Properties

Label 833.2.l.g.246.3
Level $833$
Weight $2$
Character 833.246
Analytic conductor $6.652$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(246,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.246");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 119)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 246.3
Character \(\chi\) \(=\) 833.246
Dual form 833.2.l.g.491.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12386 + 1.12386i) q^{2} +(0.860453 - 2.07732i) q^{3} -0.526128i q^{4} +(2.47826 + 1.02653i) q^{5} +(1.36759 + 3.30165i) q^{6} +(-1.65643 - 1.65643i) q^{8} +(-1.45355 - 1.45355i) q^{9} +(-3.93890 + 1.63154i) q^{10} +(0.445138 + 1.07466i) q^{11} +(-1.09293 - 0.452708i) q^{12} +4.08176i q^{13} +(4.26485 - 4.26485i) q^{15} +4.77545 q^{16} +(4.10306 - 0.406033i) q^{17} +3.26718 q^{18} +(-4.40961 + 4.40961i) q^{19} +(0.540085 - 1.30388i) q^{20} +(-1.70804 - 0.707493i) q^{22} +(2.65538 + 6.41066i) q^{23} +(-4.86621 + 2.01565i) q^{24} +(1.55248 + 1.55248i) q^{25} +(-4.58733 - 4.58733i) q^{26} +(1.96175 - 0.812585i) q^{27} +(0.264539 + 0.109576i) q^{29} +9.58621i q^{30} +(0.241193 - 0.582292i) q^{31} +(-2.05408 + 2.05408i) q^{32} +2.61543 q^{33} +(-4.15495 + 5.06760i) q^{34} +(-0.764753 + 0.764753i) q^{36} +(4.22275 - 10.1946i) q^{37} -9.91158i q^{38} +(8.47912 + 3.51217i) q^{39} +(-2.40469 - 5.80543i) q^{40} +(-2.36854 + 0.981083i) q^{41} +(-0.0565224 - 0.0565224i) q^{43} +(0.565408 - 0.234199i) q^{44} +(-2.11016 - 5.09439i) q^{45} +(-10.1890 - 4.22041i) q^{46} +1.42190i q^{47} +(4.10905 - 9.92012i) q^{48} -3.48954 q^{50} +(2.68704 - 8.87274i) q^{51} +2.14753 q^{52} +(-1.16560 + 1.16560i) q^{53} +(-1.29151 + 3.11797i) q^{54} +3.12023i q^{55} +(5.36590 + 12.9544i) q^{57} +(-0.420453 + 0.174157i) q^{58} +(-4.41502 - 4.41502i) q^{59} +(-2.24386 - 2.24386i) q^{60} +(10.2340 - 4.23908i) q^{61} +(0.383348 + 0.925484i) q^{62} +4.93388i q^{64} +(-4.19005 + 10.1157i) q^{65} +(-2.93938 + 2.93938i) q^{66} +1.97520 q^{67} +(-0.213625 - 2.15874i) q^{68} +15.6018 q^{69} +(1.66870 - 4.02859i) q^{71} +4.81540i q^{72} +(13.7917 + 5.71269i) q^{73} +(6.71155 + 16.2031i) q^{74} +(4.56082 - 1.88915i) q^{75} +(2.32002 + 2.32002i) q^{76} +(-13.4765 + 5.58216i) q^{78} +(3.99744 + 9.65068i) q^{79} +(11.8348 + 4.90213i) q^{80} -10.9413i q^{81} +(1.55931 - 3.76452i) q^{82} +(-6.87240 + 6.87240i) q^{83} +(10.5853 + 3.20566i) q^{85} +0.127047 q^{86} +(0.455247 - 0.455247i) q^{87} +(1.04275 - 2.51743i) q^{88} +3.28777i q^{89} +(8.09692 + 3.35385i) q^{90} +(3.37283 - 1.39707i) q^{92} +(-1.00207 - 1.00207i) q^{93} +(-1.59802 - 1.59802i) q^{94} +(-15.4547 + 6.40157i) q^{95} +(2.49954 + 6.03442i) q^{96} +(-7.05111 - 2.92067i) q^{97} +(0.915039 - 2.20910i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 4 q^{2} + 4 q^{3} - 8 q^{6} - 16 q^{8} + 4 q^{9} + 4 q^{10} + 8 q^{11} + 28 q^{12} + 12 q^{15} - 8 q^{16} - 4 q^{17} + 24 q^{18} + 4 q^{19} - 24 q^{20} - 24 q^{22} - 8 q^{23} + 28 q^{24} + 8 q^{25}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12386 + 1.12386i −0.794690 + 0.794690i −0.982253 0.187563i \(-0.939941\pi\)
0.187563 + 0.982253i \(0.439941\pi\)
\(3\) 0.860453 2.07732i 0.496783 1.19934i −0.454424 0.890786i \(-0.650155\pi\)
0.951207 0.308555i \(-0.0998452\pi\)
\(4\) 0.526128i 0.263064i
\(5\) 2.47826 + 1.02653i 1.10831 + 0.459078i 0.860356 0.509694i \(-0.170241\pi\)
0.247956 + 0.968771i \(0.420241\pi\)
\(6\) 1.36759 + 3.30165i 0.558315 + 1.34789i
\(7\) 0 0
\(8\) −1.65643 1.65643i −0.585636 0.585636i
\(9\) −1.45355 1.45355i −0.484517 0.484517i
\(10\) −3.93890 + 1.63154i −1.24559 + 0.515940i
\(11\) 0.445138 + 1.07466i 0.134214 + 0.324022i 0.976671 0.214743i \(-0.0688913\pi\)
−0.842456 + 0.538764i \(0.818891\pi\)
\(12\) −1.09293 0.452708i −0.315503 0.130686i
\(13\) 4.08176i 1.13208i 0.824379 + 0.566039i \(0.191525\pi\)
−0.824379 + 0.566039i \(0.808475\pi\)
\(14\) 0 0
\(15\) 4.26485 4.26485i 1.10118 1.10118i
\(16\) 4.77545 1.19386
\(17\) 4.10306 0.406033i 0.995139 0.0984774i
\(18\) 3.26718 0.770081
\(19\) −4.40961 + 4.40961i −1.01163 + 1.01163i −0.0117021 + 0.999932i \(0.503725\pi\)
−0.999932 + 0.0117021i \(0.996275\pi\)
\(20\) 0.540085 1.30388i 0.120767 0.291557i
\(21\) 0 0
\(22\) −1.70804 0.707493i −0.364155 0.150838i
\(23\) 2.65538 + 6.41066i 0.553686 + 1.33672i 0.914692 + 0.404152i \(0.132433\pi\)
−0.361006 + 0.932563i \(0.617567\pi\)
\(24\) −4.86621 + 2.01565i −0.993310 + 0.411443i
\(25\) 1.55248 + 1.55248i 0.310495 + 0.310495i
\(26\) −4.58733 4.58733i −0.899650 0.899650i
\(27\) 1.96175 0.812585i 0.377540 0.156382i
\(28\) 0 0
\(29\) 0.264539 + 0.109576i 0.0491237 + 0.0203477i 0.407110 0.913379i \(-0.366537\pi\)
−0.357986 + 0.933727i \(0.616537\pi\)
\(30\) 9.58621i 1.75019i
\(31\) 0.241193 0.582292i 0.0433196 0.104583i −0.900739 0.434361i \(-0.856974\pi\)
0.944058 + 0.329779i \(0.106974\pi\)
\(32\) −2.05408 + 2.05408i −0.363114 + 0.363114i
\(33\) 2.61543 0.455287
\(34\) −4.15495 + 5.06760i −0.712568 + 0.869086i
\(35\) 0 0
\(36\) −0.764753 + 0.764753i −0.127459 + 0.127459i
\(37\) 4.22275 10.1946i 0.694215 1.67598i −0.0418954 0.999122i \(-0.513340\pi\)
0.736110 0.676861i \(-0.236660\pi\)
\(38\) 9.91158i 1.60787i
\(39\) 8.47912 + 3.51217i 1.35775 + 0.562397i
\(40\) −2.40469 5.80543i −0.380214 0.917919i
\(41\) −2.36854 + 0.981083i −0.369904 + 0.153219i −0.559889 0.828568i \(-0.689156\pi\)
0.189985 + 0.981787i \(0.439156\pi\)
\(42\) 0 0
\(43\) −0.0565224 0.0565224i −0.00861959 0.00861959i 0.702784 0.711403i \(-0.251940\pi\)
−0.711403 + 0.702784i \(0.751940\pi\)
\(44\) 0.565408 0.234199i 0.0852384 0.0353069i
\(45\) −2.11016 5.09439i −0.314565 0.759427i
\(46\) −10.1890 4.22041i −1.50228 0.622266i
\(47\) 1.42190i 0.207406i 0.994608 + 0.103703i \(0.0330692\pi\)
−0.994608 + 0.103703i \(0.966931\pi\)
\(48\) 4.10905 9.92012i 0.593090 1.43185i
\(49\) 0 0
\(50\) −3.48954 −0.493495
\(51\) 2.68704 8.87274i 0.376260 1.24243i
\(52\) 2.14753 0.297809
\(53\) −1.16560 + 1.16560i −0.160107 + 0.160107i −0.782614 0.622507i \(-0.786114\pi\)
0.622507 + 0.782614i \(0.286114\pi\)
\(54\) −1.29151 + 3.11797i −0.175752 + 0.424302i
\(55\) 3.12023i 0.420732i
\(56\) 0 0
\(57\) 5.36590 + 12.9544i 0.710731 + 1.71586i
\(58\) −0.420453 + 0.174157i −0.0552082 + 0.0228680i
\(59\) −4.41502 4.41502i −0.574787 0.574787i 0.358676 0.933462i \(-0.383228\pi\)
−0.933462 + 0.358676i \(0.883228\pi\)
\(60\) −2.24386 2.24386i −0.289681 0.289681i
\(61\) 10.2340 4.23908i 1.31033 0.542758i 0.385352 0.922769i \(-0.374080\pi\)
0.924982 + 0.380011i \(0.124080\pi\)
\(62\) 0.383348 + 0.925484i 0.0486852 + 0.117537i
\(63\) 0 0
\(64\) 4.93388i 0.616736i
\(65\) −4.19005 + 10.1157i −0.519711 + 1.25469i
\(66\) −2.93938 + 2.93938i −0.361812 + 0.361812i
\(67\) 1.97520 0.241309 0.120655 0.992695i \(-0.461501\pi\)
0.120655 + 0.992695i \(0.461501\pi\)
\(68\) −0.213625 2.15874i −0.0259059 0.261785i
\(69\) 15.6018 1.87824
\(70\) 0 0
\(71\) 1.66870 4.02859i 0.198038 0.478106i −0.793397 0.608704i \(-0.791690\pi\)
0.991435 + 0.130598i \(0.0416897\pi\)
\(72\) 4.81540i 0.567501i
\(73\) 13.7917 + 5.71269i 1.61419 + 0.668620i 0.993331 0.115301i \(-0.0367834\pi\)
0.620860 + 0.783921i \(0.286783\pi\)
\(74\) 6.71155 + 16.2031i 0.780201 + 1.88357i
\(75\) 4.56082 1.88915i 0.526638 0.218141i
\(76\) 2.32002 + 2.32002i 0.266124 + 0.266124i
\(77\) 0 0
\(78\) −13.4765 + 5.58216i −1.52592 + 0.632056i
\(79\) 3.99744 + 9.65068i 0.449747 + 1.08579i 0.972417 + 0.233251i \(0.0749363\pi\)
−0.522669 + 0.852536i \(0.675064\pi\)
\(80\) 11.8348 + 4.90213i 1.32317 + 0.548075i
\(81\) 10.9413i 1.21570i
\(82\) 1.55931 3.76452i 0.172197 0.415721i
\(83\) −6.87240 + 6.87240i −0.754344 + 0.754344i −0.975287 0.220943i \(-0.929087\pi\)
0.220943 + 0.975287i \(0.429087\pi\)
\(84\) 0 0
\(85\) 10.5853 + 3.20566i 1.14813 + 0.347703i
\(86\) 0.127047 0.0136998
\(87\) 0.455247 0.455247i 0.0488076 0.0488076i
\(88\) 1.04275 2.51743i 0.111158 0.268359i
\(89\) 3.28777i 0.348503i 0.984701 + 0.174251i \(0.0557505\pi\)
−0.984701 + 0.174251i \(0.944250\pi\)
\(90\) 8.09692 + 3.35385i 0.853490 + 0.353527i
\(91\) 0 0
\(92\) 3.37283 1.39707i 0.351642 0.145655i
\(93\) −1.00207 1.00207i −0.103910 0.103910i
\(94\) −1.59802 1.59802i −0.164823 0.164823i
\(95\) −15.4547 + 6.40157i −1.58562 + 0.656787i
\(96\) 2.49954 + 6.03442i 0.255108 + 0.615886i
\(97\) −7.05111 2.92067i −0.715932 0.296549i −0.00517512 0.999987i \(-0.501647\pi\)
−0.710757 + 0.703438i \(0.751647\pi\)
\(98\) 0 0
\(99\) 0.915039 2.20910i 0.0919649 0.222023i
\(100\) 0.816801 0.816801i 0.0816801 0.0816801i
\(101\) −13.0304 −1.29657 −0.648287 0.761396i \(-0.724514\pi\)
−0.648287 + 0.761396i \(0.724514\pi\)
\(102\) 6.95188 + 12.9916i 0.688338 + 1.28636i
\(103\) −8.62782 −0.850125 −0.425062 0.905164i \(-0.639748\pi\)
−0.425062 + 0.905164i \(0.639748\pi\)
\(104\) 6.76114 6.76114i 0.662985 0.662985i
\(105\) 0 0
\(106\) 2.61994i 0.254471i
\(107\) 2.55720 + 1.05923i 0.247214 + 0.102400i 0.502850 0.864374i \(-0.332285\pi\)
−0.255636 + 0.966773i \(0.582285\pi\)
\(108\) −0.427524 1.03213i −0.0411385 0.0993171i
\(109\) 14.9539 6.19410i 1.43232 0.593288i 0.474399 0.880310i \(-0.342665\pi\)
0.957924 + 0.287022i \(0.0926654\pi\)
\(110\) −3.50670 3.50670i −0.334351 0.334351i
\(111\) −17.5440 17.5440i −1.66520 1.66520i
\(112\) 0 0
\(113\) 1.06517 + 2.57154i 0.100203 + 0.241911i 0.966029 0.258434i \(-0.0832066\pi\)
−0.865826 + 0.500345i \(0.833207\pi\)
\(114\) −20.5895 8.52845i −1.92838 0.798762i
\(115\) 18.6131i 1.73568i
\(116\) 0.0576508 0.139181i 0.00535274 0.0129227i
\(117\) 5.93305 5.93305i 0.548510 0.548510i
\(118\) 9.92374 0.913554
\(119\) 0 0
\(120\) −14.1288 −1.28978
\(121\) 6.82143 6.82143i 0.620130 0.620130i
\(122\) −6.73750 + 16.2658i −0.609985 + 1.47263i
\(123\) 5.76440i 0.519758i
\(124\) −0.306360 0.126899i −0.0275120 0.0113958i
\(125\) −2.87887 6.95020i −0.257494 0.621644i
\(126\) 0 0
\(127\) −6.71452 6.71452i −0.595817 0.595817i 0.343380 0.939197i \(-0.388428\pi\)
−0.939197 + 0.343380i \(0.888428\pi\)
\(128\) −9.65317 9.65317i −0.853227 0.853227i
\(129\) −0.166050 + 0.0687802i −0.0146199 + 0.00605576i
\(130\) −6.65957 16.0776i −0.584083 1.41010i
\(131\) −5.46306 2.26287i −0.477310 0.197708i 0.131040 0.991377i \(-0.458168\pi\)
−0.608350 + 0.793669i \(0.708168\pi\)
\(132\) 1.37605i 0.119770i
\(133\) 0 0
\(134\) −2.21985 + 2.21985i −0.191766 + 0.191766i
\(135\) 5.69588 0.490223
\(136\) −7.46899 6.12387i −0.640461 0.525117i
\(137\) −4.29533 −0.366975 −0.183488 0.983022i \(-0.558739\pi\)
−0.183488 + 0.983022i \(0.558739\pi\)
\(138\) −17.5343 + 17.5343i −1.49262 + 1.49262i
\(139\) −0.986651 + 2.38199i −0.0836866 + 0.202037i −0.960183 0.279370i \(-0.909874\pi\)
0.876497 + 0.481408i \(0.159874\pi\)
\(140\) 0 0
\(141\) 2.95375 + 1.22348i 0.248750 + 0.103036i
\(142\) 2.65219 + 6.40296i 0.222567 + 0.537325i
\(143\) −4.38650 + 1.81695i −0.366817 + 0.151941i
\(144\) −6.94135 6.94135i −0.578446 0.578446i
\(145\) 0.543114 + 0.543114i 0.0451032 + 0.0451032i
\(146\) −21.9202 + 9.07963i −1.81413 + 0.751436i
\(147\) 0 0
\(148\) −5.36367 2.22170i −0.440891 0.182623i
\(149\) 9.03047i 0.739805i 0.929071 + 0.369902i \(0.120609\pi\)
−0.929071 + 0.369902i \(0.879391\pi\)
\(150\) −3.00258 + 7.24888i −0.245160 + 0.591868i
\(151\) 7.82609 7.82609i 0.636878 0.636878i −0.312906 0.949784i \(-0.601303\pi\)
0.949784 + 0.312906i \(0.101303\pi\)
\(152\) 14.6084 1.18490
\(153\) −6.55420 5.37382i −0.529876 0.434448i
\(154\) 0 0
\(155\) 1.19548 1.19548i 0.0960233 0.0960233i
\(156\) 1.84785 4.46110i 0.147946 0.357174i
\(157\) 0.272715i 0.0217650i 0.999941 + 0.0108825i \(0.00346408\pi\)
−0.999941 + 0.0108825i \(0.996536\pi\)
\(158\) −15.3386 6.35345i −1.22027 0.505454i
\(159\) 1.41837 + 3.42426i 0.112484 + 0.271561i
\(160\) −7.19912 + 2.98197i −0.569141 + 0.235746i
\(161\) 0 0
\(162\) 12.2965 + 12.2965i 0.966102 + 0.966102i
\(163\) −5.58967 + 2.31532i −0.437817 + 0.181350i −0.590694 0.806895i \(-0.701146\pi\)
0.152877 + 0.988245i \(0.451146\pi\)
\(164\) 0.516175 + 1.24616i 0.0403065 + 0.0973085i
\(165\) 6.48171 + 2.68481i 0.504600 + 0.209012i
\(166\) 15.4472i 1.19894i
\(167\) −6.33480 + 15.2936i −0.490202 + 1.18345i 0.464416 + 0.885617i \(0.346264\pi\)
−0.954618 + 0.297834i \(0.903736\pi\)
\(168\) 0 0
\(169\) −3.66078 −0.281598
\(170\) −15.4991 + 8.29365i −1.18873 + 0.636094i
\(171\) 12.8192 0.980307
\(172\) −0.0297380 + 0.0297380i −0.00226750 + 0.00226750i
\(173\) −7.26359 + 17.5358i −0.552240 + 1.33323i 0.363552 + 0.931574i \(0.381564\pi\)
−0.915792 + 0.401652i \(0.868436\pi\)
\(174\) 1.02327i 0.0775738i
\(175\) 0 0
\(176\) 2.12573 + 5.13197i 0.160233 + 0.386837i
\(177\) −12.9703 + 5.37248i −0.974909 + 0.403821i
\(178\) −3.69499 3.69499i −0.276951 0.276951i
\(179\) −15.4829 15.4829i −1.15725 1.15725i −0.985065 0.172184i \(-0.944918\pi\)
−0.172184 0.985065i \(-0.555082\pi\)
\(180\) −2.68030 + 1.11022i −0.199778 + 0.0827506i
\(181\) −5.70974 13.7845i −0.424401 1.02460i −0.981034 0.193837i \(-0.937907\pi\)
0.556632 0.830759i \(-0.312093\pi\)
\(182\) 0 0
\(183\) 24.9069i 1.84117i
\(184\) 6.22035 15.0173i 0.458570 1.10709i
\(185\) 20.9301 20.9301i 1.53881 1.53881i
\(186\) 2.25238 0.165152
\(187\) 2.26278 + 4.22865i 0.165471 + 0.309230i
\(188\) 0.748103 0.0545610
\(189\) 0 0
\(190\) 10.1745 24.5635i 0.738137 1.78202i
\(191\) 22.6174i 1.63654i −0.574837 0.818268i \(-0.694935\pi\)
0.574837 0.818268i \(-0.305065\pi\)
\(192\) 10.2492 + 4.24538i 0.739676 + 0.306384i
\(193\) −4.66877 11.2714i −0.336066 0.811335i −0.998086 0.0618482i \(-0.980301\pi\)
0.662020 0.749486i \(-0.269699\pi\)
\(194\) 11.2069 4.64205i 0.804608 0.333280i
\(195\) 17.4081 + 17.4081i 1.24662 + 1.24662i
\(196\) 0 0
\(197\) 20.4484 8.47001i 1.45689 0.603463i 0.493062 0.869994i \(-0.335877\pi\)
0.963826 + 0.266531i \(0.0858774\pi\)
\(198\) 1.45435 + 3.51110i 0.103356 + 0.249523i
\(199\) −11.6096 4.80885i −0.822983 0.340891i −0.0688618 0.997626i \(-0.521937\pi\)
−0.754121 + 0.656736i \(0.771937\pi\)
\(200\) 5.14313i 0.363674i
\(201\) 1.69957 4.10312i 0.119878 0.289412i
\(202\) 14.6444 14.6444i 1.03037 1.03037i
\(203\) 0 0
\(204\) −4.66820 1.41372i −0.326839 0.0989805i
\(205\) −6.87698 −0.480309
\(206\) 9.69648 9.69648i 0.675586 0.675586i
\(207\) 5.45849 13.1780i 0.379391 0.915931i
\(208\) 19.4922i 1.35154i
\(209\) −6.70171 2.77594i −0.463567 0.192016i
\(210\) 0 0
\(211\) 18.0568 7.47936i 1.24308 0.514901i 0.338404 0.941001i \(-0.390113\pi\)
0.904676 + 0.426100i \(0.140113\pi\)
\(212\) 0.613253 + 0.613253i 0.0421184 + 0.0421184i
\(213\) −6.93283 6.93283i −0.475030 0.475030i
\(214\) −4.06437 + 1.68352i −0.277835 + 0.115083i
\(215\) −0.0820554 0.198099i −0.00559613 0.0135103i
\(216\) −4.59549 1.90352i −0.312684 0.129518i
\(217\) 0 0
\(218\) −9.84478 + 23.7674i −0.666773 + 1.60973i
\(219\) 23.7342 23.7342i 1.60381 1.60381i
\(220\) 1.64164 0.110679
\(221\) 1.65733 + 16.7477i 0.111484 + 1.12657i
\(222\) 39.4340 2.64664
\(223\) 4.69604 4.69604i 0.314470 0.314470i −0.532168 0.846638i \(-0.678623\pi\)
0.846638 + 0.532168i \(0.178623\pi\)
\(224\) 0 0
\(225\) 4.51321i 0.300880i
\(226\) −4.08716 1.69296i −0.271874 0.112614i
\(227\) 0.589024 + 1.42203i 0.0390949 + 0.0943834i 0.942221 0.334992i \(-0.108734\pi\)
−0.903126 + 0.429376i \(0.858734\pi\)
\(228\) 6.81568 2.82315i 0.451380 0.186968i
\(229\) −6.90063 6.90063i −0.456006 0.456006i 0.441336 0.897342i \(-0.354505\pi\)
−0.897342 + 0.441336i \(0.854505\pi\)
\(230\) −20.9186 20.9186i −1.37933 1.37933i
\(231\) 0 0
\(232\) −0.256686 0.619694i −0.0168522 0.0406849i
\(233\) −12.4570 5.15984i −0.816082 0.338032i −0.0647043 0.997904i \(-0.520610\pi\)
−0.751378 + 0.659872i \(0.770610\pi\)
\(234\) 13.3358i 0.871791i
\(235\) −1.45963 + 3.52385i −0.0952155 + 0.229871i
\(236\) −2.32286 + 2.32286i −0.151206 + 0.151206i
\(237\) 23.4871 1.52565
\(238\) 0 0
\(239\) −29.8225 −1.92905 −0.964527 0.263984i \(-0.914963\pi\)
−0.964527 + 0.263984i \(0.914963\pi\)
\(240\) 20.3666 20.3666i 1.31466 1.31466i
\(241\) −5.29971 + 12.7946i −0.341384 + 0.824175i 0.656192 + 0.754594i \(0.272166\pi\)
−0.997576 + 0.0695809i \(0.977834\pi\)
\(242\) 15.3327i 0.985622i
\(243\) −16.8432 6.97670i −1.08049 0.447556i
\(244\) −2.23030 5.38441i −0.142780 0.344702i
\(245\) 0 0
\(246\) −6.47838 6.47838i −0.413046 0.413046i
\(247\) −17.9990 17.9990i −1.14525 1.14525i
\(248\) −1.36404 + 0.565006i −0.0866169 + 0.0358779i
\(249\) 8.36278 + 20.1895i 0.529970 + 1.27946i
\(250\) 11.0465 + 4.57561i 0.698642 + 0.289387i
\(251\) 19.9305i 1.25800i 0.777405 + 0.629000i \(0.216535\pi\)
−0.777405 + 0.629000i \(0.783465\pi\)
\(252\) 0 0
\(253\) −5.70726 + 5.70726i −0.358812 + 0.358812i
\(254\) 15.0924 0.946980
\(255\) 15.7673 19.2306i 0.987387 1.20427i
\(256\) 11.8299 0.739367
\(257\) 8.23547 8.23547i 0.513715 0.513715i −0.401948 0.915663i \(-0.631667\pi\)
0.915663 + 0.401948i \(0.131667\pi\)
\(258\) 0.109318 0.263916i 0.00680583 0.0164307i
\(259\) 0 0
\(260\) 5.32213 + 2.20450i 0.330065 + 0.136717i
\(261\) −0.225247 0.543795i −0.0139425 0.0336601i
\(262\) 8.68287 3.59656i 0.536430 0.222196i
\(263\) 2.21073 + 2.21073i 0.136319 + 0.136319i 0.771974 0.635654i \(-0.219270\pi\)
−0.635654 + 0.771974i \(0.719270\pi\)
\(264\) −4.33227 4.33227i −0.266633 0.266633i
\(265\) −4.08517 + 1.69213i −0.250950 + 0.103947i
\(266\) 0 0
\(267\) 6.82974 + 2.82897i 0.417973 + 0.173130i
\(268\) 1.03921i 0.0634797i
\(269\) 7.23403 17.4645i 0.441067 1.06483i −0.534509 0.845163i \(-0.679503\pi\)
0.975575 0.219666i \(-0.0704967\pi\)
\(270\) −6.40138 + 6.40138i −0.389576 + 0.389576i
\(271\) −18.7320 −1.13789 −0.568944 0.822376i \(-0.692648\pi\)
−0.568944 + 0.822376i \(0.692648\pi\)
\(272\) 19.5940 1.93899i 1.18806 0.117568i
\(273\) 0 0
\(274\) 4.82736 4.82736i 0.291631 0.291631i
\(275\) −0.977315 + 2.35945i −0.0589343 + 0.142280i
\(276\) 8.20855i 0.494097i
\(277\) −1.11159 0.460435i −0.0667889 0.0276649i 0.349039 0.937108i \(-0.386508\pi\)
−0.415828 + 0.909443i \(0.636508\pi\)
\(278\) −1.56816 3.78588i −0.0940522 0.227062i
\(279\) −1.19698 + 0.495805i −0.0716612 + 0.0296831i
\(280\) 0 0
\(281\) −18.8513 18.8513i −1.12457 1.12457i −0.991045 0.133528i \(-0.957370\pi\)
−0.133528 0.991045i \(-0.542630\pi\)
\(282\) −4.69463 + 1.94458i −0.279561 + 0.115798i
\(283\) −3.08743 7.45372i −0.183529 0.443078i 0.805160 0.593057i \(-0.202079\pi\)
−0.988689 + 0.149980i \(0.952079\pi\)
\(284\) −2.11955 0.877948i −0.125772 0.0520967i
\(285\) 37.6127i 2.22798i
\(286\) 2.88782 6.97181i 0.170760 0.412252i
\(287\) 0 0
\(288\) 5.97142 0.351870
\(289\) 16.6703 3.33196i 0.980604 0.195998i
\(290\) −1.22077 −0.0716861
\(291\) −12.1343 + 12.1343i −0.711325 + 0.711325i
\(292\) 3.00560 7.25617i 0.175890 0.424635i
\(293\) 0.254207i 0.0148509i 0.999972 + 0.00742547i \(0.00236362\pi\)
−0.999972 + 0.00742547i \(0.997636\pi\)
\(294\) 0 0
\(295\) −6.40942 15.4737i −0.373171 0.900914i
\(296\) −23.8813 + 9.89196i −1.38807 + 0.574959i
\(297\) 1.74650 + 1.74650i 0.101342 + 0.101342i
\(298\) −10.1490 10.1490i −0.587915 0.587915i
\(299\) −26.1668 + 10.8386i −1.51327 + 0.626815i
\(300\) −0.993937 2.39958i −0.0573850 0.138540i
\(301\) 0 0
\(302\) 17.5909i 1.01224i
\(303\) −11.2121 + 27.0683i −0.644116 + 1.55503i
\(304\) −21.0578 + 21.0578i −1.20775 + 1.20775i
\(305\) 29.7141 1.70143
\(306\) 13.4054 1.32658i 0.766338 0.0758356i
\(307\) −6.63552 −0.378709 −0.189355 0.981909i \(-0.560640\pi\)
−0.189355 + 0.981909i \(0.560640\pi\)
\(308\) 0 0
\(309\) −7.42384 + 17.9227i −0.422328 + 1.01959i
\(310\) 2.68711i 0.152617i
\(311\) 5.75159 + 2.38239i 0.326143 + 0.135093i 0.539747 0.841828i \(-0.318520\pi\)
−0.213604 + 0.976920i \(0.568520\pi\)
\(312\) −8.22740 19.8627i −0.465785 1.12450i
\(313\) −5.44850 + 2.25684i −0.307967 + 0.127564i −0.531314 0.847175i \(-0.678302\pi\)
0.223347 + 0.974739i \(0.428302\pi\)
\(314\) −0.306494 0.306494i −0.0172965 0.0172965i
\(315\) 0 0
\(316\) 5.07749 2.10317i 0.285631 0.118312i
\(317\) 1.84002 + 4.44220i 0.103346 + 0.249499i 0.967091 0.254429i \(-0.0818876\pi\)
−0.863746 + 0.503928i \(0.831888\pi\)
\(318\) −5.44245 2.25434i −0.305197 0.126417i
\(319\) 0.333065i 0.0186481i
\(320\) −5.06478 + 12.2274i −0.283130 + 0.683535i
\(321\) 4.40071 4.40071i 0.245624 0.245624i
\(322\) 0 0
\(323\) −16.3025 + 19.8834i −0.907093 + 1.10634i
\(324\) −5.75651 −0.319806
\(325\) −6.33684 + 6.33684i −0.351505 + 0.351505i
\(326\) 3.67992 8.88411i 0.203812 0.492046i
\(327\) 36.3937i 2.01258i
\(328\) 5.54842 + 2.29823i 0.306360 + 0.126898i
\(329\) 0 0
\(330\) −10.3019 + 4.26719i −0.567101 + 0.234901i
\(331\) 2.73146 + 2.73146i 0.150135 + 0.150135i 0.778178 0.628043i \(-0.216144\pi\)
−0.628043 + 0.778178i \(0.716144\pi\)
\(332\) 3.61576 + 3.61576i 0.198441 + 0.198441i
\(333\) −20.9564 + 8.68041i −1.14840 + 0.475683i
\(334\) −10.0684 24.3073i −0.550919 1.33004i
\(335\) 4.89506 + 2.02760i 0.267446 + 0.110780i
\(336\) 0 0
\(337\) 0.0502989 0.121432i 0.00273995 0.00661483i −0.922504 0.385988i \(-0.873860\pi\)
0.925244 + 0.379374i \(0.123860\pi\)
\(338\) 4.11421 4.11421i 0.223783 0.223783i
\(339\) 6.25844 0.339912
\(340\) 1.68659 5.56920i 0.0914680 0.302032i
\(341\) 0.733130 0.0397012
\(342\) −14.4070 + 14.4070i −0.779040 + 0.779040i
\(343\) 0 0
\(344\) 0.187251i 0.0100959i
\(345\) 38.6654 + 16.0157i 2.08167 + 0.862257i
\(346\) −11.5446 27.8711i −0.620641 1.49836i
\(347\) −16.8484 + 6.97884i −0.904470 + 0.374644i −0.785937 0.618307i \(-0.787819\pi\)
−0.118533 + 0.992950i \(0.537819\pi\)
\(348\) −0.239518 0.239518i −0.0128395 0.0128395i
\(349\) −9.05100 9.05100i −0.484489 0.484489i 0.422073 0.906562i \(-0.361303\pi\)
−0.906562 + 0.422073i \(0.861303\pi\)
\(350\) 0 0
\(351\) 3.31678 + 8.00742i 0.177037 + 0.427404i
\(352\) −3.12179 1.29309i −0.166392 0.0689217i
\(353\) 17.2983i 0.920694i 0.887739 + 0.460347i \(0.152275\pi\)
−0.887739 + 0.460347i \(0.847725\pi\)
\(354\) 8.53892 20.6148i 0.453838 1.09566i
\(355\) 8.27093 8.27093i 0.438976 0.438976i
\(356\) 1.72979 0.0916784
\(357\) 0 0
\(358\) 34.8013 1.83931
\(359\) 0.736537 0.736537i 0.0388729 0.0388729i −0.687403 0.726276i \(-0.741249\pi\)
0.726276 + 0.687403i \(0.241249\pi\)
\(360\) −4.94315 + 11.9338i −0.260527 + 0.628968i
\(361\) 19.8893i 1.04681i
\(362\) 21.9088 + 9.07494i 1.15150 + 0.476968i
\(363\) −8.30076 20.0398i −0.435677 1.05182i
\(364\) 0 0
\(365\) 28.3151 + 28.3151i 1.48208 + 1.48208i
\(366\) 27.9919 + 27.9919i 1.46316 + 1.46316i
\(367\) 7.27629 3.01394i 0.379819 0.157326i −0.184602 0.982813i \(-0.559100\pi\)
0.564421 + 0.825487i \(0.309100\pi\)
\(368\) 12.6806 + 30.6138i 0.661024 + 1.59585i
\(369\) 4.86885 + 2.01674i 0.253462 + 0.104988i
\(370\) 47.0451i 2.44576i
\(371\) 0 0
\(372\) −0.527217 + 0.527217i −0.0273350 + 0.0273350i
\(373\) 6.85899 0.355145 0.177573 0.984108i \(-0.443176\pi\)
0.177573 + 0.984108i \(0.443176\pi\)
\(374\) −7.29546 2.20937i −0.377239 0.114244i
\(375\) −16.9149 −0.873482
\(376\) 2.35528 2.35528i 0.121464 0.121464i
\(377\) −0.447262 + 1.07979i −0.0230352 + 0.0556118i
\(378\) 0 0
\(379\) −18.8817 7.82107i −0.969889 0.401741i −0.159218 0.987243i \(-0.550897\pi\)
−0.810671 + 0.585502i \(0.800897\pi\)
\(380\) 3.36804 + 8.13117i 0.172777 + 0.417120i
\(381\) −19.7257 + 8.17066i −1.01058 + 0.418596i
\(382\) 25.4188 + 25.4188i 1.30054 + 1.30054i
\(383\) −2.90628 2.90628i −0.148504 0.148504i 0.628946 0.777449i \(-0.283487\pi\)
−0.777449 + 0.628946i \(0.783487\pi\)
\(384\) −28.3588 + 11.7466i −1.44718 + 0.599441i
\(385\) 0 0
\(386\) 17.9146 + 7.42046i 0.911827 + 0.377691i
\(387\) 0.164316i 0.00835267i
\(388\) −1.53664 + 3.70979i −0.0780112 + 0.188336i
\(389\) 0.282915 0.282915i 0.0143443 0.0143443i −0.699898 0.714243i \(-0.746771\pi\)
0.714243 + 0.699898i \(0.246771\pi\)
\(390\) −39.1286 −1.98135
\(391\) 13.4981 + 25.2252i 0.682631 + 1.27569i
\(392\) 0 0
\(393\) −9.40141 + 9.40141i −0.474239 + 0.474239i
\(394\) −13.4621 + 32.5003i −0.678209 + 1.63734i
\(395\) 28.0204i 1.40986i
\(396\) −1.16227 0.481428i −0.0584062 0.0241927i
\(397\) −10.0505 24.2641i −0.504421 1.21778i −0.947053 0.321077i \(-0.895955\pi\)
0.442632 0.896703i \(-0.354045\pi\)
\(398\) 18.4521 7.64309i 0.924918 0.383114i
\(399\) 0 0
\(400\) 7.41377 + 7.41377i 0.370688 + 0.370688i
\(401\) 14.4925 6.00300i 0.723722 0.299775i 0.00975271 0.999952i \(-0.496896\pi\)
0.713969 + 0.700177i \(0.246896\pi\)
\(402\) 2.70126 + 6.52142i 0.134727 + 0.325259i
\(403\) 2.37678 + 0.984494i 0.118396 + 0.0490411i
\(404\) 6.85566i 0.341082i
\(405\) 11.2315 27.1153i 0.558099 1.34737i
\(406\) 0 0
\(407\) 12.8354 0.636228
\(408\) −19.1479 + 10.2462i −0.947964 + 0.507261i
\(409\) 17.3418 0.857499 0.428749 0.903423i \(-0.358954\pi\)
0.428749 + 0.903423i \(0.358954\pi\)
\(410\) 7.72877 7.72877i 0.381697 0.381697i
\(411\) −3.69593 + 8.92277i −0.182307 + 0.440128i
\(412\) 4.53934i 0.223637i
\(413\) 0 0
\(414\) 8.67561 + 20.9448i 0.426383 + 1.02938i
\(415\) −24.0863 + 9.97688i −1.18235 + 0.489746i
\(416\) −8.38427 8.38427i −0.411073 0.411073i
\(417\) 4.09918 + 4.09918i 0.200738 + 0.200738i
\(418\) 10.6516 4.41202i 0.520985 0.215799i
\(419\) 1.47409 + 3.55877i 0.0720140 + 0.173857i 0.955788 0.294057i \(-0.0950056\pi\)
−0.883774 + 0.467914i \(0.845006\pi\)
\(420\) 0 0
\(421\) 26.8094i 1.30661i −0.757096 0.653304i \(-0.773382\pi\)
0.757096 0.653304i \(-0.226618\pi\)
\(422\) −11.8876 + 28.6991i −0.578677 + 1.39705i
\(423\) 2.06681 2.06681i 0.100492 0.100492i
\(424\) 3.86146 0.187529
\(425\) 7.00027 + 5.73956i 0.339563 + 0.278409i
\(426\) 15.5831 0.755003
\(427\) 0 0
\(428\) 0.557290 1.34542i 0.0269376 0.0650332i
\(429\) 10.6756i 0.515421i
\(430\) 0.314855 + 0.130417i 0.0151836 + 0.00628927i
\(431\) −7.10217 17.1462i −0.342099 0.825901i −0.997503 0.0706223i \(-0.977501\pi\)
0.655404 0.755279i \(-0.272499\pi\)
\(432\) 9.36825 3.88046i 0.450730 0.186699i
\(433\) 7.24642 + 7.24642i 0.348241 + 0.348241i 0.859454 0.511213i \(-0.170804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(434\) 0 0
\(435\) 1.59555 0.660896i 0.0765005 0.0316876i
\(436\) −3.25889 7.86766i −0.156073 0.376792i
\(437\) −39.9777 16.5593i −1.91239 0.792139i
\(438\) 53.3478i 2.54906i
\(439\) 14.7759 35.6722i 0.705215 1.70254i −0.00641004 0.999979i \(-0.502040\pi\)
0.711625 0.702560i \(-0.247960\pi\)
\(440\) 5.16843 5.16843i 0.246395 0.246395i
\(441\) 0 0
\(442\) −20.6847 16.9595i −0.983872 0.806682i
\(443\) 8.63055 0.410050 0.205025 0.978757i \(-0.434272\pi\)
0.205025 + 0.978757i \(0.434272\pi\)
\(444\) −9.23037 + 9.23037i −0.438054 + 0.438054i
\(445\) −3.37499 + 8.14794i −0.159990 + 0.386249i
\(446\) 10.5554i 0.499812i
\(447\) 18.7592 + 7.77030i 0.887278 + 0.367522i
\(448\) 0 0
\(449\) −18.9609 + 7.85388i −0.894822 + 0.370647i −0.782227 0.622994i \(-0.785916\pi\)
−0.112595 + 0.993641i \(0.535916\pi\)
\(450\) 5.07222 + 5.07222i 0.239107 + 0.239107i
\(451\) −2.10866 2.10866i −0.0992928 0.0992928i
\(452\) 1.35296 0.560415i 0.0636379 0.0263597i
\(453\) −9.52329 22.9913i −0.447443 1.08022i
\(454\) −2.26014 0.936182i −0.106074 0.0439372i
\(455\) 0 0
\(456\) 12.5698 30.3463i 0.588637 1.42110i
\(457\) −21.2862 + 21.2862i −0.995724 + 0.995724i −0.999991 0.00426664i \(-0.998642\pi\)
0.00426664 + 0.999991i \(0.498642\pi\)
\(458\) 15.5107 0.724767
\(459\) 7.71927 4.13063i 0.360305 0.192801i
\(460\) 9.79288 0.456595
\(461\) −8.81316 + 8.81316i −0.410470 + 0.410470i −0.881902 0.471433i \(-0.843737\pi\)
0.471433 + 0.881902i \(0.343737\pi\)
\(462\) 0 0
\(463\) 36.8030i 1.71038i 0.518315 + 0.855190i \(0.326559\pi\)
−0.518315 + 0.855190i \(0.673441\pi\)
\(464\) 1.26329 + 0.523273i 0.0586469 + 0.0242923i
\(465\) −1.45474 3.51205i −0.0674618 0.162867i
\(466\) 19.7988 8.20094i 0.917163 0.379901i
\(467\) 24.3676 + 24.3676i 1.12760 + 1.12760i 0.990566 + 0.137033i \(0.0437567\pi\)
0.137033 + 0.990566i \(0.456243\pi\)
\(468\) −3.12154 3.12154i −0.144293 0.144293i
\(469\) 0 0
\(470\) −2.31990 5.60073i −0.107009 0.258343i
\(471\) 0.566516 + 0.234659i 0.0261037 + 0.0108125i
\(472\) 14.6263i 0.673231i
\(473\) 0.0355820 0.0859026i 0.00163606 0.00394980i
\(474\) −26.3963 + 26.3963i −1.21242 + 1.21242i
\(475\) −13.6916 −0.628215
\(476\) 0 0
\(477\) 3.38851 0.155149
\(478\) 33.5163 33.5163i 1.53300 1.53300i
\(479\) −6.23165 + 15.0445i −0.284731 + 0.687402i −0.999934 0.0115154i \(-0.996334\pi\)
0.715202 + 0.698917i \(0.246334\pi\)
\(480\) 17.5207i 0.799708i
\(481\) 41.6120 + 17.2362i 1.89734 + 0.785905i
\(482\) −8.42325 20.3355i −0.383669 0.926258i
\(483\) 0 0
\(484\) −3.58895 3.58895i −0.163134 0.163134i
\(485\) −14.4763 14.4763i −0.657337 0.657337i
\(486\) 26.7703 11.0886i 1.21433 0.502990i
\(487\) −10.9165 26.3548i −0.494675 1.19425i −0.952316 0.305114i \(-0.901305\pi\)
0.457641 0.889137i \(-0.348695\pi\)
\(488\) −23.9737 9.93022i −1.08524 0.449520i
\(489\) 13.6038i 0.615183i
\(490\) 0 0
\(491\) 23.6986 23.6986i 1.06950 1.06950i 0.0721073 0.997397i \(-0.477028\pi\)
0.997397 0.0721073i \(-0.0229724\pi\)
\(492\) 3.03281 0.136730
\(493\) 1.12991 + 0.342185i 0.0508887 + 0.0154112i
\(494\) 40.4567 1.82023
\(495\) 4.53541 4.53541i 0.203852 0.203852i
\(496\) 1.15181 2.78071i 0.0517176 0.124857i
\(497\) 0 0
\(498\) −32.0888 13.2916i −1.43794 0.595612i
\(499\) 9.66462 + 23.3325i 0.432648 + 1.04450i 0.978430 + 0.206577i \(0.0662325\pi\)
−0.545782 + 0.837927i \(0.683767\pi\)
\(500\) −3.65669 + 1.51465i −0.163532 + 0.0677373i
\(501\) 26.3188 + 26.3188i 1.17584 + 1.17584i
\(502\) −22.3991 22.3991i −0.999720 0.999720i
\(503\) 18.7880 7.78224i 0.837715 0.346993i 0.0777626 0.996972i \(-0.475222\pi\)
0.759952 + 0.649979i \(0.225222\pi\)
\(504\) 0 0
\(505\) −32.2927 13.3761i −1.43701 0.595228i
\(506\) 12.8283i 0.570289i
\(507\) −3.14993 + 7.60461i −0.139893 + 0.337732i
\(508\) −3.53269 + 3.53269i −0.156738 + 0.156738i
\(509\) 24.3088 1.07747 0.538734 0.842476i \(-0.318903\pi\)
0.538734 + 0.842476i \(0.318903\pi\)
\(510\) 3.89232 + 39.3328i 0.172355 + 1.74169i
\(511\) 0 0
\(512\) 6.01120 6.01120i 0.265660 0.265660i
\(513\) −5.06739 + 12.2338i −0.223731 + 0.540133i
\(514\) 18.5111i 0.816487i
\(515\) −21.3820 8.85671i −0.942203 0.390273i
\(516\) 0.0361872 + 0.0873635i 0.00159305 + 0.00384596i
\(517\) −1.52806 + 0.632944i −0.0672040 + 0.0278368i
\(518\) 0 0
\(519\) 30.1776 + 30.1776i 1.32465 + 1.32465i
\(520\) 23.6964 9.81536i 1.03916 0.430432i
\(521\) 3.16365 + 7.63773i 0.138602 + 0.334615i 0.977905 0.209049i \(-0.0670367\pi\)
−0.839303 + 0.543664i \(0.817037\pi\)
\(522\) 0.864297 + 0.358003i 0.0378292 + 0.0156694i
\(523\) 3.04018i 0.132938i −0.997788 0.0664689i \(-0.978827\pi\)
0.997788 0.0664689i \(-0.0211733\pi\)
\(524\) −1.19056 + 2.87427i −0.0520099 + 0.125563i
\(525\) 0 0
\(526\) −4.96911 −0.216663
\(527\) 0.753202 2.48712i 0.0328100 0.108340i
\(528\) 12.4898 0.543550
\(529\) −17.7821 + 17.7821i −0.773134 + 0.773134i
\(530\) 2.68944 6.49289i 0.116822 0.282033i
\(531\) 12.8349i 0.556988i
\(532\) 0 0
\(533\) −4.00455 9.66783i −0.173456 0.418760i
\(534\) −10.8550 + 4.49631i −0.469744 + 0.194574i
\(535\) 5.25009 + 5.25009i 0.226981 + 0.226981i
\(536\) −3.27178 3.27178i −0.141319 0.141319i
\(537\) −45.4853 + 18.8406i −1.96284 + 0.813033i
\(538\) 11.4976 + 27.7577i 0.495698 + 1.19672i
\(539\) 0 0
\(540\) 2.99676i 0.128960i
\(541\) −2.55117 + 6.15908i −0.109684 + 0.264800i −0.969185 0.246334i \(-0.920774\pi\)
0.859502 + 0.511133i \(0.170774\pi\)
\(542\) 21.0522 21.0522i 0.904268 0.904268i
\(543\) −33.5478 −1.43967
\(544\) −7.59401 + 9.26205i −0.325590 + 0.397107i
\(545\) 43.4181 1.85982
\(546\) 0 0
\(547\) −10.5841 + 25.5523i −0.452544 + 1.09254i 0.518808 + 0.854891i \(0.326376\pi\)
−0.971352 + 0.237646i \(0.923624\pi\)
\(548\) 2.25989i 0.0965379i
\(549\) −21.0374 8.71398i −0.897855 0.371904i
\(550\) −1.55333 3.75006i −0.0662340 0.159903i
\(551\) −1.64970 + 0.683328i −0.0702796 + 0.0291108i
\(552\) −25.8433 25.8433i −1.09996 1.09996i
\(553\) 0 0
\(554\) 1.76674 0.731806i 0.0750614 0.0310915i
\(555\) −25.4691 61.4879i −1.08110 2.61002i
\(556\) 1.25323 + 0.519105i 0.0531488 + 0.0220149i
\(557\) 7.31556i 0.309970i 0.987917 + 0.154985i \(0.0495330\pi\)
−0.987917 + 0.154985i \(0.950467\pi\)
\(558\) 0.788022 1.90245i 0.0333596 0.0805373i
\(559\) 0.230711 0.230711i 0.00975804 0.00975804i
\(560\) 0 0
\(561\) 10.7313 1.06195i 0.453074 0.0448355i
\(562\) 42.3724 1.78737
\(563\) −21.4267 + 21.4267i −0.903026 + 0.903026i −0.995697 0.0926711i \(-0.970459\pi\)
0.0926711 + 0.995697i \(0.470459\pi\)
\(564\) 0.643708 1.55405i 0.0271050 0.0654372i
\(565\) 7.46638i 0.314113i
\(566\) 11.8468 + 4.90710i 0.497958 + 0.206261i
\(567\) 0 0
\(568\) −9.43715 + 3.90900i −0.395974 + 0.164018i
\(569\) 16.4931 + 16.4931i 0.691427 + 0.691427i 0.962546 0.271119i \(-0.0873936\pi\)
−0.271119 + 0.962546i \(0.587394\pi\)
\(570\) −42.2714 42.2714i −1.77056 1.77056i
\(571\) 37.5784 15.5655i 1.57261 0.651395i 0.585386 0.810755i \(-0.300943\pi\)
0.987221 + 0.159359i \(0.0509429\pi\)
\(572\) 0.955946 + 2.30786i 0.0399701 + 0.0964964i
\(573\) −46.9835 19.4612i −1.96276 0.813003i
\(574\) 0 0
\(575\) −5.82998 + 14.0748i −0.243127 + 0.586961i
\(576\) 7.17165 7.17165i 0.298819 0.298819i
\(577\) 35.4559 1.47605 0.738024 0.674774i \(-0.235759\pi\)
0.738024 + 0.674774i \(0.235759\pi\)
\(578\) −14.9904 + 22.4797i −0.623519 + 0.935034i
\(579\) −27.4316 −1.14002
\(580\) 0.285747 0.285747i 0.0118650 0.0118650i
\(581\) 0 0
\(582\) 27.2745i 1.13057i
\(583\) −1.77147 0.733767i −0.0733668 0.0303895i
\(584\) −13.3822 32.3075i −0.553760 1.33690i
\(585\) 20.7941 8.61319i 0.859729 0.356112i
\(586\) −0.285694 0.285694i −0.0118019 0.0118019i
\(587\) −6.75236 6.75236i −0.278700 0.278700i 0.553890 0.832590i \(-0.313143\pi\)
−0.832590 + 0.553890i \(0.813143\pi\)
\(588\) 0 0
\(589\) 1.50411 + 3.63125i 0.0619759 + 0.149623i
\(590\) 24.5936 + 10.1870i 1.01250 + 0.419392i
\(591\) 49.7659i 2.04710i
\(592\) 20.1655 48.6838i 0.828796 2.00089i
\(593\) −10.0599 + 10.0599i −0.413112 + 0.413112i −0.882821 0.469709i \(-0.844359\pi\)
0.469709 + 0.882821i \(0.344359\pi\)
\(594\) −3.92565 −0.161072
\(595\) 0 0
\(596\) 4.75118 0.194616
\(597\) −19.9790 + 19.9790i −0.817688 + 0.817688i
\(598\) 17.2267 41.5890i 0.704453 1.70070i
\(599\) 15.3003i 0.625154i 0.949892 + 0.312577i \(0.101192\pi\)
−0.949892 + 0.312577i \(0.898808\pi\)
\(600\) −10.6839 4.42542i −0.436169 0.180667i
\(601\) 10.6505 + 25.7125i 0.434442 + 1.04884i 0.977839 + 0.209359i \(0.0671379\pi\)
−0.543397 + 0.839476i \(0.682862\pi\)
\(602\) 0 0
\(603\) −2.87105 2.87105i −0.116918 0.116918i
\(604\) −4.11752 4.11752i −0.167540 0.167540i
\(605\) 23.9077 9.90288i 0.971985 0.402610i
\(606\) −17.8202 43.0218i −0.723897 1.74764i
\(607\) 32.2787 + 13.3703i 1.31015 + 0.542682i 0.924928 0.380141i \(-0.124125\pi\)
0.385223 + 0.922824i \(0.374125\pi\)
\(608\) 18.1154i 0.734676i
\(609\) 0 0
\(610\) −33.3946 + 33.3946i −1.35211 + 1.35211i
\(611\) −5.80387 −0.234800
\(612\) −2.82732 + 3.44835i −0.114288 + 0.139391i
\(613\) −27.8898 −1.12646 −0.563230 0.826300i \(-0.690441\pi\)
−0.563230 + 0.826300i \(0.690441\pi\)
\(614\) 7.45741 7.45741i 0.300956 0.300956i
\(615\) −5.91732 + 14.2857i −0.238609 + 0.576054i
\(616\) 0 0
\(617\) −0.737118 0.305324i −0.0296753 0.0122919i 0.367796 0.929906i \(-0.380112\pi\)
−0.397472 + 0.917614i \(0.630112\pi\)
\(618\) −11.7993 28.4860i −0.474637 1.14588i
\(619\) −3.28144 + 1.35922i −0.131892 + 0.0546315i −0.447653 0.894207i \(-0.647740\pi\)
0.315761 + 0.948839i \(0.397740\pi\)
\(620\) −0.628975 0.628975i −0.0252603 0.0252603i
\(621\) 10.4184 + 10.4184i 0.418077 + 0.418077i
\(622\) −9.14146 + 3.78652i −0.366539 + 0.151826i
\(623\) 0 0
\(624\) 40.4916 + 16.7722i 1.62096 + 0.671424i
\(625\) 31.1573i 1.24629i
\(626\) 3.58698 8.65973i 0.143364 0.346112i
\(627\) −11.5330 + 11.5330i −0.460584 + 0.460584i
\(628\) 0.143483 0.00572560
\(629\) 13.1868 43.5437i 0.525794 1.73620i
\(630\) 0 0
\(631\) 10.2243 10.2243i 0.407024 0.407024i −0.473675 0.880700i \(-0.657073\pi\)
0.880700 + 0.473675i \(0.157073\pi\)
\(632\) 9.36418 22.6071i 0.372487 0.899263i
\(633\) 43.9453i 1.74667i
\(634\) −7.06034 2.92449i −0.280402 0.116146i
\(635\) −9.74767 23.5330i −0.386825 0.933877i
\(636\) 1.80160 0.746246i 0.0714380 0.0295906i
\(637\) 0 0
\(638\) −0.374319 0.374319i −0.0148194 0.0148194i
\(639\) −8.28130 + 3.43023i −0.327603 + 0.135698i
\(640\) −14.0138 33.8323i −0.553944 1.33734i
\(641\) 34.1973 + 14.1650i 1.35071 + 0.559484i 0.936491 0.350692i \(-0.114054\pi\)
0.414222 + 0.910176i \(0.364054\pi\)
\(642\) 9.89158i 0.390389i
\(643\) 7.90410 19.0822i 0.311707 0.752528i −0.687935 0.725773i \(-0.741482\pi\)
0.999642 0.0267554i \(-0.00851751\pi\)
\(644\) 0 0
\(645\) −0.482120 −0.0189834
\(646\) −4.02443 40.6678i −0.158339 1.60005i
\(647\) 16.6582 0.654899 0.327450 0.944869i \(-0.393811\pi\)
0.327450 + 0.944869i \(0.393811\pi\)
\(648\) −18.1234 + 18.1234i −0.711956 + 0.711956i
\(649\) 2.77934 6.70993i 0.109099 0.263388i
\(650\) 14.2435i 0.558674i
\(651\) 0 0
\(652\) 1.21815 + 2.94088i 0.0477066 + 0.115174i
\(653\) 22.5240 9.32974i 0.881432 0.365101i 0.104380 0.994537i \(-0.466714\pi\)
0.777052 + 0.629436i \(0.216714\pi\)
\(654\) 40.9015 + 40.9015i 1.59937 + 1.59937i
\(655\) −11.2160 11.2160i −0.438244 0.438244i
\(656\) −11.3109 + 4.68511i −0.441615 + 0.182923i
\(657\) −11.7432 28.3506i −0.458145 1.10606i
\(658\) 0 0
\(659\) 43.9334i 1.71140i −0.517471 0.855701i \(-0.673126\pi\)
0.517471 0.855701i \(-0.326874\pi\)
\(660\) 1.41255 3.41021i 0.0549836 0.132742i
\(661\) 0.652865 0.652865i 0.0253935 0.0253935i −0.694296 0.719690i \(-0.744284\pi\)
0.719690 + 0.694296i \(0.244284\pi\)
\(662\) −6.13957 −0.238621
\(663\) 36.2164 + 10.9678i 1.40653 + 0.425956i
\(664\) 22.7673 0.883541
\(665\) 0 0
\(666\) 13.7965 33.3076i 0.534602 1.29064i
\(667\) 1.98684i 0.0769306i
\(668\) 8.04637 + 3.33292i 0.311323 + 0.128954i
\(669\) −5.71444 13.7959i −0.220933 0.533380i
\(670\) −7.78011 + 3.22263i −0.300572 + 0.124501i
\(671\) 9.11112 + 9.11112i 0.351731 + 0.351731i
\(672\) 0 0
\(673\) 30.2805 12.5426i 1.16723 0.483481i 0.286951 0.957945i \(-0.407358\pi\)
0.880275 + 0.474465i \(0.157358\pi\)
\(674\) 0.0799440 + 0.193002i 0.00307933 + 0.00743416i
\(675\) 4.30710 + 1.78406i 0.165780 + 0.0686685i
\(676\) 1.92604i 0.0740784i
\(677\) −0.0169885 + 0.0410139i −0.000652921 + 0.00157629i −0.924206 0.381895i \(-0.875272\pi\)
0.923553 + 0.383471i \(0.125272\pi\)
\(678\) −7.03362 + 7.03362i −0.270125 + 0.270125i
\(679\) 0 0
\(680\) −12.2238 22.8437i −0.468761 0.876015i
\(681\) 3.46083 0.132619
\(682\) −0.823936 + 0.823936i −0.0315501 + 0.0315501i
\(683\) 6.83157 16.4929i 0.261403 0.631082i −0.737623 0.675213i \(-0.764052\pi\)
0.999026 + 0.0441308i \(0.0140518\pi\)
\(684\) 6.74453i 0.257883i
\(685\) −10.6449 4.40928i −0.406723 0.168470i
\(686\) 0 0
\(687\) −20.2725 + 8.39713i −0.773443 + 0.320370i
\(688\) −0.269920 0.269920i −0.0102906 0.0102906i
\(689\) −4.75769 4.75769i −0.181254 0.181254i
\(690\) −61.4539 + 25.4551i −2.33951 + 0.969058i
\(691\) 3.74638 + 9.04456i 0.142519 + 0.344071i 0.978980 0.203955i \(-0.0653795\pi\)
−0.836461 + 0.548026i \(0.815380\pi\)
\(692\) 9.22610 + 3.82157i 0.350724 + 0.145274i
\(693\) 0 0
\(694\) 11.0920 26.7785i 0.421047 1.01650i
\(695\) −4.89036 + 4.89036i −0.185502 + 0.185502i
\(696\) −1.50817 −0.0571670
\(697\) −9.31994 + 4.98715i −0.353018 + 0.188902i
\(698\) 20.3441 0.770037
\(699\) −21.4373 + 21.4373i −0.810832 + 0.810832i
\(700\) 0 0
\(701\) 0.945148i 0.0356978i 0.999841 + 0.0178489i \(0.00568178\pi\)
−0.999841 + 0.0178489i \(0.994318\pi\)
\(702\) −12.7268 5.27162i −0.480343 0.198965i
\(703\) 26.3336 + 63.5749i 0.993190 + 2.39777i
\(704\) −5.30224 + 2.19626i −0.199836 + 0.0827746i
\(705\) 6.06421 + 6.06421i 0.228392 + 0.228392i
\(706\) −19.4409 19.4409i −0.731666 0.731666i
\(707\) 0 0
\(708\) 2.82661 + 6.82405i 0.106231 + 0.256463i
\(709\) −29.1678 12.0817i −1.09542 0.453738i −0.239527 0.970890i \(-0.576992\pi\)
−0.855894 + 0.517152i \(0.826992\pi\)
\(710\) 18.5908i 0.697699i
\(711\) 8.21727 19.8382i 0.308172 0.743992i
\(712\) 5.44595 5.44595i 0.204096 0.204096i
\(713\) 4.37334 0.163783
\(714\) 0 0
\(715\) −12.7360 −0.476301
\(716\) −8.14600 + 8.14600i −0.304430 + 0.304430i
\(717\) −25.6608 + 61.9507i −0.958321 + 2.31359i
\(718\) 1.65553i 0.0617839i
\(719\) −26.6728 11.0482i −0.994727 0.412030i −0.174866 0.984592i \(-0.555949\pi\)
−0.819861 + 0.572563i \(0.805949\pi\)
\(720\) −10.0770 24.3280i −0.375547 0.906650i
\(721\) 0 0
\(722\) 22.3528 + 22.3528i 0.831885 + 0.831885i
\(723\) 22.0184 + 22.0184i 0.818872 + 0.818872i
\(724\) −7.25242 + 3.00405i −0.269534 + 0.111645i
\(725\) 0.240577 + 0.580805i 0.00893481 + 0.0215705i
\(726\) 31.8509 + 13.1931i 1.18210 + 0.489640i
\(727\) 2.05022i 0.0760386i −0.999277 0.0380193i \(-0.987895\pi\)
0.999277 0.0380193i \(-0.0121048\pi\)
\(728\) 0 0
\(729\) −5.77570 + 5.77570i −0.213915 + 0.213915i
\(730\) −63.6444 −2.35558
\(731\) −0.254865 0.208965i −0.00942653 0.00772886i
\(732\) −13.1042 −0.484345
\(733\) −3.91773 + 3.91773i −0.144705 + 0.144705i −0.775748 0.631043i \(-0.782627\pi\)
0.631043 + 0.775748i \(0.282627\pi\)
\(734\) −4.79029 + 11.5648i −0.176813 + 0.426864i
\(735\) 0 0
\(736\) −18.6224 7.71365i −0.686431 0.284329i
\(737\) 0.879237 + 2.12267i 0.0323871 + 0.0781894i
\(738\) −7.73846 + 3.20537i −0.284857 + 0.117991i
\(739\) −28.5322 28.5322i −1.04958 1.04958i −0.998705 0.0508698i \(-0.983801\pi\)
−0.0508698 0.998705i \(-0.516199\pi\)
\(740\) −11.0119 11.0119i −0.404806 0.404806i
\(741\) −52.8769 + 21.9023i −1.94248 + 0.804602i
\(742\) 0 0
\(743\) −29.8250 12.3539i −1.09417 0.453221i −0.238712 0.971090i \(-0.576725\pi\)
−0.855460 + 0.517870i \(0.826725\pi\)
\(744\) 3.31972i 0.121707i
\(745\) −9.27004 + 22.3798i −0.339628 + 0.819934i
\(746\) −7.70855 + 7.70855i −0.282230 + 0.282230i
\(747\) 19.9788 0.730985
\(748\) 2.22481 1.19051i 0.0813471 0.0435293i
\(749\) 0 0
\(750\) 19.0100 19.0100i 0.694147 0.694147i
\(751\) −4.61230 + 11.1351i −0.168305 + 0.406325i −0.985418 0.170154i \(-0.945574\pi\)
0.817112 + 0.576479i \(0.195574\pi\)
\(752\) 6.79023i 0.247614i
\(753\) 41.4019 + 17.1492i 1.50877 + 0.624953i
\(754\) −0.710869 1.71619i −0.0258883 0.0624999i
\(755\) 27.4288 11.3614i 0.998236 0.413483i
\(756\) 0 0
\(757\) 29.3705 + 29.3705i 1.06749 + 1.06749i 0.997551 + 0.0699392i \(0.0222805\pi\)
0.0699392 + 0.997551i \(0.477719\pi\)
\(758\) 30.0102 12.4306i 1.09002 0.451501i
\(759\) 6.94496 + 16.7666i 0.252086 + 0.608590i
\(760\) 36.2034 + 14.9959i 1.31324 + 0.543960i
\(761\) 9.22390i 0.334366i 0.985926 + 0.167183i \(0.0534671\pi\)
−0.985926 + 0.167183i \(0.946533\pi\)
\(762\) 12.9863 31.3517i 0.470443 1.13575i
\(763\) 0 0
\(764\) −11.8996 −0.430513
\(765\) −10.7266 20.0458i −0.387822 0.724758i
\(766\) 6.53250 0.236029
\(767\) 18.0211 18.0211i 0.650703 0.650703i
\(768\) 10.1790 24.5744i 0.367305 0.886752i
\(769\) 9.65507i 0.348171i −0.984731 0.174085i \(-0.944303\pi\)
0.984731 0.174085i \(-0.0556969\pi\)
\(770\) 0 0
\(771\) −10.0215 24.1939i −0.360914 0.871323i
\(772\) −5.93021 + 2.45637i −0.213433 + 0.0884068i
\(773\) −24.0454 24.0454i −0.864854 0.864854i 0.127043 0.991897i \(-0.459451\pi\)
−0.991897 + 0.127043i \(0.959451\pi\)
\(774\) −0.184669 0.184669i −0.00663778 0.00663778i
\(775\) 1.27844 0.529548i 0.0459230 0.0190219i
\(776\) 6.84178 + 16.5175i 0.245606 + 0.592945i
\(777\) 0 0
\(778\) 0.635914i 0.0227986i
\(779\) 6.11816 14.7705i 0.219206 0.529210i
\(780\) 9.15890 9.15890i 0.327941 0.327941i
\(781\) 5.07216 0.181496
\(782\) −43.5197 13.1796i −1.55626 0.471300i
\(783\) 0.608001 0.0217282
\(784\) 0 0
\(785\) −0.279950 + 0.675859i −0.00999184 + 0.0241224i
\(786\) 21.1318i 0.753745i
\(787\) −3.29656 1.36548i −0.117510 0.0486742i 0.323154 0.946346i \(-0.395257\pi\)
−0.440664 + 0.897672i \(0.645257\pi\)
\(788\) −4.45631 10.7585i −0.158749 0.383255i
\(789\) 6.49462 2.69016i 0.231215 0.0957722i
\(790\) −31.4910 31.4910i −1.12040 1.12040i
\(791\) 0 0
\(792\) −5.17491 + 2.14352i −0.183883 + 0.0761666i
\(793\) 17.3029 + 41.7729i 0.614444 + 1.48340i
\(794\) 38.5649 + 15.9741i 1.36862 + 0.566899i
\(795\) 9.94221i 0.352614i
\(796\) −2.53007 + 6.10813i −0.0896760 + 0.216497i
\(797\) −37.6393 + 37.6393i −1.33325 + 1.33325i −0.430811 + 0.902442i \(0.641772\pi\)
−0.902442 + 0.430811i \(0.858228\pi\)
\(798\) 0 0
\(799\) 0.577340 + 5.83416i 0.0204248 + 0.206398i
\(800\) −6.37783 −0.225490
\(801\) 4.77893 4.77893i 0.168855 0.168855i
\(802\) −9.54105 + 23.0341i −0.336906 + 0.813363i
\(803\) 17.3642i 0.612771i
\(804\) −2.15877 0.894190i −0.0761338 0.0315356i
\(805\) 0 0
\(806\) −3.77760 + 1.56474i −0.133060 + 0.0551154i
\(807\) −30.0548 30.0548i −1.05798 1.05798i
\(808\) 21.5839 + 21.5839i 0.759320 + 0.759320i
\(809\) −5.76328 + 2.38723i −0.202626 + 0.0839304i −0.481688 0.876343i \(-0.659976\pi\)
0.279063 + 0.960273i \(0.409976\pi\)
\(810\) 17.8512 + 43.0965i 0.627226 + 1.51426i
\(811\) 46.3967 + 19.2181i 1.62921 + 0.674840i 0.995143 0.0984386i \(-0.0313848\pi\)
0.634066 + 0.773279i \(0.281385\pi\)
\(812\) 0 0
\(813\) −16.1180 + 38.9123i −0.565283 + 1.36472i
\(814\) −14.4252 + 14.4252i −0.505604 + 0.505604i
\(815\) −16.2294 −0.568491
\(816\) 12.8318 42.3713i 0.449203 1.48329i
\(817\) 0.498484 0.0174397
\(818\) −19.4898 + 19.4898i −0.681446 + 0.681446i
\(819\) 0 0
\(820\) 3.61817i 0.126352i
\(821\) −41.0103 16.9870i −1.43127 0.592851i −0.473604 0.880738i \(-0.657047\pi\)
−0.957664 + 0.287887i \(0.907047\pi\)
\(822\) −5.87424 14.1817i −0.204888 0.494643i
\(823\) 26.2150 10.8586i 0.913797 0.378507i 0.124288 0.992246i \(-0.460335\pi\)
0.789509 + 0.613739i \(0.210335\pi\)
\(824\) 14.2914 + 14.2914i 0.497863 + 0.497863i
\(825\) 4.06039 + 4.06039i 0.141365 + 0.141365i
\(826\) 0 0
\(827\) −5.17832 12.5016i −0.180068 0.434722i 0.807912 0.589303i \(-0.200597\pi\)
−0.987980 + 0.154580i \(0.950597\pi\)
\(828\) −6.93329 2.87186i −0.240948 0.0998041i
\(829\) 10.3528i 0.359567i −0.983706 0.179783i \(-0.942460\pi\)
0.983706 0.179783i \(-0.0575397\pi\)
\(830\) 15.8570 38.2823i 0.550406 1.32880i
\(831\) −1.91294 + 1.91294i −0.0663592 + 0.0663592i
\(832\) −20.1389 −0.698192
\(833\) 0 0
\(834\) −9.21381 −0.319048
\(835\) −31.3986 + 31.3986i −1.08659 + 1.08659i
\(836\) −1.46050 + 3.52595i −0.0505124 + 0.121948i
\(837\) 1.33831i 0.0462586i
\(838\) −5.65623 2.34289i −0.195391 0.0809337i
\(839\) −8.53922 20.6155i −0.294807 0.711726i −0.999996 0.00270739i \(-0.999138\pi\)
0.705190 0.709019i \(-0.250862\pi\)
\(840\) 0 0
\(841\) −20.4481 20.4481i −0.705108 0.705108i
\(842\) 30.1300 + 30.1300i 1.03835 + 1.03835i
\(843\) −55.3807 + 22.9395i −1.90741 + 0.790077i
\(844\) −3.93510 9.50018i −0.135452 0.327010i
\(845\) −9.07236 3.75790i −0.312099 0.129276i
\(846\) 4.64561i 0.159720i
\(847\) 0 0
\(848\) −5.56625 + 5.56625i −0.191146 + 0.191146i
\(849\) −18.1403 −0.622575
\(850\) −14.3178 + 1.41687i −0.491096 + 0.0485981i
\(851\) 76.5672 2.62469
\(852\) −3.64756 + 3.64756i −0.124963 + 0.124963i
\(853\) −9.71313 + 23.4496i −0.332571 + 0.802898i 0.665815 + 0.746116i \(0.268084\pi\)
−0.998387 + 0.0567814i \(0.981916\pi\)
\(854\) 0 0
\(855\) 31.7693 + 13.1593i 1.08649 + 0.450037i
\(856\) −2.48129 5.99036i −0.0848087 0.204746i
\(857\) −20.4373 + 8.46541i −0.698125 + 0.289173i −0.703381 0.710813i \(-0.748327\pi\)
0.00525584 + 0.999986i \(0.498327\pi\)
\(858\) −11.9978 11.9978i −0.409599 0.409599i
\(859\) 11.0809 + 11.0809i 0.378076 + 0.378076i 0.870408 0.492332i \(-0.163855\pi\)
−0.492332 + 0.870408i \(0.663855\pi\)
\(860\) −0.104225 + 0.0431716i −0.00355406 + 0.00147214i
\(861\) 0 0
\(862\) 27.2517 + 11.2880i 0.928198 + 0.384472i
\(863\) 19.1310i 0.651227i 0.945503 + 0.325613i \(0.105571\pi\)
−0.945503 + 0.325613i \(0.894429\pi\)
\(864\) −2.36049 + 5.69872i −0.0803054 + 0.193874i
\(865\) −36.0021 + 36.0021i −1.22411 + 1.22411i
\(866\) −16.2879 −0.553487
\(867\) 7.42246 37.4965i 0.252080 1.27345i
\(868\) 0 0
\(869\) −8.59177 + 8.59177i −0.291456 + 0.291456i
\(870\) −1.05042 + 2.53593i −0.0356124 + 0.0859760i
\(871\) 8.06230i 0.273181i
\(872\) −35.0301 14.5100i −1.18627 0.491369i
\(873\) 6.00381 + 14.4945i 0.203198 + 0.490564i
\(874\) 63.5398 26.3190i 2.14926 0.890255i
\(875\) 0 0
\(876\) −12.4872 12.4872i −0.421903 0.421903i
\(877\) 11.9852 4.96445i 0.404712 0.167637i −0.171035 0.985265i \(-0.554711\pi\)
0.575748 + 0.817628i \(0.304711\pi\)
\(878\) 23.4845 + 56.6966i 0.792564 + 1.91342i
\(879\) 0.528069 + 0.218733i 0.0178113 + 0.00737770i
\(880\) 14.9005i 0.502295i
\(881\) 2.50641 6.05100i 0.0844429 0.203863i −0.876018 0.482279i \(-0.839809\pi\)
0.960461 + 0.278416i \(0.0898092\pi\)
\(882\) 0 0
\(883\) 3.47124 0.116816 0.0584082 0.998293i \(-0.481398\pi\)
0.0584082 + 0.998293i \(0.481398\pi\)
\(884\) 8.81145 0.871967i 0.296361 0.0293274i
\(885\) −37.6588 −1.26589
\(886\) −9.69954 + 9.69954i −0.325862 + 0.325862i
\(887\) 2.04770 4.94358i 0.0687550 0.165989i −0.885767 0.464131i \(-0.846367\pi\)
0.954522 + 0.298142i \(0.0963667\pi\)
\(888\) 58.1206i 1.95040i
\(889\) 0 0
\(890\) −5.36414 12.9502i −0.179806 0.434091i
\(891\) 11.7581 4.87038i 0.393912 0.163164i
\(892\) −2.47072 2.47072i −0.0827257 0.0827257i
\(893\) −6.27004 6.27004i −0.209819 0.209819i
\(894\) −29.8154 + 12.3500i −0.997177 + 0.413044i
\(895\) −22.4770 54.2644i −0.751325 1.81386i
\(896\) 0 0
\(897\) 63.6829i 2.12631i
\(898\) 12.4828 30.1361i 0.416556 1.00566i
\(899\) 0.127610 0.127610i 0.00425604 0.00425604i
\(900\) −2.37452 −0.0791508
\(901\) −4.30925 + 5.25579i −0.143562 + 0.175096i
\(902\) 4.73968 0.157814
\(903\) 0 0
\(904\) 2.49520 6.02395i 0.0829892 0.200354i
\(905\) 40.0228i 1.33040i
\(906\) 36.5418 + 15.1361i 1.21402 + 0.502864i
\(907\) −2.89715 6.99435i −0.0961985 0.232244i 0.868454 0.495770i \(-0.165114\pi\)
−0.964652 + 0.263527i \(0.915114\pi\)
\(908\) 0.748169 0.309902i 0.0248289 0.0102844i
\(909\) 18.9404 + 18.9404i 0.628212 + 0.628212i
\(910\) 0 0
\(911\) −15.5785 + 6.45282i −0.516138 + 0.213791i −0.625520 0.780208i \(-0.715113\pi\)
0.109382 + 0.994000i \(0.465113\pi\)
\(912\) 25.6246 + 61.8631i 0.848514 + 2.04849i
\(913\) −10.4446 4.32631i −0.345667 0.143180i
\(914\) 47.8454i 1.58258i
\(915\) 25.5676 61.7257i 0.845240 2.04059i
\(916\) −3.63061 + 3.63061i −0.119959 + 0.119959i
\(917\) 0 0
\(918\) −4.03314 + 13.3176i −0.133113 + 0.439548i
\(919\) −20.2889 −0.669270 −0.334635 0.942348i \(-0.608613\pi\)
−0.334635 + 0.942348i \(0.608613\pi\)
\(920\) 30.8313 30.8313i 1.01648 1.01648i
\(921\) −5.70956 + 13.7841i −0.188136 + 0.454201i
\(922\) 19.8095i 0.652392i
\(923\) 16.4438 + 6.81123i 0.541253 + 0.224194i
\(924\) 0 0
\(925\) 22.3826 9.27118i 0.735936 0.304835i
\(926\) −41.3614 41.3614i −1.35922 1.35922i
\(927\) 12.5410 + 12.5410i 0.411900 + 0.411900i
\(928\) −0.768462 + 0.318308i −0.0252260 + 0.0104490i
\(929\) −6.99298 16.8826i −0.229432 0.553899i 0.766676 0.642034i \(-0.221909\pi\)
−0.996109 + 0.0881354i \(0.971909\pi\)
\(930\) 5.58198 + 2.31213i 0.183040 + 0.0758177i
\(931\) 0 0
\(932\) −2.71473 + 6.55395i −0.0889241 + 0.214682i
\(933\) 9.89796 9.89796i 0.324045 0.324045i
\(934\) −54.7717 −1.79218
\(935\) 1.26692 + 12.8025i 0.0414326 + 0.418687i
\(936\) −19.6553 −0.642455
\(937\) −24.2616 + 24.2616i −0.792593 + 0.792593i −0.981915 0.189322i \(-0.939371\pi\)
0.189322 + 0.981915i \(0.439371\pi\)
\(938\) 0 0
\(939\) 13.2602i 0.432729i
\(940\) 1.85399 + 0.767950i 0.0604706 + 0.0250478i
\(941\) −2.26516 5.46857i −0.0738420 0.178270i 0.882649 0.470033i \(-0.155758\pi\)
−0.956491 + 0.291763i \(0.905758\pi\)
\(942\) −0.900409 + 0.372962i −0.0293369 + 0.0121517i
\(943\) −12.5788 12.5788i −0.409622 0.409622i
\(944\) −21.0837 21.0837i −0.686216 0.686216i
\(945\) 0 0
\(946\) 0.0565533 + 0.136532i 0.00183871 + 0.00443903i
\(947\) 35.6762 + 14.7776i 1.15932 + 0.480206i 0.877648 0.479305i \(-0.159111\pi\)
0.281671 + 0.959511i \(0.409111\pi\)
\(948\) 12.3572i 0.401344i
\(949\) −23.3178 + 56.2942i −0.756929 + 1.82739i
\(950\) 15.3875 15.3875i 0.499236 0.499236i
\(951\) 10.8111 0.350574
\(952\) 0 0
\(953\) −17.9346 −0.580959 −0.290479 0.956881i \(-0.593815\pi\)
−0.290479 + 0.956881i \(0.593815\pi\)
\(954\) −3.80821 + 3.80821i −0.123295 + 0.123295i
\(955\) 23.2174 56.0517i 0.751297 1.81379i
\(956\) 15.6904i 0.507464i
\(957\) 0.691883 + 0.286587i 0.0223654 + 0.00926405i
\(958\) −9.90445 23.9115i −0.319998 0.772544i
\(959\) 0 0
\(960\) 21.0423 + 21.0423i 0.679137 + 0.679137i
\(961\) 21.6394 + 21.6394i 0.698046 + 0.698046i
\(962\) −66.1372 + 27.3949i −2.13235 + 0.883248i
\(963\) −2.17738 5.25667i −0.0701652 0.169394i
\(964\) 6.73161 + 2.78833i 0.216811 + 0.0898059i
\(965\) 32.7261i 1.05349i
\(966\) 0 0
\(967\) −0.674496 + 0.674496i −0.0216903 + 0.0216903i −0.717869 0.696178i \(-0.754882\pi\)
0.696178 + 0.717869i \(0.254882\pi\)
\(968\) −22.5984 −0.726341
\(969\) 27.2765 + 50.9741i 0.876249 + 1.63752i
\(970\) 32.5388 1.04476
\(971\) 10.6714 10.6714i 0.342460 0.342460i −0.514831 0.857291i \(-0.672145\pi\)
0.857291 + 0.514831i \(0.172145\pi\)
\(972\) −3.67064 + 8.86170i −0.117736 + 0.284239i
\(973\) 0 0
\(974\) 41.8878 + 17.3505i 1.34217 + 0.555946i
\(975\) 7.71108 + 18.6162i 0.246952 + 0.596195i
\(976\) 48.8721 20.2435i 1.56436 0.647978i
\(977\) 4.09894 + 4.09894i 0.131137 + 0.131137i 0.769629 0.638492i \(-0.220441\pi\)
−0.638492 + 0.769629i \(0.720441\pi\)
\(978\) −15.2887 15.2887i −0.488880 0.488880i
\(979\) −3.53322 + 1.46351i −0.112922 + 0.0467740i
\(980\) 0 0
\(981\) −30.7397 12.7328i −0.981442 0.406527i
\(982\) 53.2679i 1.69985i
\(983\) 2.08541 5.03463i 0.0665142 0.160580i −0.887127 0.461525i \(-0.847302\pi\)
0.953641 + 0.300946i \(0.0973023\pi\)
\(984\) 9.54831 9.54831i 0.304389 0.304389i
\(985\) 59.3712 1.89172
\(986\) −1.65443 + 0.885297i −0.0526879 + 0.0281936i
\(987\) 0 0
\(988\) −9.46976 + 9.46976i −0.301273 + 0.301273i
\(989\) 0.212258 0.512435i 0.00674940 0.0162945i
\(990\) 10.1943i 0.323998i
\(991\) −22.4946 9.31757i −0.714565 0.295982i −0.00437276 0.999990i \(-0.501392\pi\)
−0.710192 + 0.704008i \(0.751392\pi\)
\(992\) 0.700645 + 1.69151i 0.0222455 + 0.0537054i
\(993\) 8.02441 3.32382i 0.254647 0.105478i
\(994\) 0 0
\(995\) −23.8352 23.8352i −0.755626 0.755626i
\(996\) 10.6223 4.39989i 0.336580 0.139416i
\(997\) −2.32508 5.61324i −0.0736360 0.177773i 0.882776 0.469795i \(-0.155672\pi\)
−0.956412 + 0.292022i \(0.905672\pi\)
\(998\) −37.0841 15.3608i −1.17388 0.486236i
\(999\) 23.4307i 0.741313i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.l.g.246.3 40
7.2 even 3 119.2.q.a.25.8 80
7.3 odd 6 833.2.v.f.569.3 80
7.4 even 3 119.2.q.a.93.3 yes 80
7.5 odd 6 833.2.v.f.263.8 80
7.6 odd 2 833.2.l.f.246.3 40
17.15 even 8 inner 833.2.l.g.491.3 40
119.32 even 24 119.2.q.a.100.8 yes 80
119.66 odd 24 833.2.v.f.814.8 80
119.83 odd 8 833.2.l.f.491.3 40
119.100 even 24 119.2.q.a.32.3 yes 80
119.117 odd 24 833.2.v.f.508.3 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.q.a.25.8 80 7.2 even 3
119.2.q.a.32.3 yes 80 119.100 even 24
119.2.q.a.93.3 yes 80 7.4 even 3
119.2.q.a.100.8 yes 80 119.32 even 24
833.2.l.f.246.3 40 7.6 odd 2
833.2.l.f.491.3 40 119.83 odd 8
833.2.l.g.246.3 40 1.1 even 1 trivial
833.2.l.g.491.3 40 17.15 even 8 inner
833.2.v.f.263.8 80 7.5 odd 6
833.2.v.f.508.3 80 119.117 odd 24
833.2.v.f.569.3 80 7.3 odd 6
833.2.v.f.814.8 80 119.66 odd 24