Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [833,2,Mod(246,833)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(833, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("833.246");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 833 = 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 833.l (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.65153848837\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{8})\) |
Twist minimal: | no (minimal twist has level 119) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
246.1 | −1.65959 | + | 1.65959i | −0.945255 | + | 2.28205i | − | 3.50846i | 0.904040 | + | 0.374466i | −2.21852 | − | 5.35599i | 0 | 2.50343 | + | 2.50343i | −2.19291 | − | 2.19291i | −2.12179 | + | 0.878876i | |||
246.2 | −1.37277 | + | 1.37277i | −0.181346 | + | 0.437807i | − | 1.76897i | −3.14575 | − | 1.30301i | −0.352062 | − | 0.849952i | 0 | −0.317147 | − | 0.317147i | 1.96253 | + | 1.96253i | 6.10711 | − | 2.52965i | |||
246.3 | −1.12386 | + | 1.12386i | 0.860453 | − | 2.07732i | − | 0.526128i | 2.47826 | + | 1.02653i | 1.36759 | + | 3.30165i | 0 | −1.65643 | − | 1.65643i | −1.45355 | − | 1.45355i | −3.93890 | + | 1.63154i | |||
246.4 | −0.345355 | + | 0.345355i | −0.799043 | + | 1.92906i | 1.76146i | 0.946188 | + | 0.391924i | −0.390257 | − | 0.942164i | 0 | −1.29904 | − | 1.29904i | −0.961484 | − | 0.961484i | −0.462124 | + | 0.191418i | ||||
246.5 | −0.0570754 | + | 0.0570754i | −0.232516 | + | 0.561344i | 1.99348i | 1.68645 | + | 0.698551i | −0.0187680 | − | 0.0453099i | 0 | −0.227930 | − | 0.227930i | 1.86028 | + | 1.86028i | −0.136125 | + | 0.0563848i | ||||
246.6 | 0.176571 | − | 0.176571i | 1.22468 | − | 2.95665i | 1.93765i | −2.05102 | − | 0.849558i | −0.305815 | − | 0.738304i | 0 | 0.695276 | + | 0.695276i | −5.12060 | − | 5.12060i | −0.512158 | + | 0.212143i | ||||
246.7 | 0.768548 | − | 0.768548i | 0.0886661 | − | 0.214059i | 0.818669i | −3.21867 | − | 1.33322i | −0.0963703 | − | 0.232659i | 0 | 2.16628 | + | 2.16628i | 2.08336 | + | 2.08336i | −3.49834 | + | 1.44906i | ||||
246.8 | 1.32279 | − | 1.32279i | −0.00695315 | + | 0.0167864i | − | 1.49952i | 0.519209 | + | 0.215064i | 0.0130073 | + | 0.0314023i | 0 | 0.662025 | + | 0.662025i | 2.12109 | + | 2.12109i | 0.971285 | − | 0.402320i | |||
246.9 | 1.33748 | − | 1.33748i | 0.902864 | − | 2.17971i | − | 1.57768i | 3.13143 | + | 1.29708i | −1.70775 | − | 4.12286i | 0 | 0.564839 | + | 0.564839i | −1.81464 | − | 1.81464i | 5.92302 | − | 2.45340i | |||
246.10 | 1.95327 | − | 1.95327i | −0.618661 | + | 1.49358i | − | 5.63049i | −1.25014 | − | 0.517825i | 1.70895 | + | 4.12577i | 0 | −7.09131 | − | 7.09131i | 0.273282 | + | 0.273282i | −3.45330 | + | 1.43041i | |||
393.1 | −1.66289 | − | 1.66289i | 1.63644 | − | 0.677836i | 3.53038i | 0.205704 | + | 0.496614i | −3.84838 | − | 1.59405i | 0 | 2.54485 | − | 2.54485i | 0.0971540 | − | 0.0971540i | 0.483750 | − | 1.16788i | ||||
393.2 | −1.28230 | − | 1.28230i | −1.55166 | + | 0.642719i | 1.28858i | 1.40079 | + | 3.38180i | 2.81385 | + | 1.16554i | 0 | −0.912255 | + | 0.912255i | −0.126755 | + | 0.126755i | 2.54025 | − | 6.13271i | ||||
393.3 | −1.07383 | − | 1.07383i | −0.882931 | + | 0.365722i | 0.306209i | −0.477398 | − | 1.15254i | 1.34084 | + | 0.555393i | 0 | −1.81884 | + | 1.81884i | −1.47551 | + | 1.47551i | −0.724987 | + | 1.75027i | ||||
393.4 | −0.574435 | − | 0.574435i | 2.83040 | − | 1.17239i | − | 1.34005i | 0.724358 | + | 1.74876i | −2.29934 | − | 0.952418i | 0 | −1.91864 | + | 1.91864i | 4.51533 | − | 4.51533i | 0.588449 | − | 1.42064i | |||
393.5 | −0.218704 | − | 0.218704i | 0.530328 | − | 0.219669i | − | 1.90434i | −1.41235 | − | 3.40971i | −0.164028 | − | 0.0679424i | 0 | −0.853895 | + | 0.853895i | −1.88833 | + | 1.88833i | −0.436831 | + | 1.05460i | |||
393.6 | 0.309239 | + | 0.309239i | −2.18534 | + | 0.905196i | − | 1.80874i | 0.192697 | + | 0.465212i | −0.955714 | − | 0.395870i | 0 | 1.17781 | − | 1.17781i | 1.83500 | − | 1.83500i | −0.0842723 | + | 0.203451i | |||
393.7 | 1.09621 | + | 1.09621i | 0.791288 | − | 0.327762i | 0.403368i | 0.252972 | + | 0.610729i | 1.22672 | + | 0.508123i | 0 | 1.75025 | − | 1.75025i | −1.60261 | + | 1.60261i | −0.392178 | + | 0.946802i | ||||
393.8 | 1.10720 | + | 1.10720i | 2.70809 | − | 1.12173i | 0.451767i | −0.392048 | − | 0.946488i | 4.24036 | + | 1.75642i | 0 | 1.71420 | − | 1.71420i | 3.95416 | − | 3.95416i | 0.613874 | − | 1.48202i | ||||
393.9 | 1.43405 | + | 1.43405i | −2.24417 | + | 0.929567i | 2.11297i | −1.26519 | − | 3.05445i | −4.55129 | − | 1.88520i | 0 | −0.162010 | + | 0.162010i | 2.05090 | − | 2.05090i | 2.56587 | − | 6.19456i | ||||
393.10 | 1.86546 | + | 1.86546i | 0.0746649 | − | 0.0309272i | 4.95985i | 0.770466 | + | 1.86007i | 0.196977 | + | 0.0815907i | 0 | −5.52147 | + | 5.52147i | −2.11670 | + | 2.11670i | −2.03261 | + | 4.90715i | ||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 833.2.l.g | 40 | |
7.b | odd | 2 | 1 | 833.2.l.f | 40 | ||
7.c | even | 3 | 2 | 119.2.q.a | ✓ | 80 | |
7.d | odd | 6 | 2 | 833.2.v.f | 80 | ||
17.d | even | 8 | 1 | inner | 833.2.l.g | 40 | |
119.l | odd | 8 | 1 | 833.2.l.f | 40 | ||
119.q | even | 24 | 2 | 119.2.q.a | ✓ | 80 | |
119.r | odd | 24 | 2 | 833.2.v.f | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
119.2.q.a | ✓ | 80 | 7.c | even | 3 | 2 | |
119.2.q.a | ✓ | 80 | 119.q | even | 24 | 2 | |
833.2.l.f | 40 | 7.b | odd | 2 | 1 | ||
833.2.l.f | 40 | 119.l | odd | 8 | 1 | ||
833.2.l.g | 40 | 1.a | even | 1 | 1 | trivial | |
833.2.l.g | 40 | 17.d | even | 8 | 1 | inner | |
833.2.v.f | 80 | 7.d | odd | 6 | 2 | ||
833.2.v.f | 80 | 119.r | odd | 24 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(833, [\chi])\):
\( T_{2}^{40} - 4 T_{2}^{39} + 8 T_{2}^{38} + 98 T_{2}^{36} - 392 T_{2}^{35} + 784 T_{2}^{34} - 4 T_{2}^{33} + \cdots + 49 \) |
\( T_{3}^{40} - 4 T_{3}^{39} + 6 T_{3}^{38} + 8 T_{3}^{37} - 46 T_{3}^{36} + 348 T_{3}^{34} + 432 T_{3}^{33} + \cdots + 1 \) |