Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [833,2,Mod(246,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.246");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 833 = 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 833.l (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.65153848837\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
246.1 | −1.95942 | + | 1.95942i | −0.254819 | + | 0.615187i | − | 5.67866i | −3.24075 | − | 1.34236i | −0.706112 | − | 1.70471i | 0 | 7.20803 | + | 7.20803i | 1.80780 | + | 1.80780i | 8.98024 | − | 3.71974i | |||
246.2 | −1.69446 | + | 1.69446i | 1.21869 | − | 2.94219i | − | 3.74242i | 2.77390 | + | 1.14899i | 2.92040 | + | 7.05047i | 0 | 2.95248 | + | 2.95248i | −5.04993 | − | 5.04993i | −6.64720 | + | 2.75336i | |||
246.3 | −1.12834 | + | 1.12834i | −1.18584 | + | 2.86288i | − | 0.546294i | 0.640992 | + | 0.265507i | −1.89226 | − | 4.56832i | 0 | −1.64027 | − | 1.64027i | −4.66852 | − | 4.66852i | −1.02284 | + | 0.423673i | |||
246.4 | −1.05751 | + | 1.05751i | 0.0340087 | − | 0.0821043i | − | 0.236636i | −0.164913 | − | 0.0683090i | 0.0508614 | + | 0.122790i | 0 | −1.86477 | − | 1.86477i | 2.11574 | + | 2.11574i | 0.246633 | − | 0.102159i | |||
246.5 | −0.442594 | + | 0.442594i | 0.937552 | − | 2.26345i | 1.60822i | −2.53962 | − | 1.05194i | 0.586835 | + | 1.41674i | 0 | −1.59698 | − | 1.59698i | −2.12288 | − | 2.12288i | 1.58960 | − | 0.658435i | ||||
246.6 | 0.0415381 | − | 0.0415381i | 0.277987 | − | 0.671119i | 1.99655i | 3.59216 | + | 1.48792i | −0.0163300 | − | 0.0394241i | 0 | 0.166009 | + | 0.166009i | 1.74820 | + | 1.74820i | 0.211017 | − | 0.0874061i | ||||
246.7 | 0.596796 | − | 0.596796i | −0.794990 | + | 1.91928i | 1.28767i | −1.23190 | − | 0.510271i | 0.670969 | + | 1.61986i | 0 | 1.96207 | + | 1.96207i | −0.930290 | − | 0.930290i | −1.03972 | + | 0.430667i | ||||
246.8 | 0.911810 | − | 0.911810i | 0.494163 | − | 1.19301i | 0.337205i | −1.81755 | − | 0.752852i | −0.637220 | − | 1.53839i | 0 | 2.13109 | + | 2.13109i | 0.942233 | + | 0.942233i | −2.34371 | + | 0.970799i | ||||
246.9 | 1.59429 | − | 1.59429i | −0.762350 | + | 1.84048i | − | 3.08354i | 2.46979 | + | 1.02302i | 1.71885 | + | 4.14967i | 0 | −1.72748 | − | 1.72748i | −0.684852 | − | 0.684852i | 5.56856 | − | 2.30657i | |||
246.10 | 1.72367 | − | 1.72367i | 1.03560 | − | 2.50015i | − | 3.94209i | 1.51788 | + | 0.628728i | −2.52441 | − | 6.09448i | 0 | −3.34753 | − | 3.34753i | −3.05698 | − | 3.05698i | 3.70005 | − | 1.53261i | |||
393.1 | −1.81730 | − | 1.81730i | −0.485593 | + | 0.201139i | 4.60519i | −0.362864 | − | 0.876031i | 1.24800 | + | 0.516938i | 0 | 4.73441 | − | 4.73441i | −1.92598 | + | 1.92598i | −0.932581 | + | 2.25145i | ||||
393.2 | −1.32640 | − | 1.32640i | 2.38067 | − | 0.986105i | 1.51870i | 1.04485 | + | 2.52249i | −4.46570 | − | 1.84976i | 0 | −0.638403 | + | 0.638403i | 2.57386 | − | 2.57386i | 1.95995 | − | 4.73174i | ||||
393.3 | −1.17050 | − | 1.17050i | −3.11769 | + | 1.29139i | 0.740157i | 0.977649 | + | 2.36025i | 5.16084 | + | 2.13769i | 0 | −1.47465 | + | 1.47465i | 5.93098 | − | 5.93098i | 1.61834 | − | 3.90703i | ||||
393.4 | −0.594587 | − | 0.594587i | −0.328149 | + | 0.135924i | − | 1.29293i | 0.0662679 | + | 0.159985i | 0.275932 | + | 0.114295i | 0 | −1.95794 | + | 1.95794i | −2.03211 | + | 2.03211i | 0.0557230 | − | 0.134527i | |||
393.5 | 0.192913 | + | 0.192913i | −1.15526 | + | 0.478523i | − | 1.92557i | −0.00787468 | − | 0.0190112i | −0.315177 | − | 0.130551i | 0 | 0.757293 | − | 0.757293i | −1.01569 | + | 1.01569i | 0.00214837 | − | 0.00518662i | |||
393.6 | 0.387074 | + | 0.387074i | 2.46012 | − | 1.01902i | − | 1.70035i | −1.41037 | − | 3.40494i | 1.34668 | + | 0.557815i | 0 | 1.43231 | − | 1.43231i | 2.89249 | − | 2.89249i | 0.772045 | − | 1.86388i | |||
393.7 | 0.751304 | + | 0.751304i | 1.42979 | − | 0.592240i | − | 0.871085i | 1.27926 | + | 3.08842i | 1.51916 | + | 0.629258i | 0 | 2.15706 | − | 2.15706i | −0.427757 | + | 0.427757i | −1.35922 | + | 3.28146i | |||
393.8 | 1.39523 | + | 1.39523i | −0.814725 | + | 0.337470i | 1.89333i | −1.04210 | − | 2.51586i | −1.60758 | − | 0.665880i | 0 | 0.148823 | − | 0.148823i | −1.57143 | + | 1.57143i | 2.05623 | − | 4.96417i | ||||
393.9 | 1.64187 | + | 1.64187i | −2.08578 | + | 0.863957i | 3.39150i | 1.37286 | + | 3.31438i | −4.84309 | − | 2.00607i | 0 | −2.28467 | + | 2.28467i | 1.48272 | − | 1.48272i | −3.18773 | + | 7.69585i | ||||
393.10 | 1.95462 | + | 1.95462i | 2.71660 | − | 1.12525i | 5.64106i | 0.0823193 | + | 0.198736i | 7.50936 | + | 3.11048i | 0 | −7.11687 | + | 7.11687i | 3.99241 | − | 3.99241i | −0.227551 | + | 0.549356i | ||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 833.2.l.e | yes | 40 |
7.b | odd | 2 | 1 | 833.2.l.d | ✓ | 40 | |
7.c | even | 3 | 2 | 833.2.v.g | 80 | ||
7.d | odd | 6 | 2 | 833.2.v.h | 80 | ||
17.d | even | 8 | 1 | inner | 833.2.l.e | yes | 40 |
119.l | odd | 8 | 1 | 833.2.l.d | ✓ | 40 | |
119.q | even | 24 | 2 | 833.2.v.g | 80 | ||
119.r | odd | 24 | 2 | 833.2.v.h | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
833.2.l.d | ✓ | 40 | 7.b | odd | 2 | 1 | |
833.2.l.d | ✓ | 40 | 119.l | odd | 8 | 1 | |
833.2.l.e | yes | 40 | 1.a | even | 1 | 1 | trivial |
833.2.l.e | yes | 40 | 17.d | even | 8 | 1 | inner |
833.2.v.g | 80 | 7.c | even | 3 | 2 | ||
833.2.v.g | 80 | 119.q | even | 24 | 2 | ||
833.2.v.h | 80 | 7.d | odd | 6 | 2 | ||
833.2.v.h | 80 | 119.r | odd | 24 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(833, [\chi])\):
\( T_{2}^{40} + 168 T_{2}^{36} + 16 T_{2}^{33} + 10824 T_{2}^{32} + 192 T_{2}^{31} + 1056 T_{2}^{29} + \cdots + 2209 \)
|
\( T_{3}^{40} - 4 T_{3}^{39} + 8 T_{3}^{38} - 32 T_{3}^{36} - 4 T_{3}^{35} + 328 T_{3}^{34} - 1220 T_{3}^{33} + \cdots + 541696 \)
|