Properties

Label 845.2.a.n.1.5
Level $845$
Weight $2$
Character 845.1
Self dual yes
Analytic conductor $6.747$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 17x^{7} - 9x^{6} + 59x^{5} + 32x^{4} - 44x^{3} - 23x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.421015\) of defining polynomial
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0240266 q^{2} +2.93017 q^{3} -1.99942 q^{4} -1.00000 q^{5} -0.0704021 q^{6} +1.66541 q^{7} +0.0960927 q^{8} +5.58589 q^{9} +0.0240266 q^{10} -3.33397 q^{11} -5.85865 q^{12} -0.0400143 q^{14} -2.93017 q^{15} +3.99654 q^{16} +7.07621 q^{17} -0.134210 q^{18} +6.68286 q^{19} +1.99942 q^{20} +4.87994 q^{21} +0.0801041 q^{22} +4.02860 q^{23} +0.281568 q^{24} +1.00000 q^{25} +7.57710 q^{27} -3.32987 q^{28} -0.000401110 q^{29} +0.0704021 q^{30} -4.14759 q^{31} -0.288209 q^{32} -9.76910 q^{33} -0.170018 q^{34} -1.66541 q^{35} -11.1686 q^{36} +8.96459 q^{37} -0.160567 q^{38} -0.0960927 q^{40} -9.60848 q^{41} -0.117249 q^{42} +2.78606 q^{43} +6.66601 q^{44} -5.58589 q^{45} -0.0967937 q^{46} -0.958374 q^{47} +11.7105 q^{48} -4.22640 q^{49} -0.0240266 q^{50} +20.7345 q^{51} -3.68268 q^{53} -0.182052 q^{54} +3.33397 q^{55} +0.160034 q^{56} +19.5819 q^{57} +9.63732e-6 q^{58} -7.99148 q^{59} +5.85865 q^{60} -9.14117 q^{61} +0.0996526 q^{62} +9.30282 q^{63} -7.98615 q^{64} +0.234719 q^{66} +6.72871 q^{67} -14.1483 q^{68} +11.8045 q^{69} +0.0400143 q^{70} +4.38321 q^{71} +0.536763 q^{72} +1.97245 q^{73} -0.215389 q^{74} +2.93017 q^{75} -13.3619 q^{76} -5.55244 q^{77} -3.77988 q^{79} -3.99654 q^{80} +5.44451 q^{81} +0.230860 q^{82} -3.64818 q^{83} -9.75707 q^{84} -7.07621 q^{85} -0.0669397 q^{86} -0.00117532 q^{87} -0.320370 q^{88} +0.989573 q^{89} +0.134210 q^{90} -8.05487 q^{92} -12.1531 q^{93} +0.0230265 q^{94} -6.68286 q^{95} -0.844500 q^{96} +18.4460 q^{97} +0.101546 q^{98} -18.6232 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 3 q^{2} + 7 q^{3} + 17 q^{4} - 9 q^{5} + 2 q^{6} - 7 q^{7} - 12 q^{8} + 16 q^{9} + 3 q^{10} + 9 q^{11} + 12 q^{12} - 2 q^{14} - 7 q^{15} + 37 q^{16} - q^{17} + 10 q^{18} + 4 q^{19} - 17 q^{20} + q^{21}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0240266 −0.0169894 −0.00849470 0.999964i \(-0.502704\pi\)
−0.00849470 + 0.999964i \(0.502704\pi\)
\(3\) 2.93017 1.69173 0.845867 0.533394i \(-0.179084\pi\)
0.845867 + 0.533394i \(0.179084\pi\)
\(4\) −1.99942 −0.999711
\(5\) −1.00000 −0.447214
\(6\) −0.0704021 −0.0287415
\(7\) 1.66541 0.629467 0.314734 0.949180i \(-0.398085\pi\)
0.314734 + 0.949180i \(0.398085\pi\)
\(8\) 0.0960927 0.0339739
\(9\) 5.58589 1.86196
\(10\) 0.0240266 0.00759789
\(11\) −3.33397 −1.00523 −0.502615 0.864510i \(-0.667629\pi\)
−0.502615 + 0.864510i \(0.667629\pi\)
\(12\) −5.85865 −1.69125
\(13\) 0 0
\(14\) −0.0400143 −0.0106943
\(15\) −2.93017 −0.756566
\(16\) 3.99654 0.999134
\(17\) 7.07621 1.71623 0.858116 0.513455i \(-0.171635\pi\)
0.858116 + 0.513455i \(0.171635\pi\)
\(18\) −0.134210 −0.0316337
\(19\) 6.68286 1.53315 0.766577 0.642153i \(-0.221958\pi\)
0.766577 + 0.642153i \(0.221958\pi\)
\(20\) 1.99942 0.447085
\(21\) 4.87994 1.06489
\(22\) 0.0801041 0.0170783
\(23\) 4.02860 0.840021 0.420011 0.907519i \(-0.362026\pi\)
0.420011 + 0.907519i \(0.362026\pi\)
\(24\) 0.281568 0.0574748
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 7.57710 1.45821
\(28\) −3.32987 −0.629286
\(29\) −0.000401110 0 −7.44842e−5 0 −3.72421e−5 1.00000i \(-0.500012\pi\)
−3.72421e−5 1.00000i \(0.500012\pi\)
\(30\) 0.0704021 0.0128536
\(31\) −4.14759 −0.744929 −0.372464 0.928046i \(-0.621487\pi\)
−0.372464 + 0.928046i \(0.621487\pi\)
\(32\) −0.288209 −0.0509486
\(33\) −9.76910 −1.70058
\(34\) −0.170018 −0.0291578
\(35\) −1.66541 −0.281506
\(36\) −11.1686 −1.86143
\(37\) 8.96459 1.47377 0.736885 0.676018i \(-0.236296\pi\)
0.736885 + 0.676018i \(0.236296\pi\)
\(38\) −0.160567 −0.0260474
\(39\) 0 0
\(40\) −0.0960927 −0.0151936
\(41\) −9.60848 −1.50059 −0.750296 0.661102i \(-0.770089\pi\)
−0.750296 + 0.661102i \(0.770089\pi\)
\(42\) −0.117249 −0.0180919
\(43\) 2.78606 0.424870 0.212435 0.977175i \(-0.431861\pi\)
0.212435 + 0.977175i \(0.431861\pi\)
\(44\) 6.66601 1.00494
\(45\) −5.58589 −0.832696
\(46\) −0.0967937 −0.0142715
\(47\) −0.958374 −0.139793 −0.0698966 0.997554i \(-0.522267\pi\)
−0.0698966 + 0.997554i \(0.522267\pi\)
\(48\) 11.7105 1.69027
\(49\) −4.22640 −0.603771
\(50\) −0.0240266 −0.00339788
\(51\) 20.7345 2.90341
\(52\) 0 0
\(53\) −3.68268 −0.505855 −0.252928 0.967485i \(-0.581393\pi\)
−0.252928 + 0.967485i \(0.581393\pi\)
\(54\) −0.182052 −0.0247742
\(55\) 3.33397 0.449552
\(56\) 0.160034 0.0213855
\(57\) 19.5819 2.59369
\(58\) 9.63732e−6 0 1.26544e−6 0
\(59\) −7.99148 −1.04040 −0.520201 0.854044i \(-0.674143\pi\)
−0.520201 + 0.854044i \(0.674143\pi\)
\(60\) 5.85865 0.756348
\(61\) −9.14117 −1.17041 −0.585203 0.810886i \(-0.698985\pi\)
−0.585203 + 0.810886i \(0.698985\pi\)
\(62\) 0.0996526 0.0126559
\(63\) 9.30282 1.17205
\(64\) −7.98615 −0.998269
\(65\) 0 0
\(66\) 0.234719 0.0288919
\(67\) 6.72871 0.822042 0.411021 0.911626i \(-0.365172\pi\)
0.411021 + 0.911626i \(0.365172\pi\)
\(68\) −14.1483 −1.71574
\(69\) 11.8045 1.42109
\(70\) 0.0400143 0.00478262
\(71\) 4.38321 0.520191 0.260096 0.965583i \(-0.416246\pi\)
0.260096 + 0.965583i \(0.416246\pi\)
\(72\) 0.536763 0.0632582
\(73\) 1.97245 0.230858 0.115429 0.993316i \(-0.463176\pi\)
0.115429 + 0.993316i \(0.463176\pi\)
\(74\) −0.215389 −0.0250385
\(75\) 2.93017 0.338347
\(76\) −13.3619 −1.53271
\(77\) −5.55244 −0.632759
\(78\) 0 0
\(79\) −3.77988 −0.425269 −0.212635 0.977132i \(-0.568204\pi\)
−0.212635 + 0.977132i \(0.568204\pi\)
\(80\) −3.99654 −0.446826
\(81\) 5.44451 0.604945
\(82\) 0.230860 0.0254942
\(83\) −3.64818 −0.400440 −0.200220 0.979751i \(-0.564166\pi\)
−0.200220 + 0.979751i \(0.564166\pi\)
\(84\) −9.75707 −1.06458
\(85\) −7.07621 −0.767523
\(86\) −0.0669397 −0.00721830
\(87\) −0.00117532 −0.000126007 0
\(88\) −0.320370 −0.0341516
\(89\) 0.989573 0.104895 0.0524473 0.998624i \(-0.483298\pi\)
0.0524473 + 0.998624i \(0.483298\pi\)
\(90\) 0.134210 0.0141470
\(91\) 0 0
\(92\) −8.05487 −0.839779
\(93\) −12.1531 −1.26022
\(94\) 0.0230265 0.00237500
\(95\) −6.68286 −0.685647
\(96\) −0.844500 −0.0861915
\(97\) 18.4460 1.87291 0.936454 0.350790i \(-0.114087\pi\)
0.936454 + 0.350790i \(0.114087\pi\)
\(98\) 0.101546 0.0102577
\(99\) −18.6232 −1.87170
\(100\) −1.99942 −0.199942
\(101\) −9.86892 −0.981994 −0.490997 0.871161i \(-0.663367\pi\)
−0.490997 + 0.871161i \(0.663367\pi\)
\(102\) −0.498180 −0.0493272
\(103\) −15.1288 −1.49069 −0.745344 0.666680i \(-0.767715\pi\)
−0.745344 + 0.666680i \(0.767715\pi\)
\(104\) 0 0
\(105\) −4.87994 −0.476234
\(106\) 0.0884825 0.00859418
\(107\) 2.99312 0.289356 0.144678 0.989479i \(-0.453785\pi\)
0.144678 + 0.989479i \(0.453785\pi\)
\(108\) −15.1498 −1.45779
\(109\) −13.4179 −1.28520 −0.642602 0.766200i \(-0.722145\pi\)
−0.642602 + 0.766200i \(0.722145\pi\)
\(110\) −0.0801041 −0.00763763
\(111\) 26.2678 2.49323
\(112\) 6.65589 0.628922
\(113\) −3.38444 −0.318382 −0.159191 0.987248i \(-0.550889\pi\)
−0.159191 + 0.987248i \(0.550889\pi\)
\(114\) −0.470488 −0.0440652
\(115\) −4.02860 −0.375669
\(116\) 0.000801988 0 7.44627e−5 0
\(117\) 0 0
\(118\) 0.192009 0.0176758
\(119\) 11.7848 1.08031
\(120\) −0.281568 −0.0257035
\(121\) 0.115354 0.0104868
\(122\) 0.219632 0.0198845
\(123\) −28.1545 −2.53860
\(124\) 8.29278 0.744714
\(125\) −1.00000 −0.0894427
\(126\) −0.223516 −0.0199124
\(127\) 8.29226 0.735819 0.367910 0.929862i \(-0.380074\pi\)
0.367910 + 0.929862i \(0.380074\pi\)
\(128\) 0.768298 0.0679086
\(129\) 8.16363 0.718768
\(130\) 0 0
\(131\) 4.86438 0.425003 0.212501 0.977161i \(-0.431839\pi\)
0.212501 + 0.977161i \(0.431839\pi\)
\(132\) 19.5326 1.70009
\(133\) 11.1297 0.965070
\(134\) −0.161668 −0.0139660
\(135\) −7.57710 −0.652133
\(136\) 0.679972 0.0583071
\(137\) 4.43432 0.378850 0.189425 0.981895i \(-0.439338\pi\)
0.189425 + 0.981895i \(0.439338\pi\)
\(138\) −0.283622 −0.0241435
\(139\) 6.07076 0.514915 0.257457 0.966290i \(-0.417115\pi\)
0.257457 + 0.966290i \(0.417115\pi\)
\(140\) 3.32987 0.281425
\(141\) −2.80820 −0.236493
\(142\) −0.105314 −0.00883773
\(143\) 0 0
\(144\) 22.3242 1.86035
\(145\) 0.000401110 0 3.33104e−5 0
\(146\) −0.0473914 −0.00392214
\(147\) −12.3841 −1.02142
\(148\) −17.9240 −1.47334
\(149\) 12.0203 0.984741 0.492370 0.870386i \(-0.336131\pi\)
0.492370 + 0.870386i \(0.336131\pi\)
\(150\) −0.0704021 −0.00574831
\(151\) −6.64251 −0.540560 −0.270280 0.962782i \(-0.587116\pi\)
−0.270280 + 0.962782i \(0.587116\pi\)
\(152\) 0.642174 0.0520872
\(153\) 39.5269 3.19556
\(154\) 0.133406 0.0107502
\(155\) 4.14759 0.333142
\(156\) 0 0
\(157\) 8.94035 0.713517 0.356759 0.934197i \(-0.383882\pi\)
0.356759 + 0.934197i \(0.383882\pi\)
\(158\) 0.0908177 0.00722507
\(159\) −10.7909 −0.855773
\(160\) 0.288209 0.0227849
\(161\) 6.70929 0.528766
\(162\) −0.130813 −0.0102777
\(163\) 4.49497 0.352073 0.176037 0.984384i \(-0.443672\pi\)
0.176037 + 0.984384i \(0.443672\pi\)
\(164\) 19.2114 1.50016
\(165\) 9.76910 0.760523
\(166\) 0.0876536 0.00680324
\(167\) −18.1721 −1.40620 −0.703098 0.711093i \(-0.748201\pi\)
−0.703098 + 0.711093i \(0.748201\pi\)
\(168\) 0.468927 0.0361785
\(169\) 0 0
\(170\) 0.170018 0.0130398
\(171\) 37.3297 2.85468
\(172\) −5.57052 −0.424748
\(173\) 0.0851909 0.00647694 0.00323847 0.999995i \(-0.498969\pi\)
0.00323847 + 0.999995i \(0.498969\pi\)
\(174\) 2.82390e−5 0 2.14079e−6 0
\(175\) 1.66541 0.125893
\(176\) −13.3243 −1.00436
\(177\) −23.4164 −1.76008
\(178\) −0.0237761 −0.00178210
\(179\) 9.57903 0.715970 0.357985 0.933727i \(-0.383464\pi\)
0.357985 + 0.933727i \(0.383464\pi\)
\(180\) 11.1686 0.832455
\(181\) −11.0716 −0.822946 −0.411473 0.911422i \(-0.634986\pi\)
−0.411473 + 0.911422i \(0.634986\pi\)
\(182\) 0 0
\(183\) −26.7852 −1.98002
\(184\) 0.387119 0.0285388
\(185\) −8.96459 −0.659090
\(186\) 0.291999 0.0214104
\(187\) −23.5919 −1.72521
\(188\) 1.91619 0.139753
\(189\) 12.6190 0.917898
\(190\) 0.160567 0.0116487
\(191\) −19.6800 −1.42399 −0.711996 0.702183i \(-0.752209\pi\)
−0.711996 + 0.702183i \(0.752209\pi\)
\(192\) −23.4008 −1.68880
\(193\) 2.22851 0.160412 0.0802060 0.996778i \(-0.474442\pi\)
0.0802060 + 0.996778i \(0.474442\pi\)
\(194\) −0.443196 −0.0318196
\(195\) 0 0
\(196\) 8.45035 0.603597
\(197\) −9.53209 −0.679134 −0.339567 0.940582i \(-0.610280\pi\)
−0.339567 + 0.940582i \(0.610280\pi\)
\(198\) 0.447453 0.0317991
\(199\) −20.4192 −1.44748 −0.723741 0.690072i \(-0.757579\pi\)
−0.723741 + 0.690072i \(0.757579\pi\)
\(200\) 0.0960927 0.00679478
\(201\) 19.7162 1.39068
\(202\) 0.237117 0.0166835
\(203\) −0.000668014 0 −4.68854e−5 0
\(204\) −41.4570 −2.90257
\(205\) 9.60848 0.671085
\(206\) 0.363495 0.0253259
\(207\) 22.5033 1.56409
\(208\) 0 0
\(209\) −22.2805 −1.54117
\(210\) 0.117249 0.00809093
\(211\) −6.41514 −0.441637 −0.220818 0.975315i \(-0.570873\pi\)
−0.220818 + 0.975315i \(0.570873\pi\)
\(212\) 7.36324 0.505709
\(213\) 12.8435 0.880025
\(214\) −0.0719146 −0.00491598
\(215\) −2.78606 −0.190008
\(216\) 0.728104 0.0495412
\(217\) −6.90745 −0.468908
\(218\) 0.322388 0.0218349
\(219\) 5.77962 0.390550
\(220\) −6.66601 −0.449423
\(221\) 0 0
\(222\) −0.631127 −0.0423584
\(223\) −2.85750 −0.191353 −0.0956763 0.995412i \(-0.530501\pi\)
−0.0956763 + 0.995412i \(0.530501\pi\)
\(224\) −0.479987 −0.0320705
\(225\) 5.58589 0.372393
\(226\) 0.0813168 0.00540911
\(227\) −22.2069 −1.47393 −0.736963 0.675933i \(-0.763741\pi\)
−0.736963 + 0.675933i \(0.763741\pi\)
\(228\) −39.1525 −2.59294
\(229\) 20.0068 1.32209 0.661045 0.750347i \(-0.270113\pi\)
0.661045 + 0.750347i \(0.270113\pi\)
\(230\) 0.0967937 0.00638239
\(231\) −16.2696 −1.07046
\(232\) −3.85437e−5 0 −2.53052e−6 0
\(233\) 2.11070 0.138276 0.0691381 0.997607i \(-0.477975\pi\)
0.0691381 + 0.997607i \(0.477975\pi\)
\(234\) 0 0
\(235\) 0.958374 0.0625174
\(236\) 15.9784 1.04010
\(237\) −11.0757 −0.719442
\(238\) −0.283150 −0.0183539
\(239\) 18.8655 1.22031 0.610154 0.792283i \(-0.291108\pi\)
0.610154 + 0.792283i \(0.291108\pi\)
\(240\) −11.7105 −0.755911
\(241\) 13.0649 0.841584 0.420792 0.907157i \(-0.361752\pi\)
0.420792 + 0.907157i \(0.361752\pi\)
\(242\) −0.00277158 −0.000178164 0
\(243\) −6.77797 −0.434807
\(244\) 18.2771 1.17007
\(245\) 4.22640 0.270015
\(246\) 0.676458 0.0431294
\(247\) 0 0
\(248\) −0.398553 −0.0253081
\(249\) −10.6898 −0.677438
\(250\) 0.0240266 0.00151958
\(251\) 11.9931 0.757001 0.378500 0.925601i \(-0.376440\pi\)
0.378500 + 0.925601i \(0.376440\pi\)
\(252\) −18.6003 −1.17171
\(253\) −13.4312 −0.844414
\(254\) −0.199235 −0.0125011
\(255\) −20.7345 −1.29844
\(256\) 15.9538 0.997115
\(257\) −26.6130 −1.66007 −0.830036 0.557709i \(-0.811680\pi\)
−0.830036 + 0.557709i \(0.811680\pi\)
\(258\) −0.196145 −0.0122114
\(259\) 14.9298 0.927690
\(260\) 0 0
\(261\) −0.00224056 −0.000138687 0
\(262\) −0.116875 −0.00722055
\(263\) −17.0235 −1.04971 −0.524856 0.851191i \(-0.675881\pi\)
−0.524856 + 0.851191i \(0.675881\pi\)
\(264\) −0.938739 −0.0577754
\(265\) 3.68268 0.226225
\(266\) −0.267410 −0.0163960
\(267\) 2.89962 0.177454
\(268\) −13.4535 −0.821805
\(269\) 5.98522 0.364925 0.182463 0.983213i \(-0.441593\pi\)
0.182463 + 0.983213i \(0.441593\pi\)
\(270\) 0.182052 0.0110793
\(271\) 7.11684 0.432317 0.216159 0.976358i \(-0.430647\pi\)
0.216159 + 0.976358i \(0.430647\pi\)
\(272\) 28.2803 1.71475
\(273\) 0 0
\(274\) −0.106542 −0.00643643
\(275\) −3.33397 −0.201046
\(276\) −23.6021 −1.42068
\(277\) 7.48738 0.449873 0.224936 0.974373i \(-0.427783\pi\)
0.224936 + 0.974373i \(0.427783\pi\)
\(278\) −0.145860 −0.00874810
\(279\) −23.1680 −1.38703
\(280\) −0.160034 −0.00956387
\(281\) −24.8752 −1.48393 −0.741964 0.670440i \(-0.766105\pi\)
−0.741964 + 0.670440i \(0.766105\pi\)
\(282\) 0.0674716 0.00401787
\(283\) 12.7413 0.757390 0.378695 0.925522i \(-0.376373\pi\)
0.378695 + 0.925522i \(0.376373\pi\)
\(284\) −8.76388 −0.520041
\(285\) −19.5819 −1.15993
\(286\) 0 0
\(287\) −16.0021 −0.944574
\(288\) −1.60990 −0.0948644
\(289\) 33.0727 1.94545
\(290\) −9.63732e−6 0 −5.65923e−7 0
\(291\) 54.0499 3.16846
\(292\) −3.94377 −0.230791
\(293\) 17.5748 1.02673 0.513365 0.858171i \(-0.328399\pi\)
0.513365 + 0.858171i \(0.328399\pi\)
\(294\) 0.297547 0.0173533
\(295\) 7.99148 0.465282
\(296\) 0.861432 0.0500697
\(297\) −25.2618 −1.46584
\(298\) −0.288807 −0.0167302
\(299\) 0 0
\(300\) −5.85865 −0.338249
\(301\) 4.63995 0.267442
\(302\) 0.159597 0.00918379
\(303\) −28.9176 −1.66127
\(304\) 26.7083 1.53183
\(305\) 9.14117 0.523422
\(306\) −0.949700 −0.0542907
\(307\) −0.592094 −0.0337926 −0.0168963 0.999857i \(-0.505379\pi\)
−0.0168963 + 0.999857i \(0.505379\pi\)
\(308\) 11.1017 0.632577
\(309\) −44.3300 −2.52185
\(310\) −0.0996526 −0.00565989
\(311\) −23.6771 −1.34260 −0.671301 0.741185i \(-0.734264\pi\)
−0.671301 + 0.741185i \(0.734264\pi\)
\(312\) 0 0
\(313\) 9.09689 0.514187 0.257093 0.966387i \(-0.417235\pi\)
0.257093 + 0.966387i \(0.417235\pi\)
\(314\) −0.214807 −0.0121222
\(315\) −9.30282 −0.524155
\(316\) 7.55757 0.425146
\(317\) −4.34397 −0.243982 −0.121991 0.992531i \(-0.538928\pi\)
−0.121991 + 0.992531i \(0.538928\pi\)
\(318\) 0.259269 0.0145391
\(319\) 0.00133729 7.48737e−5 0
\(320\) 7.98615 0.446439
\(321\) 8.77034 0.489513
\(322\) −0.161202 −0.00898342
\(323\) 47.2893 2.63125
\(324\) −10.8859 −0.604771
\(325\) 0 0
\(326\) −0.107999 −0.00598152
\(327\) −39.3168 −2.17422
\(328\) −0.923305 −0.0509810
\(329\) −1.59609 −0.0879953
\(330\) −0.234719 −0.0129208
\(331\) 19.3221 1.06204 0.531019 0.847360i \(-0.321809\pi\)
0.531019 + 0.847360i \(0.321809\pi\)
\(332\) 7.29426 0.400324
\(333\) 50.0752 2.74411
\(334\) 0.436614 0.0238904
\(335\) −6.72871 −0.367628
\(336\) 19.5029 1.06397
\(337\) −5.22779 −0.284776 −0.142388 0.989811i \(-0.545478\pi\)
−0.142388 + 0.989811i \(0.545478\pi\)
\(338\) 0 0
\(339\) −9.91699 −0.538617
\(340\) 14.1483 0.767301
\(341\) 13.8279 0.748825
\(342\) −0.896908 −0.0484992
\(343\) −18.6966 −1.00952
\(344\) 0.267720 0.0144345
\(345\) −11.8045 −0.635532
\(346\) −0.00204685 −0.000110039 0
\(347\) −18.8624 −1.01259 −0.506293 0.862361i \(-0.668985\pi\)
−0.506293 + 0.862361i \(0.668985\pi\)
\(348\) 0.00234996 0.000125971 0
\(349\) −27.8225 −1.48930 −0.744652 0.667453i \(-0.767384\pi\)
−0.744652 + 0.667453i \(0.767384\pi\)
\(350\) −0.0400143 −0.00213885
\(351\) 0 0
\(352\) 0.960879 0.0512150
\(353\) −34.6884 −1.84627 −0.923137 0.384470i \(-0.874384\pi\)
−0.923137 + 0.384470i \(0.874384\pi\)
\(354\) 0.562617 0.0299028
\(355\) −4.38321 −0.232636
\(356\) −1.97858 −0.104864
\(357\) 34.5315 1.82760
\(358\) −0.230152 −0.0121639
\(359\) −27.1511 −1.43298 −0.716490 0.697597i \(-0.754253\pi\)
−0.716490 + 0.697597i \(0.754253\pi\)
\(360\) −0.536763 −0.0282899
\(361\) 25.6606 1.35056
\(362\) 0.266014 0.0139814
\(363\) 0.338008 0.0177408
\(364\) 0 0
\(365\) −1.97245 −0.103243
\(366\) 0.643558 0.0336393
\(367\) 25.2613 1.31863 0.659315 0.751867i \(-0.270847\pi\)
0.659315 + 0.751867i \(0.270847\pi\)
\(368\) 16.1004 0.839294
\(369\) −53.6719 −2.79405
\(370\) 0.215389 0.0111975
\(371\) −6.13319 −0.318419
\(372\) 24.2993 1.25986
\(373\) 4.53353 0.234737 0.117369 0.993088i \(-0.462554\pi\)
0.117369 + 0.993088i \(0.462554\pi\)
\(374\) 0.566833 0.0293103
\(375\) −2.93017 −0.151313
\(376\) −0.0920928 −0.00474932
\(377\) 0 0
\(378\) −0.303192 −0.0155945
\(379\) 5.35880 0.275263 0.137632 0.990483i \(-0.456051\pi\)
0.137632 + 0.990483i \(0.456051\pi\)
\(380\) 13.3619 0.685449
\(381\) 24.2977 1.24481
\(382\) 0.472843 0.0241928
\(383\) −5.61342 −0.286832 −0.143416 0.989662i \(-0.545809\pi\)
−0.143416 + 0.989662i \(0.545809\pi\)
\(384\) 2.25124 0.114883
\(385\) 5.55244 0.282979
\(386\) −0.0535437 −0.00272530
\(387\) 15.5626 0.791093
\(388\) −36.8814 −1.87237
\(389\) 2.71877 0.137847 0.0689236 0.997622i \(-0.478044\pi\)
0.0689236 + 0.997622i \(0.478044\pi\)
\(390\) 0 0
\(391\) 28.5072 1.44167
\(392\) −0.406126 −0.0205125
\(393\) 14.2535 0.718992
\(394\) 0.229024 0.0115381
\(395\) 3.77988 0.190186
\(396\) 37.2356 1.87116
\(397\) −5.01013 −0.251451 −0.125726 0.992065i \(-0.540126\pi\)
−0.125726 + 0.992065i \(0.540126\pi\)
\(398\) 0.490606 0.0245919
\(399\) 32.6120 1.63264
\(400\) 3.99654 0.199827
\(401\) 19.0325 0.950435 0.475218 0.879868i \(-0.342369\pi\)
0.475218 + 0.879868i \(0.342369\pi\)
\(402\) −0.473715 −0.0236268
\(403\) 0 0
\(404\) 19.7321 0.981711
\(405\) −5.44451 −0.270540
\(406\) 1.60501e−5 0 7.96555e−7 0
\(407\) −29.8877 −1.48148
\(408\) 1.99243 0.0986401
\(409\) 11.9424 0.590513 0.295256 0.955418i \(-0.404595\pi\)
0.295256 + 0.955418i \(0.404595\pi\)
\(410\) −0.230860 −0.0114013
\(411\) 12.9933 0.640913
\(412\) 30.2489 1.49026
\(413\) −13.3091 −0.654899
\(414\) −0.540679 −0.0265729
\(415\) 3.64818 0.179082
\(416\) 0 0
\(417\) 17.7883 0.871099
\(418\) 0.535325 0.0261836
\(419\) −2.49593 −0.121934 −0.0609671 0.998140i \(-0.519418\pi\)
−0.0609671 + 0.998140i \(0.519418\pi\)
\(420\) 9.75707 0.476096
\(421\) −23.2220 −1.13177 −0.565885 0.824484i \(-0.691465\pi\)
−0.565885 + 0.824484i \(0.691465\pi\)
\(422\) 0.154134 0.00750314
\(423\) −5.35337 −0.260290
\(424\) −0.353879 −0.0171859
\(425\) 7.07621 0.343247
\(426\) −0.308587 −0.0149511
\(427\) −15.2238 −0.736733
\(428\) −5.98451 −0.289272
\(429\) 0 0
\(430\) 0.0669397 0.00322812
\(431\) 18.6779 0.899682 0.449841 0.893109i \(-0.351481\pi\)
0.449841 + 0.893109i \(0.351481\pi\)
\(432\) 30.2822 1.45695
\(433\) 26.2912 1.26348 0.631738 0.775182i \(-0.282342\pi\)
0.631738 + 0.775182i \(0.282342\pi\)
\(434\) 0.165963 0.00796647
\(435\) 0.00117532 5.63523e−5 0
\(436\) 26.8281 1.28483
\(437\) 26.9226 1.28788
\(438\) −0.138865 −0.00663522
\(439\) 7.98298 0.381007 0.190503 0.981687i \(-0.438988\pi\)
0.190503 + 0.981687i \(0.438988\pi\)
\(440\) 0.320370 0.0152730
\(441\) −23.6082 −1.12420
\(442\) 0 0
\(443\) 40.4743 1.92299 0.961495 0.274823i \(-0.0886192\pi\)
0.961495 + 0.274823i \(0.0886192\pi\)
\(444\) −52.5204 −2.49251
\(445\) −0.989573 −0.0469103
\(446\) 0.0686562 0.00325097
\(447\) 35.2215 1.66592
\(448\) −13.3002 −0.628377
\(449\) −15.7278 −0.742241 −0.371121 0.928585i \(-0.621026\pi\)
−0.371121 + 0.928585i \(0.621026\pi\)
\(450\) −0.134210 −0.00632673
\(451\) 32.0344 1.50844
\(452\) 6.76693 0.318290
\(453\) −19.4637 −0.914483
\(454\) 0.533558 0.0250411
\(455\) 0 0
\(456\) 1.88168 0.0881177
\(457\) 21.2829 0.995573 0.497786 0.867300i \(-0.334146\pi\)
0.497786 + 0.867300i \(0.334146\pi\)
\(458\) −0.480697 −0.0224615
\(459\) 53.6171 2.50263
\(460\) 8.05487 0.375560
\(461\) −38.2892 −1.78331 −0.891653 0.452720i \(-0.850454\pi\)
−0.891653 + 0.452720i \(0.850454\pi\)
\(462\) 0.390904 0.0181865
\(463\) −12.1131 −0.562944 −0.281472 0.959569i \(-0.590823\pi\)
−0.281472 + 0.959569i \(0.590823\pi\)
\(464\) −0.00160305 −7.44197e−5 0
\(465\) 12.1531 0.563588
\(466\) −0.0507129 −0.00234923
\(467\) 23.2313 1.07502 0.537509 0.843258i \(-0.319365\pi\)
0.537509 + 0.843258i \(0.319365\pi\)
\(468\) 0 0
\(469\) 11.2061 0.517449
\(470\) −0.0230265 −0.00106213
\(471\) 26.1967 1.20708
\(472\) −0.767923 −0.0353465
\(473\) −9.28865 −0.427092
\(474\) 0.266111 0.0122229
\(475\) 6.68286 0.306631
\(476\) −23.5628 −1.08000
\(477\) −20.5711 −0.941884
\(478\) −0.453275 −0.0207323
\(479\) 37.9716 1.73497 0.867483 0.497466i \(-0.165736\pi\)
0.867483 + 0.497466i \(0.165736\pi\)
\(480\) 0.844500 0.0385460
\(481\) 0 0
\(482\) −0.313906 −0.0142980
\(483\) 19.6593 0.894531
\(484\) −0.230642 −0.0104837
\(485\) −18.4460 −0.837590
\(486\) 0.162852 0.00738711
\(487\) −22.1216 −1.00242 −0.501212 0.865324i \(-0.667112\pi\)
−0.501212 + 0.865324i \(0.667112\pi\)
\(488\) −0.878400 −0.0397633
\(489\) 13.1710 0.595615
\(490\) −0.101546 −0.00458739
\(491\) −26.1440 −1.17986 −0.589931 0.807453i \(-0.700845\pi\)
−0.589931 + 0.807453i \(0.700845\pi\)
\(492\) 56.2927 2.53787
\(493\) −0.00283834 −0.000127832 0
\(494\) 0 0
\(495\) 18.6232 0.837050
\(496\) −16.5760 −0.744284
\(497\) 7.29986 0.327443
\(498\) 0.256840 0.0115093
\(499\) −22.5180 −1.00805 −0.504023 0.863690i \(-0.668147\pi\)
−0.504023 + 0.863690i \(0.668147\pi\)
\(500\) 1.99942 0.0894169
\(501\) −53.2472 −2.37891
\(502\) −0.288155 −0.0128610
\(503\) 20.4701 0.912716 0.456358 0.889796i \(-0.349154\pi\)
0.456358 + 0.889796i \(0.349154\pi\)
\(504\) 0.893933 0.0398190
\(505\) 9.86892 0.439161
\(506\) 0.322707 0.0143461
\(507\) 0 0
\(508\) −16.5797 −0.735607
\(509\) 20.2724 0.898557 0.449278 0.893392i \(-0.351681\pi\)
0.449278 + 0.893392i \(0.351681\pi\)
\(510\) 0.498180 0.0220598
\(511\) 3.28495 0.145318
\(512\) −1.91991 −0.0848490
\(513\) 50.6367 2.23567
\(514\) 0.639421 0.0282036
\(515\) 15.1288 0.666656
\(516\) −16.3226 −0.718560
\(517\) 3.19519 0.140524
\(518\) −0.358712 −0.0157609
\(519\) 0.249624 0.0109573
\(520\) 0 0
\(521\) −30.1602 −1.32134 −0.660670 0.750676i \(-0.729728\pi\)
−0.660670 + 0.750676i \(0.729728\pi\)
\(522\) 5.38330e−5 0 2.35621e−6 0
\(523\) 14.1082 0.616910 0.308455 0.951239i \(-0.400188\pi\)
0.308455 + 0.951239i \(0.400188\pi\)
\(524\) −9.72595 −0.424880
\(525\) 4.87994 0.212978
\(526\) 0.409017 0.0178340
\(527\) −29.3492 −1.27847
\(528\) −39.0425 −1.69911
\(529\) −6.77038 −0.294364
\(530\) −0.0884825 −0.00384343
\(531\) −44.6396 −1.93719
\(532\) −22.2530 −0.964792
\(533\) 0 0
\(534\) −0.0696681 −0.00301483
\(535\) −2.99312 −0.129404
\(536\) 0.646580 0.0279280
\(537\) 28.0682 1.21123
\(538\) −0.143805 −0.00619986
\(539\) 14.0907 0.606928
\(540\) 15.1498 0.651945
\(541\) 33.5648 1.44306 0.721532 0.692381i \(-0.243438\pi\)
0.721532 + 0.692381i \(0.243438\pi\)
\(542\) −0.170994 −0.00734481
\(543\) −32.4417 −1.39221
\(544\) −2.03943 −0.0874396
\(545\) 13.4179 0.574761
\(546\) 0 0
\(547\) 34.8045 1.48813 0.744067 0.668106i \(-0.232895\pi\)
0.744067 + 0.668106i \(0.232895\pi\)
\(548\) −8.86609 −0.378740
\(549\) −51.0616 −2.17926
\(550\) 0.0801041 0.00341565
\(551\) −0.00268056 −0.000114196 0
\(552\) 1.13432 0.0482801
\(553\) −6.29506 −0.267693
\(554\) −0.179897 −0.00764307
\(555\) −26.2678 −1.11501
\(556\) −12.1380 −0.514766
\(557\) −18.3989 −0.779587 −0.389794 0.920902i \(-0.627454\pi\)
−0.389794 + 0.920902i \(0.627454\pi\)
\(558\) 0.556649 0.0235648
\(559\) 0 0
\(560\) −6.65589 −0.281263
\(561\) −69.1282 −2.91859
\(562\) 0.597667 0.0252110
\(563\) 18.6109 0.784357 0.392178 0.919889i \(-0.371722\pi\)
0.392178 + 0.919889i \(0.371722\pi\)
\(564\) 5.61477 0.236425
\(565\) 3.38444 0.142385
\(566\) −0.306130 −0.0128676
\(567\) 9.06736 0.380793
\(568\) 0.421194 0.0176729
\(569\) −10.8666 −0.455550 −0.227775 0.973714i \(-0.573145\pi\)
−0.227775 + 0.973714i \(0.573145\pi\)
\(570\) 0.470488 0.0197066
\(571\) 38.9376 1.62949 0.814743 0.579822i \(-0.196878\pi\)
0.814743 + 0.579822i \(0.196878\pi\)
\(572\) 0 0
\(573\) −57.6656 −2.40902
\(574\) 0.384477 0.0160477
\(575\) 4.02860 0.168004
\(576\) −44.6098 −1.85874
\(577\) 33.9986 1.41538 0.707691 0.706522i \(-0.249737\pi\)
0.707691 + 0.706522i \(0.249737\pi\)
\(578\) −0.794627 −0.0330521
\(579\) 6.52992 0.271374
\(580\) −0.000801988 0 −3.33007e−5 0
\(581\) −6.07573 −0.252064
\(582\) −1.29864 −0.0538303
\(583\) 12.2780 0.508501
\(584\) 0.189538 0.00784315
\(585\) 0 0
\(586\) −0.422263 −0.0174435
\(587\) −17.9777 −0.742018 −0.371009 0.928629i \(-0.620988\pi\)
−0.371009 + 0.928629i \(0.620988\pi\)
\(588\) 24.7610 1.02112
\(589\) −27.7178 −1.14209
\(590\) −0.192009 −0.00790487
\(591\) −27.9306 −1.14891
\(592\) 35.8273 1.47249
\(593\) −26.9189 −1.10542 −0.552712 0.833372i \(-0.686407\pi\)
−0.552712 + 0.833372i \(0.686407\pi\)
\(594\) 0.606957 0.0249037
\(595\) −11.7848 −0.483130
\(596\) −24.0336 −0.984457
\(597\) −59.8318 −2.44875
\(598\) 0 0
\(599\) −8.68542 −0.354877 −0.177438 0.984132i \(-0.556781\pi\)
−0.177438 + 0.984132i \(0.556781\pi\)
\(600\) 0.281568 0.0114950
\(601\) −31.3757 −1.27984 −0.639921 0.768440i \(-0.721033\pi\)
−0.639921 + 0.768440i \(0.721033\pi\)
\(602\) −0.111482 −0.00454368
\(603\) 37.5858 1.53061
\(604\) 13.2812 0.540404
\(605\) −0.115354 −0.00468982
\(606\) 0.694793 0.0282240
\(607\) 3.77489 0.153218 0.0766091 0.997061i \(-0.475591\pi\)
0.0766091 + 0.997061i \(0.475591\pi\)
\(608\) −1.92606 −0.0781120
\(609\) −0.00195739 −7.93176e−5 0
\(610\) −0.219632 −0.00889263
\(611\) 0 0
\(612\) −79.0310 −3.19464
\(613\) 28.6074 1.15544 0.577722 0.816234i \(-0.303942\pi\)
0.577722 + 0.816234i \(0.303942\pi\)
\(614\) 0.0142260 0.000574116 0
\(615\) 28.1545 1.13530
\(616\) −0.533549 −0.0214973
\(617\) −12.6947 −0.511071 −0.255535 0.966800i \(-0.582252\pi\)
−0.255535 + 0.966800i \(0.582252\pi\)
\(618\) 1.06510 0.0428447
\(619\) 24.5421 0.986430 0.493215 0.869907i \(-0.335822\pi\)
0.493215 + 0.869907i \(0.335822\pi\)
\(620\) −8.29278 −0.333046
\(621\) 30.5251 1.22493
\(622\) 0.568880 0.0228100
\(623\) 1.64805 0.0660277
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −0.218568 −0.00873573
\(627\) −65.2855 −2.60725
\(628\) −17.8755 −0.713311
\(629\) 63.4353 2.52933
\(630\) 0.223516 0.00890507
\(631\) 7.66905 0.305300 0.152650 0.988280i \(-0.451219\pi\)
0.152650 + 0.988280i \(0.451219\pi\)
\(632\) −0.363218 −0.0144481
\(633\) −18.7974 −0.747132
\(634\) 0.104371 0.00414510
\(635\) −8.29226 −0.329068
\(636\) 21.5755 0.855526
\(637\) 0 0
\(638\) −3.21305e−5 0 −1.27206e−6 0
\(639\) 24.4841 0.968577
\(640\) −0.768298 −0.0303696
\(641\) −8.98009 −0.354692 −0.177346 0.984149i \(-0.556751\pi\)
−0.177346 + 0.984149i \(0.556751\pi\)
\(642\) −0.210722 −0.00831653
\(643\) −14.1503 −0.558032 −0.279016 0.960287i \(-0.590008\pi\)
−0.279016 + 0.960287i \(0.590008\pi\)
\(644\) −13.4147 −0.528613
\(645\) −8.16363 −0.321443
\(646\) −1.13620 −0.0447033
\(647\) 21.8757 0.860024 0.430012 0.902823i \(-0.358509\pi\)
0.430012 + 0.902823i \(0.358509\pi\)
\(648\) 0.523177 0.0205524
\(649\) 26.6434 1.04584
\(650\) 0 0
\(651\) −20.2400 −0.793268
\(652\) −8.98735 −0.351972
\(653\) −45.1455 −1.76668 −0.883340 0.468733i \(-0.844711\pi\)
−0.883340 + 0.468733i \(0.844711\pi\)
\(654\) 0.944651 0.0369388
\(655\) −4.86438 −0.190067
\(656\) −38.4006 −1.49929
\(657\) 11.0179 0.429849
\(658\) 0.0383487 0.00149499
\(659\) 32.9439 1.28331 0.641656 0.766993i \(-0.278248\pi\)
0.641656 + 0.766993i \(0.278248\pi\)
\(660\) −19.5326 −0.760304
\(661\) 29.7714 1.15798 0.578988 0.815336i \(-0.303448\pi\)
0.578988 + 0.815336i \(0.303448\pi\)
\(662\) −0.464245 −0.0180434
\(663\) 0 0
\(664\) −0.350564 −0.0136045
\(665\) −11.1297 −0.431592
\(666\) −1.20314 −0.0466207
\(667\) −0.00161591 −6.25683e−5 0
\(668\) 36.3336 1.40579
\(669\) −8.37297 −0.323718
\(670\) 0.161668 0.00624579
\(671\) 30.4764 1.17653
\(672\) −1.40644 −0.0542547
\(673\) −24.7144 −0.952671 −0.476336 0.879264i \(-0.658035\pi\)
−0.476336 + 0.879264i \(0.658035\pi\)
\(674\) 0.125606 0.00483817
\(675\) 7.57710 0.291643
\(676\) 0 0
\(677\) 47.2303 1.81521 0.907605 0.419826i \(-0.137909\pi\)
0.907605 + 0.419826i \(0.137909\pi\)
\(678\) 0.238272 0.00915078
\(679\) 30.7202 1.17893
\(680\) −0.679972 −0.0260757
\(681\) −65.0700 −2.49349
\(682\) −0.332239 −0.0127221
\(683\) 32.6572 1.24959 0.624797 0.780787i \(-0.285182\pi\)
0.624797 + 0.780787i \(0.285182\pi\)
\(684\) −74.6379 −2.85385
\(685\) −4.43432 −0.169427
\(686\) 0.449216 0.0171512
\(687\) 58.6234 2.23662
\(688\) 11.1346 0.424503
\(689\) 0 0
\(690\) 0.283622 0.0107973
\(691\) 2.93042 0.111479 0.0557393 0.998445i \(-0.482248\pi\)
0.0557393 + 0.998445i \(0.482248\pi\)
\(692\) −0.170333 −0.00647507
\(693\) −31.0153 −1.17817
\(694\) 0.453200 0.0172032
\(695\) −6.07076 −0.230277
\(696\) −0.000112940 0 −4.28097e−6 0
\(697\) −67.9916 −2.57537
\(698\) 0.668481 0.0253024
\(699\) 6.18469 0.233927
\(700\) −3.32987 −0.125857
\(701\) 14.4881 0.547210 0.273605 0.961842i \(-0.411784\pi\)
0.273605 + 0.961842i \(0.411784\pi\)
\(702\) 0 0
\(703\) 59.9091 2.25952
\(704\) 26.6256 1.00349
\(705\) 2.80820 0.105763
\(706\) 0.833445 0.0313671
\(707\) −16.4358 −0.618133
\(708\) 46.8193 1.75958
\(709\) −49.2943 −1.85129 −0.925643 0.378397i \(-0.876475\pi\)
−0.925643 + 0.378397i \(0.876475\pi\)
\(710\) 0.105314 0.00395236
\(711\) −21.1140 −0.791836
\(712\) 0.0950908 0.00356368
\(713\) −16.7090 −0.625756
\(714\) −0.829676 −0.0310499
\(715\) 0 0
\(716\) −19.1525 −0.715764
\(717\) 55.2791 2.06444
\(718\) 0.652350 0.0243455
\(719\) −26.0709 −0.972282 −0.486141 0.873880i \(-0.661596\pi\)
−0.486141 + 0.873880i \(0.661596\pi\)
\(720\) −22.3242 −0.831975
\(721\) −25.1958 −0.938339
\(722\) −0.616539 −0.0229452
\(723\) 38.2823 1.42374
\(724\) 22.1368 0.822709
\(725\) −0.000401110 0 −1.48968e−5 0
\(726\) −0.00812119 −0.000301405 0
\(727\) −53.8109 −1.99574 −0.997868 0.0652593i \(-0.979213\pi\)
−0.997868 + 0.0652593i \(0.979213\pi\)
\(728\) 0 0
\(729\) −36.1941 −1.34052
\(730\) 0.0473914 0.00175403
\(731\) 19.7148 0.729177
\(732\) 53.5549 1.97945
\(733\) −16.4544 −0.607758 −0.303879 0.952711i \(-0.598282\pi\)
−0.303879 + 0.952711i \(0.598282\pi\)
\(734\) −0.606944 −0.0224027
\(735\) 12.3841 0.456793
\(736\) −1.16108 −0.0427979
\(737\) −22.4333 −0.826341
\(738\) 1.28956 0.0474692
\(739\) 8.56267 0.314983 0.157491 0.987520i \(-0.449659\pi\)
0.157491 + 0.987520i \(0.449659\pi\)
\(740\) 17.9240 0.658900
\(741\) 0 0
\(742\) 0.147360 0.00540976
\(743\) 36.8946 1.35353 0.676766 0.736199i \(-0.263381\pi\)
0.676766 + 0.736199i \(0.263381\pi\)
\(744\) −1.16783 −0.0428146
\(745\) −12.0203 −0.440389
\(746\) −0.108926 −0.00398805
\(747\) −20.3783 −0.745605
\(748\) 47.1701 1.72471
\(749\) 4.98478 0.182140
\(750\) 0.0704021 0.00257072
\(751\) −19.2206 −0.701369 −0.350685 0.936494i \(-0.614051\pi\)
−0.350685 + 0.936494i \(0.614051\pi\)
\(752\) −3.83018 −0.139672
\(753\) 35.1420 1.28064
\(754\) 0 0
\(755\) 6.64251 0.241746
\(756\) −25.2307 −0.917633
\(757\) −36.7110 −1.33428 −0.667142 0.744931i \(-0.732482\pi\)
−0.667142 + 0.744931i \(0.732482\pi\)
\(758\) −0.128754 −0.00467656
\(759\) −39.3558 −1.42852
\(760\) −0.642174 −0.0232941
\(761\) 12.8270 0.464979 0.232489 0.972599i \(-0.425313\pi\)
0.232489 + 0.972599i \(0.425313\pi\)
\(762\) −0.583793 −0.0211486
\(763\) −22.3464 −0.808994
\(764\) 39.3486 1.42358
\(765\) −39.5269 −1.42910
\(766\) 0.134872 0.00487311
\(767\) 0 0
\(768\) 46.7474 1.68685
\(769\) 34.6300 1.24879 0.624396 0.781108i \(-0.285345\pi\)
0.624396 + 0.781108i \(0.285345\pi\)
\(770\) −0.133406 −0.00480764
\(771\) −77.9806 −2.80840
\(772\) −4.45574 −0.160366
\(773\) 21.1483 0.760653 0.380326 0.924852i \(-0.375812\pi\)
0.380326 + 0.924852i \(0.375812\pi\)
\(774\) −0.373918 −0.0134402
\(775\) −4.14759 −0.148986
\(776\) 1.77253 0.0636300
\(777\) 43.7467 1.56941
\(778\) −0.0653229 −0.00234194
\(779\) −64.2122 −2.30064
\(780\) 0 0
\(781\) −14.6135 −0.522911
\(782\) −0.684933 −0.0244931
\(783\) −0.00303925 −0.000108614 0
\(784\) −16.8909 −0.603248
\(785\) −8.94035 −0.319095
\(786\) −0.342463 −0.0122152
\(787\) −20.7662 −0.740235 −0.370117 0.928985i \(-0.620683\pi\)
−0.370117 + 0.928985i \(0.620683\pi\)
\(788\) 19.0587 0.678938
\(789\) −49.8816 −1.77583
\(790\) −0.0908177 −0.00323115
\(791\) −5.63650 −0.200411
\(792\) −1.78955 −0.0635890
\(793\) 0 0
\(794\) 0.120377 0.00427200
\(795\) 10.7909 0.382713
\(796\) 40.8267 1.44706
\(797\) −15.7183 −0.556770 −0.278385 0.960470i \(-0.589799\pi\)
−0.278385 + 0.960470i \(0.589799\pi\)
\(798\) −0.783557 −0.0277376
\(799\) −6.78165 −0.239918
\(800\) −0.288209 −0.0101897
\(801\) 5.52765 0.195310
\(802\) −0.457286 −0.0161473
\(803\) −6.57610 −0.232065
\(804\) −39.4211 −1.39028
\(805\) −6.70929 −0.236471
\(806\) 0 0
\(807\) 17.5377 0.617356
\(808\) −0.948331 −0.0333622
\(809\) −5.08807 −0.178887 −0.0894435 0.995992i \(-0.528509\pi\)
−0.0894435 + 0.995992i \(0.528509\pi\)
\(810\) 0.130813 0.00459631
\(811\) −35.0950 −1.23235 −0.616176 0.787608i \(-0.711319\pi\)
−0.616176 + 0.787608i \(0.711319\pi\)
\(812\) 0.00133564 4.68718e−5 0
\(813\) 20.8536 0.731366
\(814\) 0.718101 0.0251694
\(815\) −4.49497 −0.157452
\(816\) 82.8661 2.90090
\(817\) 18.6189 0.651392
\(818\) −0.286935 −0.0100325
\(819\) 0 0
\(820\) −19.2114 −0.670892
\(821\) −26.4352 −0.922596 −0.461298 0.887245i \(-0.652616\pi\)
−0.461298 + 0.887245i \(0.652616\pi\)
\(822\) −0.312186 −0.0108887
\(823\) 45.9498 1.60171 0.800854 0.598859i \(-0.204379\pi\)
0.800854 + 0.598859i \(0.204379\pi\)
\(824\) −1.45377 −0.0506445
\(825\) −9.76910 −0.340116
\(826\) 0.319774 0.0111263
\(827\) −25.1837 −0.875723 −0.437861 0.899042i \(-0.644264\pi\)
−0.437861 + 0.899042i \(0.644264\pi\)
\(828\) −44.9937 −1.56364
\(829\) 19.5773 0.679947 0.339973 0.940435i \(-0.389582\pi\)
0.339973 + 0.940435i \(0.389582\pi\)
\(830\) −0.0876536 −0.00304250
\(831\) 21.9393 0.761065
\(832\) 0 0
\(833\) −29.9069 −1.03621
\(834\) −0.427394 −0.0147995
\(835\) 18.1721 0.628870
\(836\) 44.5481 1.54073
\(837\) −31.4267 −1.08627
\(838\) 0.0599689 0.00207159
\(839\) 14.1467 0.488398 0.244199 0.969725i \(-0.421475\pi\)
0.244199 + 0.969725i \(0.421475\pi\)
\(840\) −0.468927 −0.0161795
\(841\) −29.0000 −1.00000
\(842\) 0.557946 0.0192281
\(843\) −72.8884 −2.51041
\(844\) 12.8266 0.441509
\(845\) 0 0
\(846\) 0.128624 0.00442217
\(847\) 0.192113 0.00660107
\(848\) −14.7180 −0.505417
\(849\) 37.3341 1.28130
\(850\) −0.170018 −0.00583155
\(851\) 36.1148 1.23800
\(852\) −25.6797 −0.879771
\(853\) 2.86179 0.0979860 0.0489930 0.998799i \(-0.484399\pi\)
0.0489930 + 0.998799i \(0.484399\pi\)
\(854\) 0.365778 0.0125167
\(855\) −37.3297 −1.27665
\(856\) 0.287617 0.00983054
\(857\) 28.2816 0.966082 0.483041 0.875598i \(-0.339532\pi\)
0.483041 + 0.875598i \(0.339532\pi\)
\(858\) 0 0
\(859\) −8.52025 −0.290707 −0.145354 0.989380i \(-0.546432\pi\)
−0.145354 + 0.989380i \(0.546432\pi\)
\(860\) 5.57052 0.189953
\(861\) −46.8889 −1.59797
\(862\) −0.448767 −0.0152851
\(863\) −36.8913 −1.25579 −0.627897 0.778297i \(-0.716084\pi\)
−0.627897 + 0.778297i \(0.716084\pi\)
\(864\) −2.18379 −0.0742939
\(865\) −0.0851909 −0.00289658
\(866\) −0.631690 −0.0214657
\(867\) 96.9087 3.29119
\(868\) 13.8109 0.468773
\(869\) 12.6020 0.427493
\(870\) −2.82390e−5 0 −9.57391e−7 0
\(871\) 0 0
\(872\) −1.28936 −0.0436634
\(873\) 103.037 3.48729
\(874\) −0.646859 −0.0218803
\(875\) −1.66541 −0.0563013
\(876\) −11.5559 −0.390438
\(877\) 37.6091 1.26997 0.634984 0.772525i \(-0.281006\pi\)
0.634984 + 0.772525i \(0.281006\pi\)
\(878\) −0.191804 −0.00647308
\(879\) 51.4971 1.73695
\(880\) 13.3243 0.449163
\(881\) 39.3542 1.32588 0.662938 0.748675i \(-0.269309\pi\)
0.662938 + 0.748675i \(0.269309\pi\)
\(882\) 0.567226 0.0190995
\(883\) −9.17085 −0.308624 −0.154312 0.988022i \(-0.549316\pi\)
−0.154312 + 0.988022i \(0.549316\pi\)
\(884\) 0 0
\(885\) 23.4164 0.787134
\(886\) −0.972460 −0.0326704
\(887\) 35.6093 1.19564 0.597822 0.801629i \(-0.296033\pi\)
0.597822 + 0.801629i \(0.296033\pi\)
\(888\) 2.52414 0.0847047
\(889\) 13.8100 0.463174
\(890\) 0.0237761 0.000796977 0
\(891\) −18.1518 −0.608109
\(892\) 5.71336 0.191297
\(893\) −6.40468 −0.214324
\(894\) −0.846254 −0.0283030
\(895\) −9.57903 −0.320192
\(896\) 1.27953 0.0427462
\(897\) 0 0
\(898\) 0.377886 0.0126102
\(899\) 0.00166364 5.54855e−5 0
\(900\) −11.1686 −0.372285
\(901\) −26.0594 −0.868165
\(902\) −0.769679 −0.0256275
\(903\) 13.5958 0.452441
\(904\) −0.325220 −0.0108167
\(905\) 11.0716 0.368033
\(906\) 0.467647 0.0155365
\(907\) 32.1739 1.06832 0.534158 0.845385i \(-0.320629\pi\)
0.534158 + 0.845385i \(0.320629\pi\)
\(908\) 44.4010 1.47350
\(909\) −55.1267 −1.82844
\(910\) 0 0
\(911\) 41.5764 1.37749 0.688743 0.725005i \(-0.258163\pi\)
0.688743 + 0.725005i \(0.258163\pi\)
\(912\) 78.2598 2.59144
\(913\) 12.1629 0.402534
\(914\) −0.511357 −0.0169142
\(915\) 26.7852 0.885491
\(916\) −40.0021 −1.32171
\(917\) 8.10121 0.267525
\(918\) −1.28824 −0.0425182
\(919\) −29.1810 −0.962592 −0.481296 0.876558i \(-0.659834\pi\)
−0.481296 + 0.876558i \(0.659834\pi\)
\(920\) −0.387119 −0.0127629
\(921\) −1.73493 −0.0571680
\(922\) 0.919961 0.0302973
\(923\) 0 0
\(924\) 32.5298 1.07015
\(925\) 8.96459 0.294754
\(926\) 0.291037 0.00956408
\(927\) −84.5080 −2.77561
\(928\) 0.000115603 0 3.79487e−6 0
\(929\) −0.0200966 −0.000659349 0 −0.000329675 1.00000i \(-0.500105\pi\)
−0.000329675 1.00000i \(0.500105\pi\)
\(930\) −0.291999 −0.00957503
\(931\) −28.2444 −0.925674
\(932\) −4.22017 −0.138236
\(933\) −69.3778 −2.27133
\(934\) −0.558171 −0.0182639
\(935\) 23.5919 0.771537
\(936\) 0 0
\(937\) −51.2388 −1.67390 −0.836949 0.547281i \(-0.815663\pi\)
−0.836949 + 0.547281i \(0.815663\pi\)
\(938\) −0.269245 −0.00879114
\(939\) 26.6554 0.869867
\(940\) −1.91619 −0.0624994
\(941\) −32.4122 −1.05661 −0.528304 0.849055i \(-0.677172\pi\)
−0.528304 + 0.849055i \(0.677172\pi\)
\(942\) −0.629419 −0.0205076
\(943\) −38.7087 −1.26053
\(944\) −31.9383 −1.03950
\(945\) −12.6190 −0.410496
\(946\) 0.223175 0.00725605
\(947\) −29.2152 −0.949365 −0.474683 0.880157i \(-0.657437\pi\)
−0.474683 + 0.880157i \(0.657437\pi\)
\(948\) 22.1450 0.719235
\(949\) 0 0
\(950\) −0.160567 −0.00520947
\(951\) −12.7286 −0.412752
\(952\) 1.13243 0.0367024
\(953\) −13.0955 −0.424204 −0.212102 0.977248i \(-0.568031\pi\)
−0.212102 + 0.977248i \(0.568031\pi\)
\(954\) 0.494254 0.0160021
\(955\) 19.6800 0.636829
\(956\) −37.7201 −1.21996
\(957\) 0.00391848 0.000126666 0
\(958\) −0.912330 −0.0294761
\(959\) 7.38498 0.238474
\(960\) 23.4008 0.755256
\(961\) −13.7975 −0.445081
\(962\) 0 0
\(963\) 16.7192 0.538770
\(964\) −26.1222 −0.841341
\(965\) −2.22851 −0.0717384
\(966\) −0.472348 −0.0151976
\(967\) 28.4227 0.914012 0.457006 0.889464i \(-0.348922\pi\)
0.457006 + 0.889464i \(0.348922\pi\)
\(968\) 0.0110847 0.000356276 0
\(969\) 138.566 4.45137
\(970\) 0.443196 0.0142302
\(971\) 39.1760 1.25722 0.628608 0.777722i \(-0.283625\pi\)
0.628608 + 0.777722i \(0.283625\pi\)
\(972\) 13.5520 0.434681
\(973\) 10.1103 0.324122
\(974\) 0.531507 0.0170306
\(975\) 0 0
\(976\) −36.5330 −1.16939
\(977\) −51.4703 −1.64668 −0.823340 0.567549i \(-0.807892\pi\)
−0.823340 + 0.567549i \(0.807892\pi\)
\(978\) −0.316456 −0.0101191
\(979\) −3.29921 −0.105443
\(980\) −8.45035 −0.269937
\(981\) −74.9511 −2.39300
\(982\) 0.628153 0.0200452
\(983\) −62.1330 −1.98173 −0.990867 0.134841i \(-0.956948\pi\)
−0.990867 + 0.134841i \(0.956948\pi\)
\(984\) −2.70544 −0.0862463
\(985\) 9.53209 0.303718
\(986\) 6.81957e−5 0 2.17179e−6 0
\(987\) −4.67681 −0.148865
\(988\) 0 0
\(989\) 11.2239 0.356900
\(990\) −0.447453 −0.0142210
\(991\) 8.63773 0.274387 0.137193 0.990544i \(-0.456192\pi\)
0.137193 + 0.990544i \(0.456192\pi\)
\(992\) 1.19537 0.0379531
\(993\) 56.6170 1.79669
\(994\) −0.175391 −0.00556307
\(995\) 20.4192 0.647334
\(996\) 21.3734 0.677242
\(997\) 5.36590 0.169940 0.0849698 0.996384i \(-0.472921\pi\)
0.0849698 + 0.996384i \(0.472921\pi\)
\(998\) 0.541033 0.0171261
\(999\) 67.9256 2.14907
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.a.n.1.5 9
3.2 odd 2 7605.2.a.cs.1.5 9
5.4 even 2 4225.2.a.bt.1.5 9
13.2 odd 12 845.2.m.j.316.9 36
13.3 even 3 845.2.e.p.191.5 18
13.4 even 6 845.2.e.o.146.5 18
13.5 odd 4 845.2.c.h.506.10 18
13.6 odd 12 845.2.m.j.361.10 36
13.7 odd 12 845.2.m.j.361.9 36
13.8 odd 4 845.2.c.h.506.9 18
13.9 even 3 845.2.e.p.146.5 18
13.10 even 6 845.2.e.o.191.5 18
13.11 odd 12 845.2.m.j.316.10 36
13.12 even 2 845.2.a.o.1.5 yes 9
39.38 odd 2 7605.2.a.cp.1.5 9
65.64 even 2 4225.2.a.bs.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.n.1.5 9 1.1 even 1 trivial
845.2.a.o.1.5 yes 9 13.12 even 2
845.2.c.h.506.9 18 13.8 odd 4
845.2.c.h.506.10 18 13.5 odd 4
845.2.e.o.146.5 18 13.4 even 6
845.2.e.o.191.5 18 13.10 even 6
845.2.e.p.146.5 18 13.9 even 3
845.2.e.p.191.5 18 13.3 even 3
845.2.m.j.316.9 36 13.2 odd 12
845.2.m.j.316.10 36 13.11 odd 12
845.2.m.j.361.9 36 13.7 odd 12
845.2.m.j.361.10 36 13.6 odd 12
4225.2.a.bs.1.5 9 65.64 even 2
4225.2.a.bt.1.5 9 5.4 even 2
7605.2.a.cp.1.5 9 39.38 odd 2
7605.2.a.cs.1.5 9 3.2 odd 2