gp: [N,k,chi] = [833,2,Mod(246,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.246");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [40,0,4,0,8,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 833 , [ χ ] ) S_{2}^{\mathrm{new}}(833, [\chi]) S 2 n e w ( 8 3 3 , [ χ ] ) :
T 2 40 + 168 T 2 36 + 16 T 2 33 + 10824 T 2 32 + 192 T 2 31 + 1056 T 2 29 + ⋯ + 2209 T_{2}^{40} + 168 T_{2}^{36} + 16 T_{2}^{33} + 10824 T_{2}^{32} + 192 T_{2}^{31} + 1056 T_{2}^{29} + \cdots + 2209 T 2 4 0 + 1 6 8 T 2 3 6 + 1 6 T 2 3 3 + 1 0 8 2 4 T 2 3 2 + 1 9 2 T 2 3 1 + 1 0 5 6 T 2 2 9 + ⋯ + 2 2 0 9
T2^40 + 168*T2^36 + 16*T2^33 + 10824*T2^32 + 192*T2^31 + 1056*T2^29 + 340384*T2^28 + 20080*T2^27 + 128*T2^26 - 15472*T2^25 + 5505520*T2^24 + 615824*T2^23 + 13824*T2^22 - 1774016*T2^21 + 44533410*T2^20 + 5275136*T2^19 + 457472*T2^18 - 24867552*T2^17 + 161392520*T2^16 - 3829856*T2^15 + 5063296*T2^14 - 76031472*T2^13 + 253942200*T2^12 - 61979264*T2^11 + 14536064*T2^10 - 44855584*T2^9 + 115158208*T2^8 - 38767728*T2^7 + 8026240*T2^6 - 6607568*T2^5 + 11600640*T2^4 - 4707312*T2^3 + 991232*T2^2 - 66176*T2 + 2209
T 3 40 − 4 T 3 39 + 8 T 3 38 − 32 T 3 36 − 4 T 3 35 + 328 T 3 34 − 1220 T 3 33 + ⋯ + 541696 T_{3}^{40} - 4 T_{3}^{39} + 8 T_{3}^{38} - 32 T_{3}^{36} - 4 T_{3}^{35} + 328 T_{3}^{34} - 1220 T_{3}^{33} + \cdots + 541696 T 3 4 0 − 4 T 3 3 9 + 8 T 3 3 8 − 3 2 T 3 3 6 − 4 T 3 3 5 + 3 2 8 T 3 3 4 − 1 2 2 0 T 3 3 3 + ⋯ + 5 4 1 6 9 6
T3^40 - 4*T3^39 + 8*T3^38 - 32*T3^36 - 4*T3^35 + 328*T3^34 - 1220*T3^33 + 14606*T3^32 - 55784*T3^31 + 124416*T3^30 - 125588*T3^29 - 71360*T3^28 + 40164*T3^27 + 999472*T3^26 + 767424*T3^25 + 9145955*T3^24 - 35164608*T3^23 + 80245440*T3^22 - 94124556*T3^21 - 18508576*T3^20 + 16913420*T3^19 + 642801520*T3^18 + 2198796496*T3^17 + 643020030*T3^16 - 2271469092*T3^15 + 1364875272*T3^14 + 1079717564*T3^13 - 1251227072*T3^12 + 8125315328*T3^11 + 21810774744*T3^10 + 26962438956*T3^9 + 25011485985*T3^8 + 19516566696*T3^7 + 13178632864*T3^6 + 7126980224*T3^5 + 2636762624*T3^4 + 546467072*T3^3 + 45705216*T3^2 + 800768*T3 + 541696