Properties

Label 832.2.ba.i.225.4
Level $832$
Weight $2$
Character 832.225
Analytic conductor $6.644$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.4
Root \(-1.75780 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 832.225
Dual form 832.2.ba.i.673.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16037 + 0.669938i) q^{3} +3.88448 q^{5} +(-2.20369 + 1.27230i) q^{7} +(-0.602365 - 1.04333i) q^{9} +(-0.571683 + 0.990185i) q^{11} +(1.00000 - 3.46410i) q^{13} +(4.50743 + 2.60236i) q^{15} +(3.44224 + 5.96214i) q^{17} +(3.93574 + 6.81691i) q^{19} -3.40946 q^{21} +(3.93574 - 6.81691i) q^{23} +10.0892 q^{25} -5.63382i q^{27} +(-2.51963 - 1.45471i) q^{29} +2.00000i q^{31} +(-1.32673 + 0.765985i) q^{33} +(-8.56021 + 4.94224i) q^{35} +(-1.78212 + 3.08672i) q^{37} +(3.48110 - 3.34969i) q^{39} +(-1.32673 - 0.765985i) q^{41} +(-7.88849 + 4.55442i) q^{43} +(-2.33988 - 4.05279i) q^{45} +2.11552i q^{47} +(-0.262488 + 0.454643i) q^{49} +9.22436i q^{51} -9.01486i q^{53} +(-2.22069 + 3.84636i) q^{55} +10.5468i q^{57} +(-2.79238 - 4.83654i) q^{59} +(-1.50000 + 0.866025i) q^{61} +(2.65486 + 1.53278i) q^{63} +(3.88448 - 13.4562i) q^{65} +(2.20369 - 3.81691i) q^{67} +(9.13382 - 5.27341i) q^{69} +(3.24702 - 1.87467i) q^{71} -11.3696i q^{73} +(11.7072 + 6.75915i) q^{75} -2.90942i q^{77} -7.90549 q^{79} +(1.96722 - 3.40732i) q^{81} -8.10557 q^{83} +(13.3713 + 23.1598i) q^{85} +(-1.94913 - 3.37599i) q^{87} +(2.51963 + 1.45471i) q^{89} +(2.20369 + 8.90612i) q^{91} +(-1.33988 + 2.32073i) q^{93} +(15.2883 + 26.4802i) q^{95} +(1.50000 - 0.866025i) q^{97} +1.37745 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{9} + 12 q^{13} + 18 q^{17} + 36 q^{21} + 36 q^{25} - 18 q^{29} + 54 q^{33} + 6 q^{37} + 54 q^{41} - 24 q^{45} + 12 q^{49} - 18 q^{61} - 18 q^{69} - 30 q^{81} + 48 q^{85} + 18 q^{89} - 12 q^{93}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.16037 + 0.669938i 0.669938 + 0.386789i 0.796053 0.605227i \(-0.206917\pi\)
−0.126115 + 0.992016i \(0.540251\pi\)
\(4\) 0 0
\(5\) 3.88448 1.73719 0.868597 0.495519i \(-0.165022\pi\)
0.868597 + 0.495519i \(0.165022\pi\)
\(6\) 0 0
\(7\) −2.20369 + 1.27230i −0.832918 + 0.480885i −0.854851 0.518874i \(-0.826351\pi\)
0.0219327 + 0.999759i \(0.493018\pi\)
\(8\) 0 0
\(9\) −0.602365 1.04333i −0.200788 0.347776i
\(10\) 0 0
\(11\) −0.571683 + 0.990185i −0.172369 + 0.298552i −0.939248 0.343240i \(-0.888475\pi\)
0.766879 + 0.641792i \(0.221809\pi\)
\(12\) 0 0
\(13\) 1.00000 3.46410i 0.277350 0.960769i
\(14\) 0 0
\(15\) 4.50743 + 2.60236i 1.16381 + 0.671928i
\(16\) 0 0
\(17\) 3.44224 + 5.96214i 0.834866 + 1.44603i 0.894139 + 0.447789i \(0.147788\pi\)
−0.0592730 + 0.998242i \(0.518878\pi\)
\(18\) 0 0
\(19\) 3.93574 + 6.81691i 0.902922 + 1.56391i 0.823683 + 0.567051i \(0.191916\pi\)
0.0792390 + 0.996856i \(0.474751\pi\)
\(20\) 0 0
\(21\) −3.40946 −0.744005
\(22\) 0 0
\(23\) 3.93574 6.81691i 0.820660 1.42142i −0.0845322 0.996421i \(-0.526940\pi\)
0.905192 0.425003i \(-0.139727\pi\)
\(24\) 0 0
\(25\) 10.0892 2.01784
\(26\) 0 0
\(27\) 5.63382i 1.08423i
\(28\) 0 0
\(29\) −2.51963 1.45471i −0.467884 0.270133i 0.247470 0.968896i \(-0.420401\pi\)
−0.715353 + 0.698763i \(0.753734\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) −1.32673 + 0.765985i −0.230953 + 0.133341i
\(34\) 0 0
\(35\) −8.56021 + 4.94224i −1.44694 + 0.835391i
\(36\) 0 0
\(37\) −1.78212 + 3.08672i −0.292979 + 0.507454i −0.974513 0.224333i \(-0.927980\pi\)
0.681534 + 0.731786i \(0.261313\pi\)
\(38\) 0 0
\(39\) 3.48110 3.34969i 0.557422 0.536380i
\(40\) 0 0
\(41\) −1.32673 0.765985i −0.207200 0.119627i 0.392810 0.919620i \(-0.371503\pi\)
−0.600009 + 0.799993i \(0.704836\pi\)
\(42\) 0 0
\(43\) −7.88849 + 4.55442i −1.20298 + 0.694543i −0.961217 0.275792i \(-0.911060\pi\)
−0.241766 + 0.970335i \(0.577727\pi\)
\(44\) 0 0
\(45\) −2.33988 4.05279i −0.348808 0.604154i
\(46\) 0 0
\(47\) 2.11552i 0.308580i 0.988026 + 0.154290i \(0.0493090\pi\)
−0.988026 + 0.154290i \(0.950691\pi\)
\(48\) 0 0
\(49\) −0.262488 + 0.454643i −0.0374983 + 0.0649490i
\(50\) 0 0
\(51\) 9.22436i 1.29167i
\(52\) 0 0
\(53\) 9.01486i 1.23829i −0.785278 0.619143i \(-0.787480\pi\)
0.785278 0.619143i \(-0.212520\pi\)
\(54\) 0 0
\(55\) −2.22069 + 3.84636i −0.299438 + 0.518643i
\(56\) 0 0
\(57\) 10.5468i 1.39696i
\(58\) 0 0
\(59\) −2.79238 4.83654i −0.363537 0.629664i 0.625004 0.780622i \(-0.285098\pi\)
−0.988540 + 0.150958i \(0.951764\pi\)
\(60\) 0 0
\(61\) −1.50000 + 0.866025i −0.192055 + 0.110883i −0.592944 0.805243i \(-0.702035\pi\)
0.400889 + 0.916127i \(0.368701\pi\)
\(62\) 0 0
\(63\) 2.65486 + 1.53278i 0.334480 + 0.193112i
\(64\) 0 0
\(65\) 3.88448 13.4562i 0.481811 1.66904i
\(66\) 0 0
\(67\) 2.20369 3.81691i 0.269224 0.466310i −0.699438 0.714694i \(-0.746566\pi\)
0.968662 + 0.248384i \(0.0798994\pi\)
\(68\) 0 0
\(69\) 9.13382 5.27341i 1.09958 0.634844i
\(70\) 0 0
\(71\) 3.24702 1.87467i 0.385350 0.222482i −0.294793 0.955561i \(-0.595251\pi\)
0.680144 + 0.733079i \(0.261917\pi\)
\(72\) 0 0
\(73\) 11.3696i 1.33071i −0.746527 0.665355i \(-0.768280\pi\)
0.746527 0.665355i \(-0.231720\pi\)
\(74\) 0 0
\(75\) 11.7072 + 6.75915i 1.35183 + 0.780480i
\(76\) 0 0
\(77\) 2.90942i 0.331559i
\(78\) 0 0
\(79\) −7.90549 −0.889437 −0.444719 0.895670i \(-0.646696\pi\)
−0.444719 + 0.895670i \(0.646696\pi\)
\(80\) 0 0
\(81\) 1.96722 3.40732i 0.218580 0.378591i
\(82\) 0 0
\(83\) −8.10557 −0.889702 −0.444851 0.895605i \(-0.646743\pi\)
−0.444851 + 0.895605i \(0.646743\pi\)
\(84\) 0 0
\(85\) 13.3713 + 23.1598i 1.45032 + 2.51204i
\(86\) 0 0
\(87\) −1.94913 3.37599i −0.208969 0.361945i
\(88\) 0 0
\(89\) 2.51963 + 1.45471i 0.267080 + 0.154199i 0.627560 0.778568i \(-0.284054\pi\)
−0.360480 + 0.932767i \(0.617387\pi\)
\(90\) 0 0
\(91\) 2.20369 + 8.90612i 0.231010 + 0.933615i
\(92\) 0 0
\(93\) −1.33988 + 2.32073i −0.138939 + 0.240649i
\(94\) 0 0
\(95\) 15.2883 + 26.4802i 1.56855 + 2.71681i
\(96\) 0 0
\(97\) 1.50000 0.866025i 0.152302 0.0879316i −0.421912 0.906637i \(-0.638641\pi\)
0.574214 + 0.818705i \(0.305308\pi\)
\(98\) 0 0
\(99\) 1.37745 0.138439
\(100\) 0 0
\(101\) −3.30709 1.90935i −0.329068 0.189988i 0.326359 0.945246i \(-0.394178\pi\)
−0.655427 + 0.755258i \(0.727511\pi\)
\(102\) 0 0
\(103\) −6.92820 −0.682656 −0.341328 0.939944i \(-0.610877\pi\)
−0.341328 + 0.939944i \(0.610877\pi\)
\(104\) 0 0
\(105\) −13.2440 −1.29248
\(106\) 0 0
\(107\) −1.71505 0.990185i −0.165800 0.0957248i 0.414804 0.909911i \(-0.363850\pi\)
−0.580604 + 0.814186i \(0.697184\pi\)
\(108\) 0 0
\(109\) −10.5250 −1.00811 −0.504055 0.863672i \(-0.668159\pi\)
−0.504055 + 0.863672i \(0.668159\pi\)
\(110\) 0 0
\(111\) −4.13583 + 2.38782i −0.392555 + 0.226642i
\(112\) 0 0
\(113\) 6.30709 + 10.9242i 0.593322 + 1.02766i 0.993781 + 0.111349i \(0.0355171\pi\)
−0.400460 + 0.916314i \(0.631150\pi\)
\(114\) 0 0
\(115\) 15.2883 26.4802i 1.42564 2.46929i
\(116\) 0 0
\(117\) −4.21655 + 1.04333i −0.389821 + 0.0964556i
\(118\) 0 0
\(119\) −15.1713 8.75915i −1.39075 0.802950i
\(120\) 0 0
\(121\) 4.84636 + 8.39414i 0.440578 + 0.763103i
\(122\) 0 0
\(123\) −1.02633 1.77765i −0.0925407 0.160285i
\(124\) 0 0
\(125\) 19.7690 1.76819
\(126\) 0 0
\(127\) 1.74905 3.02945i 0.155203 0.268820i −0.777930 0.628351i \(-0.783730\pi\)
0.933133 + 0.359531i \(0.117063\pi\)
\(128\) 0 0
\(129\) −12.2047 −1.07457
\(130\) 0 0
\(131\) 13.7690i 1.20300i −0.798873 0.601500i \(-0.794570\pi\)
0.798873 0.601500i \(-0.205430\pi\)
\(132\) 0 0
\(133\) −17.3464 10.0149i −1.50412 0.868404i
\(134\) 0 0
\(135\) 21.8845i 1.88352i
\(136\) 0 0
\(137\) −9.13382 + 5.27341i −0.780355 + 0.450538i −0.836556 0.547881i \(-0.815435\pi\)
0.0562011 + 0.998419i \(0.482101\pi\)
\(138\) 0 0
\(139\) 2.99246 1.72770i 0.253817 0.146541i −0.367694 0.929947i \(-0.619853\pi\)
0.621511 + 0.783406i \(0.286519\pi\)
\(140\) 0 0
\(141\) −1.41727 + 2.45478i −0.119355 + 0.206729i
\(142\) 0 0
\(143\) 2.85842 + 2.97055i 0.239033 + 0.248410i
\(144\) 0 0
\(145\) −9.78746 5.65080i −0.812805 0.469273i
\(146\) 0 0
\(147\) −0.609165 + 0.351702i −0.0502431 + 0.0290079i
\(148\) 0 0
\(149\) 0.480369 + 0.832024i 0.0393534 + 0.0681621i 0.885031 0.465532i \(-0.154137\pi\)
−0.845678 + 0.533694i \(0.820804\pi\)
\(150\) 0 0
\(151\) 19.1285i 1.55665i −0.627860 0.778327i \(-0.716069\pi\)
0.627860 0.778327i \(-0.283931\pi\)
\(152\) 0 0
\(153\) 4.14697 7.18277i 0.335263 0.580692i
\(154\) 0 0
\(155\) 7.76897i 0.624018i
\(156\) 0 0
\(157\) 7.83749i 0.625500i 0.949836 + 0.312750i \(0.101250\pi\)
−0.949836 + 0.312750i \(0.898750\pi\)
\(158\) 0 0
\(159\) 6.03940 10.4605i 0.478955 0.829575i
\(160\) 0 0
\(161\) 20.0298i 1.57857i
\(162\) 0 0
\(163\) −0.0170007 0.0294460i −0.00133159 0.00230639i 0.865359 0.501153i \(-0.167091\pi\)
−0.866690 + 0.498846i \(0.833757\pi\)
\(164\) 0 0
\(165\) −5.15364 + 2.97546i −0.401211 + 0.231639i
\(166\) 0 0
\(167\) 13.5733 + 7.83654i 1.05033 + 0.606410i 0.922742 0.385417i \(-0.125942\pi\)
0.127590 + 0.991827i \(0.459276\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 4.74151 8.21254i 0.362592 0.628028i
\(172\) 0 0
\(173\) −7.15345 + 4.13005i −0.543867 + 0.314002i −0.746645 0.665223i \(-0.768336\pi\)
0.202778 + 0.979225i \(0.435003\pi\)
\(174\) 0 0
\(175\) −22.2335 + 12.8365i −1.68070 + 0.970351i
\(176\) 0 0
\(177\) 7.48289i 0.562448i
\(178\) 0 0
\(179\) −18.8355 10.8747i −1.40783 0.812811i −0.412651 0.910889i \(-0.635397\pi\)
−0.995179 + 0.0980783i \(0.968730\pi\)
\(180\) 0 0
\(181\) 9.79206i 0.727838i −0.931431 0.363919i \(-0.881438\pi\)
0.931431 0.363919i \(-0.118562\pi\)
\(182\) 0 0
\(183\) −2.32073 −0.171554
\(184\) 0 0
\(185\) −6.92261 + 11.9903i −0.508960 + 0.881545i
\(186\) 0 0
\(187\) −7.87149 −0.575620
\(188\) 0 0
\(189\) 7.16793 + 12.4152i 0.521390 + 0.903074i
\(190\) 0 0
\(191\) −10.6639 18.4704i −0.771610 1.33647i −0.936680 0.350187i \(-0.886118\pi\)
0.165070 0.986282i \(-0.447215\pi\)
\(192\) 0 0
\(193\) −14.3464 8.28287i −1.03267 0.596214i −0.114924 0.993374i \(-0.536662\pi\)
−0.917749 + 0.397160i \(0.869996\pi\)
\(194\) 0 0
\(195\) 13.5223 13.0118i 0.968351 0.931796i
\(196\) 0 0
\(197\) −6.26897 + 10.8582i −0.446645 + 0.773613i −0.998165 0.0605492i \(-0.980715\pi\)
0.551520 + 0.834162i \(0.314048\pi\)
\(198\) 0 0
\(199\) −6.12244 10.6044i −0.434008 0.751724i 0.563206 0.826317i \(-0.309568\pi\)
−0.997214 + 0.0745924i \(0.976234\pi\)
\(200\) 0 0
\(201\) 5.11419 2.95268i 0.360727 0.208266i
\(202\) 0 0
\(203\) 7.40333 0.519612
\(204\) 0 0
\(205\) −5.15364 2.97546i −0.359946 0.207815i
\(206\) 0 0
\(207\) −9.48302 −0.659115
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) −0.926286 0.534791i −0.0637682 0.0368166i 0.467777 0.883847i \(-0.345055\pi\)
−0.531545 + 0.847030i \(0.678388\pi\)
\(212\) 0 0
\(213\) 5.02365 0.344215
\(214\) 0 0
\(215\) −30.6427 + 17.6916i −2.08982 + 1.20656i
\(216\) 0 0
\(217\) −2.54461 4.40739i −0.172739 0.299193i
\(218\) 0 0
\(219\) 7.61693 13.1929i 0.514704 0.891494i
\(220\) 0 0
\(221\) 24.0957 5.96214i 1.62085 0.401057i
\(222\) 0 0
\(223\) 24.9429 + 14.4008i 1.67030 + 0.964347i 0.967469 + 0.252989i \(0.0814137\pi\)
0.702830 + 0.711358i \(0.251920\pi\)
\(224\) 0 0
\(225\) −6.07739 10.5263i −0.405159 0.701756i
\(226\) 0 0
\(227\) 6.61108 + 11.4507i 0.438793 + 0.760012i 0.997597 0.0692883i \(-0.0220728\pi\)
−0.558804 + 0.829300i \(0.688739\pi\)
\(228\) 0 0
\(229\) −0.564237 −0.0372859 −0.0186429 0.999826i \(-0.505935\pi\)
−0.0186429 + 0.999826i \(0.505935\pi\)
\(230\) 0 0
\(231\) 1.94913 3.37599i 0.128243 0.222124i
\(232\) 0 0
\(233\) 8.11552 0.531665 0.265833 0.964019i \(-0.414353\pi\)
0.265833 + 0.964019i \(0.414353\pi\)
\(234\) 0 0
\(235\) 8.21769i 0.536063i
\(236\) 0 0
\(237\) −9.17327 5.29619i −0.595868 0.344025i
\(238\) 0 0
\(239\) 9.53793i 0.616958i 0.951231 + 0.308479i \(0.0998199\pi\)
−0.951231 + 0.308479i \(0.900180\pi\)
\(240\) 0 0
\(241\) 17.3464 10.0149i 1.11738 0.645118i 0.176647 0.984274i \(-0.443475\pi\)
0.940730 + 0.339156i \(0.110142\pi\)
\(242\) 0 0
\(243\) −10.0717 + 5.81490i −0.646100 + 0.373026i
\(244\) 0 0
\(245\) −1.01963 + 1.76605i −0.0651418 + 0.112829i
\(246\) 0 0
\(247\) 27.5502 6.81691i 1.75298 0.433750i
\(248\) 0 0
\(249\) −9.40544 5.43023i −0.596046 0.344127i
\(250\) 0 0
\(251\) 11.5071 6.64364i 0.726323 0.419343i −0.0907527 0.995873i \(-0.528927\pi\)
0.817075 + 0.576531i \(0.195594\pi\)
\(252\) 0 0
\(253\) 4.50000 + 7.79423i 0.282913 + 0.490019i
\(254\) 0 0
\(255\) 35.8319i 2.24388i
\(256\) 0 0
\(257\) 5.21121 9.02608i 0.325066 0.563031i −0.656459 0.754361i \(-0.727947\pi\)
0.981526 + 0.191330i \(0.0612800\pi\)
\(258\) 0 0
\(259\) 9.06958i 0.563556i
\(260\) 0 0
\(261\) 3.50506i 0.216958i
\(262\) 0 0
\(263\) −9.52050 + 16.4900i −0.587059 + 1.01682i 0.407556 + 0.913180i \(0.366381\pi\)
−0.994615 + 0.103636i \(0.966952\pi\)
\(264\) 0 0
\(265\) 35.0181i 2.15114i
\(266\) 0 0
\(267\) 1.94913 + 3.37599i 0.119285 + 0.206608i
\(268\) 0 0
\(269\) −14.2875 + 8.24887i −0.871122 + 0.502943i −0.867721 0.497052i \(-0.834416\pi\)
−0.00340112 + 0.999994i \(0.501083\pi\)
\(270\) 0 0
\(271\) 10.8299 + 6.25267i 0.657872 + 0.379823i 0.791466 0.611213i \(-0.209318\pi\)
−0.133593 + 0.991036i \(0.542652\pi\)
\(272\) 0 0
\(273\) −3.40946 + 11.8107i −0.206350 + 0.714817i
\(274\) 0 0
\(275\) −5.76784 + 9.99018i −0.347814 + 0.602431i
\(276\) 0 0
\(277\) 5.28746 3.05272i 0.317693 0.183420i −0.332671 0.943043i \(-0.607950\pi\)
0.650364 + 0.759623i \(0.274616\pi\)
\(278\) 0 0
\(279\) 2.08665 1.20473i 0.124925 0.0721253i
\(280\) 0 0
\(281\) 9.01486i 0.537781i 0.963171 + 0.268891i \(0.0866570\pi\)
−0.963171 + 0.268891i \(0.913343\pi\)
\(282\) 0 0
\(283\) −16.7373 9.66327i −0.994927 0.574422i −0.0881839 0.996104i \(-0.528106\pi\)
−0.906743 + 0.421683i \(0.861440\pi\)
\(284\) 0 0
\(285\) 40.9690i 2.42679i
\(286\) 0 0
\(287\) 3.89826 0.230107
\(288\) 0 0
\(289\) −15.1981 + 26.3238i −0.894003 + 1.54846i
\(290\) 0 0
\(291\) 2.32073 0.136044
\(292\) 0 0
\(293\) 3.61552 + 6.26226i 0.211221 + 0.365845i 0.952097 0.305797i \(-0.0989228\pi\)
−0.740876 + 0.671642i \(0.765589\pi\)
\(294\) 0 0
\(295\) −10.8469 18.7875i −0.631534 1.09385i
\(296\) 0 0
\(297\) 5.57852 + 3.22076i 0.323699 + 0.186888i
\(298\) 0 0
\(299\) −19.6787 20.4507i −1.13805 1.18270i
\(300\) 0 0
\(301\) 11.5892 20.0731i 0.667991 1.15699i
\(302\) 0 0
\(303\) −2.55830 4.43110i −0.146970 0.254560i
\(304\) 0 0
\(305\) −5.82673 + 3.36406i −0.333637 + 0.192626i
\(306\) 0 0
\(307\) 19.2071 1.09621 0.548103 0.836411i \(-0.315350\pi\)
0.548103 + 0.836411i \(0.315350\pi\)
\(308\) 0 0
\(309\) −8.03926 4.64147i −0.457338 0.264044i
\(310\) 0 0
\(311\) −2.75490 −0.156216 −0.0781079 0.996945i \(-0.524888\pi\)
−0.0781079 + 0.996945i \(0.524888\pi\)
\(312\) 0 0
\(313\) −0.564237 −0.0318926 −0.0159463 0.999873i \(-0.505076\pi\)
−0.0159463 + 0.999873i \(0.505076\pi\)
\(314\) 0 0
\(315\) 10.3127 + 5.95407i 0.581057 + 0.335474i
\(316\) 0 0
\(317\) −15.2676 −0.857516 −0.428758 0.903419i \(-0.641049\pi\)
−0.428758 + 0.903419i \(0.641049\pi\)
\(318\) 0 0
\(319\) 2.88086 1.66327i 0.161297 0.0931250i
\(320\) 0 0
\(321\) −1.32673 2.29796i −0.0740506 0.128259i
\(322\) 0 0
\(323\) −27.0956 + 46.9309i −1.50764 + 2.61131i
\(324\) 0 0
\(325\) 10.0892 34.9501i 0.559649 1.93868i
\(326\) 0 0
\(327\) −12.2128 7.05109i −0.675372 0.389926i
\(328\) 0 0
\(329\) −2.69158 4.66195i −0.148392 0.257022i
\(330\) 0 0
\(331\) −5.36768 9.29709i −0.295034 0.511014i 0.679959 0.733250i \(-0.261998\pi\)
−0.974993 + 0.222236i \(0.928664\pi\)
\(332\) 0 0
\(333\) 4.29394 0.235307
\(334\) 0 0
\(335\) 8.56021 14.8267i 0.467694 0.810071i
\(336\) 0 0
\(337\) 18.6641 1.01670 0.508350 0.861150i \(-0.330256\pi\)
0.508350 + 0.861150i \(0.330256\pi\)
\(338\) 0 0
\(339\) 16.9015i 0.917961i
\(340\) 0 0
\(341\) −1.98037 1.14337i −0.107243 0.0619168i
\(342\) 0 0
\(343\) 19.1481i 1.03390i
\(344\) 0 0
\(345\) 35.4802 20.4845i 1.91019 1.10285i
\(346\) 0 0
\(347\) −10.5754 + 6.10570i −0.567716 + 0.327771i −0.756237 0.654298i \(-0.772964\pi\)
0.188520 + 0.982069i \(0.439631\pi\)
\(348\) 0 0
\(349\) 4.78212 8.28287i 0.255981 0.443372i −0.709181 0.705027i \(-0.750935\pi\)
0.965161 + 0.261655i \(0.0842682\pi\)
\(350\) 0 0
\(351\) −19.5161 5.63382i −1.04169 0.300711i
\(352\) 0 0
\(353\) 32.1731 + 18.5751i 1.71240 + 0.988655i 0.931303 + 0.364246i \(0.118673\pi\)
0.781097 + 0.624409i \(0.214660\pi\)
\(354\) 0 0
\(355\) 12.6130 7.28212i 0.669429 0.386495i
\(356\) 0 0
\(357\) −11.7362 20.3277i −0.621145 1.07585i
\(358\) 0 0
\(359\) 15.9607i 0.842376i 0.906973 + 0.421188i \(0.138387\pi\)
−0.906973 + 0.421188i \(0.861613\pi\)
\(360\) 0 0
\(361\) −21.4802 + 37.2048i −1.13054 + 1.95815i
\(362\) 0 0
\(363\) 12.9870i 0.681643i
\(364\) 0 0
\(365\) 44.1650i 2.31170i
\(366\) 0 0
\(367\) 13.5393 23.4507i 0.706745 1.22412i −0.259313 0.965793i \(-0.583496\pi\)
0.966058 0.258325i \(-0.0831705\pi\)
\(368\) 0 0
\(369\) 1.84561i 0.0960787i
\(370\) 0 0
\(371\) 11.4696 + 19.8660i 0.595474 + 1.03139i
\(372\) 0 0
\(373\) −27.9802 + 16.1544i −1.44876 + 0.836441i −0.998408 0.0564104i \(-0.982034\pi\)
−0.450351 + 0.892852i \(0.648701\pi\)
\(374\) 0 0
\(375\) 22.9393 + 13.2440i 1.18458 + 0.683917i
\(376\) 0 0
\(377\) −7.55889 + 7.27355i −0.389303 + 0.374607i
\(378\) 0 0
\(379\) 8.64325 14.9706i 0.443974 0.768986i −0.554006 0.832513i \(-0.686902\pi\)
0.997980 + 0.0635270i \(0.0202349\pi\)
\(380\) 0 0
\(381\) 4.05908 2.34351i 0.207953 0.120062i
\(382\) 0 0
\(383\) 10.2753 5.93243i 0.525041 0.303133i −0.213953 0.976844i \(-0.568634\pi\)
0.738995 + 0.673711i \(0.235301\pi\)
\(384\) 0 0
\(385\) 11.3016i 0.575982i
\(386\) 0 0
\(387\) 9.50350 + 5.48685i 0.483090 + 0.278912i
\(388\) 0 0
\(389\) 26.9125i 1.36452i 0.731111 + 0.682259i \(0.239002\pi\)
−0.731111 + 0.682259i \(0.760998\pi\)
\(390\) 0 0
\(391\) 54.1911 2.74056
\(392\) 0 0
\(393\) 9.22436 15.9771i 0.465307 0.805936i
\(394\) 0 0
\(395\) −30.7088 −1.54512
\(396\) 0 0
\(397\) −4.34636 7.52811i −0.218137 0.377825i 0.736101 0.676872i \(-0.236665\pi\)
−0.954239 + 0.299047i \(0.903331\pi\)
\(398\) 0 0
\(399\) −13.4188 23.2420i −0.671778 1.16355i
\(400\) 0 0
\(401\) 5.69291 + 3.28680i 0.284290 + 0.164135i 0.635364 0.772213i \(-0.280850\pi\)
−0.351074 + 0.936348i \(0.614183\pi\)
\(402\) 0 0
\(403\) 6.92820 + 2.00000i 0.345118 + 0.0996271i
\(404\) 0 0
\(405\) 7.64163 13.2357i 0.379715 0.657686i
\(406\) 0 0
\(407\) −2.03762 3.52925i −0.101001 0.174939i
\(408\) 0 0
\(409\) −18.9802 + 10.9582i −0.938509 + 0.541849i −0.889493 0.456949i \(-0.848942\pi\)
−0.0490166 + 0.998798i \(0.515609\pi\)
\(410\) 0 0
\(411\) −14.1315 −0.697053
\(412\) 0 0
\(413\) 12.3071 + 7.10550i 0.605593 + 0.349639i
\(414\) 0 0
\(415\) −31.4860 −1.54558
\(416\) 0 0
\(417\) 4.62980 0.226722
\(418\) 0 0
\(419\) −5.07911 2.93243i −0.248131 0.143258i 0.370777 0.928722i \(-0.379091\pi\)
−0.618908 + 0.785463i \(0.712425\pi\)
\(420\) 0 0
\(421\) −30.6641 −1.49448 −0.747239 0.664555i \(-0.768621\pi\)
−0.747239 + 0.664555i \(0.768621\pi\)
\(422\) 0 0
\(423\) 2.20717 1.27431i 0.107317 0.0619592i
\(424\) 0 0
\(425\) 34.7295 + 60.1533i 1.68463 + 2.91786i
\(426\) 0 0
\(427\) 2.20369 3.81691i 0.106644 0.184713i
\(428\) 0 0
\(429\) 1.32673 + 5.36190i 0.0640549 + 0.258875i
\(430\) 0 0
\(431\) 20.6015 + 11.8943i 0.992341 + 0.572928i 0.905973 0.423335i \(-0.139141\pi\)
0.0863676 + 0.996263i \(0.472474\pi\)
\(432\) 0 0
\(433\) −10.8910 18.8637i −0.523386 0.906532i −0.999630 0.0272180i \(-0.991335\pi\)
0.476243 0.879314i \(-0.341998\pi\)
\(434\) 0 0
\(435\) −7.57137 13.1140i −0.363019 0.628768i
\(436\) 0 0
\(437\) 61.9604 2.96397
\(438\) 0 0
\(439\) −5.36768 + 9.29709i −0.256185 + 0.443726i −0.965217 0.261451i \(-0.915799\pi\)
0.709032 + 0.705177i \(0.249132\pi\)
\(440\) 0 0
\(441\) 0.632454 0.0301169
\(442\) 0 0
\(443\) 23.7297i 1.12743i 0.825969 + 0.563716i \(0.190629\pi\)
−0.825969 + 0.563716i \(0.809371\pi\)
\(444\) 0 0
\(445\) 9.78746 + 5.65080i 0.463970 + 0.267873i
\(446\) 0 0
\(447\) 1.28727i 0.0608859i
\(448\) 0 0
\(449\) 30.5747 17.6523i 1.44291 0.833065i 0.444868 0.895596i \(-0.353251\pi\)
0.998043 + 0.0625311i \(0.0199173\pi\)
\(450\) 0 0
\(451\) 1.51693 0.875802i 0.0714296 0.0412399i
\(452\) 0 0
\(453\) 12.8149 22.1961i 0.602097 1.04286i
\(454\) 0 0
\(455\) 8.56021 + 34.5957i 0.401309 + 1.62187i
\(456\) 0 0
\(457\) 28.7676 + 16.6090i 1.34569 + 0.776936i 0.987636 0.156763i \(-0.0501059\pi\)
0.358057 + 0.933700i \(0.383439\pi\)
\(458\) 0 0
\(459\) 33.5896 19.3930i 1.56783 0.905186i
\(460\) 0 0
\(461\) 5.07606 + 8.79200i 0.236416 + 0.409484i 0.959683 0.281084i \(-0.0906939\pi\)
−0.723267 + 0.690568i \(0.757361\pi\)
\(462\) 0 0
\(463\) 2.00000i 0.0929479i 0.998920 + 0.0464739i \(0.0147984\pi\)
−0.998920 + 0.0464739i \(0.985202\pi\)
\(464\) 0 0
\(465\) −5.20473 + 9.01486i −0.241364 + 0.418054i
\(466\) 0 0
\(467\) 5.65345i 0.261611i −0.991408 0.130805i \(-0.958244\pi\)
0.991408 0.130805i \(-0.0417563\pi\)
\(468\) 0 0
\(469\) 11.2151i 0.517864i
\(470\) 0 0
\(471\) −5.25063 + 9.09437i −0.241936 + 0.419046i
\(472\) 0 0
\(473\) 10.4147i 0.478871i
\(474\) 0 0
\(475\) 39.7086 + 68.7773i 1.82195 + 3.15572i
\(476\) 0 0
\(477\) −9.40544 + 5.43023i −0.430646 + 0.248633i
\(478\) 0 0
\(479\) −3.71518 2.14496i −0.169751 0.0980058i 0.412717 0.910859i \(-0.364580\pi\)
−0.582468 + 0.812853i \(0.697913\pi\)
\(480\) 0 0
\(481\) 8.91059 + 9.26016i 0.406288 + 0.422227i
\(482\) 0 0
\(483\) −13.4188 + 23.2420i −0.610575 + 1.05755i
\(484\) 0 0
\(485\) 5.82673 3.36406i 0.264578 0.152754i
\(486\) 0 0
\(487\) −14.9032 + 8.60437i −0.675329 + 0.389901i −0.798093 0.602534i \(-0.794158\pi\)
0.122764 + 0.992436i \(0.460824\pi\)
\(488\) 0 0
\(489\) 0.0455576i 0.00206018i
\(490\) 0 0
\(491\) 12.0413 + 6.95206i 0.543417 + 0.313742i 0.746463 0.665427i \(-0.231751\pi\)
−0.203046 + 0.979169i \(0.565084\pi\)
\(492\) 0 0
\(493\) 20.0298i 0.902099i
\(494\) 0 0
\(495\) 5.35067 0.240495
\(496\) 0 0
\(497\) −4.77029 + 8.26239i −0.213977 + 0.370619i
\(498\) 0 0
\(499\) 31.4860 1.40951 0.704753 0.709453i \(-0.251058\pi\)
0.704753 + 0.709453i \(0.251058\pi\)
\(500\) 0 0
\(501\) 10.5000 + 18.1865i 0.469105 + 0.812514i
\(502\) 0 0
\(503\) 10.8979 + 18.8758i 0.485916 + 0.841630i 0.999869 0.0161877i \(-0.00515292\pi\)
−0.513953 + 0.857818i \(0.671820\pi\)
\(504\) 0 0
\(505\) −12.8464 7.41685i −0.571655 0.330045i
\(506\) 0 0
\(507\) −8.12257 15.4086i −0.360736 0.684319i
\(508\) 0 0
\(509\) 4.32673 7.49411i 0.191779 0.332171i −0.754061 0.656804i \(-0.771908\pi\)
0.945840 + 0.324634i \(0.105241\pi\)
\(510\) 0 0
\(511\) 14.4656 + 25.0551i 0.639919 + 1.10837i
\(512\) 0 0
\(513\) 38.4052 22.1733i 1.69563 0.978974i
\(514\) 0 0
\(515\) −26.9125 −1.18591
\(516\) 0 0
\(517\) −2.09475 1.20941i −0.0921271 0.0531896i
\(518\) 0 0
\(519\) −11.0675 −0.485810
\(520\) 0 0
\(521\) 19.4224 0.850912 0.425456 0.904979i \(-0.360114\pi\)
0.425456 + 0.904979i \(0.360114\pi\)
\(522\) 0 0
\(523\) −25.6636 14.8169i −1.12219 0.647898i −0.180233 0.983624i \(-0.557685\pi\)
−0.941960 + 0.335726i \(0.891018\pi\)
\(524\) 0 0
\(525\) −34.3988 −1.50129
\(526\) 0 0
\(527\) −11.9243 + 6.88448i −0.519430 + 0.299893i
\(528\) 0 0
\(529\) −19.4802 33.7407i −0.846964 1.46699i
\(530\) 0 0
\(531\) −3.36406 + 5.82673i −0.145988 + 0.252858i
\(532\) 0 0
\(533\) −3.98018 + 3.82993i −0.172401 + 0.165893i
\(534\) 0 0
\(535\) −6.66208 3.84636i −0.288027 0.166292i
\(536\) 0 0
\(537\) −14.5707 25.2372i −0.628773 1.08907i
\(538\) 0 0
\(539\) −0.300120 0.519823i −0.0129271 0.0223904i
\(540\) 0 0
\(541\) −14.3569 −0.617249 −0.308625 0.951184i \(-0.599869\pi\)
−0.308625 + 0.951184i \(0.599869\pi\)
\(542\) 0 0
\(543\) 6.56008 11.3624i 0.281520 0.487607i
\(544\) 0 0
\(545\) −40.8841 −1.75128
\(546\) 0 0
\(547\) 7.12847i 0.304792i 0.988320 + 0.152396i \(0.0486988\pi\)
−0.988320 + 0.152396i \(0.951301\pi\)
\(548\) 0 0
\(549\) 1.80709 + 1.04333i 0.0771249 + 0.0445281i
\(550\) 0 0
\(551\) 22.9015i 0.975635i
\(552\) 0 0
\(553\) 17.4213 10.0582i 0.740828 0.427717i
\(554\) 0 0
\(555\) −16.0655 + 9.27545i −0.681944 + 0.393721i
\(556\) 0 0
\(557\) 18.4041 31.8769i 0.779807 1.35067i −0.152245 0.988343i \(-0.548650\pi\)
0.932053 0.362323i \(-0.118016\pi\)
\(558\) 0 0
\(559\) 7.88849 + 31.8810i 0.333648 + 1.34842i
\(560\) 0 0
\(561\) −9.13382 5.27341i −0.385630 0.222644i
\(562\) 0 0
\(563\) 14.8712 8.58588i 0.626745 0.361852i −0.152745 0.988266i \(-0.548811\pi\)
0.779491 + 0.626414i \(0.215478\pi\)
\(564\) 0 0
\(565\) 24.4998 + 42.4349i 1.03071 + 1.78525i
\(566\) 0 0
\(567\) 10.0116i 0.420447i
\(568\) 0 0
\(569\) 5.24934 9.09212i 0.220064 0.381161i −0.734763 0.678323i \(-0.762707\pi\)
0.954827 + 0.297162i \(0.0960402\pi\)
\(570\) 0 0
\(571\) 30.2177i 1.26457i 0.774736 + 0.632285i \(0.217883\pi\)
−0.774736 + 0.632285i \(0.782117\pi\)
\(572\) 0 0
\(573\) 28.5765i 1.19380i
\(574\) 0 0
\(575\) 39.7086 68.7773i 1.65596 2.86821i
\(576\) 0 0
\(577\) 25.2260i 1.05017i 0.851049 + 0.525086i \(0.175967\pi\)
−0.851049 + 0.525086i \(0.824033\pi\)
\(578\) 0 0
\(579\) −11.0980 19.2224i −0.461218 0.798854i
\(580\) 0 0
\(581\) 17.8622 10.3127i 0.741049 0.427845i
\(582\) 0 0
\(583\) 8.92637 + 5.15364i 0.369693 + 0.213442i
\(584\) 0 0
\(585\) −16.3791 + 4.05279i −0.677194 + 0.167562i
\(586\) 0 0
\(587\) 2.40377 4.16346i 0.0992144 0.171844i −0.812145 0.583455i \(-0.801700\pi\)
0.911360 + 0.411611i \(0.135034\pi\)
\(588\) 0 0
\(589\) −13.6338 + 7.87149i −0.561772 + 0.324339i
\(590\) 0 0
\(591\) −14.5486 + 8.39964i −0.598450 + 0.345515i
\(592\) 0 0
\(593\) 32.3952i 1.33031i 0.746704 + 0.665157i \(0.231635\pi\)
−0.746704 + 0.665157i \(0.768365\pi\)
\(594\) 0 0
\(595\) −58.9327 34.0248i −2.41600 1.39488i
\(596\) 0 0
\(597\) 16.4066i 0.671479i
\(598\) 0 0
\(599\) 10.2602 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(600\) 0 0
\(601\) 8.23751 14.2678i 0.336015 0.581995i −0.647664 0.761926i \(-0.724254\pi\)
0.983679 + 0.179931i \(0.0575873\pi\)
\(602\) 0 0
\(603\) −5.30971 −0.216228
\(604\) 0 0
\(605\) 18.8256 + 32.6069i 0.765369 + 1.32566i
\(606\) 0 0
\(607\) −19.9788 34.6044i −0.810916 1.40455i −0.912223 0.409693i \(-0.865636\pi\)
0.101307 0.994855i \(-0.467698\pi\)
\(608\) 0 0
\(609\) 8.59058 + 4.95977i 0.348108 + 0.200980i
\(610\) 0 0
\(611\) 7.32836 + 2.11552i 0.296474 + 0.0855846i
\(612\) 0 0
\(613\) 0.287464 0.497903i 0.0116106 0.0201101i −0.860162 0.510021i \(-0.829637\pi\)
0.871772 + 0.489911i \(0.162971\pi\)
\(614\) 0 0
\(615\) −3.98675 6.90525i −0.160761 0.278446i
\(616\) 0 0
\(617\) −16.1535 + 9.32620i −0.650313 + 0.375459i −0.788576 0.614937i \(-0.789181\pi\)
0.138263 + 0.990396i \(0.455848\pi\)
\(618\) 0 0
\(619\) 13.8564 0.556936 0.278468 0.960446i \(-0.410173\pi\)
0.278468 + 0.960446i \(0.410173\pi\)
\(620\) 0 0
\(621\) −38.4052 22.1733i −1.54115 0.889783i
\(622\) 0 0
\(623\) −7.40333 −0.296608
\(624\) 0 0
\(625\) 26.3462 1.05385
\(626\) 0 0
\(627\) −10.4433 6.02945i −0.417066 0.240793i
\(628\) 0 0
\(629\) −24.5379 −0.978392
\(630\) 0 0
\(631\) −41.8953 + 24.1882i −1.66782 + 0.962919i −0.699016 + 0.715106i \(0.746379\pi\)
−0.968808 + 0.247813i \(0.920288\pi\)
\(632\) 0 0
\(633\) −0.716555 1.24111i −0.0284805 0.0493297i
\(634\) 0 0
\(635\) 6.79416 11.7678i 0.269618 0.466992i
\(636\) 0 0
\(637\) 1.31244 + 1.36393i 0.0520008 + 0.0540408i
\(638\) 0 0
\(639\) −3.91178 2.25847i −0.154748 0.0893437i
\(640\) 0 0
\(641\) −11.3464 19.6525i −0.448154 0.776226i 0.550112 0.835091i \(-0.314585\pi\)
−0.998266 + 0.0588653i \(0.981252\pi\)
\(642\) 0 0
\(643\) 0.771763 + 1.33673i 0.0304354 + 0.0527156i 0.880842 0.473411i \(-0.156977\pi\)
−0.850407 + 0.526126i \(0.823644\pi\)
\(644\) 0 0
\(645\) −47.4091 −1.86673
\(646\) 0 0
\(647\) −16.1601 + 27.9902i −0.635321 + 1.10041i 0.351126 + 0.936328i \(0.385799\pi\)
−0.986447 + 0.164080i \(0.947535\pi\)
\(648\) 0 0
\(649\) 6.38542 0.250650
\(650\) 0 0
\(651\) 6.81892i 0.267255i
\(652\) 0 0
\(653\) −25.2678 14.5884i −0.988807 0.570888i −0.0838893 0.996475i \(-0.526734\pi\)
−0.904917 + 0.425587i \(0.860068\pi\)
\(654\) 0 0
\(655\) 53.4853i 2.08984i
\(656\) 0 0
\(657\) −11.8622 + 6.84864i −0.462788 + 0.267191i
\(658\) 0 0
\(659\) 7.97501 4.60437i 0.310662 0.179361i −0.336561 0.941662i \(-0.609264\pi\)
0.647223 + 0.762301i \(0.275930\pi\)
\(660\) 0 0
\(661\) 2.71254 4.69825i 0.105505 0.182741i −0.808439 0.588580i \(-0.799687\pi\)
0.913945 + 0.405839i \(0.133021\pi\)
\(662\) 0 0
\(663\) 31.9541 + 9.22436i 1.24100 + 0.358244i
\(664\) 0 0
\(665\) −67.3816 38.9028i −2.61295 1.50859i
\(666\) 0 0
\(667\) −19.8332 + 11.4507i −0.767946 + 0.443374i
\(668\) 0 0
\(669\) 19.2953 + 33.4204i 0.745998 + 1.29211i
\(670\) 0 0
\(671\) 1.98037i 0.0764513i
\(672\) 0 0
\(673\) −13.2623 + 22.9710i −0.511224 + 0.885466i 0.488691 + 0.872457i \(0.337474\pi\)
−0.999915 + 0.0130091i \(0.995859\pi\)
\(674\) 0 0
\(675\) 56.8408i 2.18780i
\(676\) 0 0
\(677\) 20.6525i 0.793741i 0.917875 + 0.396871i \(0.129904\pi\)
−0.917875 + 0.396871i \(0.870096\pi\)
\(678\) 0 0
\(679\) −2.20369 + 3.81691i −0.0845700 + 0.146480i
\(680\) 0 0
\(681\) 17.7161i 0.678881i
\(682\) 0 0
\(683\) 14.3280 + 24.8169i 0.548248 + 0.949593i 0.998395 + 0.0566383i \(0.0180382\pi\)
−0.450147 + 0.892954i \(0.648628\pi\)
\(684\) 0 0
\(685\) −35.4802 + 20.4845i −1.35563 + 0.782672i
\(686\) 0 0
\(687\) −0.654723 0.378004i −0.0249792 0.0144218i
\(688\) 0 0
\(689\) −31.2284 9.01486i −1.18971 0.343439i
\(690\) 0 0
\(691\) −21.8654 + 37.8720i −0.831800 + 1.44072i 0.0648100 + 0.997898i \(0.479356\pi\)
−0.896610 + 0.442822i \(0.853977\pi\)
\(692\) 0 0
\(693\) −3.03547 + 1.75253i −0.115308 + 0.0665732i
\(694\) 0 0
\(695\) 11.6242 6.71121i 0.440929 0.254571i
\(696\) 0 0
\(697\) 10.5468i 0.399490i
\(698\) 0 0
\(699\) 9.41698 + 5.43690i 0.356183 + 0.205642i
\(700\) 0 0
\(701\) 30.5767i 1.15487i 0.816438 + 0.577433i \(0.195945\pi\)
−0.816438 + 0.577433i \(0.804055\pi\)
\(702\) 0 0
\(703\) −28.0559 −1.05815
\(704\) 0 0
\(705\) −5.50535 + 9.53554i −0.207343 + 0.359129i
\(706\) 0 0
\(707\) 9.71710 0.365449
\(708\) 0 0
\(709\) −10.3464 17.9204i −0.388566 0.673015i 0.603691 0.797218i \(-0.293696\pi\)
−0.992257 + 0.124203i \(0.960363\pi\)
\(710\) 0 0
\(711\) 4.76199 + 8.24801i 0.178589 + 0.309325i
\(712\) 0 0
\(713\) 13.6338 + 7.87149i 0.510591 + 0.294790i
\(714\) 0 0
\(715\) 11.1035 + 11.5391i 0.415246 + 0.431537i
\(716\) 0 0
\(717\) −6.38983 + 11.0675i −0.238633 + 0.413324i
\(718\) 0 0
\(719\) −23.3429 40.4311i −0.870544 1.50783i −0.861435 0.507867i \(-0.830434\pi\)
−0.00910807 0.999959i \(-0.502899\pi\)
\(720\) 0 0
\(721\) 15.2676 8.81478i 0.568597 0.328279i
\(722\) 0 0
\(723\) 26.8375 0.998098
\(724\) 0 0
\(725\) −25.4211 14.6769i −0.944116 0.545085i
\(726\) 0 0
\(727\) 24.5578 0.910797 0.455398 0.890288i \(-0.349497\pi\)
0.455398 + 0.890288i \(0.349497\pi\)
\(728\) 0 0
\(729\) −27.3858 −1.01429
\(730\) 0 0
\(731\) −54.3082 31.3548i −2.00866 1.15970i
\(732\) 0 0
\(733\) 37.4461 1.38310 0.691551 0.722328i \(-0.256928\pi\)
0.691551 + 0.722328i \(0.256928\pi\)
\(734\) 0 0
\(735\) −2.36629 + 1.36618i −0.0872820 + 0.0503923i
\(736\) 0 0
\(737\) 2.51963 + 4.36413i 0.0928118 + 0.160755i
\(738\) 0 0
\(739\) 23.1088 40.0257i 0.850072 1.47237i −0.0310708 0.999517i \(-0.509892\pi\)
0.881143 0.472850i \(-0.156775\pi\)
\(740\) 0 0
\(741\) 36.5353 + 10.5468i 1.34216 + 0.387447i
\(742\) 0 0
\(743\) 33.5896 + 19.3930i 1.23228 + 0.711459i 0.967505 0.252850i \(-0.0813680\pi\)
0.264778 + 0.964309i \(0.414701\pi\)
\(744\) 0 0
\(745\) 1.86599 + 3.23198i 0.0683645 + 0.118411i
\(746\) 0 0
\(747\) 4.88251 + 8.45676i 0.178642 + 0.309417i
\(748\) 0 0
\(749\) 5.03926 0.184131
\(750\) 0 0
\(751\) 1.26041 2.18309i 0.0459929 0.0796621i −0.842112 0.539302i \(-0.818688\pi\)
0.888105 + 0.459640i \(0.152021\pi\)
\(752\) 0 0
\(753\) 17.8033 0.648789
\(754\) 0 0
\(755\) 74.3042i 2.70421i
\(756\) 0 0
\(757\) 34.0391 + 19.6525i 1.23717 + 0.714281i 0.968515 0.248955i \(-0.0800872\pi\)
0.268656 + 0.963236i \(0.413421\pi\)
\(758\) 0 0
\(759\) 12.0589i 0.437710i
\(760\) 0 0
\(761\) 0.248203 0.143300i 0.00899735 0.00519462i −0.495495 0.868611i \(-0.665013\pi\)
0.504492 + 0.863416i \(0.331680\pi\)
\(762\) 0 0
\(763\) 23.1938 13.3910i 0.839673 0.484785i
\(764\) 0 0
\(765\) 16.1088 27.9013i 0.582416 1.00877i
\(766\) 0 0
\(767\) −19.5466 + 4.83654i −0.705789 + 0.174637i
\(768\) 0 0
\(769\) 8.61400 + 4.97329i 0.310629 + 0.179342i 0.647208 0.762314i \(-0.275937\pi\)
−0.336579 + 0.941655i \(0.609270\pi\)
\(770\) 0 0
\(771\) 12.0938 6.98238i 0.435549 0.251464i
\(772\) 0 0
\(773\) −10.1916 17.6523i −0.366566 0.634910i 0.622460 0.782651i \(-0.286133\pi\)
−0.989026 + 0.147741i \(0.952800\pi\)
\(774\) 0 0
\(775\) 20.1784i 0.724831i
\(776\) 0 0
\(777\) 6.07606 10.5240i 0.217978 0.377548i
\(778\) 0 0
\(779\) 12.0589i 0.432055i
\(780\) 0 0
\(781\) 4.28687i 0.153396i
\(782\) 0 0
\(783\) −8.19557 + 14.1951i −0.292886 + 0.507293i
\(784\) 0 0
\(785\) 30.4446i 1.08661i
\(786\) 0 0
\(787\) −3.41310 5.91166i −0.121664 0.210728i 0.798760 0.601650i \(-0.205490\pi\)
−0.920424 + 0.390922i \(0.872156\pi\)
\(788\) 0 0
\(789\) −22.0946 + 12.7563i −0.786587 + 0.454136i
\(790\) 0 0
\(791\) −27.7978 16.0491i −0.988377 0.570639i
\(792\) 0 0
\(793\) 1.50000 + 6.06218i 0.0532666 + 0.215274i
\(794\) 0 0
\(795\) 23.4599 40.6338i 0.832039 1.44113i
\(796\) 0 0
\(797\) 25.4211 14.6769i 0.900461 0.519882i 0.0231115 0.999733i \(-0.492643\pi\)
0.877350 + 0.479851i \(0.159309\pi\)
\(798\) 0 0
\(799\) −12.6130 + 7.28212i −0.446216 + 0.257623i
\(800\) 0 0
\(801\) 3.50506i 0.123845i
\(802\) 0 0
\(803\) 11.2580 + 6.49981i 0.397286 + 0.229373i
\(804\) 0 0
\(805\) 77.8056i 2.74229i
\(806\) 0 0
\(807\) −22.1049 −0.778131
\(808\) 0 0
\(809\) −0.788791 + 1.36623i −0.0277324 + 0.0480339i −0.879559 0.475791i \(-0.842162\pi\)
0.851826 + 0.523825i \(0.175495\pi\)
\(810\) 0 0
\(811\) 18.6068 0.653375 0.326687 0.945132i \(-0.394068\pi\)
0.326687 + 0.945132i \(0.394068\pi\)
\(812\) 0 0
\(813\) 8.37781 + 14.5108i 0.293823 + 0.508916i
\(814\) 0 0
\(815\) −0.0660387 0.114382i −0.00231324 0.00400664i
\(816\) 0 0
\(817\) −62.0942 35.8501i −2.17240 1.25424i
\(818\) 0 0
\(819\) 7.96457 7.66391i 0.278305 0.267799i
\(820\) 0 0
\(821\) 4.36485 7.56015i 0.152334 0.263851i −0.779751 0.626090i \(-0.784654\pi\)
0.932085 + 0.362239i \(0.117988\pi\)
\(822\) 0 0
\(823\) 16.5487 + 28.6633i 0.576853 + 0.999139i 0.995838 + 0.0911453i \(0.0290528\pi\)
−0.418985 + 0.907993i \(0.637614\pi\)
\(824\) 0 0
\(825\) −13.3856 + 7.72819i −0.466027 + 0.269061i
\(826\) 0 0
\(827\) 35.0181 1.21770 0.608849 0.793286i \(-0.291632\pi\)
0.608849 + 0.793286i \(0.291632\pi\)
\(828\) 0 0
\(829\) 40.8265 + 23.5712i 1.41796 + 0.818662i 0.996120 0.0880064i \(-0.0280496\pi\)
0.421844 + 0.906668i \(0.361383\pi\)
\(830\) 0 0
\(831\) 8.18053 0.283780
\(832\) 0 0
\(833\) −3.61419 −0.125224
\(834\) 0 0
\(835\) 52.7252 + 30.4409i 1.82463 + 1.05345i
\(836\) 0 0
\(837\) 11.2676 0.389467
\(838\) 0 0
\(839\) −34.6580 + 20.0098i −1.19653 + 0.690816i −0.959779 0.280755i \(-0.909415\pi\)
−0.236748 + 0.971571i \(0.576082\pi\)
\(840\) 0 0
\(841\) −10.2676 17.7841i −0.354057 0.613244i
\(842\) 0 0
\(843\) −6.03940 + 10.4605i −0.208008 + 0.360280i
\(844\) 0 0
\(845\) −42.7293 26.9125i −1.46993 0.925818i
\(846\) 0 0
\(847\) −21.3598 12.3321i −0.733931 0.423735i
\(848\) 0 0
\(849\) −12.9476 22.4259i −0.444360 0.769654i
\(850\) 0 0
\(851\) 14.0279 + 24.2971i 0.480871 + 0.832893i
\(852\) 0 0
\(853\) 22.7427 0.778694 0.389347 0.921091i \(-0.372701\pi\)
0.389347 + 0.921091i \(0.372701\pi\)
\(854\) 0 0
\(855\) 18.4183 31.9015i 0.629893 1.09101i
\(856\) 0 0
\(857\) 36.9996 1.26388 0.631941 0.775016i \(-0.282258\pi\)
0.631941 + 0.775016i \(0.282258\pi\)
\(858\) 0 0
\(859\) 49.3854i 1.68501i −0.538689 0.842504i \(-0.681080\pi\)
0.538689 0.842504i \(-0.318920\pi\)
\(860\) 0 0
\(861\) 4.52342 + 2.61160i 0.154158 + 0.0890030i
\(862\) 0 0
\(863\) 0.963392i 0.0327942i −0.999866 0.0163971i \(-0.994780\pi\)
0.999866 0.0163971i \(-0.00521960\pi\)
\(864\) 0 0
\(865\) −27.7875 + 16.0431i −0.944802 + 0.545482i
\(866\) 0 0
\(867\) −35.2707 + 20.3635i −1.19785 + 0.691582i
\(868\) 0 0
\(869\) 4.51944 7.82790i 0.153311 0.265543i
\(870\) 0 0
\(871\) −11.0185 11.4507i −0.373347 0.387993i
\(872\) 0 0
\(873\) −1.80709 1.04333i −0.0611609 0.0353113i
\(874\) 0 0
\(875\) −43.5648 + 25.1521i −1.47276 + 0.850297i
\(876\) 0 0
\(877\) −14.5696 25.2353i −0.491980 0.852134i 0.507977 0.861370i \(-0.330393\pi\)
−0.999957 + 0.00923623i \(0.997060\pi\)
\(878\) 0 0
\(879\) 9.68869i 0.326792i
\(880\) 0 0
\(881\) 7.59702 13.1584i 0.255950 0.443319i −0.709203 0.705004i \(-0.750945\pi\)
0.965153 + 0.261686i \(0.0842784\pi\)
\(882\) 0 0
\(883\) 41.5246i 1.39741i 0.715408 + 0.698707i \(0.246241\pi\)
−0.715408 + 0.698707i \(0.753759\pi\)
\(884\) 0 0
\(885\) 29.0671i 0.977082i
\(886\) 0 0
\(887\) −10.7299 + 18.5847i −0.360275 + 0.624015i −0.988006 0.154416i \(-0.950650\pi\)
0.627731 + 0.778430i \(0.283984\pi\)
\(888\) 0 0
\(889\) 8.90130i 0.298540i
\(890\) 0 0
\(891\) 2.24925 + 3.89582i 0.0753528 + 0.130515i
\(892\) 0 0
\(893\) −14.4213 + 8.32613i −0.482590 + 0.278623i
\(894\) 0 0
\(895\) −73.1661 42.2425i −2.44567 1.41201i
\(896\) 0 0
\(897\) −9.13382 36.9139i −0.304969 1.23252i
\(898\) 0 0
\(899\) 2.90942 5.03926i 0.0970346 0.168069i
\(900\) 0 0
\(901\) 53.7478 31.0313i 1.79060 1.03380i
\(902\) 0 0
\(903\) 26.8955 15.5281i 0.895026 0.516743i
\(904\) 0 0
\(905\) 38.0371i 1.26440i
\(906\) 0 0
\(907\) 16.3262 + 9.42595i 0.542103 + 0.312983i 0.745931 0.666023i \(-0.232005\pi\)
−0.203828 + 0.979007i \(0.565338\pi\)
\(908\) 0 0
\(909\) 4.60051i 0.152589i
\(910\) 0 0
\(911\) 50.4520 1.67155 0.835775 0.549073i \(-0.185019\pi\)
0.835775 + 0.549073i \(0.185019\pi\)
\(912\) 0 0
\(913\) 4.63382 8.02601i 0.153357 0.265622i
\(914\) 0 0
\(915\) −9.01486 −0.298022
\(916\) 0 0
\(917\) 17.5183 + 30.3426i 0.578505 + 1.00200i
\(918\) 0 0
\(919\) −5.70180 9.87580i −0.188085 0.325773i 0.756527 0.653963i \(-0.226895\pi\)
−0.944612 + 0.328190i \(0.893561\pi\)
\(920\) 0 0
\(921\) 22.2873 + 12.8676i 0.734391 + 0.424001i
\(922\) 0 0
\(923\) −3.24702 13.1227i −0.106877 0.431938i
\(924\) 0 0
\(925\) −17.9802 + 31.1426i −0.591185 + 1.02396i
\(926\) 0 0
\(927\) 4.17331 + 7.22838i 0.137069 + 0.237411i
\(928\) 0 0
\(929\) −29.4962 + 17.0296i −0.967739 + 0.558725i −0.898546 0.438879i \(-0.855376\pi\)
−0.0691930 + 0.997603i \(0.522042\pi\)
\(930\) 0 0
\(931\) −4.13234 −0.135432
\(932\) 0 0
\(933\) −3.19669 1.84561i −0.104655 0.0604226i
\(934\) 0 0
\(935\) −30.5767 −0.999964
\(936\) 0 0
\(937\) −5.69271 −0.185973 −0.0929864 0.995667i \(-0.529641\pi\)
−0.0929864 + 0.995667i \(0.529641\pi\)
\(938\) 0 0
\(939\) −0.654723 0.378004i −0.0213661 0.0123357i
\(940\) 0 0
\(941\) 21.5379 0.702117 0.351058 0.936354i \(-0.385822\pi\)
0.351058 + 0.936354i \(0.385822\pi\)
\(942\) 0 0
\(943\) −10.4433 + 6.02945i −0.340081 + 0.196346i
\(944\) 0 0
\(945\) 27.8437 + 48.2267i 0.905756 + 1.56881i
\(946\) 0 0
\(947\) −10.9640 + 18.9902i −0.356282 + 0.617098i −0.987336 0.158640i \(-0.949289\pi\)
0.631055 + 0.775738i \(0.282622\pi\)
\(948\) 0 0
\(949\) −39.3854 11.3696i −1.27850 0.369073i
\(950\) 0 0
\(951\) −17.7161 10.2284i −0.574483 0.331678i
\(952\) 0 0
\(953\) 19.0183 + 32.9407i 0.616063 + 1.06705i 0.990197 + 0.139678i \(0.0446068\pi\)
−0.374134 + 0.927375i \(0.622060\pi\)
\(954\) 0 0
\(955\) −41.4236 71.7478i −1.34044 2.32170i
\(956\) 0 0
\(957\) 4.45714 0.144079
\(958\) 0 0
\(959\) 13.4188 23.2420i 0.433315 0.750523i
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 2.38581i 0.0768817i
\(964\) 0 0
\(965\) −55.7282 32.1747i −1.79395 1.03574i
\(966\) 0 0
\(967\) 30.4354i 0.978736i 0.872077 + 0.489368i \(0.162772\pi\)
−0.872077 + 0.489368i \(0.837228\pi\)
\(968\) 0 0
\(969\) −62.8816 + 36.3047i −2.02005 + 1.16628i
\(970\) 0 0
\(971\) 34.1899 19.7395i 1.09720 0.633471i 0.161719 0.986837i \(-0.448296\pi\)
0.935485 + 0.353365i \(0.114963\pi\)
\(972\) 0 0
\(973\) −4.39631 + 7.61463i −0.140939 + 0.244114i
\(974\) 0 0
\(975\) 35.1216 33.7958i 1.12479 1.08233i
\(976\) 0 0
\(977\) 6.48037 + 3.74144i 0.207325 + 0.119699i 0.600068 0.799949i \(-0.295140\pi\)
−0.392742 + 0.919649i \(0.628474\pi\)
\(978\) 0 0
\(979\) −2.88086 + 1.66327i −0.0920727 + 0.0531582i
\(980\) 0 0
\(981\) 6.33988 + 10.9810i 0.202417 + 0.350596i
\(982\) 0 0
\(983\) 36.6878i 1.17016i 0.810976 + 0.585079i \(0.198937\pi\)
−0.810976 + 0.585079i \(0.801063\pi\)
\(984\) 0 0
\(985\) −24.3517 + 42.1784i −0.775910 + 1.34392i
\(986\) 0 0
\(987\) 7.21277i 0.229585i
\(988\) 0 0
\(989\) 71.7002i 2.27993i
\(990\) 0 0
\(991\) −11.1981 + 19.3956i −0.355718 + 0.616122i −0.987241 0.159235i \(-0.949097\pi\)
0.631522 + 0.775358i \(0.282430\pi\)
\(992\) 0 0
\(993\) 14.3840i 0.456464i
\(994\) 0 0
\(995\) −23.7825 41.1925i −0.753956 1.30589i
\(996\) 0 0
\(997\) −42.4604 + 24.5145i −1.34473 + 0.776382i −0.987498 0.157633i \(-0.949614\pi\)
−0.357235 + 0.934015i \(0.616280\pi\)
\(998\) 0 0
\(999\) 17.3900 + 10.0401i 0.550196 + 0.317656i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.ba.i.225.4 yes 12
4.3 odd 2 inner 832.2.ba.i.225.3 yes 12
8.3 odd 2 832.2.ba.h.225.4 yes 12
8.5 even 2 832.2.ba.h.225.3 12
13.10 even 6 832.2.ba.h.673.3 yes 12
52.23 odd 6 832.2.ba.h.673.4 yes 12
104.75 odd 6 inner 832.2.ba.i.673.3 yes 12
104.101 even 6 inner 832.2.ba.i.673.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
832.2.ba.h.225.3 12 8.5 even 2
832.2.ba.h.225.4 yes 12 8.3 odd 2
832.2.ba.h.673.3 yes 12 13.10 even 6
832.2.ba.h.673.4 yes 12 52.23 odd 6
832.2.ba.i.225.3 yes 12 4.3 odd 2 inner
832.2.ba.i.225.4 yes 12 1.1 even 1 trivial
832.2.ba.i.673.3 yes 12 104.75 odd 6 inner
832.2.ba.i.673.4 yes 12 104.101 even 6 inner