\) 6.64926 16.0527i 0.250248 0.604153i
\(707\) 1.57344 + 7.91022i 0.0591753 + 0.297495i
\(708\) −1.03036 + 0.687481i −0.0387235 + 0.0258371i
\(709\) −38.7263 7.70314i −1.45440 0.289297i −0.596290 0.802769i \(-0.703359\pi\)
−0.858106 + 0.513472i \(0.828359\pi\)
\(710\) −6.82716 + 6.82716i −0.256219 + 0.256219i
\(711\) −17.5262 3.51030i −0.657283 0.131647i
\(712\) 12.2419 5.07074i 0.458783 0.190034i
\(713\) −2.21426 −0.0829248
\(714\) 0 0
\(715\) −22.2254 −0.831182
\(716\) −0.0918186 + 0.0380325i −0.00343142 + 0.00142134i
\(717\) 40.2819 7.98484i 1.50435 0.298199i
\(718\) −23.6628 + 23.6628i −0.883086 + 0.883086i
\(719\) −43.1030 8.57373i −1.60747 0.319746i −0.691929 0.721966i \(-0.743239\pi\)
−0.915543 + 0.402220i \(0.868239\pi\)
\(720\) 7.48802 + 37.9071i 0.279062 + 1.41271i
\(721\) 3.92744 + 19.7446i 0.146265 + 0.735326i
\(722\) 10.1650 24.5406i 0.378304 0.913307i
\(723\) 3.44918 3.44461i 0.128276 0.128107i
\(724\) 0.165074 0.0328353i 0.00613493 0.00122031i
\(725\) −19.1399 + 28.6448i −0.710837 + 1.06384i
\(726\) 11.6119 17.3535i 0.430957 0.644049i
\(727\) −0.0802760 0.0802760i −0.00297727 0.00297727i 0.705617 0.708594i \(-0.250670\pi\)
−0.708594 + 0.705617i \(0.750670\pi\)
\(728\) −14.5091 21.7144i −0.537744 0.804790i
\(729\) −10.4315 + 24.9035i −0.386351 + 0.922352i
\(730\) 55.8544i 2.06726i
\(731\) 0 0
\(732\) 1.09790 + 0.455616i 0.0405795 + 0.0168400i
\(733\) 3.12587 + 7.54651i 0.115457 + 0.278737i 0.971035 0.238936i \(-0.0767986\pi\)
−0.855579 + 0.517673i \(0.826799\pi\)
\(734\) −19.8549 + 13.2667i −0.732860 + 0.489681i
\(735\) 4.74203 + 11.4697i 0.174912 + 0.423068i
\(736\) −0.0991804 + 0.498613i −0.00365584 + 0.0183791i
\(737\) 9.85781 + 6.58678i 0.363117 + 0.242627i
\(738\) 7.48354 11.1679i 0.275473 0.411095i
\(739\) 10.8531 + 4.49550i 0.399237 + 0.165370i 0.573263 0.819372i \(-0.305677\pi\)
−0.174025 + 0.984741i \(0.555677\pi\)
\(740\) 0.788126 + 0.326452i 0.0289721 + 0.0120006i
\(741\) 6.48238 + 1.29389i 0.238136 + 0.0475322i
\(742\) −16.6182 11.1039i −0.610074 0.407639i
\(743\) −8.00737 + 40.2557i −0.293762 + 1.47684i 0.498623 + 0.866819i \(0.333839\pi\)
−0.792385 + 0.610021i \(0.791161\pi\)
\(744\) −12.6655 + 5.23642i −0.464341 + 0.191976i
\(745\) 15.9591 10.6635i 0.584697 0.390682i
\(746\) 0.901121 + 2.17550i 0.0329924 + 0.0796507i
\(747\) 27.5132 + 27.5862i 1.00666 + 1.00933i
\(748\) 0 0
\(749\) 4.07622i 0.148942i
\(750\) 0.00350841 5.29902i 0.000128109 0.193493i
\(751\) −0.938366 1.40436i −0.0342414 0.0512460i 0.813954 0.580929i \(-0.197311\pi\)
−0.848195 + 0.529683i \(0.822311\pi\)
\(752\) 9.33841 + 9.33841i 0.340537 + 0.340537i
\(753\) 21.7946 + 14.5836i 0.794241 + 0.531456i
\(754\) −28.5562 + 42.7373i −1.03995 + 1.55640i
\(755\) −45.5290 + 9.05629i −1.65697 + 0.329592i
\(756\) −0.00261291 + 1.31549i −9.50307e−5 + 0.0478441i
\(757\) 20.8300 50.2881i 0.757080 1.82775i 0.242954 0.970038i \(-0.421884\pi\)
0.514126 0.857715i \(-0.328116\pi\)
\(758\) −4.40851 22.1631i −0.160124 0.805000i
\(759\) −1.21436 1.82002i −0.0440783 0.0660625i
\(760\) 7.07871 + 1.40804i 0.256772 + 0.0510751i
\(761\) 24.1395 24.1395i 0.875055 0.875055i −0.117963 0.993018i \(-0.537636\pi\)
0.993018 + 0.117963i \(0.0376365\pi\)
\(762\) 6.03385 + 30.4395i 0.218583 + 1.10271i
\(763\) 8.37493 3.46901i 0.303193 0.125587i
\(764\) −0.0846370 −0.00306206
\(765\) 0 0
\(766\) 32.2229 1.16426
\(767\) 24.8794 10.3054i 0.898343 0.372106i
\(768\) 0.945571 + 4.77021i 0.0341204 + 0.172130i
\(769\) 31.3211 31.3211i 1.12947 1.12947i 0.139204 0.990264i \(-0.455546\pi\)
0.990264 0.139204i \(-0.0444544\pi\)
\(770\) −15.4771 3.07859i −0.557757 0.110945i
\(771\) −19.1248 28.6633i −0.688761 1.03228i
\(772\) 0.266135 + 1.33795i 0.00957840 + 0.0481539i
\(773\) −5.31114 + 12.8222i −0.191028 + 0.461184i −0.990154 0.139980i \(-0.955296\pi\)
0.799126 + 0.601164i \(0.205296\pi\)
\(774\) −19.0608 46.1897i −0.685125 1.66025i
\(775\) −12.2128 + 2.42928i −0.438698 + 0.0872624i
\(776\) 5.39903 8.08023i 0.193814 0.290063i
\(777\) −7.39431 4.94780i −0.265269 0.177501i
\(778\) 15.6099 + 15.6099i 0.559643 + 0.559643i
\(779\) −1.47723 2.21083i −0.0529272 0.0792111i
\(780\) −0.00181557 + 2.74219i −6.50078e−5 + 0.0981863i
\(781\) 3.58322i 0.128218i
\(782\) 0 0
\(783\) −38.3954 + 15.8146i −1.37214 + 0.565168i
\(784\) 3.79328 + 9.15778i 0.135474 + 0.327064i
\(785\) −6.26211 + 4.18421i −0.223504 + 0.149341i
\(786\) 8.21367 3.39584i 0.292972 0.121126i
\(787\) 4.67010 23.4782i 0.166471 0.836907i −0.803802 0.594896i \(-0.797193\pi\)
0.970274 0.242011i \(-0.0778069\pi\)
\(788\) −2.27057 1.51714i −0.0808856 0.0540460i
\(789\) 0.222692 + 0.0444496i 0.00792806 + 0.00158245i
\(790\) −24.4410 10.1238i −0.869572 0.360189i
\(791\) −32.8490 13.6065i −1.16798 0.483792i
\(792\) −11.2502 7.53870i −0.399758 0.267876i
\(793\) −21.4874 14.3574i −0.763040 0.509847i
\(794\) 10.6845 53.7144i 0.379178 1.90625i
\(795\) −12.8599 31.1048i −0.456094 1.10317i
\(796\) 2.35361 1.57263i 0.0834213 0.0557403i
\(797\) −17.9210 43.2651i −0.634795 1.53253i −0.833529 0.552476i \(-0.813683\pi\)
0.198734 0.980053i \(-0.436317\pi\)
\(798\) 4.33492 + 1.79895i 0.153455 + 0.0636820i
\(799\) 0 0
\(800\) 2.85893i 0.101078i
\(801\) 13.3989 + 5.57079i 0.473426 + 0.196834i
\(802\) 2.85685 + 4.27557i 0.100879 + 0.150976i
\(803\) 14.6575 + 14.6575i 0.517252 + 0.517252i
\(804\) 0.813491 1.21573i 0.0286896 0.0428755i
\(805\) 2.80287 4.19478i 0.0987880 0.147847i
\(806\) −18.2212 + 3.62442i −0.641814 + 0.127665i
\(807\) −7.28661 + 7.27696i −0.256501 + 0.256161i
\(808\) −3.92024 + 9.46429i −0.137913 + 0.332952i
\(809\) 2.28565 + 11.4907i 0.0803592 + 0.403993i 0.999939 + 0.0110886i \(0.00352967\pi\)
−0.919579 + 0.392904i \(0.871470\pi\)
\(810\) −22.2892 + 33.1677i −0.783164 + 1.16539i
\(811\) 18.4661 + 3.67314i 0.648434 + 0.128982i 0.508340 0.861157i \(-0.330259\pi\)
0.140094 + 0.990138i \(0.455259\pi\)
\(812\) −1.43060 + 1.43060i −0.0502042 + 0.0502042i
\(813\) −11.6803 + 2.31531i −0.409645 + 0.0812016i
\(814\) −5.27605 + 2.18541i −0.184926 + 0.0765987i
\(815\) 3.38972 0.118737
\(816\) 0 0
\(817\) −9.88307 −0.345765
\(818\) 16.4118 6.79797i 0.573824 0.237686i
\(819\) 5.61666 28.0428i 0.196262 0.979893i
\(820\) 0.779963 0.779963i 0.0272375 0.0272375i
\(821\) 29.7119 + 5.91006i 1.03695 + 0.206263i 0.684079 0.729408i \(-0.260205\pi\)
0.352874 + 0.935671i \(0.385205\pi\)
\(822\) −30.7106 + 20.4908i −1.07116 + 0.714698i
\(823\) −4.47717 22.5083i −0.156064 0.784589i −0.976945 0.213489i \(-0.931517\pi\)
0.820881 0.571099i \(-0.193483\pi\)
\(824\) −9.78523 + 23.6236i −0.340884 + 0.822968i
\(825\) −8.69457 8.70609i −0.302706 0.303107i
\(826\) 18.7528 3.73016i 0.652493 0.129789i
\(827\) −9.72768 + 14.5585i −0.338265 + 0.506249i −0.961136 0.276076i \(-0.910966\pi\)
0.622871 + 0.782324i \(0.285966\pi\)
\(828\) −0.224655 + 0.149680i −0.00780732 + 0.00520174i
\(829\) −31.1358 31.1358i −1.08139 1.08139i −0.996380 0.0850121i \(-0.972907\pi\)
−0.0850121 0.996380i \(-0.527093\pi\)
\(830\) 32.0366 + 47.9462i 1.11201 + 1.66424i
\(831\) −14.3715 0.00951518i −0.498542 0.000330078i
\(832\) 33.0493i 1.14578i
\(833\) 0 0
\(834\) −4.87328 + 11.7432i −0.168748 + 0.406632i
\(835\) −23.1910 55.9881i −0.802559 1.93755i
\(836\) 0.138863 0.0927852i 0.00480267 0.00320904i
\(837\) −13.8550 5.77119i −0.478898 0.199481i
\(838\) −8.91178 + 44.8026i −0.307852 + 1.54768i
\(839\) −16.4446 10.9879i −0.567731 0.379346i 0.238325 0.971186i \(-0.423402\pi\)
−0.806056 + 0.591840i \(0.798402\pi\)
\(840\) 6.11227 30.6225i 0.210893 1.05658i
\(841\) −32.2093 13.3415i −1.11067 0.460053i
\(842\) 20.3896 + 8.44564i 0.702671 + 0.291056i
\(843\) −4.49203 + 22.5051i −0.154714 + 0.775116i
\(844\) −1.52353 1.01799i −0.0524422 0.0350407i
\(845\) 3.89185 19.5656i 0.133884 0.673078i
\(846\) −0.0180859 + 13.6582i −0.000621805 + 0.469580i
\(847\) −14.8567 + 9.92694i −0.510483 + 0.341094i
\(848\) −10.2870 24.8350i −0.353257 0.852837i
\(849\) 9.31634 22.4496i 0.319736 0.770468i
\(850\) 0 0
\(851\) 1.82575i 0.0625858i
\(852\) −0.442102 0.000292709i −0.0151462 1.00281e-5i
\(853\) −3.43080 5.13456i −0.117469 0.175804i 0.768076 0.640359i \(-0.221214\pi\)
−0.885544 + 0.464555i \(0.846214\pi\)
\(854\) −12.9745 12.9745i −0.443977 0.443977i
\(855\) 4.38245 + 6.57763i 0.149877 + 0.224950i
\(856\) −2.87643 + 4.30489i −0.0983145 + 0.147138i
\(857\) 25.5035 5.07296i 0.871184 0.173289i 0.260798 0.965393i \(-0.416014\pi\)
0.610386 + 0.792104i \(0.291014\pi\)
\(858\) −12.9721 12.9893i −0.442859 0.443446i
\(859\) 1.25664 3.03380i 0.0428761 0.103512i −0.900991 0.433838i \(-0.857159\pi\)
0.943867 + 0.330326i \(0.107159\pi\)
\(860\) −0.799849 4.02111i −0.0272746 0.137119i
\(861\) −9.56953 + 6.38500i −0.326129 + 0.217600i
\(862\) −16.3462 3.25147i −0.556755 0.110745i
\(863\) 10.3922 10.3922i 0.353754 0.353754i −0.507750 0.861504i \(-0.669523\pi\)
0.861504 + 0.507750i \(0.169523\pi\)
\(864\) −1.92016 + 2.86140i −0.0653251 + 0.0973468i
\(865\) −32.8040 + 13.5878i −1.11537 + 0.462000i
\(866\) 38.9856 1.32479
\(867\) 0 0
\(868\) −0.731265 −0.0248208
\(869\) 9.07062 3.75718i 0.307700 0.127453i
\(870\) −60.2856 + 11.9501i −2.04387 + 0.405145i
\(871\) −22.4875 + 22.4875i −0.761958 + 0.761958i
\(872\) 11.2927 + 2.24626i 0.382419 + 0.0760679i
\(873\) 10.4406 2.06239i 0.353360 0.0698014i
\(874\) 0.187896 + 0.944618i 0.00635569 + 0.0319522i
\(875\) −1.73532 + 4.18943i −0.0586644 + 0.141629i
\(876\) 1.80966 1.80726i 0.0611427 0.0610618i
\(877\) 13.0801 2.60180i 0.441684 0.0878565i 0.0307618 0.999527i \(-0.490207\pi\)
0.410923 + 0.911670i \(0.365207\pi\)
\(878\) −6.89290 + 10.3160i −0.232624 + 0.348146i
\(879\) 25.4353 38.0121i 0.857912 1.28212i
\(880\) −15.0076 15.0076i −0.505907 0.505907i
\(881\) −10.9553 16.3958i −0.369094 0.552389i 0.599709 0.800218i \(-0.295283\pi\)
−0.968804 + 0.247829i \(0.920283\pi\)
\(882\) −3.93557 + 9.46583i −0.132517 + 0.318731i
\(883\) 44.5932i 1.50068i −0.661051 0.750341i \(-0.729889\pi\)
0.661051 0.750341i \(-0.270111\pi\)
\(884\) 0 0
\(885\) 29.7401 + 12.3418i 0.999702 + 0.414866i
\(886\) 10.5118 + 25.3778i 0.353152 + 0.852584i
\(887\) −13.8993 + 9.28722i −0.466693 + 0.311834i −0.766590 0.642137i \(-0.778048\pi\)
0.299896 + 0.953972i \(0.403048\pi\)
\(888\) −4.31764 10.4432i −0.144890 0.350452i
\(889\) 5.18067 26.0450i 0.173754 0.873522i
\(890\) 17.8572 + 11.9318i 0.598575 + 0.399955i
\(891\) −2.85477 14.5532i −0.0956383 0.487551i
\(892\) −0.263753 0.109250i −0.00883111 0.00365797i
\(893\) 2.49580 + 1.03380i 0.0835189 + 0.0345947i
\(894\) 15.5468 + 3.10316i 0.519964 + 0.103785i
\(895\) 2.14810 + 1.43532i 0.0718032 + 0.0479773i
\(896\) 5.13597 25.8203i 0.171581 0.862594i
\(897\) 5.42367 2.24235i 0.181091 0.0748699i
\(898\) 32.9873 22.0414i 1.10080 0.735532i
\(899\) −8.83348 21.3259i −0.294613 0.711259i
\(900\) −1.07488 + 1.07204i −0.0358293 + 0.0357345i
\(901\) 0 0
\(902\) 7.38418i 0.245866i
\(903\) −0.0283106 + 42.7598i −0.000942119 + 1.42296i
\(904\) −25.0902 37.5501i −0.834487 1.24890i
\(905\) −3.09374 3.09374i −0.102839 0.102839i
\(906\) −31.8663 21.3229i −1.05869 0.708406i
\(907\) 5.11877 7.66078i 0.169966 0.254372i −0.736702 0.676218i \(-0.763618\pi\)
0.906668 + 0.421846i \(0.138618\pi\)
\(908\) −0.161686 + 0.0321614i −0.00536574 + 0.00106731i
\(909\) −10.3702 + 4.27938i −0.343956 + 0.141938i
\(910\) 16.1986 39.1068i 0.536978 1.29638i
\(911\) −0.391215 1.96677i −0.0129615 0.0651621i 0.973763 0.227564i \(-0.0730760\pi\)
−0.986725 + 0.162402i \(0.948076\pi\)
\(912\) 3.50351 + 5.25090i 0.116013 + 0.173875i
\(913\) −20.9894 4.17505i −0.694648 0.138174i
\(914\) −10.8464 + 10.8464i −0.358768 + 0.358768i
\(915\) −6.00824 30.3103i −0.198626 1.00203i
\(916\) 1.17955 0.488587i 0.0389735 0.0161434i
\(917\) −7.60583 −0.251167
\(918\) 0 0
\(919\) 4.18774 0.138141 0.0690703 0.997612i \(-0.477997\pi\)
0.0690703 + 0.997612i \(0.477997\pi\)
\(920\) 5.92020 2.45223i 0.195183 0.0808475i
\(921\) 8.22807 + 41.5089i 0.271124 + 1.36777i
\(922\) −10.1727 + 10.1727i −0.335021 + 0.335021i
\(923\) 9.42688 + 1.87512i 0.310290 + 0.0617204i
\(924\) −0.401044 0.601066i −0.0131934 0.0197736i
\(925\) −2.00304 10.0700i −0.0658595 0.331098i
\(926\) −12.7673 + 30.8229i −0.419558 + 1.01290i
\(927\) −25.8847 + 10.6817i −0.850166 + 0.350832i
\(928\) −5.19789 + 1.03392i −0.170629 + 0.0339402i
\(929\) −13.5854 + 20.3321i −0.445724 + 0.667073i −0.984502 0.175375i \(-0.943886\pi\)
0.538778 + 0.842448i \(0.318886\pi\)
\(930\) −18.4620 12.3536i −0.605393 0.405091i
\(931\) 1.43373 + 1.43373i 0.0469885 + 0.0469885i
\(932\) −0.934927 1.39922i −0.0306245 0.0458329i
\(933\) 0.0267611 40.4193i 0.000876118 1.32327i
\(934\) 37.6099i 1.23063i
\(935\) 0 0
\(936\) 25.7205 25.6524i 0.840699 0.838476i
\(937\) 19.3663 + 46.7545i 0.632671 + 1.52740i 0.836252 + 0.548345i \(0.184742\pi\)
−0.203582 + 0.979058i \(0.565258\pi\)
\(938\) −18.7745 + 12.5447i −0.613010 + 0.409600i
\(939\) −2.58445 + 1.06851i −0.0843403 + 0.0348695i
\(940\) −0.218631 + 1.09913i −0.00713095 + 0.0358497i
\(941\) 2.99651 + 2.00221i 0.0976836 + 0.0652701i 0.603453 0.797399i \(-0.293791\pi\)
−0.505769 + 0.862669i \(0.668791\pi\)
\(942\) −6.10033 1.21763i −0.198760 0.0396726i
\(943\) −2.18105 0.903419i −0.0710246 0.0294194i
\(944\) 23.7584 + 9.84105i 0.773270 + 0.320299i
\(945\) 28.4711 18.9421i 0.926166 0.616187i
\(946\) 22.8209 + 15.2484i 0.741970 + 0.495769i
\(947\) 5.22957 26.2908i 0.169938 0.854336i −0.797905 0.602783i \(-0.794059\pi\)
0.967843 0.251554i \(-0.0809415\pi\)
\(948\) −0.462824 1.11945i −0.0150318 0.0363581i
\(949\) −46.2320 + 30.8912i −1.50075 + 1.00277i
\(950\) 2.07269 + 5.00393i 0.0672471 + 0.162349i
\(951\) −39.0103 16.1889i −1.26500 0.524960i
\(952\) 0 0
\(953\) 24.2594i 0.785838i −0.919573 0.392919i \(-0.871465\pi\)
0.919573 0.392919i \(-0.128535\pi\)
\(954\) 10.6729 25.6704i 0.345547 0.831109i
\(955\) 1.22234 + 1.82937i 0.0395541 + 0.0591969i
\(956\) 1.96792 + 1.96792i 0.0636470 + 0.0636470i
\(957\) 12.6844 18.9564i 0.410028 0.612772i
\(958\) 7.00474 10.4833i 0.226313 0.338701i
\(959\) 30.9862 6.16353i 1.00060 0.199031i
\(960\) 27.9612 27.9242i 0.902445 0.901250i
\(961\) −8.67037 + 20.9321i −0.279689 + 0.675230i
\(962\) −2.98848 15.0241i −0.0963525 0.484397i
\(963\) −5.56241 + 1.09878i −0.179246 + 0.0354076i
\(964\) 0.324012 + 0.0644499i 0.0104357 + 0.00207579i
\(965\) 25.0752 25.0752i 0.807200 0.807200i
\(966\) 4.08749 0.810240i 0.131513 0.0260691i
\(967\) 12.2636 5.07976i 0.394372 0.163354i −0.176680 0.984268i \(-0.556536\pi\)
0.571051 + 0.820914i \(0.306536\pi\)
\(968\) −22.6952 −0.729452
\(969\) 0 0
\(970\) 15.7512 0.505739
\(971\) −14.2905 + 5.91933i −0.458605 + 0.189960i −0.600012 0.799991i \(-0.704837\pi\)
0.141407 + 0.989952i \(0.454837\pi\)
\(972\) −1.79583 + 0.351036i −0.0576012 + 0.0112595i
\(973\) 7.69338 7.69338i 0.246638 0.246638i
\(974\) 55.3982 + 11.0194i 1.77507 + 0.353084i
\(975\) 27.4543 18.3181i 0.879241 0.586649i
\(976\) −4.81450 24.2041i −0.154108 0.774755i
\(977\) 7.72995 18.6618i 0.247303 0.597042i −0.750670 0.660677i \(-0.770269\pi\)
0.997973 + 0.0636347i \(0.0202693\pi\)
\(978\) 1.97845 + 1.98107i 0.0632637 + 0.0633475i
\(979\) −7.81735 + 1.55497i −0.249844 + 0.0496970i
\(980\) −0.467306 + 0.699373i −0.0149275 + 0.0223406i
\(981\) 6.99134 + 10.4933i 0.223216 + 0.335026i
\(982\) −13.0385 13.0385i −0.416075 0.416075i
\(983\) −14.4927 21.6898i −0.462244 0.691797i 0.524984 0.851112i \(-0.324071\pi\)
−0.987228 + 0.159315i \(0.949071\pi\)
\(984\) −14.6120 0.00967440i −0.465814 0.000308409i
\(985\) 70.9874i 2.26185i
\(986\) 0 0
\(987\) 4.47994 10.7953i 0.142598 0.343618i
\(988\) 0.171435 + 0.413882i 0.00545409 + 0.0131673i
\(989\) −7.29590 + 4.87497i −0.231996 + 0.155015i
\(990\) 0.0290655 21.9499i 0.000923762 0.697615i
\(991\) −7.04470 + 35.4161i −0.223782 + 1.12503i 0.691549 + 0.722329i \(0.256928\pi\)
−0.915332 + 0.402701i \(0.868072\pi\)
\(992\) −1.59273 1.06423i −0.0505692 0.0337892i
\(993\) −10.3285 + 51.7460i −0.327766 + 1.64211i
\(994\) 6.30488 + 2.61157i 0.199979 + 0.0828339i
\(995\) −67.9824 28.1592i −2.15519 0.892707i
\(996\) −0.516838 + 2.58936i −0.0163766 + 0.0820469i
\(997\) −12.2838 8.20777i −0.389032 0.259943i 0.345638 0.938368i \(-0.387663\pi\)
−0.734669 + 0.678425i \(0.762663\pi\)
\(998\) −10.5365 + 52.9708i −0.333529 + 1.67676i
\(999\) 4.75858 11.4240i 0.150555 0.361439i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.i.c.158.4 32
3.2 odd 2 inner 867.2.i.c.158.1 32
17.2 even 8 867.2.i.g.224.4 32
17.3 odd 16 867.2.i.i.827.4 32
17.4 even 4 51.2.i.a.29.1 32
17.5 odd 16 867.2.i.f.329.1 32
17.6 odd 16 51.2.i.a.44.4 yes 32
17.7 odd 16 inner 867.2.i.c.653.1 32
17.8 even 8 867.2.i.i.65.1 32
17.9 even 8 867.2.i.b.65.1 32
17.10 odd 16 867.2.i.d.653.1 32
17.11 odd 16 867.2.i.h.503.4 32
17.12 odd 16 867.2.i.g.329.1 32
17.13 even 4 867.2.i.h.131.1 32
17.14 odd 16 867.2.i.b.827.4 32
17.15 even 8 867.2.i.f.224.4 32
17.16 even 2 867.2.i.d.158.4 32
51.2 odd 8 867.2.i.g.224.1 32
51.5 even 16 867.2.i.f.329.4 32
51.8 odd 8 867.2.i.i.65.4 32
51.11 even 16 867.2.i.h.503.1 32
51.14 even 16 867.2.i.b.827.1 32
51.20 even 16 867.2.i.i.827.1 32
51.23 even 16 51.2.i.a.44.1 yes 32
51.26 odd 8 867.2.i.b.65.4 32
51.29 even 16 867.2.i.g.329.4 32
51.32 odd 8 867.2.i.f.224.1 32
51.38 odd 4 51.2.i.a.29.4 yes 32
51.41 even 16 inner 867.2.i.c.653.4 32
51.44 even 16 867.2.i.d.653.4 32
51.47 odd 4 867.2.i.h.131.4 32
51.50 odd 2 867.2.i.d.158.1 32
68.23 even 16 816.2.cj.c.401.3 32
68.55 odd 4 816.2.cj.c.641.4 32
204.23 odd 16 816.2.cj.c.401.4 32
204.191 even 4 816.2.cj.c.641.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.i.a.29.1 32 17.4 even 4
51.2.i.a.29.4 yes 32 51.38 odd 4
51.2.i.a.44.1 yes 32 51.23 even 16
51.2.i.a.44.4 yes 32 17.6 odd 16
816.2.cj.c.401.3 32 68.23 even 16
816.2.cj.c.401.4 32 204.23 odd 16
816.2.cj.c.641.3 32 204.191 even 4
816.2.cj.c.641.4 32 68.55 odd 4
867.2.i.b.65.1 32 17.9 even 8
867.2.i.b.65.4 32 51.26 odd 8
867.2.i.b.827.1 32 51.14 even 16
867.2.i.b.827.4 32 17.14 odd 16
867.2.i.c.158.1 32 3.2 odd 2 inner
867.2.i.c.158.4 32 1.1 even 1 trivial
867.2.i.c.653.1 32 17.7 odd 16 inner
867.2.i.c.653.4 32 51.41 even 16 inner
867.2.i.d.158.1 32 51.50 odd 2
867.2.i.d.158.4 32 17.16 even 2
867.2.i.d.653.1 32 17.10 odd 16
867.2.i.d.653.4 32 51.44 even 16
867.2.i.f.224.1 32 51.32 odd 8
867.2.i.f.224.4 32 17.15 even 8
867.2.i.f.329.1 32 17.5 odd 16
867.2.i.f.329.4 32 51.5 even 16
867.2.i.g.224.1 32 51.2 odd 8
867.2.i.g.224.4 32 17.2 even 8
867.2.i.g.329.1 32 17.12 odd 16
867.2.i.g.329.4 32 51.29 even 16
867.2.i.h.131.1 32 17.13 even 4
867.2.i.h.131.4 32 51.47 odd 4
867.2.i.h.503.1 32 51.11 even 16
867.2.i.h.503.4 32 17.11 odd 16
867.2.i.i.65.1 32 17.8 even 8
867.2.i.i.65.4 32 51.8 odd 8
867.2.i.i.827.1 32 51.20 even 16
867.2.i.i.827.4 32 17.3 odd 16