Properties

Label 833.2.l.e.246.8
Level $833$
Weight $2$
Character 833.246
Analytic conductor $6.652$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(246,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.246");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 246.8
Character \(\chi\) \(=\) 833.246
Dual form 833.2.l.e.491.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.911810 - 0.911810i) q^{2} +(0.494163 - 1.19301i) q^{3} +0.337205i q^{4} +(-1.81755 - 0.752852i) q^{5} +(-0.637220 - 1.53839i) q^{6} +(2.13109 + 2.13109i) q^{8} +(0.942233 + 0.942233i) q^{9} +(-2.34371 + 0.970799i) q^{10} +(-1.99290 - 4.81128i) q^{11} +(0.402290 + 0.166634i) q^{12} -5.16091i q^{13} +(-1.79633 + 1.79633i) q^{15} +3.21188 q^{16} +(-4.12126 + 0.123465i) q^{17} +1.71827 q^{18} +(3.90171 - 3.90171i) q^{19} +(0.253865 - 0.612885i) q^{20} +(-6.20411 - 2.56983i) q^{22} +(-2.97594 - 7.18456i) q^{23} +(3.59552 - 1.48931i) q^{24} +(-0.798847 - 0.798847i) q^{25} +(-4.70577 - 4.70577i) q^{26} +(5.16876 - 2.14097i) q^{27} +(7.69521 + 3.18746i) q^{29} +3.27582i q^{30} +(-0.0970729 + 0.234355i) q^{31} +(-1.33355 + 1.33355i) q^{32} -6.72474 q^{33} +(-3.64523 + 3.87038i) q^{34} +(-0.317725 + 0.317725i) q^{36} +(-2.04782 + 4.94387i) q^{37} -7.11524i q^{38} +(-6.15704 - 2.55033i) q^{39} +(-2.26895 - 5.47774i) q^{40} +(-1.02603 + 0.424996i) q^{41} +(4.27537 + 4.27537i) q^{43} +(1.62239 - 0.672014i) q^{44} +(-1.00319 - 2.42191i) q^{45} +(-9.26445 - 3.83746i) q^{46} +2.71665i q^{47} +(1.58719 - 3.83182i) q^{48} -1.45679 q^{50} +(-1.88928 + 4.97773i) q^{51} +1.74028 q^{52} +(-0.174043 + 0.174043i) q^{53} +(2.76077 - 6.66508i) q^{54} +10.2451i q^{55} +(-2.72672 - 6.58288i) q^{57} +(9.92293 - 4.11021i) q^{58} +(-0.517389 - 0.517389i) q^{59} +(-0.605730 - 0.605730i) q^{60} +(-3.03505 + 1.25716i) q^{61} +(0.125175 + 0.302199i) q^{62} +8.85565i q^{64} +(-3.88540 + 9.38019i) q^{65} +(-6.13169 + 6.13169i) q^{66} +4.76074 q^{67} +(-0.0416328 - 1.38971i) q^{68} -10.0419 q^{69} +(2.78096 - 6.71384i) q^{71} +4.01596i q^{72} +(-1.53071 - 0.634043i) q^{73} +(2.64065 + 6.37509i) q^{74} +(-1.34780 + 0.558276i) q^{75} +(1.31568 + 1.31568i) q^{76} +(-7.93947 + 3.28864i) q^{78} +(0.268839 + 0.649035i) q^{79} +(-5.83775 - 2.41807i) q^{80} -3.22684i q^{81} +(-0.548029 + 1.32306i) q^{82} +(-9.59255 + 9.59255i) q^{83} +(7.58352 + 2.87829i) q^{85} +7.79665 q^{86} +(7.60537 - 7.60537i) q^{87} +(6.00621 - 14.5003i) q^{88} +17.4796i q^{89} +(-3.12304 - 1.29361i) q^{90} +(2.42267 - 1.00350i) q^{92} +(0.231619 + 0.231619i) q^{93} +(2.47707 + 2.47707i) q^{94} +(-10.0289 + 4.15413i) q^{95} +(0.931951 + 2.24993i) q^{96} +(5.18677 + 2.14843i) q^{97} +(2.65557 - 6.41111i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 4 q^{3} + 8 q^{5} + 12 q^{6} + 20 q^{10} - 12 q^{12} - 8 q^{15} - 64 q^{16} - 16 q^{17} + 24 q^{18} - 8 q^{19} - 20 q^{20} - 8 q^{23} - 12 q^{24} - 8 q^{27} + 8 q^{29} + 36 q^{31} + 72 q^{33} - 8 q^{34}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.911810 0.911810i 0.644747 0.644747i −0.306972 0.951719i \(-0.599316\pi\)
0.951719 + 0.306972i \(0.0993157\pi\)
\(3\) 0.494163 1.19301i 0.285305 0.688787i −0.714638 0.699495i \(-0.753408\pi\)
0.999943 + 0.0107075i \(0.00340836\pi\)
\(4\) 0.337205i 0.168602i
\(5\) −1.81755 0.752852i −0.812831 0.336686i −0.0627482 0.998029i \(-0.519987\pi\)
−0.750083 + 0.661344i \(0.769987\pi\)
\(6\) −0.637220 1.53839i −0.260144 0.628043i
\(7\) 0 0
\(8\) 2.13109 + 2.13109i 0.753453 + 0.753453i
\(9\) 0.942233 + 0.942233i 0.314078 + 0.314078i
\(10\) −2.34371 + 0.970799i −0.741148 + 0.306993i
\(11\) −1.99290 4.81128i −0.600881 1.45065i −0.872676 0.488299i \(-0.837617\pi\)
0.271796 0.962355i \(-0.412383\pi\)
\(12\) 0.402290 + 0.166634i 0.116131 + 0.0481031i
\(13\) 5.16091i 1.43138i −0.698419 0.715689i \(-0.746113\pi\)
0.698419 0.715689i \(-0.253887\pi\)
\(14\) 0 0
\(15\) −1.79633 + 1.79633i −0.463810 + 0.463810i
\(16\) 3.21188 0.802971
\(17\) −4.12126 + 0.123465i −0.999552 + 0.0299446i
\(18\) 1.71827 0.405001
\(19\) 3.90171 3.90171i 0.895114 0.895114i −0.0998854 0.994999i \(-0.531848\pi\)
0.994999 + 0.0998854i \(0.0318476\pi\)
\(20\) 0.253865 0.612885i 0.0567660 0.137045i
\(21\) 0 0
\(22\) −6.20411 2.56983i −1.32272 0.547889i
\(23\) −2.97594 7.18456i −0.620527 1.49809i −0.851086 0.525027i \(-0.824055\pi\)
0.230559 0.973058i \(-0.425945\pi\)
\(24\) 3.59552 1.48931i 0.733933 0.304005i
\(25\) −0.798847 0.798847i −0.159769 0.159769i
\(26\) −4.70577 4.70577i −0.922877 0.922877i
\(27\) 5.16876 2.14097i 0.994728 0.412030i
\(28\) 0 0
\(29\) 7.69521 + 3.18746i 1.42896 + 0.591896i 0.957096 0.289772i \(-0.0935796\pi\)
0.471869 + 0.881669i \(0.343580\pi\)
\(30\) 3.27582i 0.598080i
\(31\) −0.0970729 + 0.234355i −0.0174348 + 0.0420913i −0.932357 0.361538i \(-0.882252\pi\)
0.914922 + 0.403630i \(0.132252\pi\)
\(32\) −1.33355 + 1.33355i −0.235740 + 0.235740i
\(33\) −6.72474 −1.17063
\(34\) −3.64523 + 3.87038i −0.625151 + 0.663765i
\(35\) 0 0
\(36\) −0.317725 + 0.317725i −0.0529542 + 0.0529542i
\(37\) −2.04782 + 4.94387i −0.336659 + 0.812767i 0.661373 + 0.750057i \(0.269974\pi\)
−0.998032 + 0.0627097i \(0.980026\pi\)
\(38\) 7.11524i 1.15424i
\(39\) −6.15704 2.55033i −0.985916 0.408380i
\(40\) −2.26895 5.47774i −0.358753 0.866107i
\(41\) −1.02603 + 0.424996i −0.160239 + 0.0663732i −0.461361 0.887212i \(-0.652639\pi\)
0.301122 + 0.953586i \(0.402639\pi\)
\(42\) 0 0
\(43\) 4.27537 + 4.27537i 0.651988 + 0.651988i 0.953471 0.301483i \(-0.0974818\pi\)
−0.301483 + 0.953471i \(0.597482\pi\)
\(44\) 1.62239 0.672014i 0.244584 0.101310i
\(45\) −1.00319 2.42191i −0.149547 0.361038i
\(46\) −9.26445 3.83746i −1.36597 0.565803i
\(47\) 2.71665i 0.396265i 0.980175 + 0.198132i \(0.0634876\pi\)
−0.980175 + 0.198132i \(0.936512\pi\)
\(48\) 1.58719 3.83182i 0.229092 0.553076i
\(49\) 0 0
\(50\) −1.45679 −0.206022
\(51\) −1.88928 + 4.97773i −0.264552 + 0.697022i
\(52\) 1.74028 0.241334
\(53\) −0.174043 + 0.174043i −0.0239066 + 0.0239066i −0.718959 0.695052i \(-0.755381\pi\)
0.695052 + 0.718959i \(0.255381\pi\)
\(54\) 2.76077 6.66508i 0.375693 0.907003i
\(55\) 10.2451i 1.38145i
\(56\) 0 0
\(57\) −2.72672 6.58288i −0.361163 0.871923i
\(58\) 9.92293 4.11021i 1.30294 0.539697i
\(59\) −0.517389 0.517389i −0.0673583 0.0673583i 0.672625 0.739983i \(-0.265167\pi\)
−0.739983 + 0.672625i \(0.765167\pi\)
\(60\) −0.605730 0.605730i −0.0781994 0.0781994i
\(61\) −3.03505 + 1.25716i −0.388599 + 0.160963i −0.568424 0.822736i \(-0.692447\pi\)
0.179825 + 0.983699i \(0.442447\pi\)
\(62\) 0.125175 + 0.302199i 0.0158972 + 0.0383793i
\(63\) 0 0
\(64\) 8.85565i 1.10696i
\(65\) −3.88540 + 9.38019i −0.481925 + 1.16347i
\(66\) −6.13169 + 6.13169i −0.754758 + 0.754758i
\(67\) 4.76074 0.581616 0.290808 0.956781i \(-0.406076\pi\)
0.290808 + 0.956781i \(0.406076\pi\)
\(68\) −0.0416328 1.38971i −0.00504872 0.168527i
\(69\) −10.0419 −1.20890
\(70\) 0 0
\(71\) 2.78096 6.71384i 0.330040 0.796787i −0.668548 0.743669i \(-0.733084\pi\)
0.998588 0.0531180i \(-0.0169159\pi\)
\(72\) 4.01596i 0.473285i
\(73\) −1.53071 0.634043i −0.179157 0.0742091i 0.291302 0.956631i \(-0.405912\pi\)
−0.470459 + 0.882422i \(0.655912\pi\)
\(74\) 2.64065 + 6.37509i 0.306969 + 0.741089i
\(75\) −1.34780 + 0.558276i −0.155630 + 0.0644641i
\(76\) 1.31568 + 1.31568i 0.150918 + 0.150918i
\(77\) 0 0
\(78\) −7.93947 + 3.28864i −0.898968 + 0.372365i
\(79\) 0.268839 + 0.649035i 0.0302468 + 0.0730221i 0.938281 0.345873i \(-0.112417\pi\)
−0.908034 + 0.418896i \(0.862417\pi\)
\(80\) −5.83775 2.41807i −0.652680 0.270349i
\(81\) 3.22684i 0.358538i
\(82\) −0.548029 + 1.32306i −0.0605197 + 0.146108i
\(83\) −9.59255 + 9.59255i −1.05292 + 1.05292i −0.0543997 + 0.998519i \(0.517325\pi\)
−0.998519 + 0.0543997i \(0.982675\pi\)
\(84\) 0 0
\(85\) 7.58352 + 2.87829i 0.822549 + 0.312195i
\(86\) 7.79665 0.840735
\(87\) 7.60537 7.60537i 0.815382 0.815382i
\(88\) 6.00621 14.5003i 0.640264 1.54574i
\(89\) 17.4796i 1.85283i 0.376502 + 0.926416i \(0.377127\pi\)
−0.376502 + 0.926416i \(0.622873\pi\)
\(90\) −3.12304 1.29361i −0.329198 0.136358i
\(91\) 0 0
\(92\) 2.42267 1.00350i 0.252581 0.104622i
\(93\) 0.231619 + 0.231619i 0.0240177 + 0.0240177i
\(94\) 2.47707 + 2.47707i 0.255491 + 0.255491i
\(95\) −10.0289 + 4.15413i −1.02895 + 0.426204i
\(96\) 0.931951 + 2.24993i 0.0951169 + 0.229632i
\(97\) 5.18677 + 2.14843i 0.526637 + 0.218140i 0.630129 0.776490i \(-0.283002\pi\)
−0.103493 + 0.994630i \(0.533002\pi\)
\(98\) 0 0
\(99\) 2.65557 6.41111i 0.266895 0.644341i
\(100\) 0.269375 0.269375i 0.0269375 0.0269375i
\(101\) 11.7207 1.16626 0.583128 0.812380i \(-0.301828\pi\)
0.583128 + 0.812380i \(0.301828\pi\)
\(102\) 2.81608 + 6.26141i 0.278834 + 0.619972i
\(103\) 15.5823 1.53537 0.767685 0.640827i \(-0.221408\pi\)
0.767685 + 0.640827i \(0.221408\pi\)
\(104\) 10.9983 10.9983i 1.07848 1.07848i
\(105\) 0 0
\(106\) 0.317388i 0.0308274i
\(107\) −0.719744 0.298128i −0.0695803 0.0288211i 0.347622 0.937635i \(-0.386989\pi\)
−0.417202 + 0.908814i \(0.636989\pi\)
\(108\) 0.721945 + 1.74293i 0.0694692 + 0.167714i
\(109\) 16.3303 6.76422i 1.56416 0.647895i 0.578351 0.815788i \(-0.303696\pi\)
0.985805 + 0.167893i \(0.0536965\pi\)
\(110\) 9.34156 + 9.34156i 0.890683 + 0.890683i
\(111\) 4.88615 + 4.88615i 0.463773 + 0.463773i
\(112\) 0 0
\(113\) −4.96006 11.9746i −0.466603 1.12648i −0.965636 0.259897i \(-0.916312\pi\)
0.499033 0.866583i \(-0.333688\pi\)
\(114\) −8.48858 3.51609i −0.795029 0.329312i
\(115\) 15.2987i 1.42661i
\(116\) −1.07483 + 2.59486i −0.0997952 + 0.240927i
\(117\) 4.86278 4.86278i 0.449564 0.449564i
\(118\) −0.943520 −0.0868581
\(119\) 0 0
\(120\) −7.65626 −0.698918
\(121\) −11.3986 + 11.3986i −1.03623 + 1.03623i
\(122\) −1.62110 + 3.91369i −0.146768 + 0.354328i
\(123\) 1.43409i 0.129307i
\(124\) −0.0790255 0.0327334i −0.00709670 0.00293955i
\(125\) 4.61479 + 11.1411i 0.412759 + 0.996489i
\(126\) 0 0
\(127\) 2.64110 + 2.64110i 0.234360 + 0.234360i 0.814510 0.580150i \(-0.197006\pi\)
−0.580150 + 0.814510i \(0.697006\pi\)
\(128\) 5.40758 + 5.40758i 0.477967 + 0.477967i
\(129\) 7.21331 2.98785i 0.635097 0.263066i
\(130\) 5.01020 + 12.0957i 0.439424 + 1.06086i
\(131\) −15.3896 6.37456i −1.34459 0.556948i −0.409810 0.912171i \(-0.634405\pi\)
−0.934782 + 0.355223i \(0.884405\pi\)
\(132\) 2.26761i 0.197370i
\(133\) 0 0
\(134\) 4.34089 4.34089i 0.374995 0.374995i
\(135\) −11.0063 −0.947271
\(136\) −9.04587 8.51964i −0.775677 0.730553i
\(137\) −14.2015 −1.21332 −0.606660 0.794961i \(-0.707491\pi\)
−0.606660 + 0.794961i \(0.707491\pi\)
\(138\) −9.15630 + 9.15630i −0.779436 + 0.779436i
\(139\) 1.45887 3.52201i 0.123739 0.298733i −0.849856 0.527016i \(-0.823311\pi\)
0.973595 + 0.228282i \(0.0733109\pi\)
\(140\) 0 0
\(141\) 3.24101 + 1.34247i 0.272942 + 0.113056i
\(142\) −3.58604 8.65746i −0.300934 0.726518i
\(143\) −24.8306 + 10.2852i −2.07644 + 0.860088i
\(144\) 3.02634 + 3.02634i 0.252195 + 0.252195i
\(145\) −11.5867 11.5867i −0.962224 0.962224i
\(146\) −1.97385 + 0.817594i −0.163357 + 0.0676646i
\(147\) 0 0
\(148\) −1.66710 0.690534i −0.137034 0.0567615i
\(149\) 18.4611i 1.51239i −0.654346 0.756195i \(-0.727056\pi\)
0.654346 0.756195i \(-0.272944\pi\)
\(150\) −0.719893 + 1.73798i −0.0587790 + 0.141905i
\(151\) 3.95696 3.95696i 0.322013 0.322013i −0.527526 0.849539i \(-0.676880\pi\)
0.849539 + 0.527526i \(0.176880\pi\)
\(152\) 16.6298 1.34885
\(153\) −3.99952 3.76685i −0.323342 0.304532i
\(154\) 0 0
\(155\) 0.352869 0.352869i 0.0283431 0.0283431i
\(156\) 0.859984 2.07618i 0.0688538 0.166228i
\(157\) 8.36719i 0.667774i 0.942613 + 0.333887i \(0.108360\pi\)
−0.942613 + 0.333887i \(0.891640\pi\)
\(158\) 0.836927 + 0.346666i 0.0665823 + 0.0275793i
\(159\) 0.121630 + 0.293641i 0.00964589 + 0.0232872i
\(160\) 3.42774 1.41982i 0.270987 0.112246i
\(161\) 0 0
\(162\) −2.94226 2.94226i −0.231166 0.231166i
\(163\) −3.58651 + 1.48558i −0.280917 + 0.116360i −0.518694 0.854960i \(-0.673581\pi\)
0.237776 + 0.971320i \(0.423581\pi\)
\(164\) −0.143311 0.345982i −0.0111907 0.0270167i
\(165\) 12.2225 + 5.06273i 0.951522 + 0.394133i
\(166\) 17.4932i 1.35773i
\(167\) 2.95726 7.13946i 0.228840 0.552468i −0.767197 0.641411i \(-0.778349\pi\)
0.996037 + 0.0889438i \(0.0283492\pi\)
\(168\) 0 0
\(169\) −13.6350 −1.04885
\(170\) 9.53919 4.29028i 0.731623 0.329049i
\(171\) 7.35264 0.562270
\(172\) −1.44168 + 1.44168i −0.109927 + 0.109927i
\(173\) −3.34115 + 8.06626i −0.254023 + 0.613266i −0.998522 0.0543581i \(-0.982689\pi\)
0.744498 + 0.667624i \(0.232689\pi\)
\(174\) 13.8693i 1.05143i
\(175\) 0 0
\(176\) −6.40095 15.4533i −0.482490 1.16483i
\(177\) −0.872927 + 0.361578i −0.0656132 + 0.0271779i
\(178\) 15.9381 + 15.9381i 1.19461 + 1.19461i
\(179\) 4.68148 + 4.68148i 0.349910 + 0.349910i 0.860076 0.510166i \(-0.170416\pi\)
−0.510166 + 0.860076i \(0.670416\pi\)
\(180\) 0.816681 0.338280i 0.0608718 0.0252139i
\(181\) −0.843106 2.03544i −0.0626676 0.151293i 0.889444 0.457045i \(-0.151092\pi\)
−0.952111 + 0.305752i \(0.901092\pi\)
\(182\) 0 0
\(183\) 4.24211i 0.313586i
\(184\) 8.96893 21.6529i 0.661199 1.59627i
\(185\) 7.44401 7.44401i 0.547294 0.547294i
\(186\) 0.422385 0.0309707
\(187\) 8.80726 + 19.5825i 0.644050 + 1.43201i
\(188\) −0.916069 −0.0668112
\(189\) 0 0
\(190\) −5.35672 + 12.9323i −0.388617 + 0.938205i
\(191\) 2.41526i 0.174762i −0.996175 0.0873809i \(-0.972150\pi\)
0.996175 0.0873809i \(-0.0278497\pi\)
\(192\) 10.5649 + 4.37613i 0.762457 + 0.315820i
\(193\) 6.75000 + 16.2959i 0.485876 + 1.17301i 0.956777 + 0.290822i \(0.0939287\pi\)
−0.470901 + 0.882186i \(0.656071\pi\)
\(194\) 6.68831 2.77039i 0.480192 0.198902i
\(195\) 9.27068 + 9.27068i 0.663888 + 0.663888i
\(196\) 0 0
\(197\) −9.59101 + 3.97272i −0.683331 + 0.283045i −0.697219 0.716859i \(-0.745579\pi\)
0.0138876 + 0.999904i \(0.495579\pi\)
\(198\) −3.42434 8.26709i −0.243357 0.587517i
\(199\) 5.82609 + 2.41325i 0.413000 + 0.171070i 0.579502 0.814971i \(-0.303247\pi\)
−0.166502 + 0.986041i \(0.553247\pi\)
\(200\) 3.40482i 0.240757i
\(201\) 2.35258 5.67963i 0.165938 0.400610i
\(202\) 10.6871 10.6871i 0.751941 0.751941i
\(203\) 0 0
\(204\) −1.67851 0.637073i −0.117520 0.0446041i
\(205\) 2.18482 0.152594
\(206\) 14.2081 14.2081i 0.989926 0.989926i
\(207\) 3.96550 9.57356i 0.275621 0.665409i
\(208\) 16.5762i 1.14936i
\(209\) −26.5479 10.9965i −1.83636 0.760644i
\(210\) 0 0
\(211\) 16.1575 6.69266i 1.11233 0.460742i 0.250590 0.968093i \(-0.419375\pi\)
0.861739 + 0.507351i \(0.169375\pi\)
\(212\) −0.0586880 0.0586880i −0.00403071 0.00403071i
\(213\) −6.63546 6.63546i −0.454655 0.454655i
\(214\) −0.928106 + 0.384434i −0.0634440 + 0.0262794i
\(215\) −4.55196 10.9894i −0.310441 0.749471i
\(216\) 15.5777 + 6.45248i 1.05993 + 0.439036i
\(217\) 0 0
\(218\) 8.72242 21.0578i 0.590757 1.42621i
\(219\) −1.51284 + 1.51284i −0.102229 + 0.102229i
\(220\) −3.45469 −0.232915
\(221\) 0.637190 + 21.2694i 0.0428620 + 1.43074i
\(222\) 8.91049 0.598033
\(223\) −17.9143 + 17.9143i −1.19963 + 1.19963i −0.225355 + 0.974277i \(0.572354\pi\)
−0.974277 + 0.225355i \(0.927646\pi\)
\(224\) 0 0
\(225\) 1.50540i 0.100360i
\(226\) −15.4412 6.39597i −1.02714 0.425453i
\(227\) 1.41304 + 3.41139i 0.0937870 + 0.226422i 0.963810 0.266588i \(-0.0858965\pi\)
−0.870023 + 0.493010i \(0.835896\pi\)
\(228\) 2.21978 0.919462i 0.147008 0.0608929i
\(229\) 7.12679 + 7.12679i 0.470952 + 0.470952i 0.902223 0.431271i \(-0.141935\pi\)
−0.431271 + 0.902223i \(0.641935\pi\)
\(230\) 13.9495 + 13.9495i 0.919805 + 0.919805i
\(231\) 0 0
\(232\) 9.60640 + 23.1919i 0.630691 + 1.52262i
\(233\) 16.1640 + 6.69534i 1.05894 + 0.438626i 0.843074 0.537797i \(-0.180743\pi\)
0.215863 + 0.976424i \(0.430743\pi\)
\(234\) 8.86786i 0.579710i
\(235\) 2.04524 4.93764i 0.133417 0.322096i
\(236\) 0.174466 0.174466i 0.0113568 0.0113568i
\(237\) 0.907158 0.0589263
\(238\) 0 0
\(239\) 16.1180 1.04259 0.521295 0.853377i \(-0.325449\pi\)
0.521295 + 0.853377i \(0.325449\pi\)
\(240\) −5.76960 + 5.76960i −0.372426 + 0.372426i
\(241\) 1.98106 4.78270i 0.127611 0.308081i −0.847142 0.531367i \(-0.821679\pi\)
0.974753 + 0.223286i \(0.0716785\pi\)
\(242\) 20.7867i 1.33622i
\(243\) 11.6566 + 4.82833i 0.747772 + 0.309737i
\(244\) −0.423921 1.02343i −0.0271387 0.0655187i
\(245\) 0 0
\(246\) 1.30761 + 1.30761i 0.0833705 + 0.0833705i
\(247\) −20.1364 20.1364i −1.28125 1.28125i
\(248\) −0.706301 + 0.292559i −0.0448502 + 0.0185775i
\(249\) 6.70377 + 16.1843i 0.424834 + 1.02564i
\(250\) 14.3664 + 5.95074i 0.908609 + 0.376358i
\(251\) 27.2069i 1.71728i −0.512578 0.858641i \(-0.671309\pi\)
0.512578 0.858641i \(-0.328691\pi\)
\(252\) 0 0
\(253\) −28.6362 + 28.6362i −1.80034 + 1.80034i
\(254\) 4.81637 0.302206
\(255\) 7.18134 7.62491i 0.449713 0.477490i
\(256\) −7.84993 −0.490621
\(257\) 4.11539 4.11539i 0.256711 0.256711i −0.567004 0.823715i \(-0.691898\pi\)
0.823715 + 0.567004i \(0.191898\pi\)
\(258\) 3.85282 9.30152i 0.239866 0.579088i
\(259\) 0 0
\(260\) −3.16304 1.31018i −0.196164 0.0812537i
\(261\) 4.24735 + 10.2540i 0.262904 + 0.634707i
\(262\) −19.8447 + 8.21996i −1.22601 + 0.507831i
\(263\) 13.7795 + 13.7795i 0.849681 + 0.849681i 0.990093 0.140412i \(-0.0448428\pi\)
−0.140412 + 0.990093i \(0.544843\pi\)
\(264\) −14.3310 14.3310i −0.882012 0.882012i
\(265\) 0.447359 0.185302i 0.0274810 0.0113830i
\(266\) 0 0
\(267\) 20.8534 + 8.63776i 1.27621 + 0.528622i
\(268\) 1.60534i 0.0980619i
\(269\) −4.08537 + 9.86295i −0.249089 + 0.601355i −0.998127 0.0611723i \(-0.980516\pi\)
0.749038 + 0.662527i \(0.230516\pi\)
\(270\) −10.0356 + 10.0356i −0.610750 + 0.610750i
\(271\) 19.7525 1.19988 0.599939 0.800046i \(-0.295192\pi\)
0.599939 + 0.800046i \(0.295192\pi\)
\(272\) −13.2370 + 0.396554i −0.802611 + 0.0240446i
\(273\) 0 0
\(274\) −12.9491 + 12.9491i −0.782285 + 0.782285i
\(275\) −2.25145 + 5.43549i −0.135768 + 0.327773i
\(276\) 3.38617i 0.203824i
\(277\) −13.3441 5.52729i −0.801767 0.332103i −0.0561032 0.998425i \(-0.517868\pi\)
−0.745664 + 0.666322i \(0.767868\pi\)
\(278\) −1.88120 4.54162i −0.112827 0.272388i
\(279\) −0.312282 + 0.129351i −0.0186958 + 0.00774407i
\(280\) 0 0
\(281\) −14.0732 14.0732i −0.839539 0.839539i 0.149259 0.988798i \(-0.452311\pi\)
−0.988798 + 0.149259i \(0.952311\pi\)
\(282\) 4.17926 1.73111i 0.248871 0.103086i
\(283\) 9.27408 + 22.3896i 0.551287 + 1.33092i 0.916513 + 0.400006i \(0.130992\pi\)
−0.365226 + 0.930919i \(0.619008\pi\)
\(284\) 2.26394 + 0.937755i 0.134340 + 0.0556455i
\(285\) 14.0175i 0.830325i
\(286\) −13.2626 + 32.0189i −0.784237 + 1.89332i
\(287\) 0 0
\(288\) −2.51302 −0.148081
\(289\) 16.9695 1.01766i 0.998207 0.0598623i
\(290\) −21.1298 −1.24078
\(291\) 5.12622 5.12622i 0.300504 0.300504i
\(292\) 0.213802 0.516164i 0.0125118 0.0302062i
\(293\) 2.54471i 0.148664i −0.997234 0.0743318i \(-0.976318\pi\)
0.997234 0.0743318i \(-0.0236824\pi\)
\(294\) 0 0
\(295\) 0.550861 + 1.32989i 0.0320723 + 0.0774295i
\(296\) −14.8999 + 6.17174i −0.866039 + 0.358725i
\(297\) −20.6016 20.6016i −1.19543 1.19543i
\(298\) −16.8330 16.8330i −0.975109 0.975109i
\(299\) −37.0789 + 15.3586i −2.14433 + 0.888209i
\(300\) −0.188253 0.454484i −0.0108688 0.0262396i
\(301\) 0 0
\(302\) 7.21599i 0.415234i
\(303\) 5.79195 13.9830i 0.332739 0.803303i
\(304\) 12.5318 12.5318i 0.718750 0.718750i
\(305\) 6.46281 0.370059
\(306\) −7.08145 + 0.212146i −0.404820 + 0.0121276i
\(307\) −12.1457 −0.693192 −0.346596 0.938015i \(-0.612662\pi\)
−0.346596 + 0.938015i \(0.612662\pi\)
\(308\) 0 0
\(309\) 7.70020 18.5899i 0.438049 1.05754i
\(310\) 0.643499i 0.0365483i
\(311\) 9.22788 + 3.82231i 0.523265 + 0.216744i 0.628651 0.777688i \(-0.283608\pi\)
−0.105385 + 0.994431i \(0.533608\pi\)
\(312\) −7.68622 18.5562i −0.435146 1.05054i
\(313\) −12.8720 + 5.33174i −0.727567 + 0.301368i −0.715552 0.698560i \(-0.753825\pi\)
−0.0120150 + 0.999928i \(0.503825\pi\)
\(314\) 7.62929 + 7.62929i 0.430546 + 0.430546i
\(315\) 0 0
\(316\) −0.218858 + 0.0906538i −0.0123117 + 0.00509967i
\(317\) 2.56268 + 6.18686i 0.143935 + 0.347489i 0.979363 0.202111i \(-0.0647802\pi\)
−0.835428 + 0.549600i \(0.814780\pi\)
\(318\) 0.378648 + 0.156841i 0.0212335 + 0.00879522i
\(319\) 43.3761i 2.42859i
\(320\) 6.66699 16.0955i 0.372696 0.899768i
\(321\) −0.711342 + 0.711342i −0.0397032 + 0.0397032i
\(322\) 0 0
\(323\) −15.5982 + 16.5617i −0.867908 + 0.921516i
\(324\) 1.08811 0.0604503
\(325\) −4.12278 + 4.12278i −0.228691 + 0.228691i
\(326\) −1.91565 + 4.62478i −0.106098 + 0.256143i
\(327\) 22.8249i 1.26222i
\(328\) −3.09226 1.28086i −0.170742 0.0707235i
\(329\) 0 0
\(330\) 15.7609 6.52837i 0.867607 0.359375i
\(331\) 7.68099 + 7.68099i 0.422185 + 0.422185i 0.885955 0.463770i \(-0.153504\pi\)
−0.463770 + 0.885955i \(0.653504\pi\)
\(332\) −3.23465 3.23465i −0.177525 0.177525i
\(333\) −6.58780 + 2.72876i −0.361009 + 0.149535i
\(334\) −3.81337 9.20629i −0.208658 0.503746i
\(335\) −8.65286 3.58413i −0.472756 0.195822i
\(336\) 0 0
\(337\) 6.71009 16.1996i 0.365522 0.882447i −0.628950 0.777445i \(-0.716515\pi\)
0.994472 0.105002i \(-0.0334849\pi\)
\(338\) −12.4325 + 12.4325i −0.676240 + 0.676240i
\(339\) −16.7370 −0.909029
\(340\) −0.970575 + 2.55720i −0.0526368 + 0.138684i
\(341\) 1.32100 0.0715362
\(342\) 6.70421 6.70421i 0.362522 0.362522i
\(343\) 0 0
\(344\) 18.2224i 0.982485i
\(345\) 18.2516 + 7.56006i 0.982633 + 0.407020i
\(346\) 4.30840 + 10.4014i 0.231621 + 0.559182i
\(347\) −19.1326 + 7.92496i −1.02709 + 0.425434i −0.831661 0.555284i \(-0.812610\pi\)
−0.195428 + 0.980718i \(0.562610\pi\)
\(348\) 2.56457 + 2.56457i 0.137475 + 0.137475i
\(349\) 17.4028 + 17.4028i 0.931551 + 0.931551i 0.997803 0.0662519i \(-0.0211041\pi\)
−0.0662519 + 0.997803i \(0.521104\pi\)
\(350\) 0 0
\(351\) −11.0494 26.6755i −0.589771 1.42383i
\(352\) 9.07368 + 3.75844i 0.483629 + 0.200326i
\(353\) 7.71424i 0.410588i −0.978700 0.205294i \(-0.934185\pi\)
0.978700 0.205294i \(-0.0658150\pi\)
\(354\) −0.466253 + 1.12563i −0.0247811 + 0.0598268i
\(355\) −10.1091 + 10.1091i −0.536533 + 0.536533i
\(356\) −5.89420 −0.312392
\(357\) 0 0
\(358\) 8.53724 0.451207
\(359\) −13.5669 + 13.5669i −0.716032 + 0.716032i −0.967790 0.251758i \(-0.918991\pi\)
0.251758 + 0.967790i \(0.418991\pi\)
\(360\) 3.02342 7.29919i 0.159348 0.384701i
\(361\) 11.4467i 0.602457i
\(362\) −2.62469 1.08718i −0.137950 0.0571410i
\(363\) 7.96591 + 19.2314i 0.418102 + 1.00939i
\(364\) 0 0
\(365\) 2.30480 + 2.30480i 0.120639 + 0.120639i
\(366\) 3.86800 + 3.86800i 0.202183 + 0.202183i
\(367\) 0.252634 0.104645i 0.0131874 0.00546240i −0.376080 0.926587i \(-0.622728\pi\)
0.389267 + 0.921125i \(0.372728\pi\)
\(368\) −9.55838 23.0760i −0.498265 1.20292i
\(369\) −1.36720 0.566315i −0.0711738 0.0294812i
\(370\) 13.5750i 0.705733i
\(371\) 0 0
\(372\) −0.0781030 + 0.0781030i −0.00404945 + 0.00404945i
\(373\) −3.39033 −0.175544 −0.0877722 0.996141i \(-0.527975\pi\)
−0.0877722 + 0.996141i \(0.527975\pi\)
\(374\) 25.8860 + 9.82493i 1.33853 + 0.508035i
\(375\) 15.5719 0.804131
\(376\) −5.78943 + 5.78943i −0.298567 + 0.298567i
\(377\) 16.4502 39.7143i 0.847228 2.04539i
\(378\) 0 0
\(379\) −7.80725 3.23387i −0.401032 0.166113i 0.173046 0.984914i \(-0.444639\pi\)
−0.574077 + 0.818801i \(0.694639\pi\)
\(380\) −1.40079 3.38181i −0.0718591 0.173483i
\(381\) 4.45601 1.84574i 0.228288 0.0945601i
\(382\) −2.20225 2.20225i −0.112677 0.112677i
\(383\) −10.1289 10.1289i −0.517560 0.517560i 0.399272 0.916832i \(-0.369263\pi\)
−0.916832 + 0.399272i \(0.869263\pi\)
\(384\) 9.12354 3.77910i 0.465584 0.192851i
\(385\) 0 0
\(386\) 21.0135 + 8.70409i 1.06956 + 0.443026i
\(387\) 8.05679i 0.409550i
\(388\) −0.724461 + 1.74900i −0.0367789 + 0.0887922i
\(389\) 4.55909 4.55909i 0.231155 0.231155i −0.582020 0.813175i \(-0.697737\pi\)
0.813175 + 0.582020i \(0.197737\pi\)
\(390\) 16.9062 0.856079
\(391\) 13.1517 + 29.2420i 0.665108 + 1.47883i
\(392\) 0 0
\(393\) −15.2099 + 15.2099i −0.767238 + 0.767238i
\(394\) −5.12281 + 12.3675i −0.258083 + 0.623068i
\(395\) 1.38205i 0.0695383i
\(396\) 2.16186 + 0.895471i 0.108637 + 0.0449991i
\(397\) −9.67322 23.3532i −0.485485 1.17206i −0.956969 0.290190i \(-0.906281\pi\)
0.471484 0.881875i \(-0.343719\pi\)
\(398\) 7.51271 3.11187i 0.376578 0.155984i
\(399\) 0 0
\(400\) −2.56580 2.56580i −0.128290 0.128290i
\(401\) −28.3575 + 11.7460i −1.41610 + 0.586570i −0.953879 0.300193i \(-0.902949\pi\)
−0.462226 + 0.886762i \(0.652949\pi\)
\(402\) −3.03364 7.32385i −0.151304 0.365280i
\(403\) 1.20948 + 0.500984i 0.0602487 + 0.0249558i
\(404\) 3.95229i 0.196634i
\(405\) −2.42933 + 5.86493i −0.120715 + 0.291431i
\(406\) 0 0
\(407\) 27.8674 1.38134
\(408\) −14.6342 + 6.58177i −0.724501 + 0.325846i
\(409\) 2.49639 0.123438 0.0617192 0.998094i \(-0.480342\pi\)
0.0617192 + 0.998094i \(0.480342\pi\)
\(410\) 1.99214 1.99214i 0.0983846 0.0983846i
\(411\) −7.01788 + 16.9427i −0.346166 + 0.835720i
\(412\) 5.25443i 0.258867i
\(413\) 0 0
\(414\) −5.11349 12.3451i −0.251314 0.606726i
\(415\) 24.6567 10.2131i 1.21035 0.501343i
\(416\) 6.88231 + 6.88231i 0.337433 + 0.337433i
\(417\) −3.48090 3.48090i −0.170460 0.170460i
\(418\) −34.2334 + 14.1799i −1.67441 + 0.693563i
\(419\) 7.13648 + 17.2290i 0.348640 + 0.841691i 0.996781 + 0.0801711i \(0.0255467\pi\)
−0.648141 + 0.761520i \(0.724453\pi\)
\(420\) 0 0
\(421\) 26.6441i 1.29856i −0.760551 0.649278i \(-0.775071\pi\)
0.760551 0.649278i \(-0.224929\pi\)
\(422\) 8.63015 20.8350i 0.420109 1.01423i
\(423\) −2.55972 + 2.55972i −0.124458 + 0.124458i
\(424\) −0.741800 −0.0360250
\(425\) 3.39088 + 3.19362i 0.164482 + 0.154914i
\(426\) −12.1006 −0.586274
\(427\) 0 0
\(428\) 0.100530 0.242701i 0.00485931 0.0117314i
\(429\) 34.7058i 1.67561i
\(430\) −14.1708 5.86973i −0.683376 0.283063i
\(431\) −8.69373 20.9885i −0.418762 1.01098i −0.982707 0.185168i \(-0.940717\pi\)
0.563945 0.825813i \(-0.309283\pi\)
\(432\) 16.6015 6.87655i 0.798738 0.330848i
\(433\) −27.9303 27.9303i −1.34224 1.34224i −0.893824 0.448418i \(-0.851987\pi\)
−0.448418 0.893824i \(-0.648013\pi\)
\(434\) 0 0
\(435\) −19.5488 + 8.09739i −0.937295 + 0.388240i
\(436\) 2.28093 + 5.50664i 0.109237 + 0.263720i
\(437\) −39.6434 16.4208i −1.89640 0.785514i
\(438\) 2.75885i 0.131823i
\(439\) 12.8588 31.0440i 0.613719 1.48165i −0.245166 0.969481i \(-0.578843\pi\)
0.858885 0.512168i \(-0.171157\pi\)
\(440\) −21.8331 + 21.8331i −1.04085 + 1.04085i
\(441\) 0 0
\(442\) 19.9747 + 18.8127i 0.950099 + 0.894828i
\(443\) 20.6306 0.980190 0.490095 0.871669i \(-0.336962\pi\)
0.490095 + 0.871669i \(0.336962\pi\)
\(444\) −1.64763 + 1.64763i −0.0781933 + 0.0781933i
\(445\) 13.1595 31.7699i 0.623822 1.50604i
\(446\) 32.6689i 1.54692i
\(447\) −22.0243 9.12278i −1.04172 0.431493i
\(448\) 0 0
\(449\) 12.3940 5.13378i 0.584911 0.242278i −0.0705488 0.997508i \(-0.522475\pi\)
0.655459 + 0.755230i \(0.272475\pi\)
\(450\) −1.37264 1.37264i −0.0647068 0.0647068i
\(451\) 4.08954 + 4.08954i 0.192569 + 0.192569i
\(452\) 4.03791 1.67256i 0.189927 0.0786704i
\(453\) −2.76533 6.67609i −0.129926 0.313670i
\(454\) 4.39897 + 1.82211i 0.206454 + 0.0855159i
\(455\) 0 0
\(456\) 8.21781 19.8396i 0.384834 0.929072i
\(457\) 1.51750 1.51750i 0.0709854 0.0709854i −0.670723 0.741708i \(-0.734016\pi\)
0.741708 + 0.670723i \(0.234016\pi\)
\(458\) 12.9966 0.607289
\(459\) −21.0374 + 9.46165i −0.981944 + 0.441632i
\(460\) −5.15880 −0.240530
\(461\) 9.22332 9.22332i 0.429573 0.429573i −0.458910 0.888483i \(-0.651760\pi\)
0.888483 + 0.458910i \(0.151760\pi\)
\(462\) 0 0
\(463\) 31.6409i 1.47048i 0.677809 + 0.735238i \(0.262929\pi\)
−0.677809 + 0.735238i \(0.737071\pi\)
\(464\) 24.7161 + 10.2377i 1.14742 + 0.475276i
\(465\) −0.246603 0.595352i −0.0114359 0.0276088i
\(466\) 20.8434 8.63360i 0.965550 0.399944i
\(467\) −17.7755 17.7755i −0.822553 0.822553i 0.163921 0.986474i \(-0.447586\pi\)
−0.986474 + 0.163921i \(0.947586\pi\)
\(468\) 1.63975 + 1.63975i 0.0757976 + 0.0757976i
\(469\) 0 0
\(470\) −2.63732 6.36706i −0.121651 0.293691i
\(471\) 9.98218 + 4.13475i 0.459955 + 0.190519i
\(472\) 2.20520i 0.101503i
\(473\) 12.0496 29.0904i 0.554042 1.33758i
\(474\) 0.827156 0.827156i 0.0379925 0.0379925i
\(475\) −6.23374 −0.286024
\(476\) 0 0
\(477\) −0.327978 −0.0150171
\(478\) 14.6966 14.6966i 0.672207 0.672207i
\(479\) 0.806697 1.94754i 0.0368589 0.0889853i −0.904378 0.426732i \(-0.859665\pi\)
0.941237 + 0.337747i \(0.109665\pi\)
\(480\) 4.79097i 0.218677i
\(481\) 25.5149 + 10.5686i 1.16338 + 0.481887i
\(482\) −2.55456 6.16726i −0.116357 0.280911i
\(483\) 0 0
\(484\) −3.84365 3.84365i −0.174711 0.174711i
\(485\) −7.80974 7.80974i −0.354622 0.354622i
\(486\) 15.0311 6.22610i 0.681826 0.282422i
\(487\) 1.54161 + 3.72177i 0.0698569 + 0.168650i 0.954952 0.296761i \(-0.0959066\pi\)
−0.885095 + 0.465411i \(0.845907\pi\)
\(488\) −9.14708 3.78885i −0.414069 0.171513i
\(489\) 5.01288i 0.226690i
\(490\) 0 0
\(491\) 5.16257 5.16257i 0.232984 0.232984i −0.580953 0.813937i \(-0.697320\pi\)
0.813937 + 0.580953i \(0.197320\pi\)
\(492\) −0.483581 −0.0218015
\(493\) −32.1075 12.1863i −1.44605 0.548841i
\(494\) −36.7211 −1.65216
\(495\) −9.65324 + 9.65324i −0.433881 + 0.433881i
\(496\) −0.311787 + 0.752720i −0.0139996 + 0.0337981i
\(497\) 0 0
\(498\) 20.8696 + 8.64447i 0.935189 + 0.387368i
\(499\) −2.49764 6.02983i −0.111810 0.269932i 0.858063 0.513544i \(-0.171668\pi\)
−0.969873 + 0.243612i \(0.921668\pi\)
\(500\) −3.75683 + 1.55613i −0.168010 + 0.0695922i
\(501\) −7.05611 7.05611i −0.315244 0.315244i
\(502\) −24.8075 24.8075i −1.10721 1.10721i
\(503\) 16.5032 6.83583i 0.735839 0.304795i 0.0168901 0.999857i \(-0.494623\pi\)
0.718949 + 0.695063i \(0.244623\pi\)
\(504\) 0 0
\(505\) −21.3030 8.82398i −0.947970 0.392662i
\(506\) 52.2215i 2.32153i
\(507\) −6.73791 + 16.2667i −0.299241 + 0.722431i
\(508\) −0.890592 + 0.890592i −0.0395137 + 0.0395137i
\(509\) −9.72487 −0.431047 −0.215524 0.976499i \(-0.569146\pi\)
−0.215524 + 0.976499i \(0.569146\pi\)
\(510\) −0.404448 13.5005i −0.0179092 0.597812i
\(511\) 0 0
\(512\) −17.9728 + 17.9728i −0.794293 + 0.794293i
\(513\) 11.8136 28.5204i 0.521581 1.25921i
\(514\) 7.50492i 0.331028i
\(515\) −28.3216 11.7312i −1.24800 0.516937i
\(516\) 1.00752 + 2.43236i 0.0443535 + 0.107079i
\(517\) 13.0706 5.41401i 0.574843 0.238108i
\(518\) 0 0
\(519\) 7.97209 + 7.97209i 0.349936 + 0.349936i
\(520\) −28.2701 + 11.7099i −1.23973 + 0.513512i
\(521\) −3.50365 8.45855i −0.153498 0.370576i 0.828360 0.560196i \(-0.189274\pi\)
−0.981857 + 0.189620i \(0.939274\pi\)
\(522\) 13.2225 + 5.47693i 0.578732 + 0.239719i
\(523\) 0.446252i 0.0195133i 0.999952 + 0.00975663i \(0.00310568\pi\)
−0.999952 + 0.00975663i \(0.996894\pi\)
\(524\) 2.14953 5.18943i 0.0939028 0.226701i
\(525\) 0 0
\(526\) 25.1286 1.09566
\(527\) 0.371128 0.977821i 0.0161666 0.0425945i
\(528\) −21.5991 −0.939979
\(529\) −26.4983 + 26.4983i −1.15210 + 1.15210i
\(530\) 0.238946 0.576867i 0.0103792 0.0250575i
\(531\) 0.975001i 0.0423114i
\(532\) 0 0
\(533\) 2.19336 + 5.29525i 0.0950051 + 0.229363i
\(534\) 26.8903 11.1383i 1.16366 0.482003i
\(535\) 1.08372 + 1.08372i 0.0468534 + 0.0468534i
\(536\) 10.1455 + 10.1455i 0.438221 + 0.438221i
\(537\) 7.89849 3.27166i 0.340845 0.141183i
\(538\) 5.26806 + 12.7182i 0.227122 + 0.548321i
\(539\) 0 0
\(540\) 3.71137i 0.159712i
\(541\) −3.73591 + 9.01929i −0.160619 + 0.387769i −0.983616 0.180277i \(-0.942301\pi\)
0.822997 + 0.568046i \(0.192301\pi\)
\(542\) 18.0105 18.0105i 0.773617 0.773617i
\(543\) −2.84494 −0.122088
\(544\) 5.33124 5.66053i 0.228575 0.242693i
\(545\) −34.7735 −1.48953
\(546\) 0 0
\(547\) −14.4352 + 34.8496i −0.617204 + 1.49006i 0.237732 + 0.971331i \(0.423596\pi\)
−0.854937 + 0.518732i \(0.826404\pi\)
\(548\) 4.78883i 0.204569i
\(549\) −4.04427 1.67519i −0.172605 0.0714954i
\(550\) 2.90324 + 7.00904i 0.123794 + 0.298866i
\(551\) 42.4610 17.5879i 1.80890 0.749271i
\(552\) −21.4001 21.4001i −0.910851 0.910851i
\(553\) 0 0
\(554\) −17.2071 + 7.12741i −0.731059 + 0.302815i
\(555\) −5.20226 12.5594i −0.220824 0.533115i
\(556\) 1.18764 + 0.491937i 0.0503672 + 0.0208628i
\(557\) 42.3653i 1.79508i 0.440937 + 0.897538i \(0.354646\pi\)
−0.440937 + 0.897538i \(0.645354\pi\)
\(558\) −0.166798 + 0.402686i −0.00706112 + 0.0170470i
\(559\) 22.0648 22.0648i 0.933242 0.933242i
\(560\) 0 0
\(561\) 27.7144 0.830267i 1.17010 0.0350539i
\(562\) −25.6642 −1.08258
\(563\) 11.1395 11.1395i 0.469472 0.469472i −0.432271 0.901744i \(-0.642288\pi\)
0.901744 + 0.432271i \(0.142288\pi\)
\(564\) −0.452687 + 1.09288i −0.0190616 + 0.0460187i
\(565\) 25.4986i 1.07274i
\(566\) 28.8713 + 11.9589i 1.21355 + 0.502669i
\(567\) 0 0
\(568\) 20.2343 8.38130i 0.849011 0.351672i
\(569\) −28.6461 28.6461i −1.20091 1.20091i −0.973891 0.227017i \(-0.927103\pi\)
−0.227017 0.973891i \(-0.572897\pi\)
\(570\) 12.7813 + 12.7813i 0.535350 + 0.535350i
\(571\) −25.2202 + 10.4465i −1.05543 + 0.437175i −0.841828 0.539746i \(-0.818520\pi\)
−0.213605 + 0.976920i \(0.568520\pi\)
\(572\) −3.46820 8.37298i −0.145013 0.350092i
\(573\) −2.88144 1.19353i −0.120374 0.0498604i
\(574\) 0 0
\(575\) −3.36204 + 8.11669i −0.140207 + 0.338489i
\(576\) −8.34408 + 8.34408i −0.347670 + 0.347670i
\(577\) −16.9612 −0.706106 −0.353053 0.935603i \(-0.614856\pi\)
−0.353053 + 0.935603i \(0.614856\pi\)
\(578\) 14.5451 16.4009i 0.604995 0.682187i
\(579\) 22.7769 0.946576
\(580\) 3.90709 3.90709i 0.162233 0.162233i
\(581\) 0 0
\(582\) 9.34827i 0.387498i
\(583\) 1.18422 + 0.490519i 0.0490452 + 0.0203152i
\(584\) −1.91089 4.61328i −0.0790730 0.190899i
\(585\) −12.4993 + 5.17737i −0.516781 + 0.214058i
\(586\) −2.32029 2.32029i −0.0958505 0.0958505i
\(587\) 15.2431 + 15.2431i 0.629148 + 0.629148i 0.947854 0.318705i \(-0.103248\pi\)
−0.318705 + 0.947854i \(0.603248\pi\)
\(588\) 0 0
\(589\) 0.535634 + 1.29313i 0.0220704 + 0.0532827i
\(590\) 1.71489 + 0.710331i 0.0706010 + 0.0292439i
\(591\) 13.4054i 0.551424i
\(592\) −6.57735 + 15.8791i −0.270328 + 0.652628i
\(593\) 23.3609 23.3609i 0.959317 0.959317i −0.0398870 0.999204i \(-0.512700\pi\)
0.999204 + 0.0398870i \(0.0126998\pi\)
\(594\) −37.5695 −1.54149
\(595\) 0 0
\(596\) 6.22516 0.254993
\(597\) 5.75807 5.75807i 0.235662 0.235662i
\(598\) −19.8048 + 47.8130i −0.809878 + 1.95522i
\(599\) 6.52919i 0.266776i −0.991064 0.133388i \(-0.957414\pi\)
0.991064 0.133388i \(-0.0425856\pi\)
\(600\) −4.06201 1.68254i −0.165831 0.0686893i
\(601\) 11.7442 + 28.3531i 0.479057 + 1.15655i 0.960052 + 0.279822i \(0.0902754\pi\)
−0.480995 + 0.876723i \(0.659725\pi\)
\(602\) 0 0
\(603\) 4.48572 + 4.48572i 0.182673 + 0.182673i
\(604\) 1.33431 + 1.33431i 0.0542921 + 0.0542921i
\(605\) 29.2989 12.1360i 1.19117 0.493398i
\(606\) −7.46869 18.0310i −0.303395 0.732460i
\(607\) −9.04054 3.74472i −0.366944 0.151993i 0.191589 0.981475i \(-0.438636\pi\)
−0.558534 + 0.829482i \(0.688636\pi\)
\(608\) 10.4062i 0.422028i
\(609\) 0 0
\(610\) 5.89285 5.89285i 0.238595 0.238595i
\(611\) 14.0204 0.567205
\(612\) 1.27020 1.34866i 0.0513448 0.0545162i
\(613\) 35.1221 1.41857 0.709285 0.704922i \(-0.249018\pi\)
0.709285 + 0.704922i \(0.249018\pi\)
\(614\) −11.0746 + 11.0746i −0.446933 + 0.446933i
\(615\) 1.07966 2.60652i 0.0435359 0.105105i
\(616\) 0 0
\(617\) −27.2075 11.2697i −1.09533 0.453701i −0.239469 0.970904i \(-0.576973\pi\)
−0.855863 + 0.517203i \(0.826973\pi\)
\(618\) −9.92936 23.9716i −0.399418 0.964279i
\(619\) 34.0064 14.0859i 1.36683 0.566160i 0.425904 0.904768i \(-0.359956\pi\)
0.940928 + 0.338608i \(0.109956\pi\)
\(620\) 0.118989 + 0.118989i 0.00477872 + 0.00477872i
\(621\) −30.7639 30.7639i −1.23451 1.23451i
\(622\) 11.8993 4.92885i 0.477118 0.197629i
\(623\) 0 0
\(624\) −19.7757 8.19136i −0.791662 0.327917i
\(625\) 18.0750i 0.722999i
\(626\) −6.87525 + 16.5983i −0.274790 + 0.663403i
\(627\) −26.2380 + 26.2380i −1.04784 + 1.04784i
\(628\) −2.82146 −0.112588
\(629\) 7.82919 20.6278i 0.312170 0.822484i
\(630\) 0 0
\(631\) −29.7270 + 29.7270i −1.18341 + 1.18341i −0.204557 + 0.978855i \(0.565575\pi\)
−0.978855 + 0.204557i \(0.934425\pi\)
\(632\) −0.810230 + 1.95607i −0.0322292 + 0.0778082i
\(633\) 22.5834i 0.897611i
\(634\) 7.97792 + 3.30456i 0.316844 + 0.131241i
\(635\) −2.81197 6.78869i −0.111589 0.269401i
\(636\) −0.0990171 + 0.0410142i −0.00392629 + 0.00162632i
\(637\) 0 0
\(638\) −39.5507 39.5507i −1.56583 1.56583i
\(639\) 8.94632 3.70569i 0.353911 0.146595i
\(640\) −5.75741 13.8996i −0.227582 0.549431i
\(641\) 30.6623 + 12.7008i 1.21109 + 0.501649i 0.894566 0.446935i \(-0.147485\pi\)
0.316523 + 0.948585i \(0.397485\pi\)
\(642\) 1.29722i 0.0511971i
\(643\) −1.50720 + 3.63871i −0.0594383 + 0.143497i −0.950808 0.309779i \(-0.899745\pi\)
0.891370 + 0.453276i \(0.149745\pi\)
\(644\) 0 0
\(645\) −15.3599 −0.604797
\(646\) 0.878480 + 29.3237i 0.0345633 + 1.15373i
\(647\) 46.4460 1.82598 0.912991 0.407981i \(-0.133767\pi\)
0.912991 + 0.407981i \(0.133767\pi\)
\(648\) 6.87667 6.87667i 0.270141 0.270141i
\(649\) −1.45820 + 3.52040i −0.0572393 + 0.138188i
\(650\) 7.51838i 0.294895i
\(651\) 0 0
\(652\) −0.500945 1.20939i −0.0196185 0.0473633i
\(653\) 23.3310 9.66403i 0.913014 0.378183i 0.123804 0.992307i \(-0.460491\pi\)
0.789210 + 0.614124i \(0.210491\pi\)
\(654\) −20.8120 20.8120i −0.813812 0.813812i
\(655\) 23.1721 + 23.1721i 0.905409 + 0.905409i
\(656\) −3.29549 + 1.36504i −0.128667 + 0.0532957i
\(657\) −0.844873 2.03970i −0.0329617 0.0795765i
\(658\) 0 0
\(659\) 24.0570i 0.937128i 0.883429 + 0.468564i \(0.155229\pi\)
−0.883429 + 0.468564i \(0.844771\pi\)
\(660\) −1.70718 + 4.12149i −0.0664518 + 0.160429i
\(661\) −6.87300 + 6.87300i −0.267329 + 0.267329i −0.828023 0.560694i \(-0.810534\pi\)
0.560694 + 0.828023i \(0.310534\pi\)
\(662\) 14.0072 0.544405
\(663\) 25.6896 + 9.75039i 0.997702 + 0.378674i
\(664\) −40.8851 −1.58665
\(665\) 0 0
\(666\) −3.51871 + 8.49493i −0.136347 + 0.329172i
\(667\) 64.7724i 2.50800i
\(668\) 2.40746 + 0.997202i 0.0931474 + 0.0385829i
\(669\) 12.5195 + 30.2246i 0.484030 + 1.16855i
\(670\) −11.1578 + 4.62171i −0.431064 + 0.178552i
\(671\) 12.0971 + 12.0971i 0.467003 + 0.467003i
\(672\) 0 0
\(673\) −27.4854 + 11.3848i −1.05948 + 0.438853i −0.843268 0.537493i \(-0.819372\pi\)
−0.216216 + 0.976346i \(0.569372\pi\)
\(674\) −8.65262 20.8893i −0.333286 0.804624i
\(675\) −5.83936 2.41874i −0.224757 0.0930974i
\(676\) 4.59778i 0.176838i
\(677\) 8.98949 21.7026i 0.345494 0.834097i −0.651646 0.758523i \(-0.725921\pi\)
0.997140 0.0755736i \(-0.0240788\pi\)
\(678\) −15.2610 + 15.2610i −0.586094 + 0.586094i
\(679\) 0 0
\(680\) 10.0273 + 22.2950i 0.384528 + 0.854976i
\(681\) 4.76811 0.182714
\(682\) 1.20450 1.20450i 0.0461228 0.0461228i
\(683\) −5.27273 + 12.7295i −0.201755 + 0.487080i −0.992080 0.125608i \(-0.959912\pi\)
0.790325 + 0.612688i \(0.209912\pi\)
\(684\) 2.47934i 0.0948001i
\(685\) 25.8120 + 10.6917i 0.986225 + 0.408508i
\(686\) 0 0
\(687\) 12.0242 4.98057i 0.458751 0.190021i
\(688\) 13.7320 + 13.7320i 0.523527 + 0.523527i
\(689\) 0.898219 + 0.898219i 0.0342194 + 0.0342194i
\(690\) 23.5353 9.74865i 0.895975 0.371125i
\(691\) 16.5029 + 39.8416i 0.627800 + 1.51564i 0.842350 + 0.538931i \(0.181172\pi\)
−0.214549 + 0.976713i \(0.568828\pi\)
\(692\) −2.71998 1.12665i −0.103398 0.0428289i
\(693\) 0 0
\(694\) −10.2192 + 24.6713i −0.387915 + 0.936510i
\(695\) −5.30311 + 5.30311i −0.201158 + 0.201158i
\(696\) 32.4154 1.22870
\(697\) 4.17606 1.87819i 0.158180 0.0711417i
\(698\) 31.7361 1.20123
\(699\) 15.9753 15.9753i 0.604240 0.604240i
\(700\) 0 0
\(701\) 28.6852i 1.08343i −0.840564 0.541713i \(-0.817776\pi\)
0.840564 0.541713i \(-0.182224\pi\)
\(702\) −34.3979 14.2481i −1.29827 0.537759i
\(703\) 11.2996 + 27.2795i 0.426171 + 1.02887i
\(704\) 42.6070 17.6484i 1.60581 0.665149i
\(705\) −4.88000 4.88000i −0.183792 0.183792i
\(706\) −7.03392 7.03392i −0.264725 0.264725i
\(707\) 0 0
\(708\) −0.121926 0.294355i −0.00458225 0.0110625i
\(709\) −9.01194 3.73287i −0.338450 0.140191i 0.206984 0.978344i \(-0.433635\pi\)
−0.545434 + 0.838154i \(0.683635\pi\)
\(710\) 18.4351i 0.691857i
\(711\) −0.358233 + 0.864851i −0.0134348 + 0.0324344i
\(712\) −37.2505 + 37.2505i −1.39602 + 1.39602i
\(713\) 1.97262 0.0738752
\(714\) 0 0
\(715\) 52.8739 1.97737
\(716\) −1.57862 + 1.57862i −0.0589957 + 0.0589957i
\(717\) 7.96494 19.2291i 0.297456 0.718123i
\(718\) 24.7408i 0.923319i
\(719\) 7.16194 + 2.96657i 0.267095 + 0.110635i 0.512212 0.858859i \(-0.328826\pi\)
−0.245117 + 0.969494i \(0.578826\pi\)
\(720\) −3.22213 7.77890i −0.120082 0.289903i
\(721\) 0 0
\(722\) −10.4372 10.4372i −0.388432 0.388432i
\(723\) −4.72686 4.72686i −0.175794 0.175794i
\(724\) 0.686360 0.284300i 0.0255084 0.0105659i
\(725\) −3.60100 8.69359i −0.133738 0.322872i
\(726\) 24.7988 + 10.2720i 0.920370 + 0.381230i
\(727\) 37.9746i 1.40840i −0.710001 0.704201i \(-0.751306\pi\)
0.710001 0.704201i \(-0.248694\pi\)
\(728\) 0 0
\(729\) 18.3657 18.3657i 0.680211 0.680211i
\(730\) 4.20309 0.155563
\(731\) −18.1478 17.0920i −0.671219 0.632172i
\(732\) −1.43046 −0.0528713
\(733\) −21.8508 + 21.8508i −0.807076 + 0.807076i −0.984190 0.177114i \(-0.943324\pi\)
0.177114 + 0.984190i \(0.443324\pi\)
\(734\) 0.134939 0.325771i 0.00498067 0.0120244i
\(735\) 0 0
\(736\) 13.5495 + 5.61239i 0.499441 + 0.206875i
\(737\) −9.48765 22.9052i −0.349482 0.843724i
\(738\) −1.76300 + 0.730259i −0.0648970 + 0.0268812i
\(739\) 11.4178 + 11.4178i 0.420009 + 0.420009i 0.885207 0.465198i \(-0.154017\pi\)
−0.465198 + 0.885207i \(0.654017\pi\)
\(740\) 2.51015 + 2.51015i 0.0922751 + 0.0922751i
\(741\) −33.9736 + 14.0723i −1.24805 + 0.516960i
\(742\) 0 0
\(743\) −4.51047 1.86830i −0.165473 0.0685412i 0.298409 0.954438i \(-0.403544\pi\)
−0.463882 + 0.885897i \(0.653544\pi\)
\(744\) 0.987199i 0.0361925i
\(745\) −13.8985 + 33.5538i −0.509200 + 1.22932i
\(746\) −3.09133 + 3.09133i −0.113182 + 0.113182i
\(747\) −18.0768 −0.661397
\(748\) −6.60330 + 2.96985i −0.241440 + 0.108588i
\(749\) 0 0
\(750\) 14.1986 14.1986i 0.518461 0.518461i
\(751\) −1.43111 + 3.45501i −0.0522221 + 0.126075i −0.947837 0.318754i \(-0.896736\pi\)
0.895615 + 0.444829i \(0.146736\pi\)
\(752\) 8.72558i 0.318189i
\(753\) −32.4582 13.4446i −1.18284 0.489949i
\(754\) −21.2124 51.2113i −0.772511 1.86501i
\(755\) −10.1710 + 4.21295i −0.370159 + 0.153325i
\(756\) 0 0
\(757\) −32.5314 32.5314i −1.18238 1.18238i −0.979127 0.203248i \(-0.934850\pi\)
−0.203248 0.979127i \(-0.565150\pi\)
\(758\) −10.0674 + 4.17006i −0.365665 + 0.151463i
\(759\) 20.0124 + 48.3143i 0.726406 + 1.75370i
\(760\) −30.2254 12.5198i −1.09639 0.454139i
\(761\) 23.2046i 0.841166i 0.907254 + 0.420583i \(0.138174\pi\)
−0.907254 + 0.420583i \(0.861826\pi\)
\(762\) 2.38007 5.74600i 0.0862209 0.208156i
\(763\) 0 0
\(764\) 0.814436 0.0294652
\(765\) 4.43342 + 9.85747i 0.160291 + 0.356398i
\(766\) −18.4712 −0.667391
\(767\) −2.67020 + 2.67020i −0.0964152 + 0.0964152i
\(768\) −3.87914 + 9.36508i −0.139977 + 0.337933i
\(769\) 23.3712i 0.842787i −0.906878 0.421393i \(-0.861541\pi\)
0.906878 0.421393i \(-0.138459\pi\)
\(770\) 0 0
\(771\) −2.87605 6.94340i −0.103578 0.250060i
\(772\) −5.49507 + 2.27613i −0.197772 + 0.0819198i
\(773\) −19.8492 19.8492i −0.713924 0.713924i 0.253429 0.967354i \(-0.418441\pi\)
−0.967354 + 0.253429i \(0.918441\pi\)
\(774\) 7.34626 + 7.34626i 0.264056 + 0.264056i
\(775\) 0.264760 0.109667i 0.00951046 0.00393936i
\(776\) 6.47496 + 15.6319i 0.232438 + 0.561154i
\(777\) 0 0
\(778\) 8.31406i 0.298073i
\(779\) −2.34506 + 5.66148i −0.0840206 + 0.202844i
\(780\) −3.12612 + 3.12612i −0.111933 + 0.111933i
\(781\) −37.8443 −1.35418
\(782\) 38.6550 + 14.6713i 1.38230 + 0.524646i
\(783\) 46.5989 1.66531
\(784\) 0 0
\(785\) 6.29926 15.2078i 0.224830 0.542788i
\(786\) 27.7371i 0.989348i
\(787\) 46.3580 + 19.2021i 1.65248 + 0.684481i 0.997467 0.0711337i \(-0.0226617\pi\)
0.655016 + 0.755615i \(0.272662\pi\)
\(788\) −1.33962 3.23413i −0.0477220 0.115211i
\(789\) 23.2485 9.62984i 0.827668 0.342831i
\(790\) −1.26016 1.26016i −0.0448346 0.0448346i
\(791\) 0 0
\(792\) 19.3219 8.00339i 0.686574 0.284388i
\(793\) 6.48809 + 15.6636i 0.230399 + 0.556232i
\(794\) −30.1139 12.4736i −1.06870 0.442670i
\(795\) 0.625275i 0.0221762i
\(796\) −0.813758 + 1.96458i −0.0288429 + 0.0696329i
\(797\) 33.3423 33.3423i 1.18105 1.18105i 0.201572 0.979474i \(-0.435395\pi\)
0.979474 0.201572i \(-0.0646049\pi\)
\(798\) 0 0
\(799\) −0.335411 11.1960i −0.0118660 0.396087i
\(800\) 2.13060 0.0753280
\(801\) −16.4698 + 16.4698i −0.581933 + 0.581933i
\(802\) −15.1465 + 36.5668i −0.534840 + 1.29122i
\(803\) 8.62827i 0.304485i
\(804\) 1.91520 + 0.793301i 0.0675438 + 0.0279776i
\(805\) 0 0
\(806\) 1.55962 0.646016i 0.0549353 0.0227550i
\(807\) 9.74781 + 9.74781i 0.343139 + 0.343139i
\(808\) 24.9779 + 24.9779i 0.878720 + 0.878720i
\(809\) 10.8044 4.47534i 0.379863 0.157344i −0.184578 0.982818i \(-0.559092\pi\)
0.564441 + 0.825473i \(0.309092\pi\)
\(810\) 3.13261 + 7.56279i 0.110069 + 0.265729i
\(811\) −10.9405 4.53170i −0.384173 0.159130i 0.182234 0.983255i \(-0.441667\pi\)
−0.566407 + 0.824126i \(0.691667\pi\)
\(812\) 0 0
\(813\) 9.76094 23.5650i 0.342331 0.826460i
\(814\) 25.4098 25.4098i 0.890612 0.890612i
\(815\) 7.63707 0.267515
\(816\) −6.06814 + 15.9879i −0.212427 + 0.559688i
\(817\) 33.3625 1.16721
\(818\) 2.27623 2.27623i 0.0795866 0.0795866i
\(819\) 0 0
\(820\) 0.736730i 0.0257277i
\(821\) −12.6058 5.22149i −0.439945 0.182231i 0.151705 0.988426i \(-0.451523\pi\)
−0.591651 + 0.806194i \(0.701523\pi\)
\(822\) 9.04951 + 21.8475i 0.315638 + 0.762018i
\(823\) 11.1123 4.60288i 0.387352 0.160446i −0.180504 0.983574i \(-0.557773\pi\)
0.567856 + 0.823128i \(0.307773\pi\)
\(824\) 33.2073 + 33.2073i 1.15683 + 1.15683i
\(825\) 5.37204 + 5.37204i 0.187030 + 0.187030i
\(826\) 0 0
\(827\) 8.37419 + 20.2171i 0.291199 + 0.703017i 0.999997 0.00239456i \(-0.000762214\pi\)
−0.708798 + 0.705412i \(0.750762\pi\)
\(828\) 3.22825 + 1.33719i 0.112189 + 0.0464704i
\(829\) 40.0808i 1.39206i −0.718010 0.696032i \(-0.754947\pi\)
0.718010 0.696032i \(-0.245053\pi\)
\(830\) 13.1698 31.7946i 0.457129 1.10361i
\(831\) −13.1883 + 13.1883i −0.457497 + 0.457497i
\(832\) 45.7032 1.58447
\(833\) 0 0
\(834\) −6.34783 −0.219808
\(835\) −10.7499 + 10.7499i −0.372016 + 0.372016i
\(836\) 3.70807 8.95208i 0.128246 0.309614i
\(837\) 1.41915i 0.0490531i
\(838\) 22.2167 + 9.20245i 0.767463 + 0.317893i
\(839\) 11.1852 + 27.0035i 0.386157 + 0.932265i 0.990746 + 0.135728i \(0.0433372\pi\)
−0.604589 + 0.796537i \(0.706663\pi\)
\(840\) 0 0
\(841\) 28.5502 + 28.5502i 0.984491 + 0.984491i
\(842\) −24.2944 24.2944i −0.837240 0.837240i
\(843\) −23.7440 + 9.83511i −0.817788 + 0.338739i
\(844\) 2.25680 + 5.44839i 0.0776822 + 0.187541i
\(845\) 24.7822 + 10.2651i 0.852534 + 0.353131i
\(846\) 4.66796i 0.160488i
\(847\) 0 0
\(848\) −0.559005 + 0.559005i −0.0191963 + 0.0191963i
\(849\) 31.2941 1.07401
\(850\) 6.00382 0.179862i 0.205929 0.00616923i
\(851\) 41.6137 1.42650
\(852\) 2.23751 2.23751i 0.0766558 0.0766558i
\(853\) −20.8765 + 50.4004i −0.714799 + 1.72568i −0.0271541 + 0.999631i \(0.508644\pi\)
−0.687645 + 0.726047i \(0.741356\pi\)
\(854\) 0 0
\(855\) −13.3638 5.53545i −0.457031 0.189308i
\(856\) −0.898501 2.16917i −0.0307101 0.0741408i
\(857\) −8.53309 + 3.53452i −0.291485 + 0.120737i −0.523634 0.851943i \(-0.675424\pi\)
0.232150 + 0.972680i \(0.425424\pi\)
\(858\) 31.6451 + 31.6451i 1.08034 + 1.08034i
\(859\) 32.2226 + 32.2226i 1.09942 + 1.09942i 0.994478 + 0.104944i \(0.0334664\pi\)
0.104944 + 0.994478i \(0.466534\pi\)
\(860\) 3.70568 1.53494i 0.126363 0.0523411i
\(861\) 0 0
\(862\) −27.0646 11.2105i −0.921823 0.381831i
\(863\) 40.8966i 1.39214i 0.717976 + 0.696068i \(0.245069\pi\)
−0.717976 + 0.696068i \(0.754931\pi\)
\(864\) −4.03770 + 9.74786i −0.137365 + 0.331629i
\(865\) 12.1454 12.1454i 0.412956 0.412956i
\(866\) −50.9342 −1.73081
\(867\) 7.17162 20.7478i 0.243561 0.704631i
\(868\) 0 0
\(869\) 2.58692 2.58692i 0.0877552 0.0877552i
\(870\) −10.4415 + 25.2081i −0.354001 + 0.854635i
\(871\) 24.5697i 0.832513i
\(872\) 49.2164 + 20.3861i 1.66668 + 0.690360i
\(873\) 2.86282 + 6.91146i 0.0968919 + 0.233918i
\(874\) −51.1199 + 21.1745i −1.72916 + 0.716240i
\(875\) 0 0
\(876\) −0.510138 0.510138i −0.0172360 0.0172360i
\(877\) −19.9637 + 8.26922i −0.674125 + 0.279232i −0.693369 0.720583i \(-0.743874\pi\)
0.0192434 + 0.999815i \(0.493874\pi\)
\(878\) −16.5814 40.0310i −0.559595 1.35098i
\(879\) −3.03588 1.25750i −0.102398 0.0424145i
\(880\) 32.9060i 1.10926i
\(881\) −5.21642 + 12.5936i −0.175746 + 0.424288i −0.987066 0.160314i \(-0.948749\pi\)
0.811320 + 0.584602i \(0.198749\pi\)
\(882\) 0 0
\(883\) −2.21538 −0.0745534 −0.0372767 0.999305i \(-0.511868\pi\)
−0.0372767 + 0.999305i \(0.511868\pi\)
\(884\) −7.17215 + 0.214863i −0.241226 + 0.00722664i
\(885\) 1.85880 0.0624829
\(886\) 18.8112 18.8112i 0.631975 0.631975i
\(887\) 2.00493 4.84033i 0.0673189 0.162522i −0.886639 0.462461i \(-0.846966\pi\)
0.953958 + 0.299939i \(0.0969664\pi\)
\(888\) 20.8256i 0.698863i
\(889\) 0 0
\(890\) −16.9692 40.9672i −0.568807 1.37322i
\(891\) −15.5252 + 6.43075i −0.520114 + 0.215438i
\(892\) −6.04079 6.04079i −0.202261 0.202261i
\(893\) 10.5996 + 10.5996i 0.354702 + 0.354702i
\(894\) −28.4003 + 11.7638i −0.949846 + 0.393439i
\(895\) −4.98434 12.0333i −0.166608 0.402228i
\(896\) 0 0
\(897\) 51.8253i 1.73040i
\(898\) 6.61998 15.9820i 0.220911 0.533327i
\(899\) −1.49399 + 1.49399i −0.0498274 + 0.0498274i
\(900\) 0.507628 0.0169209
\(901\) 0.695787 0.738763i 0.0231800 0.0246118i
\(902\) 7.45777 0.248317
\(903\) 0 0
\(904\) 14.9487 36.0893i 0.497186 1.20031i
\(905\) 4.33424i 0.144075i
\(906\) −8.60878 3.56587i −0.286008 0.118468i
\(907\) −11.1928 27.0217i −0.371650 0.897242i −0.993471 0.114083i \(-0.963607\pi\)
0.621821 0.783159i \(-0.286393\pi\)
\(908\) −1.15034 + 0.476485i −0.0381753 + 0.0158127i
\(909\) 11.0437 + 11.0437i 0.366295 + 0.366295i
\(910\) 0 0
\(911\) 5.54275 2.29588i 0.183639 0.0760659i −0.288969 0.957338i \(-0.593312\pi\)
0.472608 + 0.881273i \(0.343312\pi\)
\(912\) −8.75790 21.1434i −0.290003 0.700129i
\(913\) 65.2693 + 27.0354i 2.16010 + 0.894743i
\(914\) 2.76734i 0.0915353i
\(915\) 3.19368 7.71023i 0.105580 0.254892i
\(916\) −2.40319 + 2.40319i −0.0794036 + 0.0794036i
\(917\) 0 0
\(918\) −10.5549 + 27.8094i −0.348365 + 0.917846i
\(919\) −8.82028 −0.290954 −0.145477 0.989362i \(-0.546472\pi\)
−0.145477 + 0.989362i \(0.546472\pi\)
\(920\) −32.6029 + 32.6029i −1.07489 + 1.07489i
\(921\) −6.00195 + 14.4900i −0.197771 + 0.477462i
\(922\) 16.8198i 0.553932i
\(923\) −34.6495 14.3523i −1.14050 0.472412i
\(924\) 0 0
\(925\) 5.58529 2.31350i 0.183643 0.0760675i
\(926\) 28.8504 + 28.8504i 0.948085 + 0.948085i
\(927\) 14.6822 + 14.6822i 0.482226 + 0.482226i
\(928\) −14.5125 + 6.01129i −0.476397 + 0.197330i
\(929\) −14.5106 35.0317i −0.476077 1.14935i −0.961434 0.275036i \(-0.911310\pi\)
0.485357 0.874316i \(-0.338690\pi\)
\(930\) −0.767704 0.317993i −0.0251740 0.0104274i
\(931\) 0 0
\(932\) −2.25770 + 5.45057i −0.0739534 + 0.178539i
\(933\) 9.12015 9.12015i 0.298580 0.298580i
\(934\) −32.4158 −1.06068
\(935\) −1.26490 42.2226i −0.0413668 1.38083i
\(936\) 20.7260 0.677451
\(937\) −33.3927 + 33.3927i −1.09089 + 1.09089i −0.0954591 + 0.995433i \(0.530432\pi\)
−0.995433 + 0.0954591i \(0.969568\pi\)
\(938\) 0 0
\(939\) 17.9912i 0.587121i
\(940\) 1.66500 + 0.689665i 0.0543062 + 0.0224944i
\(941\) 2.64544 + 6.38665i 0.0862387 + 0.208199i 0.961115 0.276147i \(-0.0890577\pi\)
−0.874877 + 0.484346i \(0.839058\pi\)
\(942\) 12.8720 5.33174i 0.419391 0.173718i
\(943\) 6.10682 + 6.10682i 0.198865 + 0.198865i
\(944\) −1.66179 1.66179i −0.0540867 0.0540867i
\(945\) 0 0
\(946\) −15.5379 37.5119i −0.505181 1.21962i
\(947\) −19.3686 8.02274i −0.629395 0.260704i 0.0451010 0.998982i \(-0.485639\pi\)
−0.674496 + 0.738278i \(0.735639\pi\)
\(948\) 0.305898i 0.00993511i
\(949\) −3.27224 + 7.89988i −0.106221 + 0.256441i
\(950\) −5.68399 + 5.68399i −0.184413 + 0.184413i
\(951\) 8.64740 0.280411
\(952\) 0 0
\(953\) −19.2737 −0.624335 −0.312167 0.950027i \(-0.601055\pi\)
−0.312167 + 0.950027i \(0.601055\pi\)
\(954\) −0.299053 + 0.299053i −0.00968221 + 0.00968221i
\(955\) −1.81833 + 4.38984i −0.0588398 + 0.142052i
\(956\) 5.43508i 0.175783i
\(957\) −51.7483 21.4348i −1.67278 0.692890i
\(958\) −1.04023 2.51134i −0.0336083 0.0811377i
\(959\) 0 0
\(960\) −15.9076 15.9076i −0.513417 0.513417i
\(961\) 21.8748 + 21.8748i 0.705639 + 0.705639i
\(962\) 32.9013 13.6282i 1.06078 0.439389i
\(963\) −0.397261 0.959072i −0.0128015 0.0309057i
\(964\) 1.61275 + 0.668022i 0.0519431 + 0.0215156i
\(965\) 34.7004i 1.11704i
\(966\) 0 0
\(967\) −3.11479 + 3.11479i −0.100165 + 0.100165i −0.755413 0.655248i \(-0.772564\pi\)
0.655248 + 0.755413i \(0.272564\pi\)
\(968\) −48.5827 −1.56151
\(969\) 12.0503 + 26.7931i 0.387110 + 0.860718i
\(970\) −14.2420 −0.457283
\(971\) −14.7431 + 14.7431i −0.473129 + 0.473129i −0.902926 0.429797i \(-0.858585\pi\)
0.429797 + 0.902926i \(0.358585\pi\)
\(972\) −1.62813 + 3.93066i −0.0522224 + 0.126076i
\(973\) 0 0
\(974\) 4.79920 + 1.98789i 0.153776 + 0.0636963i
\(975\) 2.88121 + 6.95586i 0.0922726 + 0.222766i
\(976\) −9.74824 + 4.03785i −0.312034 + 0.129249i
\(977\) −27.6208 27.6208i −0.883667 0.883667i 0.110239 0.993905i \(-0.464838\pi\)
−0.993905 + 0.110239i \(0.964838\pi\)
\(978\) 4.57079 + 4.57079i 0.146158 + 0.146158i
\(979\) 84.0991 34.8350i 2.68782 1.11333i
\(980\) 0 0
\(981\) 21.7604 + 9.01345i 0.694756 + 0.287777i
\(982\) 9.41457i 0.300431i
\(983\) 6.82144 16.4684i 0.217570 0.525261i −0.776979 0.629526i \(-0.783249\pi\)
0.994550 + 0.104265i \(0.0332491\pi\)
\(984\) −3.05616 + 3.05616i −0.0974269 + 0.0974269i
\(985\) 20.4230 0.650730
\(986\) −40.3875 + 18.1644i −1.28620 + 0.578471i
\(987\) 0 0
\(988\) 6.79008 6.79008i 0.216021 0.216021i
\(989\) 17.9934 43.4399i 0.572157 1.38131i
\(990\) 17.6038i 0.559487i
\(991\) 28.7675 + 11.9159i 0.913828 + 0.378520i 0.789521 0.613724i \(-0.210329\pi\)
0.124307 + 0.992244i \(0.460329\pi\)
\(992\) −0.183072 0.441974i −0.00581253 0.0140327i
\(993\) 12.9592 5.36787i 0.411247 0.170344i
\(994\) 0 0
\(995\) −8.77237 8.77237i −0.278103 0.278103i
\(996\) −5.45743 + 2.26054i −0.172925 + 0.0716281i
\(997\) −1.80376 4.35467i −0.0571258 0.137914i 0.892740 0.450573i \(-0.148780\pi\)
−0.949865 + 0.312659i \(0.898780\pi\)
\(998\) −7.77543 3.22069i −0.246127 0.101949i
\(999\) 29.9380i 0.947196i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.l.e.246.8 yes 40
7.2 even 3 833.2.v.g.263.3 80
7.3 odd 6 833.2.v.h.569.8 80
7.4 even 3 833.2.v.g.569.8 80
7.5 odd 6 833.2.v.h.263.3 80
7.6 odd 2 833.2.l.d.246.8 40
17.15 even 8 inner 833.2.l.e.491.8 yes 40
119.32 even 24 833.2.v.g.814.3 80
119.66 odd 24 833.2.v.h.814.3 80
119.83 odd 8 833.2.l.d.491.8 yes 40
119.100 even 24 833.2.v.g.508.8 80
119.117 odd 24 833.2.v.h.508.8 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
833.2.l.d.246.8 40 7.6 odd 2
833.2.l.d.491.8 yes 40 119.83 odd 8
833.2.l.e.246.8 yes 40 1.1 even 1 trivial
833.2.l.e.491.8 yes 40 17.15 even 8 inner
833.2.v.g.263.3 80 7.2 even 3
833.2.v.g.508.8 80 119.100 even 24
833.2.v.g.569.8 80 7.4 even 3
833.2.v.g.814.3 80 119.32 even 24
833.2.v.h.263.3 80 7.5 odd 6
833.2.v.h.508.8 80 119.117 odd 24
833.2.v.h.569.8 80 7.3 odd 6
833.2.v.h.814.3 80 119.66 odd 24