Properties

Label 833.2.l.e.638.7
Level $833$
Weight $2$
Character 833.638
Analytic conductor $6.652$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(246,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.246");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 638.7
Character \(\chi\) \(=\) 833.638
Dual form 833.2.l.e.393.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.751304 - 0.751304i) q^{2} +(1.42979 + 0.592240i) q^{3} +0.871085i q^{4} +(1.27926 - 3.08842i) q^{5} +(1.51916 - 0.629258i) q^{6} +(2.15706 + 2.15706i) q^{8} +(-0.427757 - 0.427757i) q^{9} +(-1.35922 - 3.28146i) q^{10} +(1.09126 - 0.452013i) q^{11} +(-0.515892 + 1.24547i) q^{12} +5.97297i q^{13} +(3.65817 - 3.65817i) q^{15} +1.49904 q^{16} +(2.28653 - 3.43100i) q^{17} -0.642752 q^{18} +(4.06266 - 4.06266i) q^{19} +(2.69028 + 1.11435i) q^{20} +(0.480265 - 1.15946i) q^{22} +(-2.85627 + 1.18311i) q^{23} +(1.80665 + 4.36164i) q^{24} +(-4.36627 - 4.36627i) q^{25} +(4.48751 + 4.48751i) q^{26} +(-2.13499 - 5.15432i) q^{27} +(-0.715430 + 1.72720i) q^{29} -5.49679i q^{30} +(6.73059 + 2.78790i) q^{31} +(-3.18788 + 3.18788i) q^{32} +1.82797 q^{33} +(-0.859841 - 4.29561i) q^{34} +(0.372613 - 0.372613i) q^{36} +(-4.57472 - 1.89491i) q^{37} -6.10458i q^{38} +(-3.53743 + 8.54011i) q^{39} +(9.42134 - 3.90245i) q^{40} +(0.272762 + 0.658506i) q^{41} +(-7.40098 - 7.40098i) q^{43} +(0.393742 + 0.950576i) q^{44} +(-1.86831 + 0.773879i) q^{45} +(-1.25705 + 3.03480i) q^{46} +8.39144i q^{47} +(2.14332 + 0.887792i) q^{48} -6.56080 q^{50} +(5.30125 - 3.55145i) q^{51} -5.20296 q^{52} +(-6.01946 + 6.01946i) q^{53} +(-5.47649 - 2.26844i) q^{54} -3.94850i q^{55} +(8.21484 - 3.40270i) q^{57} +(0.760147 + 1.83516i) q^{58} +(0.465487 + 0.465487i) q^{59} +(3.18658 + 3.18658i) q^{60} +(-3.79500 - 9.16194i) q^{61} +(7.15128 - 2.96216i) q^{62} +7.78821i q^{64} +(18.4470 + 7.64100i) q^{65} +(1.37336 - 1.37336i) q^{66} -0.217748 q^{67} +(2.98869 + 1.99177i) q^{68} -4.78456 q^{69} +(10.0504 + 4.16299i) q^{71} -1.84539i q^{72} +(-1.83750 + 4.43612i) q^{73} +(-4.86065 + 2.01335i) q^{74} +(-3.65699 - 8.82876i) q^{75} +(3.53892 + 3.53892i) q^{76} +(3.75853 + 9.07390i) q^{78} +(1.35759 - 0.562333i) q^{79} +(1.91767 - 4.62966i) q^{80} -6.81923i q^{81} +(0.699665 + 0.289811i) q^{82} +(-3.20583 + 3.20583i) q^{83} +(-7.67128 - 11.4509i) q^{85} -11.1208 q^{86} +(-2.04584 + 2.04584i) q^{87} +(3.32892 + 1.37888i) q^{88} +5.20556i q^{89} +(-0.822249 + 1.98509i) q^{90} +(-1.03059 - 2.48806i) q^{92} +(7.97225 + 7.97225i) q^{93} +(6.30452 + 6.30452i) q^{94} +(-7.34998 - 17.7444i) q^{95} +(-6.44600 + 2.67002i) q^{96} +(5.46707 - 13.1987i) q^{97} +(-0.660144 - 0.273441i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 4 q^{3} + 8 q^{5} + 12 q^{6} + 20 q^{10} - 12 q^{12} - 8 q^{15} - 64 q^{16} - 16 q^{17} + 24 q^{18} - 8 q^{19} - 20 q^{20} - 8 q^{23} - 12 q^{24} - 8 q^{27} + 8 q^{29} + 36 q^{31} + 72 q^{33} - 8 q^{34}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.751304 0.751304i 0.531252 0.531252i −0.389693 0.920945i \(-0.627419\pi\)
0.920945 + 0.389693i \(0.127419\pi\)
\(3\) 1.42979 + 0.592240i 0.825492 + 0.341930i 0.755117 0.655591i \(-0.227580\pi\)
0.0703755 + 0.997521i \(0.477580\pi\)
\(4\) 0.871085i 0.435543i
\(5\) 1.27926 3.08842i 0.572105 1.38118i −0.327655 0.944797i \(-0.606259\pi\)
0.899760 0.436385i \(-0.143741\pi\)
\(6\) 1.51916 0.629258i 0.620195 0.256893i
\(7\) 0 0
\(8\) 2.15706 + 2.15706i 0.762635 + 0.762635i
\(9\) −0.427757 0.427757i −0.142586 0.142586i
\(10\) −1.35922 3.28146i −0.429824 1.03769i
\(11\) 1.09126 0.452013i 0.329026 0.136287i −0.212055 0.977258i \(-0.568015\pi\)
0.541080 + 0.840971i \(0.318015\pi\)
\(12\) −0.515892 + 1.24547i −0.148925 + 0.359537i
\(13\) 5.97297i 1.65660i 0.560283 + 0.828301i \(0.310692\pi\)
−0.560283 + 0.828301i \(0.689308\pi\)
\(14\) 0 0
\(15\) 3.65817 3.65817i 0.944535 0.944535i
\(16\) 1.49904 0.374760
\(17\) 2.28653 3.43100i 0.554566 0.832140i
\(18\) −0.642752 −0.151498
\(19\) 4.06266 4.06266i 0.932038 0.932038i −0.0657950 0.997833i \(-0.520958\pi\)
0.997833 + 0.0657950i \(0.0209583\pi\)
\(20\) 2.69028 + 1.11435i 0.601564 + 0.249176i
\(21\) 0 0
\(22\) 0.480265 1.15946i 0.102393 0.247198i
\(23\) −2.85627 + 1.18311i −0.595574 + 0.246695i −0.660046 0.751225i \(-0.729463\pi\)
0.0644729 + 0.997919i \(0.479463\pi\)
\(24\) 1.80665 + 4.36164i 0.368781 + 0.890317i
\(25\) −4.36627 4.36627i −0.873255 0.873255i
\(26\) 4.48751 + 4.48751i 0.880073 + 0.880073i
\(27\) −2.13499 5.15432i −0.410879 0.991950i
\(28\) 0 0
\(29\) −0.715430 + 1.72720i −0.132852 + 0.320733i −0.976281 0.216508i \(-0.930533\pi\)
0.843429 + 0.537241i \(0.180533\pi\)
\(30\) 5.49679i 1.00357i
\(31\) 6.73059 + 2.78790i 1.20885 + 0.500722i 0.893848 0.448369i \(-0.147995\pi\)
0.315001 + 0.949091i \(0.397995\pi\)
\(32\) −3.18788 + 3.18788i −0.563543 + 0.563543i
\(33\) 1.82797 0.318209
\(34\) −0.859841 4.29561i −0.147462 0.736690i
\(35\) 0 0
\(36\) 0.372613 0.372613i 0.0621022 0.0621022i
\(37\) −4.57472 1.89491i −0.752079 0.311521i −0.0264893 0.999649i \(-0.508433\pi\)
−0.725589 + 0.688128i \(0.758433\pi\)
\(38\) 6.10458i 0.990294i
\(39\) −3.53743 + 8.54011i −0.566442 + 1.36751i
\(40\) 9.42134 3.90245i 1.48964 0.617031i
\(41\) 0.272762 + 0.658506i 0.0425983 + 0.102841i 0.943747 0.330670i \(-0.107275\pi\)
−0.901148 + 0.433511i \(0.857275\pi\)
\(42\) 0 0
\(43\) −7.40098 7.40098i −1.12864 1.12864i −0.990399 0.138240i \(-0.955855\pi\)
−0.138240 0.990399i \(-0.544145\pi\)
\(44\) 0.393742 + 0.950576i 0.0593588 + 0.143305i
\(45\) −1.86831 + 0.773879i −0.278511 + 0.115363i
\(46\) −1.25705 + 3.03480i −0.185343 + 0.447457i
\(47\) 8.39144i 1.22402i 0.790851 + 0.612009i \(0.209638\pi\)
−0.790851 + 0.612009i \(0.790362\pi\)
\(48\) 2.14332 + 0.887792i 0.309361 + 0.128142i
\(49\) 0 0
\(50\) −6.56080 −0.927837
\(51\) 5.30125 3.55145i 0.742323 0.497302i
\(52\) −5.20296 −0.721521
\(53\) −6.01946 + 6.01946i −0.826837 + 0.826837i −0.987078 0.160241i \(-0.948773\pi\)
0.160241 + 0.987078i \(0.448773\pi\)
\(54\) −5.47649 2.26844i −0.745256 0.308695i
\(55\) 3.94850i 0.532415i
\(56\) 0 0
\(57\) 8.21484 3.40270i 1.08808 0.450698i
\(58\) 0.760147 + 1.83516i 0.0998122 + 0.240968i
\(59\) 0.465487 + 0.465487i 0.0606012 + 0.0606012i 0.736758 0.676157i \(-0.236356\pi\)
−0.676157 + 0.736758i \(0.736356\pi\)
\(60\) 3.18658 + 3.18658i 0.411385 + 0.411385i
\(61\) −3.79500 9.16194i −0.485900 1.17307i −0.956765 0.290861i \(-0.906058\pi\)
0.470866 0.882205i \(-0.343942\pi\)
\(62\) 7.15128 2.96216i 0.908213 0.376194i
\(63\) 0 0
\(64\) 7.78821i 0.973527i
\(65\) 18.4470 + 7.64100i 2.28807 + 0.947750i
\(66\) 1.37336 1.37336i 0.169049 0.169049i
\(67\) −0.217748 −0.0266021 −0.0133011 0.999912i \(-0.504234\pi\)
−0.0133011 + 0.999912i \(0.504234\pi\)
\(68\) 2.98869 + 1.99177i 0.362432 + 0.241537i
\(69\) −4.78456 −0.575994
\(70\) 0 0
\(71\) 10.0504 + 4.16299i 1.19276 + 0.494056i 0.888652 0.458582i \(-0.151642\pi\)
0.304106 + 0.952638i \(0.401642\pi\)
\(72\) 1.84539i 0.217482i
\(73\) −1.83750 + 4.43612i −0.215063 + 0.519209i −0.994188 0.107661i \(-0.965664\pi\)
0.779124 + 0.626869i \(0.215664\pi\)
\(74\) −4.86065 + 2.01335i −0.565040 + 0.234047i
\(75\) −3.65699 8.82876i −0.422273 1.01946i
\(76\) 3.53892 + 3.53892i 0.405942 + 0.405942i
\(77\) 0 0
\(78\) 3.75853 + 9.07390i 0.425570 + 1.02742i
\(79\) 1.35759 0.562333i 0.152741 0.0632674i −0.305003 0.952351i \(-0.598658\pi\)
0.457744 + 0.889084i \(0.348658\pi\)
\(80\) 1.91767 4.62966i 0.214402 0.517612i
\(81\) 6.81923i 0.757692i
\(82\) 0.699665 + 0.289811i 0.0772651 + 0.0320043i
\(83\) −3.20583 + 3.20583i −0.351885 + 0.351885i −0.860811 0.508925i \(-0.830043\pi\)
0.508925 + 0.860811i \(0.330043\pi\)
\(84\) 0 0
\(85\) −7.67128 11.4509i −0.832067 1.24203i
\(86\) −11.1208 −1.19918
\(87\) −2.04584 + 2.04584i −0.219337 + 0.219337i
\(88\) 3.32892 + 1.37888i 0.354864 + 0.146989i
\(89\) 5.20556i 0.551789i 0.961188 + 0.275894i \(0.0889740\pi\)
−0.961188 + 0.275894i \(0.911026\pi\)
\(90\) −0.822249 + 1.98509i −0.0866727 + 0.209246i
\(91\) 0 0
\(92\) −1.03059 2.48806i −0.107446 0.259398i
\(93\) 7.97225 + 7.97225i 0.826684 + 0.826684i
\(94\) 6.30452 + 6.30452i 0.650262 + 0.650262i
\(95\) −7.34998 17.7444i −0.754092 1.82054i
\(96\) −6.44600 + 2.67002i −0.657892 + 0.272508i
\(97\) 5.46707 13.1987i 0.555096 1.34012i −0.358511 0.933525i \(-0.616716\pi\)
0.913608 0.406596i \(-0.133284\pi\)
\(98\) 0 0
\(99\) −0.660144 0.273441i −0.0663470 0.0274818i
\(100\) 3.80340 3.80340i 0.380340 0.380340i
\(101\) −6.97315 −0.693854 −0.346927 0.937892i \(-0.612775\pi\)
−0.346927 + 0.937892i \(0.612775\pi\)
\(102\) 1.31463 6.65106i 0.130168 0.658553i
\(103\) −14.4526 −1.42406 −0.712029 0.702150i \(-0.752223\pi\)
−0.712029 + 0.702150i \(0.752223\pi\)
\(104\) −12.8840 + 12.8840i −1.26338 + 1.26338i
\(105\) 0 0
\(106\) 9.04489i 0.878517i
\(107\) −1.53269 + 3.70024i −0.148171 + 0.357716i −0.980487 0.196586i \(-0.937015\pi\)
0.832316 + 0.554302i \(0.187015\pi\)
\(108\) 4.48985 1.85976i 0.432036 0.178955i
\(109\) 3.68959 + 8.90746i 0.353399 + 0.853180i 0.996196 + 0.0871437i \(0.0277739\pi\)
−0.642797 + 0.766037i \(0.722226\pi\)
\(110\) −2.96652 2.96652i −0.282847 0.282847i
\(111\) −5.41866 5.41866i −0.514317 0.514317i
\(112\) 0 0
\(113\) −16.6375 + 6.89147i −1.56512 + 0.648295i −0.985970 0.166925i \(-0.946616\pi\)
−0.579152 + 0.815220i \(0.696616\pi\)
\(114\) 3.61538 8.72830i 0.338611 0.817480i
\(115\) 10.3349i 0.963731i
\(116\) −1.50454 0.623201i −0.139693 0.0578627i
\(117\) 2.55498 2.55498i 0.236208 0.236208i
\(118\) 0.699444 0.0643890
\(119\) 0 0
\(120\) 15.7818 1.44067
\(121\) −6.79165 + 6.79165i −0.617423 + 0.617423i
\(122\) −9.73459 4.03220i −0.881329 0.365058i
\(123\) 1.10307i 0.0994604i
\(124\) −2.42850 + 5.86292i −0.218086 + 0.526506i
\(125\) −3.62841 + 1.50294i −0.324535 + 0.134427i
\(126\) 0 0
\(127\) −8.00675 8.00675i −0.710484 0.710484i 0.256153 0.966636i \(-0.417545\pi\)
−0.966636 + 0.256153i \(0.917545\pi\)
\(128\) −0.524446 0.524446i −0.0463549 0.0463549i
\(129\) −6.19872 14.9650i −0.545767 1.31760i
\(130\) 19.6000 8.11860i 1.71904 0.712048i
\(131\) −0.640977 + 1.54745i −0.0560024 + 0.135202i −0.949404 0.314057i \(-0.898312\pi\)
0.893402 + 0.449258i \(0.148312\pi\)
\(132\) 1.59232i 0.138593i
\(133\) 0 0
\(134\) −0.163595 + 0.163595i −0.0141324 + 0.0141324i
\(135\) −18.6499 −1.60513
\(136\) 12.3330 2.46868i 1.05755 0.211687i
\(137\) 18.5730 1.58680 0.793401 0.608700i \(-0.208309\pi\)
0.793401 + 0.608700i \(0.208309\pi\)
\(138\) −3.59466 + 3.59466i −0.305998 + 0.305998i
\(139\) −10.3660 4.29373i −0.879232 0.364190i −0.103033 0.994678i \(-0.532855\pi\)
−0.776199 + 0.630488i \(0.782855\pi\)
\(140\) 0 0
\(141\) −4.96975 + 11.9980i −0.418528 + 1.01042i
\(142\) 10.6785 4.42320i 0.896123 0.371186i
\(143\) 2.69986 + 6.51803i 0.225773 + 0.545065i
\(144\) −0.641226 0.641226i −0.0534355 0.0534355i
\(145\) 4.41909 + 4.41909i 0.366986 + 0.366986i
\(146\) 1.95235 + 4.71340i 0.161578 + 0.390083i
\(147\) 0 0
\(148\) 1.65063 3.98497i 0.135681 0.327562i
\(149\) 12.8513i 1.05282i 0.850232 + 0.526408i \(0.176461\pi\)
−0.850232 + 0.526408i \(0.823539\pi\)
\(150\) −9.38059 3.88557i −0.765922 0.317255i
\(151\) −10.8601 + 10.8601i −0.883785 + 0.883785i −0.993917 0.110132i \(-0.964873\pi\)
0.110132 + 0.993917i \(0.464873\pi\)
\(152\) 17.5268 1.42161
\(153\) −2.44572 + 0.489554i −0.197725 + 0.0395781i
\(154\) 0 0
\(155\) 17.2204 17.2204i 1.38318 1.38318i
\(156\) −7.43916 3.08140i −0.595610 0.246710i
\(157\) 10.1110i 0.806950i −0.914991 0.403475i \(-0.867802\pi\)
0.914991 0.403475i \(-0.132198\pi\)
\(158\) 0.597481 1.44245i 0.0475330 0.114755i
\(159\) −12.1716 + 5.04163i −0.965268 + 0.399827i
\(160\) 5.76736 + 13.9236i 0.455950 + 1.10076i
\(161\) 0 0
\(162\) −5.12331 5.12331i −0.402525 0.402525i
\(163\) −2.29605 5.54316i −0.179841 0.434174i 0.808092 0.589056i \(-0.200500\pi\)
−0.987933 + 0.154882i \(0.950500\pi\)
\(164\) −0.573615 + 0.237599i −0.0447918 + 0.0185534i
\(165\) 2.33846 5.64554i 0.182049 0.439504i
\(166\) 4.81710i 0.373880i
\(167\) −14.7839 6.12370i −1.14401 0.473866i −0.271491 0.962441i \(-0.587517\pi\)
−0.872522 + 0.488575i \(0.837517\pi\)
\(168\) 0 0
\(169\) −22.6763 −1.74433
\(170\) −14.3666 2.83967i −1.10187 0.217792i
\(171\) −3.47567 −0.265791
\(172\) 6.44688 6.44688i 0.491570 0.491570i
\(173\) 12.2192 + 5.06135i 0.929007 + 0.384807i 0.795302 0.606214i \(-0.207312\pi\)
0.133705 + 0.991021i \(0.457312\pi\)
\(174\) 3.07409i 0.233046i
\(175\) 0 0
\(176\) 1.63584 0.677585i 0.123306 0.0510749i
\(177\) 0.389870 + 0.941230i 0.0293044 + 0.0707472i
\(178\) 3.91096 + 3.91096i 0.293139 + 0.293139i
\(179\) −13.9304 13.9304i −1.04121 1.04121i −0.999114 0.0420963i \(-0.986596\pi\)
−0.0420963 0.999114i \(-0.513404\pi\)
\(180\) −0.674114 1.62746i −0.0502455 0.121303i
\(181\) 10.9296 4.52719i 0.812391 0.336504i 0.0624837 0.998046i \(-0.480098\pi\)
0.749908 + 0.661542i \(0.230098\pi\)
\(182\) 0 0
\(183\) 15.3472i 1.13450i
\(184\) −8.71317 3.60911i −0.642343 0.266067i
\(185\) −11.7045 + 11.7045i −0.860535 + 0.860535i
\(186\) 11.9792 0.878355
\(187\) 0.944337 4.77764i 0.0690568 0.349376i
\(188\) −7.30966 −0.533112
\(189\) 0 0
\(190\) −18.8535 7.80938i −1.36778 0.566552i
\(191\) 3.46239i 0.250530i −0.992123 0.125265i \(-0.960022\pi\)
0.992123 0.125265i \(-0.0399781\pi\)
\(192\) −4.61249 + 11.1355i −0.332878 + 0.803638i
\(193\) 18.1768 7.52909i 1.30840 0.541956i 0.383981 0.923341i \(-0.374553\pi\)
0.924416 + 0.381385i \(0.124553\pi\)
\(194\) −5.80878 14.0236i −0.417046 1.00684i
\(195\) 21.8501 + 21.8501i 1.56472 + 1.56472i
\(196\) 0 0
\(197\) 7.76714 + 18.7515i 0.553386 + 1.33599i 0.914921 + 0.403633i \(0.132253\pi\)
−0.361535 + 0.932359i \(0.617747\pi\)
\(198\) −0.701406 + 0.290532i −0.0498467 + 0.0206472i
\(199\) 4.70819 11.3666i 0.333755 0.805756i −0.664533 0.747259i \(-0.731369\pi\)
0.998288 0.0584964i \(-0.0186306\pi\)
\(200\) 18.8366i 1.33195i
\(201\) −0.311334 0.128959i −0.0219598 0.00909606i
\(202\) −5.23895 + 5.23895i −0.368611 + 0.368611i
\(203\) 0 0
\(204\) 3.09361 + 4.61784i 0.216596 + 0.323313i
\(205\) 2.38268 0.166413
\(206\) −10.8583 + 10.8583i −0.756533 + 0.756533i
\(207\) 1.72787 + 0.715709i 0.120095 + 0.0497452i
\(208\) 8.95371i 0.620828i
\(209\) 2.59702 6.26977i 0.179640 0.433689i
\(210\) 0 0
\(211\) 6.58994 + 15.9095i 0.453670 + 1.09526i 0.970916 + 0.239419i \(0.0769571\pi\)
−0.517246 + 0.855837i \(0.673043\pi\)
\(212\) −5.24347 5.24347i −0.360123 0.360123i
\(213\) 11.9044 + 11.9044i 0.815679 + 0.815679i
\(214\) 1.62849 + 3.93152i 0.111321 + 0.268753i
\(215\) −32.3251 + 13.3895i −2.20456 + 0.913157i
\(216\) 6.51287 15.7235i 0.443145 1.06985i
\(217\) 0 0
\(218\) 9.46422 + 3.92021i 0.640998 + 0.265510i
\(219\) −5.25450 + 5.25450i −0.355066 + 0.355066i
\(220\) 3.43948 0.231889
\(221\) 20.4932 + 13.6574i 1.37852 + 0.918696i
\(222\) −8.14212 −0.546463
\(223\) 12.0117 12.0117i 0.804361 0.804361i −0.179413 0.983774i \(-0.557420\pi\)
0.983774 + 0.179413i \(0.0574197\pi\)
\(224\) 0 0
\(225\) 3.73541i 0.249027i
\(226\) −7.32221 + 17.6774i −0.487066 + 1.17588i
\(227\) −16.6270 + 6.88712i −1.10357 + 0.457114i −0.858719 0.512446i \(-0.828739\pi\)
−0.244852 + 0.969560i \(0.578739\pi\)
\(228\) 2.96404 + 7.15582i 0.196298 + 0.473906i
\(229\) 8.42737 + 8.42737i 0.556896 + 0.556896i 0.928422 0.371526i \(-0.121165\pi\)
−0.371526 + 0.928422i \(0.621165\pi\)
\(230\) 7.76462 + 7.76462i 0.511984 + 0.511984i
\(231\) 0 0
\(232\) −5.26890 + 2.18245i −0.345920 + 0.143285i
\(233\) −2.53575 + 6.12184i −0.166122 + 0.401055i −0.984916 0.173033i \(-0.944643\pi\)
0.818794 + 0.574088i \(0.194643\pi\)
\(234\) 3.83913i 0.250972i
\(235\) 25.9163 + 10.7349i 1.69059 + 0.700266i
\(236\) −0.405479 + 0.405479i −0.0263944 + 0.0263944i
\(237\) 2.27411 0.147719
\(238\) 0 0
\(239\) 11.4690 0.741869 0.370935 0.928659i \(-0.379037\pi\)
0.370935 + 0.928659i \(0.379037\pi\)
\(240\) 5.48374 5.48374i 0.353974 0.353974i
\(241\) −4.90377 2.03121i −0.315880 0.130842i 0.219110 0.975700i \(-0.429685\pi\)
−0.534990 + 0.844858i \(0.679685\pi\)
\(242\) 10.2052i 0.656014i
\(243\) −2.36635 + 5.71288i −0.151802 + 0.366481i
\(244\) 7.98083 3.30577i 0.510920 0.211630i
\(245\) 0 0
\(246\) 0.828740 + 0.828740i 0.0528385 + 0.0528385i
\(247\) 24.2661 + 24.2661i 1.54402 + 1.54402i
\(248\) 8.50460 + 20.5319i 0.540043 + 1.30378i
\(249\) −6.48230 + 2.68506i −0.410799 + 0.170158i
\(250\) −1.59688 + 3.85520i −0.100995 + 0.243824i
\(251\) 3.65040i 0.230411i −0.993342 0.115206i \(-0.963247\pi\)
0.993342 0.115206i \(-0.0367527\pi\)
\(252\) 0 0
\(253\) −2.58214 + 2.58214i −0.162338 + 0.162338i
\(254\) −12.0310 −0.754892
\(255\) −4.18665 20.9157i −0.262178 1.30979i
\(256\) −16.3645 −1.02278
\(257\) 0.00449160 0.00449160i 0.000280178 0.000280178i −0.706967 0.707247i \(-0.749937\pi\)
0.707247 + 0.706967i \(0.249937\pi\)
\(258\) −15.9004 6.58616i −0.989916 0.410037i
\(259\) 0 0
\(260\) −6.65597 + 16.0689i −0.412785 + 0.996552i
\(261\) 1.04485 0.432793i 0.0646748 0.0267892i
\(262\) 0.681040 + 1.64418i 0.0420748 + 0.101578i
\(263\) −16.6225 16.6225i −1.02499 1.02499i −0.999680 0.0253059i \(-0.991944\pi\)
−0.0253059 0.999680i \(-0.508056\pi\)
\(264\) 3.94304 + 3.94304i 0.242677 + 0.242677i
\(265\) 10.8901 + 26.2911i 0.668975 + 1.61505i
\(266\) 0 0
\(267\) −3.08294 + 7.44289i −0.188673 + 0.455497i
\(268\) 0.189677i 0.0115864i
\(269\) 18.7163 + 7.75254i 1.14115 + 0.472681i 0.871558 0.490293i \(-0.163110\pi\)
0.269595 + 0.962974i \(0.413110\pi\)
\(270\) −14.0118 + 14.0118i −0.852728 + 0.852728i
\(271\) 11.9320 0.724815 0.362408 0.932020i \(-0.381955\pi\)
0.362408 + 0.932020i \(0.381955\pi\)
\(272\) 3.42761 5.14321i 0.207829 0.311853i
\(273\) 0 0
\(274\) 13.9540 13.9540i 0.842991 0.842991i
\(275\) −6.73833 2.79111i −0.406337 0.168310i
\(276\) 4.16776i 0.250870i
\(277\) 1.27670 3.08222i 0.0767092 0.185193i −0.880873 0.473353i \(-0.843044\pi\)
0.957582 + 0.288160i \(0.0930436\pi\)
\(278\) −11.0139 + 4.56211i −0.660570 + 0.273617i
\(279\) −1.68651 4.07161i −0.100969 0.243761i
\(280\) 0 0
\(281\) 13.4269 + 13.4269i 0.800984 + 0.800984i 0.983249 0.182265i \(-0.0583429\pi\)
−0.182265 + 0.983249i \(0.558343\pi\)
\(282\) 5.28038 + 12.7480i 0.314442 + 0.759130i
\(283\) −11.9191 + 4.93704i −0.708516 + 0.293477i −0.707690 0.706523i \(-0.750263\pi\)
−0.000825368 1.00000i \(0.500263\pi\)
\(284\) −3.62632 + 8.75472i −0.215183 + 0.519497i
\(285\) 29.7238i 1.76069i
\(286\) 6.92543 + 2.86861i 0.409509 + 0.169624i
\(287\) 0 0
\(288\) 2.72728 0.160706
\(289\) −6.54352 15.6902i −0.384913 0.922953i
\(290\) 6.64017 0.389924
\(291\) 15.6336 15.6336i 0.916455 0.916455i
\(292\) −3.86424 1.60062i −0.226137 0.0936692i
\(293\) 18.3192i 1.07022i −0.844783 0.535108i \(-0.820271\pi\)
0.844783 0.535108i \(-0.179729\pi\)
\(294\) 0 0
\(295\) 2.03310 0.842137i 0.118372 0.0490311i
\(296\) −5.78050 13.9554i −0.335985 0.811138i
\(297\) −4.65964 4.65964i −0.270380 0.270380i
\(298\) 9.65520 + 9.65520i 0.559310 + 0.559310i
\(299\) −7.06665 17.0604i −0.408675 0.986629i
\(300\) 7.69060 3.18555i 0.444017 0.183918i
\(301\) 0 0
\(302\) 16.3185i 0.939025i
\(303\) −9.97017 4.12978i −0.572771 0.237250i
\(304\) 6.09009 6.09009i 0.349291 0.349291i
\(305\) −33.1507 −1.89820
\(306\) −1.46967 + 2.20528i −0.0840156 + 0.126067i
\(307\) −12.0656 −0.688619 −0.344309 0.938856i \(-0.611887\pi\)
−0.344309 + 0.938856i \(0.611887\pi\)
\(308\) 0 0
\(309\) −20.6642 8.55941i −1.17555 0.486928i
\(310\) 25.8755i 1.46963i
\(311\) 0.964500 2.32851i 0.0546918 0.132038i −0.894172 0.447724i \(-0.852235\pi\)
0.948864 + 0.315686i \(0.102235\pi\)
\(312\) −26.0519 + 10.7911i −1.47490 + 0.610924i
\(313\) −6.19660 14.9599i −0.350253 0.845585i −0.996588 0.0825316i \(-0.973699\pi\)
0.646336 0.763053i \(-0.276301\pi\)
\(314\) −7.59647 7.59647i −0.428694 0.428694i
\(315\) 0 0
\(316\) 0.489840 + 1.18258i 0.0275556 + 0.0665252i
\(317\) 26.1662 10.8384i 1.46964 0.608746i 0.502864 0.864365i \(-0.332280\pi\)
0.966777 + 0.255620i \(0.0822795\pi\)
\(318\) −5.35675 + 12.9323i −0.300391 + 0.725209i
\(319\) 2.20820i 0.123635i
\(320\) 24.0533 + 9.96318i 1.34462 + 0.556959i
\(321\) −4.38286 + 4.38286i −0.244627 + 0.244627i
\(322\) 0 0
\(323\) −4.64957 23.2284i −0.258709 1.29246i
\(324\) 5.94013 0.330007
\(325\) 26.0796 26.0796i 1.44664 1.44664i
\(326\) −5.88963 2.43957i −0.326197 0.135115i
\(327\) 14.9210i 0.825131i
\(328\) −0.832072 + 2.00880i −0.0459435 + 0.110917i
\(329\) 0 0
\(330\) −2.48462 5.99840i −0.136774 0.330201i
\(331\) 0.842520 + 0.842520i 0.0463091 + 0.0463091i 0.729882 0.683573i \(-0.239575\pi\)
−0.683573 + 0.729882i \(0.739575\pi\)
\(332\) −2.79255 2.79255i −0.153261 0.153261i
\(333\) 1.14631 + 2.76743i 0.0628172 + 0.151654i
\(334\) −15.7080 + 6.50645i −0.859501 + 0.356017i
\(335\) −0.278557 + 0.672496i −0.0152192 + 0.0367424i
\(336\) 0 0
\(337\) −18.9313 7.84160i −1.03125 0.427159i −0.198089 0.980184i \(-0.563473\pi\)
−0.833165 + 0.553025i \(0.813473\pi\)
\(338\) −17.0368 + 17.0368i −0.926680 + 0.926680i
\(339\) −27.8696 −1.51367
\(340\) 9.97474 6.68234i 0.540956 0.362401i
\(341\) 8.60496 0.465985
\(342\) −2.61128 + 2.61128i −0.141202 + 0.141202i
\(343\) 0 0
\(344\) 31.9287i 1.72148i
\(345\) −6.12072 + 14.7767i −0.329529 + 0.795552i
\(346\) 12.9829 5.37771i 0.697967 0.289107i
\(347\) −0.644277 1.55542i −0.0345866 0.0834995i 0.905642 0.424042i \(-0.139389\pi\)
−0.940229 + 0.340543i \(0.889389\pi\)
\(348\) −1.78210 1.78210i −0.0955304 0.0955304i
\(349\) −15.1598 15.1598i −0.811488 0.811488i 0.173369 0.984857i \(-0.444535\pi\)
−0.984857 + 0.173369i \(0.944535\pi\)
\(350\) 0 0
\(351\) 30.7866 12.7522i 1.64327 0.680663i
\(352\) −2.03783 + 4.91975i −0.108617 + 0.262224i
\(353\) 8.56862i 0.456061i −0.973654 0.228031i \(-0.926771\pi\)
0.973654 0.228031i \(-0.0732287\pi\)
\(354\) 1.00006 + 0.414239i 0.0531526 + 0.0220165i
\(355\) 25.7141 25.7141i 1.36476 1.36476i
\(356\) −4.53449 −0.240327
\(357\) 0 0
\(358\) −20.9320 −1.10629
\(359\) 16.6473 16.6473i 0.878610 0.878610i −0.114781 0.993391i \(-0.536617\pi\)
0.993391 + 0.114781i \(0.0366166\pi\)
\(360\) −5.69935 2.36075i −0.300382 0.124422i
\(361\) 14.0104i 0.737390i
\(362\) 4.81016 11.6128i 0.252816 0.610353i
\(363\) −13.7330 + 5.68838i −0.720793 + 0.298562i
\(364\) 0 0
\(365\) 11.3499 + 11.3499i 0.594083 + 0.594083i
\(366\) −11.5304 11.5304i −0.602705 0.602705i
\(367\) 2.66309 + 6.42926i 0.139012 + 0.335604i 0.978019 0.208516i \(-0.0668634\pi\)
−0.839007 + 0.544121i \(0.816863\pi\)
\(368\) −4.28166 + 1.77352i −0.223197 + 0.0924513i
\(369\) 0.165005 0.398357i 0.00858981 0.0207376i
\(370\) 17.5873i 0.914322i
\(371\) 0 0
\(372\) −6.94451 + 6.94451i −0.360056 + 0.360056i
\(373\) 20.3560 1.05399 0.526997 0.849867i \(-0.323318\pi\)
0.526997 + 0.849867i \(0.323318\pi\)
\(374\) −2.87997 4.29894i −0.148920 0.222293i
\(375\) −6.07798 −0.313865
\(376\) −18.1008 + 18.1008i −0.933479 + 0.933479i
\(377\) −10.3165 4.27324i −0.531327 0.220083i
\(378\) 0 0
\(379\) −8.93729 + 21.5765i −0.459078 + 1.10831i 0.509693 + 0.860356i \(0.329759\pi\)
−0.968771 + 0.247956i \(0.920241\pi\)
\(380\) 15.4569 6.40246i 0.792922 0.328439i
\(381\) −6.70608 16.1899i −0.343563 0.829434i
\(382\) −2.60131 2.60131i −0.133094 0.133094i
\(383\) 25.2521 + 25.2521i 1.29032 + 1.29032i 0.934586 + 0.355739i \(0.115771\pi\)
0.355739 + 0.934586i \(0.384229\pi\)
\(384\) −0.439252 1.06045i −0.0224155 0.0541158i
\(385\) 0 0
\(386\) 7.99969 19.3130i 0.407174 0.983004i
\(387\) 6.33165i 0.321856i
\(388\) 11.4972 + 4.76228i 0.583680 + 0.241768i
\(389\) 6.78956 6.78956i 0.344244 0.344244i −0.513716 0.857960i \(-0.671732\pi\)
0.857960 + 0.513716i \(0.171732\pi\)
\(390\) 32.8322 1.66252
\(391\) −2.47172 + 12.5051i −0.125000 + 0.632409i
\(392\) 0 0
\(393\) −1.83293 + 1.83293i −0.0924591 + 0.0924591i
\(394\) 19.9236 + 8.25262i 1.00374 + 0.415761i
\(395\) 4.91218i 0.247159i
\(396\) 0.238190 0.575042i 0.0119695 0.0288969i
\(397\) 24.4139 10.1126i 1.22530 0.507535i 0.326208 0.945298i \(-0.394229\pi\)
0.899091 + 0.437762i \(0.144229\pi\)
\(398\) −5.00247 12.0770i −0.250751 0.605367i
\(399\) 0 0
\(400\) −6.54522 6.54522i −0.327261 0.327261i
\(401\) −4.05059 9.77900i −0.202277 0.488340i 0.789892 0.613247i \(-0.210137\pi\)
−0.992168 + 0.124907i \(0.960137\pi\)
\(402\) −0.330794 + 0.137019i −0.0164985 + 0.00683391i
\(403\) −16.6520 + 40.2016i −0.829497 + 2.00258i
\(404\) 6.07421i 0.302203i
\(405\) −21.0606 8.72359i −1.04651 0.433479i
\(406\) 0 0
\(407\) −5.84871 −0.289910
\(408\) 19.0958 + 3.77443i 0.945382 + 0.186862i
\(409\) 34.3416 1.69809 0.849043 0.528324i \(-0.177180\pi\)
0.849043 + 0.528324i \(0.177180\pi\)
\(410\) 1.79011 1.79011i 0.0884074 0.0884074i
\(411\) 26.5556 + 10.9997i 1.30989 + 0.542575i
\(412\) 12.5895i 0.620238i
\(413\) 0 0
\(414\) 1.83587 0.760443i 0.0902282 0.0373737i
\(415\) 5.79984 + 14.0020i 0.284703 + 0.687333i
\(416\) −19.0411 19.0411i −0.933567 0.933567i
\(417\) −12.2783 12.2783i −0.601272 0.601272i
\(418\) −2.75935 6.66166i −0.134964 0.325832i
\(419\) 11.4115 4.72680i 0.557488 0.230919i −0.0861061 0.996286i \(-0.527442\pi\)
0.643594 + 0.765367i \(0.277442\pi\)
\(420\) 0 0
\(421\) 7.76019i 0.378208i 0.981957 + 0.189104i \(0.0605584\pi\)
−0.981957 + 0.189104i \(0.939442\pi\)
\(422\) 16.9039 + 7.00183i 0.822870 + 0.340844i
\(423\) 3.58950 3.58950i 0.174528 0.174528i
\(424\) −25.9687 −1.26115
\(425\) −24.9643 + 4.99705i −1.21095 + 0.242393i
\(426\) 17.8877 0.866663
\(427\) 0 0
\(428\) −3.22322 1.33510i −0.155800 0.0645346i
\(429\) 10.9184i 0.527145i
\(430\) −14.2264 + 34.3456i −0.686058 + 1.65629i
\(431\) 19.3785 8.02683i 0.933429 0.386639i 0.136451 0.990647i \(-0.456430\pi\)
0.796978 + 0.604008i \(0.206430\pi\)
\(432\) −3.20044 7.72654i −0.153981 0.371743i
\(433\) 24.3129 + 24.3129i 1.16840 + 1.16840i 0.982584 + 0.185821i \(0.0594944\pi\)
0.185821 + 0.982584i \(0.440506\pi\)
\(434\) 0 0
\(435\) 3.70123 + 8.93556i 0.177460 + 0.428427i
\(436\) −7.75916 + 3.21395i −0.371596 + 0.153920i
\(437\) −6.79750 + 16.4106i −0.325168 + 0.785026i
\(438\) 7.89545i 0.377259i
\(439\) 5.34646 + 2.21458i 0.255173 + 0.105696i 0.506603 0.862179i \(-0.330901\pi\)
−0.251430 + 0.967875i \(0.580901\pi\)
\(440\) 8.51713 8.51713i 0.406038 0.406038i
\(441\) 0 0
\(442\) 25.6575 5.13580i 1.22040 0.244285i
\(443\) 16.4947 0.783688 0.391844 0.920032i \(-0.371837\pi\)
0.391844 + 0.920032i \(0.371837\pi\)
\(444\) 4.72012 4.72012i 0.224007 0.224007i
\(445\) 16.0770 + 6.65929i 0.762121 + 0.315681i
\(446\) 18.0488i 0.854637i
\(447\) −7.61103 + 18.3746i −0.359989 + 0.869091i
\(448\) 0 0
\(449\) −3.21268 7.75610i −0.151616 0.366033i 0.829763 0.558116i \(-0.188476\pi\)
−0.981379 + 0.192083i \(0.938476\pi\)
\(450\) 2.80643 + 2.80643i 0.132296 + 0.132296i
\(451\) 0.595306 + 0.595306i 0.0280319 + 0.0280319i
\(452\) −6.00305 14.4927i −0.282360 0.681677i
\(453\) −21.9596 + 9.09595i −1.03175 + 0.427365i
\(454\) −7.31759 + 17.6662i −0.343432 + 0.829117i
\(455\) 0 0
\(456\) 25.0597 + 10.3801i 1.17353 + 0.486091i
\(457\) 21.9015 21.9015i 1.02451 1.02451i 0.0248176 0.999692i \(-0.492100\pi\)
0.999692 0.0248176i \(-0.00790049\pi\)
\(458\) 12.6630 0.591704
\(459\) −22.5662 4.46038i −1.05330 0.208193i
\(460\) −9.00255 −0.419746
\(461\) 9.54950 9.54950i 0.444765 0.444765i −0.448845 0.893610i \(-0.648164\pi\)
0.893610 + 0.448845i \(0.148164\pi\)
\(462\) 0 0
\(463\) 40.2240i 1.86937i −0.355483 0.934683i \(-0.615683\pi\)
0.355483 0.934683i \(-0.384317\pi\)
\(464\) −1.07246 + 2.58914i −0.0497876 + 0.120198i
\(465\) 34.8203 14.4230i 1.61475 0.668852i
\(466\) 2.69424 + 6.50448i 0.124808 + 0.301314i
\(467\) −29.2264 29.2264i −1.35243 1.35243i −0.882930 0.469505i \(-0.844432\pi\)
−0.469505 0.882930i \(-0.655568\pi\)
\(468\) 2.22561 + 2.22561i 0.102879 + 0.102879i
\(469\) 0 0
\(470\) 27.5362 11.4058i 1.27015 0.526113i
\(471\) 5.98817 14.4567i 0.275920 0.666130i
\(472\) 2.00816i 0.0924332i
\(473\) −11.4217 4.73102i −0.525170 0.217533i
\(474\) 1.70855 1.70855i 0.0784763 0.0784763i
\(475\) −35.4774 −1.62781
\(476\) 0 0
\(477\) 5.14974 0.235790
\(478\) 8.61672 8.61672i 0.394120 0.394120i
\(479\) 15.4187 + 6.38663i 0.704498 + 0.291812i 0.706026 0.708186i \(-0.250486\pi\)
−0.00152798 + 0.999999i \(0.500486\pi\)
\(480\) 23.3236i 1.06457i
\(481\) 11.3182 27.3246i 0.516067 1.24590i
\(482\) −5.21028 + 2.15817i −0.237322 + 0.0983018i
\(483\) 0 0
\(484\) −5.91611 5.91611i −0.268914 0.268914i
\(485\) −33.7692 33.7692i −1.53338 1.53338i
\(486\) 2.51426 + 6.06996i 0.114049 + 0.275339i
\(487\) −11.3931 + 4.71920i −0.516273 + 0.213847i −0.625579 0.780161i \(-0.715137\pi\)
0.109306 + 0.994008i \(0.465137\pi\)
\(488\) 11.5768 27.9488i 0.524057 1.26518i
\(489\) 9.28540i 0.419900i
\(490\) 0 0
\(491\) 1.78951 1.78951i 0.0807596 0.0807596i −0.665573 0.746333i \(-0.731813\pi\)
0.746333 + 0.665573i \(0.231813\pi\)
\(492\) −0.960867 −0.0433192
\(493\) 4.29017 + 6.40395i 0.193220 + 0.288419i
\(494\) 36.4625 1.64052
\(495\) −1.68900 + 1.68900i −0.0759148 + 0.0759148i
\(496\) 10.0894 + 4.17918i 0.453028 + 0.187651i
\(497\) 0 0
\(498\) −2.85288 + 6.88747i −0.127841 + 0.308635i
\(499\) −5.05279 + 2.09293i −0.226194 + 0.0936926i −0.492902 0.870085i \(-0.664064\pi\)
0.266708 + 0.963777i \(0.414064\pi\)
\(500\) −1.30919 3.16065i −0.0585485 0.141349i
\(501\) −17.5112 17.5112i −0.782345 0.782345i
\(502\) −2.74256 2.74256i −0.122406 0.122406i
\(503\) 13.6811 + 33.0291i 0.610010 + 1.47269i 0.862989 + 0.505222i \(0.168590\pi\)
−0.252979 + 0.967472i \(0.581410\pi\)
\(504\) 0 0
\(505\) −8.92050 + 21.5360i −0.396957 + 0.958339i
\(506\) 3.87994i 0.172485i
\(507\) −32.4225 13.4298i −1.43993 0.596440i
\(508\) 6.97456 6.97456i 0.309446 0.309446i
\(509\) −13.8568 −0.614191 −0.307095 0.951679i \(-0.599357\pi\)
−0.307095 + 0.951679i \(0.599357\pi\)
\(510\) −18.8595 12.5686i −0.835113 0.556547i
\(511\) 0 0
\(512\) −11.2458 + 11.2458i −0.496998 + 0.496998i
\(513\) −29.6140 12.2665i −1.30749 0.541580i
\(514\) 0.00674911i 0.000297690i
\(515\) −18.4887 + 44.6357i −0.814710 + 1.96688i
\(516\) 13.0358 5.39961i 0.573870 0.237705i
\(517\) 3.79304 + 9.15720i 0.166818 + 0.402733i
\(518\) 0 0
\(519\) 14.4734 + 14.4734i 0.635311 + 0.635311i
\(520\) 23.3092 + 56.2733i 1.02218 + 2.46775i
\(521\) 25.2750 10.4692i 1.10732 0.458665i 0.247303 0.968938i \(-0.420456\pi\)
0.860013 + 0.510273i \(0.170456\pi\)
\(522\) 0.459844 1.11016i 0.0201268 0.0485904i
\(523\) 0.249143i 0.0108943i 0.999985 + 0.00544713i \(0.00173388\pi\)
−0.999985 + 0.00544713i \(0.998266\pi\)
\(524\) −1.34796 0.558345i −0.0588861 0.0243914i
\(525\) 0 0
\(526\) −24.9771 −1.08905
\(527\) 24.9550 16.7180i 1.08706 0.728248i
\(528\) 2.74020 0.119252
\(529\) −9.50491 + 9.50491i −0.413257 + 0.413257i
\(530\) 27.9344 + 11.5708i 1.21339 + 0.502604i
\(531\) 0.398231i 0.0172817i
\(532\) 0 0
\(533\) −3.93323 + 1.62920i −0.170367 + 0.0705684i
\(534\) 3.27564 + 7.90810i 0.141751 + 0.342217i
\(535\) 9.46717 + 9.46717i 0.409302 + 0.409302i
\(536\) −0.469694 0.469694i −0.0202877 0.0202877i
\(537\) −11.6675 28.1678i −0.503490 1.21553i
\(538\) 19.8861 8.23711i 0.857352 0.355127i
\(539\) 0 0
\(540\) 16.2457i 0.699102i
\(541\) −38.2921 15.8611i −1.64631 0.681922i −0.649394 0.760452i \(-0.724977\pi\)
−0.996912 + 0.0785296i \(0.974977\pi\)
\(542\) 8.96453 8.96453i 0.385060 0.385060i
\(543\) 18.3083 0.785683
\(544\) 3.64842 + 18.2268i 0.156425 + 0.781468i
\(545\) 32.2299 1.38058
\(546\) 0 0
\(547\) 5.21042 + 2.15822i 0.222781 + 0.0922790i 0.491282 0.871000i \(-0.336528\pi\)
−0.268501 + 0.963279i \(0.586528\pi\)
\(548\) 16.1787i 0.691120i
\(549\) −2.29575 + 5.54243i −0.0979801 + 0.236545i
\(550\) −7.15950 + 2.96556i −0.305282 + 0.126452i
\(551\) 4.11048 + 9.92358i 0.175112 + 0.422759i
\(552\) −10.3206 10.3206i −0.439273 0.439273i
\(553\) 0 0
\(554\) −1.35649 3.27487i −0.0576319 0.139136i
\(555\) −23.6670 + 9.80319i −1.00461 + 0.416122i
\(556\) 3.74021 9.02966i 0.158620 0.382943i
\(557\) 1.10102i 0.0466518i 0.999728 + 0.0233259i \(0.00742554\pi\)
−0.999728 + 0.0233259i \(0.992574\pi\)
\(558\) −4.32610 1.79193i −0.183138 0.0758584i
\(559\) 44.2058 44.2058i 1.86971 1.86971i
\(560\) 0 0
\(561\) 4.17972 6.27177i 0.176468 0.264794i
\(562\) 20.1754 0.851049
\(563\) 25.9637 25.9637i 1.09424 1.09424i 0.0991671 0.995071i \(-0.468382\pi\)
0.995071 0.0991671i \(-0.0316178\pi\)
\(564\) −10.4513 4.32907i −0.440080 0.182287i
\(565\) 60.1995i 2.53261i
\(566\) −5.24563 + 12.6641i −0.220490 + 0.532310i
\(567\) 0 0
\(568\) 12.6994 + 30.6590i 0.532854 + 1.28642i
\(569\) 4.93826 + 4.93826i 0.207023 + 0.207023i 0.803001 0.595978i \(-0.203236\pi\)
−0.595978 + 0.803001i \(0.703236\pi\)
\(570\) −22.3316 22.3316i −0.935368 0.935368i
\(571\) 11.2022 + 27.0445i 0.468798 + 1.13178i 0.964689 + 0.263393i \(0.0848417\pi\)
−0.495891 + 0.868385i \(0.665158\pi\)
\(572\) −5.67776 + 2.35180i −0.237399 + 0.0983339i
\(573\) 2.05057 4.95051i 0.0856637 0.206810i
\(574\) 0 0
\(575\) 17.6370 + 7.30549i 0.735515 + 0.304660i
\(576\) 3.33147 3.33147i 0.138811 0.138811i
\(577\) −27.1610 −1.13073 −0.565363 0.824842i \(-0.691264\pi\)
−0.565363 + 0.824842i \(0.691264\pi\)
\(578\) −16.7043 6.87193i −0.694806 0.285835i
\(579\) 30.4482 1.26538
\(580\) −3.84941 + 3.84941i −0.159838 + 0.159838i
\(581\) 0 0
\(582\) 23.4911i 0.973738i
\(583\) −3.84790 + 9.28964i −0.159364 + 0.384738i
\(584\) −13.5326 + 5.60537i −0.559981 + 0.231952i
\(585\) −4.62235 11.1593i −0.191111 0.461382i
\(586\) −13.7633 13.7633i −0.568555 0.568555i
\(587\) −13.6303 13.6303i −0.562583 0.562583i 0.367457 0.930040i \(-0.380228\pi\)
−0.930040 + 0.367457i \(0.880228\pi\)
\(588\) 0 0
\(589\) 38.6704 16.0178i 1.59339 0.660002i
\(590\) 0.894774 2.16018i 0.0368373 0.0889330i
\(591\) 31.4109i 1.29207i
\(592\) −6.85768 2.84055i −0.281849 0.116746i
\(593\) 8.95712 8.95712i 0.367825 0.367825i −0.498859 0.866683i \(-0.666247\pi\)
0.866683 + 0.498859i \(0.166247\pi\)
\(594\) −7.00161 −0.287279
\(595\) 0 0
\(596\) −11.1945 −0.458546
\(597\) 13.4635 13.4635i 0.551024 0.551024i
\(598\) −18.1267 7.50835i −0.741258 0.307039i
\(599\) 3.65708i 0.149424i −0.997205 0.0747121i \(-0.976196\pi\)
0.997205 0.0747121i \(-0.0238038\pi\)
\(600\) 11.1558 26.9325i 0.455433 1.09951i
\(601\) 32.0376 13.2704i 1.30684 0.541311i 0.382879 0.923798i \(-0.374933\pi\)
0.923961 + 0.382488i \(0.124933\pi\)
\(602\) 0 0
\(603\) 0.0931432 + 0.0931432i 0.00379309 + 0.00379309i
\(604\) −9.46010 9.46010i −0.384926 0.384926i
\(605\) 12.2871 + 29.6638i 0.499543 + 1.20600i
\(606\) −10.5933 + 4.38791i −0.430325 + 0.178246i
\(607\) −18.0206 + 43.5056i −0.731434 + 1.76584i −0.0936744 + 0.995603i \(0.529861\pi\)
−0.637760 + 0.770235i \(0.720139\pi\)
\(608\) 25.9025i 1.05049i
\(609\) 0 0
\(610\) −24.9062 + 24.9062i −1.00842 + 1.00842i
\(611\) −50.1218 −2.02771
\(612\) −0.426443 2.13043i −0.0172379 0.0861175i
\(613\) 10.7713 0.435050 0.217525 0.976055i \(-0.430202\pi\)
0.217525 + 0.976055i \(0.430202\pi\)
\(614\) −9.06491 + 9.06491i −0.365830 + 0.365830i
\(615\) 3.40674 + 1.41112i 0.137373 + 0.0569017i
\(616\) 0 0
\(617\) −12.3579 + 29.8345i −0.497509 + 1.20109i 0.453312 + 0.891352i \(0.350242\pi\)
−0.950821 + 0.309741i \(0.899758\pi\)
\(618\) −21.9558 + 9.09441i −0.883194 + 0.365831i
\(619\) 8.21258 + 19.8269i 0.330091 + 0.796911i 0.998584 + 0.0531927i \(0.0169397\pi\)
−0.668493 + 0.743719i \(0.733060\pi\)
\(620\) 15.0004 + 15.0004i 0.602432 + 0.602432i
\(621\) 12.1962 + 12.1962i 0.489417 + 0.489417i
\(622\) −1.02478 2.47405i −0.0410901 0.0992003i
\(623\) 0 0
\(624\) −5.30275 + 12.8020i −0.212280 + 0.512489i
\(625\) 17.7455i 0.709821i
\(626\) −15.8950 6.58391i −0.635291 0.263146i
\(627\) 7.42642 7.42642i 0.296583 0.296583i
\(628\) 8.80759 0.351461
\(629\) −16.9617 + 11.3631i −0.676306 + 0.453075i
\(630\) 0 0
\(631\) −0.150152 + 0.150152i −0.00597747 + 0.00597747i −0.710089 0.704112i \(-0.751345\pi\)
0.704112 + 0.710089i \(0.251345\pi\)
\(632\) 4.14139 + 1.71542i 0.164736 + 0.0682357i
\(633\) 26.6502i 1.05925i
\(634\) 11.5159 27.8017i 0.457353 1.10415i
\(635\) −34.9709 + 14.4854i −1.38778 + 0.574837i
\(636\) −4.39169 10.6025i −0.174142 0.420415i
\(637\) 0 0
\(638\) 1.65903 + 1.65903i 0.0656816 + 0.0656816i
\(639\) −2.51836 6.07987i −0.0996249 0.240516i
\(640\) −2.29061 + 0.948804i −0.0905445 + 0.0375048i
\(641\) −2.65088 + 6.39979i −0.104703 + 0.252776i −0.967545 0.252697i \(-0.918682\pi\)
0.862842 + 0.505474i \(0.168682\pi\)
\(642\) 6.58572i 0.259918i
\(643\) 15.3394 + 6.35378i 0.604926 + 0.250569i 0.664058 0.747681i \(-0.268833\pi\)
−0.0591311 + 0.998250i \(0.518833\pi\)
\(644\) 0 0
\(645\) −54.1481 −2.13208
\(646\) −20.9448 13.9583i −0.824063 0.549184i
\(647\) −34.7700 −1.36695 −0.683474 0.729975i \(-0.739532\pi\)
−0.683474 + 0.729975i \(0.739532\pi\)
\(648\) 14.7095 14.7095i 0.577842 0.577842i
\(649\) 0.718371 + 0.297559i 0.0281985 + 0.0116802i
\(650\) 39.1874i 1.53706i
\(651\) 0 0
\(652\) 4.82857 2.00006i 0.189101 0.0783283i
\(653\) 10.8461 + 26.1849i 0.424442 + 1.02469i 0.981021 + 0.193900i \(0.0621137\pi\)
−0.556579 + 0.830795i \(0.687886\pi\)
\(654\) 11.2102 + 11.2102i 0.438353 + 0.438353i
\(655\) 3.95921 + 3.95921i 0.154699 + 0.154699i
\(656\) 0.408881 + 0.987127i 0.0159641 + 0.0385408i
\(657\) 2.68359 1.11158i 0.104697 0.0433668i
\(658\) 0 0
\(659\) 32.9709i 1.28436i 0.766553 + 0.642181i \(0.221970\pi\)
−0.766553 + 0.642181i \(0.778030\pi\)
\(660\) 4.91774 + 2.03700i 0.191423 + 0.0792900i
\(661\) 6.78323 6.78323i 0.263837 0.263837i −0.562774 0.826611i \(-0.690266\pi\)
0.826611 + 0.562774i \(0.190266\pi\)
\(662\) 1.26598 0.0492036
\(663\) 21.2127 + 31.6642i 0.823832 + 1.22973i
\(664\) −13.8303 −0.536720
\(665\) 0 0
\(666\) 2.94041 + 1.21796i 0.113938 + 0.0471948i
\(667\) 5.77978i 0.223794i
\(668\) 5.33426 12.8780i 0.206389 0.498267i
\(669\) 24.2880 10.0604i 0.939029 0.388959i
\(670\) 0.295968 + 0.714530i 0.0114342 + 0.0276047i
\(671\) −8.28262 8.28262i −0.319747 0.319747i
\(672\) 0 0
\(673\) −14.7065 35.5046i −0.566893 1.36860i −0.904161 0.427192i \(-0.859503\pi\)
0.337268 0.941409i \(-0.390497\pi\)
\(674\) −20.1146 + 8.33173i −0.774785 + 0.320926i
\(675\) −13.1832 + 31.8271i −0.507423 + 1.22503i
\(676\) 19.7530i 0.759731i
\(677\) −14.5836 6.04073i −0.560493 0.232164i 0.0844060 0.996431i \(-0.473101\pi\)
−0.644899 + 0.764267i \(0.723101\pi\)
\(678\) −20.9385 + 20.9385i −0.804138 + 0.804138i
\(679\) 0 0
\(680\) 8.15292 41.2477i 0.312650 1.58178i
\(681\) −27.8520 −1.06729
\(682\) 6.46494 6.46494i 0.247555 0.247555i
\(683\) 6.58471 + 2.72747i 0.251957 + 0.104364i 0.505087 0.863068i \(-0.331460\pi\)
−0.253131 + 0.967432i \(0.581460\pi\)
\(684\) 3.02760i 0.115763i
\(685\) 23.7598 57.3613i 0.907816 2.19166i
\(686\) 0 0
\(687\) 7.05837 + 17.0404i 0.269294 + 0.650133i
\(688\) −11.0944 11.0944i −0.422969 0.422969i
\(689\) −35.9540 35.9540i −1.36974 1.36974i
\(690\) 6.50329 + 15.7003i 0.247576 + 0.597701i
\(691\) 11.8920 4.92584i 0.452394 0.187388i −0.144839 0.989455i \(-0.546267\pi\)
0.597233 + 0.802067i \(0.296267\pi\)
\(692\) −4.40887 + 10.6439i −0.167600 + 0.404622i
\(693\) 0 0
\(694\) −1.65264 0.684547i −0.0627335 0.0259851i
\(695\) −26.5217 + 26.5217i −1.00603 + 1.00603i
\(696\) −8.82597 −0.334547
\(697\) 2.88301 + 0.569850i 0.109202 + 0.0215846i
\(698\) −22.7793 −0.862209
\(699\) −7.25119 + 7.25119i −0.274265 + 0.274265i
\(700\) 0 0
\(701\) 19.9283i 0.752681i 0.926481 + 0.376341i \(0.122818\pi\)
−0.926481 + 0.376341i \(0.877182\pi\)
\(702\) 13.5493 32.7109i 0.511385 1.23459i
\(703\) −26.2839 + 10.8871i −0.991316 + 0.410616i
\(704\) 3.52037 + 8.49893i 0.132679 + 0.320315i
\(705\) 30.6973 + 30.6973i 1.15613 + 1.15613i
\(706\) −6.43763 6.43763i −0.242284 0.242284i
\(707\) 0 0
\(708\) −0.819892 + 0.339610i −0.0308134 + 0.0127633i
\(709\) 5.27752 12.7411i 0.198201 0.478500i −0.793263 0.608879i \(-0.791619\pi\)
0.991464 + 0.130379i \(0.0416194\pi\)
\(710\) 38.6382i 1.45007i
\(711\) −0.821262 0.340178i −0.0307997 0.0127577i
\(712\) −11.2287 + 11.2287i −0.420813 + 0.420813i
\(713\) −22.5228 −0.843484
\(714\) 0 0
\(715\) 23.5842 0.882000
\(716\) 12.1346 12.1346i 0.453491 0.453491i
\(717\) 16.3983 + 6.79242i 0.612407 + 0.253667i
\(718\) 25.0143i 0.933526i
\(719\) 9.72891 23.4877i 0.362827 0.875942i −0.632057 0.774922i \(-0.717789\pi\)
0.994884 0.101020i \(-0.0322107\pi\)
\(720\) −2.80067 + 1.16008i −0.104375 + 0.0432335i
\(721\) 0 0
\(722\) −10.5261 10.5261i −0.391740 0.391740i
\(723\) −5.80842 5.80842i −0.216018 0.216018i
\(724\) 3.94357 + 9.52062i 0.146562 + 0.353831i
\(725\) 10.6652 4.41767i 0.396095 0.164068i
\(726\) −6.04392 + 14.5913i −0.224311 + 0.541535i
\(727\) 14.9272i 0.553620i 0.960925 + 0.276810i \(0.0892773\pi\)
−0.960925 + 0.276810i \(0.910723\pi\)
\(728\) 0 0
\(729\) −21.2326 + 21.2326i −0.786391 + 0.786391i
\(730\) 17.0545 0.631216
\(731\) −42.3154 + 8.47017i −1.56509 + 0.313280i
\(732\) 13.3687 0.494123
\(733\) 8.49036 8.49036i 0.313598 0.313598i −0.532704 0.846302i \(-0.678824\pi\)
0.846302 + 0.532704i \(0.178824\pi\)
\(734\) 6.83111 + 2.82954i 0.252141 + 0.104440i
\(735\) 0 0
\(736\) 5.33385 12.8770i 0.196608 0.474654i
\(737\) −0.237618 + 0.0984248i −0.00875279 + 0.00362552i
\(738\) −0.175318 0.423256i −0.00645356 0.0155803i
\(739\) −0.248006 0.248006i −0.00912306 0.00912306i 0.702531 0.711654i \(-0.252053\pi\)
−0.711654 + 0.702531i \(0.752053\pi\)
\(740\) −10.1957 10.1957i −0.374800 0.374800i
\(741\) 20.3242 + 49.0669i 0.746628 + 1.80252i
\(742\) 0 0
\(743\) 16.4359 39.6797i 0.602974 1.45571i −0.267532 0.963549i \(-0.586208\pi\)
0.870505 0.492159i \(-0.163792\pi\)
\(744\) 34.3932i 1.26092i
\(745\) 39.6900 + 16.4402i 1.45413 + 0.602321i
\(746\) 15.2936 15.2936i 0.559937 0.559937i
\(747\) 2.74263 0.100348
\(748\) 4.16173 + 0.822598i 0.152168 + 0.0300772i
\(749\) 0 0
\(750\) −4.56641 + 4.56641i −0.166742 + 0.166742i
\(751\) −23.8166 9.86515i −0.869079 0.359984i −0.0968275 0.995301i \(-0.530870\pi\)
−0.772252 + 0.635317i \(0.780870\pi\)
\(752\) 12.5791i 0.458713i
\(753\) 2.16191 5.21932i 0.0787844 0.190202i
\(754\) −10.9613 + 4.54033i −0.399188 + 0.165349i
\(755\) 19.6476 + 47.4336i 0.715051 + 1.72629i
\(756\) 0 0
\(757\) −14.8435 14.8435i −0.539496 0.539496i 0.383885 0.923381i \(-0.374586\pi\)
−0.923381 + 0.383885i \(0.874586\pi\)
\(758\) 9.49591 + 22.9252i 0.344907 + 0.832679i
\(759\) −5.22118 + 2.16268i −0.189517 + 0.0785004i
\(760\) 22.4214 54.1300i 0.813309 1.96350i
\(761\) 1.80316i 0.0653645i 0.999466 + 0.0326823i \(0.0104049\pi\)
−0.999466 + 0.0326823i \(0.989595\pi\)
\(762\) −17.2018 7.12524i −0.623157 0.258120i
\(763\) 0 0
\(764\) 3.01604 0.109116
\(765\) −1.61677 + 8.17967i −0.0584546 + 0.295736i
\(766\) 37.9441 1.37097
\(767\) −2.78034 + 2.78034i −0.100392 + 0.100392i
\(768\) −23.3978 9.69169i −0.844296 0.349719i
\(769\) 40.8880i 1.47446i 0.675642 + 0.737229i \(0.263866\pi\)
−0.675642 + 0.737229i \(0.736134\pi\)
\(770\) 0 0
\(771\) 0.00908216 0.00376196i 0.000327086 0.000135484i
\(772\) 6.55848 + 15.8336i 0.236045 + 0.569863i
\(773\) −6.89146 6.89146i −0.247869 0.247869i 0.572227 0.820095i \(-0.306080\pi\)
−0.820095 + 0.572227i \(0.806080\pi\)
\(774\) 4.75699 + 4.75699i 0.170987 + 0.170987i
\(775\) −17.2149 41.5603i −0.618376 1.49289i
\(776\) 40.2631 16.6775i 1.44536 0.598687i
\(777\) 0 0
\(778\) 10.2020i 0.365761i
\(779\) 3.78343 + 1.56715i 0.135555 + 0.0561489i
\(780\) −19.0333 + 19.0333i −0.681502 + 0.681502i
\(781\) 12.8492 0.459782
\(782\) 7.53810 + 11.2521i 0.269562 + 0.402375i
\(783\) 10.4300 0.372737
\(784\) 0 0
\(785\) −31.2271 12.9347i −1.11454 0.461659i
\(786\) 2.75417i 0.0982381i
\(787\) 13.6326 32.9121i 0.485951 1.17319i −0.470790 0.882245i \(-0.656031\pi\)
0.956740 0.290943i \(-0.0939691\pi\)
\(788\) −16.3342 + 6.76584i −0.581881 + 0.241023i
\(789\) −13.9222 33.6112i −0.495644 1.19659i
\(790\) −3.69054 3.69054i −0.131304 0.131304i
\(791\) 0 0
\(792\) −0.834142 2.01380i −0.0296399 0.0715571i
\(793\) 54.7239 22.6674i 1.94330 0.804943i
\(794\) 10.7446 25.9399i 0.381313 0.920572i
\(795\) 44.0404i 1.56195i
\(796\) 9.90126 + 4.10124i 0.350941 + 0.145364i
\(797\) −26.8604 + 26.8604i −0.951444 + 0.951444i −0.998875 0.0474303i \(-0.984897\pi\)
0.0474303 + 0.998875i \(0.484897\pi\)
\(798\) 0 0
\(799\) 28.7910 + 19.1873i 1.01855 + 0.678799i
\(800\) 27.8383 0.984233
\(801\) 2.22672 2.22672i 0.0786772 0.0786772i
\(802\) −10.3902 4.30377i −0.366892 0.151971i
\(803\) 5.67151i 0.200143i
\(804\) 0.112334 0.271199i 0.00396172 0.00956445i
\(805\) 0 0
\(806\) 17.6929 + 42.7143i 0.623204 + 1.50455i
\(807\) 22.1691 + 22.1691i 0.780388 + 0.780388i
\(808\) −15.0415 15.0415i −0.529157 0.529157i
\(809\) 15.9979 + 38.6223i 0.562455 + 1.35789i 0.907797 + 0.419410i \(0.137763\pi\)
−0.345341 + 0.938477i \(0.612237\pi\)
\(810\) −22.3770 + 9.26885i −0.786247 + 0.325674i
\(811\) −4.06581 + 9.81573i −0.142770 + 0.344677i −0.979048 0.203628i \(-0.934727\pi\)
0.836278 + 0.548305i \(0.184727\pi\)
\(812\) 0 0
\(813\) 17.0603 + 7.06659i 0.598329 + 0.247836i
\(814\) −4.39415 + 4.39415i −0.154015 + 0.154015i
\(815\) −20.0569 −0.702561
\(816\) 7.94679 5.32376i 0.278193 0.186369i
\(817\) −60.1353 −2.10387
\(818\) 25.8010 25.8010i 0.902111 0.902111i
\(819\) 0 0
\(820\) 2.07551i 0.0724801i
\(821\) −2.47092 + 5.96533i −0.0862357 + 0.208191i −0.961114 0.276151i \(-0.910941\pi\)
0.874879 + 0.484342i \(0.160941\pi\)
\(822\) 28.2154 11.6872i 0.984127 0.407639i
\(823\) −12.5241 30.2359i −0.436564 1.05396i −0.977127 0.212655i \(-0.931789\pi\)
0.540563 0.841303i \(-0.318211\pi\)
\(824\) −31.1751 31.1751i −1.08604 1.08604i
\(825\) −7.98142 7.98142i −0.277877 0.277877i
\(826\) 0 0
\(827\) −9.49557 + 3.93319i −0.330193 + 0.136771i −0.541620 0.840623i \(-0.682189\pi\)
0.211427 + 0.977394i \(0.432189\pi\)
\(828\) −0.623443 + 1.50512i −0.0216661 + 0.0523067i
\(829\) 3.85523i 0.133898i 0.997756 + 0.0669488i \(0.0213264\pi\)
−0.997756 + 0.0669488i \(0.978674\pi\)
\(830\) 14.8772 + 6.16235i 0.516396 + 0.213898i
\(831\) 3.65083 3.65083i 0.126646 0.126646i
\(832\) −46.5187 −1.61275
\(833\) 0 0
\(834\) −18.4495 −0.638853
\(835\) −37.8251 + 37.8251i −1.30899 + 1.30899i
\(836\) 5.46151 + 2.26223i 0.188890 + 0.0782409i
\(837\) 40.6438i 1.40485i
\(838\) 5.02224 12.1248i 0.173490 0.418843i
\(839\) −39.4592 + 16.3445i −1.36228 + 0.564275i −0.939685 0.342042i \(-0.888881\pi\)
−0.422597 + 0.906318i \(0.638881\pi\)
\(840\) 0 0
\(841\) 18.0347 + 18.0347i 0.621887 + 0.621887i
\(842\) 5.83026 + 5.83026i 0.200924 + 0.200924i
\(843\) 11.2458 + 27.1497i 0.387326 + 0.935087i
\(844\) −13.8585 + 5.74040i −0.477031 + 0.197593i
\(845\) −29.0090 + 70.0340i −0.997940 + 2.40924i
\(846\) 5.39361i 0.185436i
\(847\) 0 0
\(848\) −9.02342 + 9.02342i −0.309865 + 0.309865i
\(849\) −19.9657 −0.685222
\(850\) −15.0015 + 22.5101i −0.514547 + 0.772090i
\(851\) 15.3085 0.524769
\(852\) −10.3698 + 10.3698i −0.355263 + 0.355263i
\(853\) −17.8998 7.41435i −0.612878 0.253862i 0.0545805 0.998509i \(-0.482618\pi\)
−0.667458 + 0.744647i \(0.732618\pi\)
\(854\) 0 0
\(855\) −4.44630 + 10.7343i −0.152060 + 0.367106i
\(856\) −11.2877 + 4.67553i −0.385807 + 0.159806i
\(857\) 9.18093 + 22.1647i 0.313615 + 0.757133i 0.999565 + 0.0294846i \(0.00938659\pi\)
−0.685951 + 0.727648i \(0.740613\pi\)
\(858\) 8.20304 + 8.20304i 0.280047 + 0.280047i
\(859\) −24.9778 24.9778i −0.852232 0.852232i 0.138175 0.990408i \(-0.455876\pi\)
−0.990408 + 0.138175i \(0.955876\pi\)
\(860\) −11.6634 28.1579i −0.397719 0.960178i
\(861\) 0 0
\(862\) 8.52854 20.5897i 0.290483 0.701289i
\(863\) 7.21550i 0.245619i −0.992430 0.122809i \(-0.960810\pi\)
0.992430 0.122809i \(-0.0391903\pi\)
\(864\) 23.2375 + 9.62527i 0.790554 + 0.327458i
\(865\) 31.2631 31.2631i 1.06298 1.06298i
\(866\) 36.5328 1.24143
\(867\) −0.0635230 26.3091i −0.00215735 0.893504i
\(868\) 0 0
\(869\) 1.22730 1.22730i 0.0416332 0.0416332i
\(870\) 9.49407 + 3.93257i 0.321879 + 0.133327i
\(871\) 1.30060i 0.0440691i
\(872\) −11.2552 + 27.1726i −0.381151 + 0.920179i
\(873\) −7.98441 + 3.30725i −0.270231 + 0.111933i
\(874\) 7.22237 + 17.4363i 0.244300 + 0.589793i
\(875\) 0 0
\(876\) −4.57711 4.57711i −0.154646 0.154646i
\(877\) −2.41316 5.82588i −0.0814866 0.196726i 0.877885 0.478871i \(-0.158954\pi\)
−0.959372 + 0.282145i \(0.908954\pi\)
\(878\) 5.68064 2.35300i 0.191712 0.0794098i
\(879\) 10.8493 26.1926i 0.365939 0.883455i
\(880\) 5.91895i 0.199528i
\(881\) 11.7401 + 4.86291i 0.395534 + 0.163836i 0.571580 0.820546i \(-0.306331\pi\)
−0.176046 + 0.984382i \(0.556331\pi\)
\(882\) 0 0
\(883\) −18.0560 −0.607631 −0.303816 0.952731i \(-0.598261\pi\)
−0.303816 + 0.952731i \(0.598261\pi\)
\(884\) −11.8968 + 17.8514i −0.400131 + 0.600406i
\(885\) 3.40566 0.114480
\(886\) 12.3925 12.3925i 0.416336 0.416336i
\(887\) 10.8090 + 4.47725i 0.362932 + 0.150331i 0.556695 0.830717i \(-0.312069\pi\)
−0.193763 + 0.981048i \(0.562069\pi\)
\(888\) 23.3767i 0.784471i
\(889\) 0 0
\(890\) 17.0818 7.07553i 0.572584 0.237172i
\(891\) −3.08238 7.44152i −0.103264 0.249300i
\(892\) 10.4632 + 10.4632i 0.350334 + 0.350334i
\(893\) 34.0916 + 34.0916i 1.14083 + 1.14083i
\(894\) 8.08675 + 19.5231i 0.270461 + 0.652951i
\(895\) −60.8437 + 25.2023i −2.03378 + 0.842420i
\(896\) 0 0
\(897\) 28.5780i 0.954192i
\(898\) −8.24089 3.41349i −0.275002 0.113910i
\(899\) −9.63053 + 9.63053i −0.321196 + 0.321196i
\(900\) −3.25386 −0.108462
\(901\) 6.88907 + 34.4165i 0.229508 + 1.14658i
\(902\) 0.894512 0.0297840
\(903\) 0 0
\(904\) −50.7533 21.0227i −1.68803 0.699204i
\(905\) 39.5467i 1.31458i
\(906\) −9.66448 + 23.3321i −0.321081 + 0.775158i
\(907\) 6.34566 2.62846i 0.210704 0.0872765i −0.274835 0.961491i \(-0.588623\pi\)
0.485539 + 0.874215i \(0.338623\pi\)
\(908\) −5.99927 14.4835i −0.199093 0.480652i
\(909\) 2.98282 + 2.98282i 0.0989338 + 0.0989338i
\(910\) 0 0
\(911\) 0.598738 + 1.44548i 0.0198371 + 0.0478909i 0.933488 0.358609i \(-0.116749\pi\)
−0.913651 + 0.406500i \(0.866749\pi\)
\(912\) 12.3144 5.10078i 0.407770 0.168904i
\(913\) −2.04930 + 4.94745i −0.0678220 + 0.163737i
\(914\) 32.9094i 1.08855i
\(915\) −47.3987 19.6332i −1.56695 0.649053i
\(916\) −7.34095 + 7.34095i −0.242552 + 0.242552i
\(917\) 0 0
\(918\) −20.3052 + 13.6030i −0.670171 + 0.448965i
\(919\) 34.4075 1.13500 0.567500 0.823373i \(-0.307911\pi\)
0.567500 + 0.823373i \(0.307911\pi\)
\(920\) −22.2929 + 22.2929i −0.734975 + 0.734975i
\(921\) −17.2513 7.14572i −0.568449 0.235459i
\(922\) 14.3492i 0.472564i
\(923\) −24.8654 + 60.0304i −0.818455 + 1.97593i
\(924\) 0 0
\(925\) 11.7008 + 28.2482i 0.384719 + 0.928794i
\(926\) −30.2204 30.2204i −0.993104 0.993104i
\(927\) 6.18221 + 6.18221i 0.203050 + 0.203050i
\(928\) −3.22540 7.78682i −0.105879 0.255615i
\(929\) 15.3249 6.34779i 0.502794 0.208264i −0.116846 0.993150i \(-0.537278\pi\)
0.619640 + 0.784886i \(0.287278\pi\)
\(930\) 15.3245 36.9967i 0.502511 1.21317i
\(931\) 0 0
\(932\) −5.33264 2.20885i −0.174676 0.0723534i
\(933\) 2.75807 2.75807i 0.0902952 0.0902952i
\(934\) −43.9158 −1.43697
\(935\) −13.5473 9.02837i −0.443044 0.295259i
\(936\) 11.0225 0.360281
\(937\) −1.46176 + 1.46176i −0.0477536 + 0.0477536i −0.730580 0.682827i \(-0.760750\pi\)
0.682827 + 0.730580i \(0.260750\pi\)
\(938\) 0 0
\(939\) 25.0595i 0.817785i
\(940\) −9.35099 + 22.5753i −0.304996 + 0.736325i
\(941\) 24.2662 10.0514i 0.791055 0.327666i 0.0496872 0.998765i \(-0.484178\pi\)
0.741368 + 0.671099i \(0.234178\pi\)
\(942\) −6.36245 15.3603i −0.207300 0.500466i
\(943\) −1.55816 1.55816i −0.0507408 0.0507408i
\(944\) 0.697783 + 0.697783i 0.0227109 + 0.0227109i
\(945\) 0 0
\(946\) −12.1356 + 5.02673i −0.394562 + 0.163433i
\(947\) −15.6097 + 37.6851i −0.507246 + 1.22460i 0.438216 + 0.898870i \(0.355610\pi\)
−0.945462 + 0.325731i \(0.894390\pi\)
\(948\) 1.98095i 0.0643381i
\(949\) −26.4968 10.9753i −0.860122 0.356274i
\(950\) −26.6543 + 26.6543i −0.864779 + 0.864779i
\(951\) 43.8313 1.42133
\(952\) 0 0
\(953\) 21.4906 0.696149 0.348075 0.937467i \(-0.386836\pi\)
0.348075 + 0.937467i \(0.386836\pi\)
\(954\) 3.86902 3.86902i 0.125264 0.125264i
\(955\) −10.6933 4.42931i −0.346027 0.143329i
\(956\) 9.99050i 0.323116i
\(957\) −1.30778 + 3.15727i −0.0422747 + 0.102060i
\(958\) 16.3824 6.78582i 0.529292 0.219240i
\(959\) 0 0
\(960\) 28.4906 + 28.4906i 0.919530 + 0.919530i
\(961\) 15.6081 + 15.6081i 0.503488 + 0.503488i
\(962\) −12.0257 29.0325i −0.387723 0.936046i
\(963\) 2.23842 0.927186i 0.0721322 0.0298781i
\(964\) 1.76936 4.27160i 0.0569871 0.137579i
\(965\) 65.7694i 2.11719i
\(966\) 0 0
\(967\) 12.9847 12.9847i 0.417561 0.417561i −0.466801 0.884362i \(-0.654594\pi\)
0.884362 + 0.466801i \(0.154594\pi\)
\(968\) −29.3000 −0.941737
\(969\) 7.10886 35.9655i 0.228369 1.15538i
\(970\) −50.7418 −1.62922
\(971\) 11.1517 11.1517i 0.357874 0.357874i −0.505155 0.863029i \(-0.668565\pi\)
0.863029 + 0.505155i \(0.168565\pi\)
\(972\) −4.97640 2.06129i −0.159618 0.0661160i
\(973\) 0 0
\(974\) −5.01416 + 12.1053i −0.160664 + 0.387878i
\(975\) 52.7339 21.8431i 1.68883 0.699538i
\(976\) −5.68885 13.7341i −0.182096 0.439618i
\(977\) 12.0422 + 12.0422i 0.385263 + 0.385263i 0.872994 0.487731i \(-0.162175\pi\)
−0.487731 + 0.872994i \(0.662175\pi\)
\(978\) −6.97615 6.97615i −0.223073 0.223073i
\(979\) 2.35298 + 5.68060i 0.0752016 + 0.181553i
\(980\) 0 0
\(981\) 2.23198 5.38848i 0.0712617 0.172041i
\(982\) 2.68894i 0.0858074i
\(983\) −42.0109 17.4015i −1.33994 0.555022i −0.406467 0.913666i \(-0.633239\pi\)
−0.933474 + 0.358644i \(0.883239\pi\)
\(984\) −2.37938 + 2.37938i −0.0758519 + 0.0758519i
\(985\) 67.8488 2.16184
\(986\) 8.03453 + 1.58809i 0.255872 + 0.0505750i
\(987\) 0 0
\(988\) −21.1379 + 21.1379i −0.672485 + 0.672485i
\(989\) 29.8953 + 12.3831i 0.950617 + 0.393758i
\(990\) 2.53790i 0.0806598i
\(991\) 6.48321 15.6518i 0.205946 0.497197i −0.786832 0.617168i \(-0.788280\pi\)
0.992777 + 0.119970i \(0.0382800\pi\)
\(992\) −30.3438 + 12.5688i −0.963417 + 0.399060i
\(993\) 0.705656 + 1.70360i 0.0223933 + 0.0540622i
\(994\) 0 0
\(995\) −29.0817 29.0817i −0.921953 0.921953i
\(996\) −2.33891 5.64663i −0.0741113 0.178920i
\(997\) 14.2656 5.90900i 0.451796 0.187140i −0.145170 0.989407i \(-0.546373\pi\)
0.596966 + 0.802267i \(0.296373\pi\)
\(998\) −2.22375 + 5.36861i −0.0703916 + 0.169940i
\(999\) 27.6252i 0.874022i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.l.e.638.7 yes 40
7.2 even 3 833.2.v.g.655.4 80
7.3 odd 6 833.2.v.h.128.7 80
7.4 even 3 833.2.v.g.128.7 80
7.5 odd 6 833.2.v.h.655.4 80
7.6 odd 2 833.2.l.d.638.7 yes 40
17.2 even 8 inner 833.2.l.e.393.7 yes 40
119.2 even 24 833.2.v.g.410.7 80
119.19 odd 24 833.2.v.h.410.7 80
119.53 even 24 833.2.v.g.716.4 80
119.87 odd 24 833.2.v.h.716.4 80
119.104 odd 8 833.2.l.d.393.7 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
833.2.l.d.393.7 40 119.104 odd 8
833.2.l.d.638.7 yes 40 7.6 odd 2
833.2.l.e.393.7 yes 40 17.2 even 8 inner
833.2.l.e.638.7 yes 40 1.1 even 1 trivial
833.2.v.g.128.7 80 7.4 even 3
833.2.v.g.410.7 80 119.2 even 24
833.2.v.g.655.4 80 7.2 even 3
833.2.v.g.716.4 80 119.53 even 24
833.2.v.h.128.7 80 7.3 odd 6
833.2.v.h.410.7 80 119.19 odd 24
833.2.v.h.655.4 80 7.5 odd 6
833.2.v.h.716.4 80 119.87 odd 24